
HAL Id: hal-02297858
https://hal.science/hal-02297858v1

Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Switching of GUI framework: the case from Spec to
Spec 2

Clement Dutriez, Benoît Verhaeghe, Mustapha Derras

To cite this version:
Clement Dutriez, Benoît Verhaeghe, Mustapha Derras. Switching of GUI framework: the case from
Spec to Spec 2. International Workshop on Smalltalk Technologies, Aug 2019, Cologne, Germany.
�hal-02297858�

https://hal.science/hal-02297858v1
https://hal.archives-ouvertes.fr

Switching of GUI framework:
the case from Spec to Spec 2

Clement Dutriez
Université de Lille, CNRS, Inria,

Centrale Lille, UMR 9189 – CRIStAL
France

clement.dutriez@inria.fr

Benoît Verhaeghe
Berger-Levrault

France
benoit.verhaeghe@berger-levrault.com
Université de Lille, CNRS, Inria,

Centrale Lille, UMR 9189 – CRIStAL
France

benoit.verhaeghe@inria.fr

Mustapha Derras
Berger-Levrault

France
mustapha.derras@berger-levrault.com

Abstract
Developers used frameworks to create their User Interface.
Those frameworks are developed in a specific version of a
language and can be used until the retro-compatibility is bro-
ken. In such case, developers need to migrate their software
systems to a new GUI framework. We proposed a three-step
approach to migrate the front-end of an application. This
approach includes an importer, a GUI meta-model and an
exporter. We validate our experiment on 6 projects in Pharo.
We are able to migrate 5 out of 6 projects that all conserve
their widgets organization.

Keywords GUI, Modernization, Spec, Spec 2

1 Introduction
Programing languages evolve at a fast pace. For example,
since 2017 they were 4 versions of Java, 4 versions of Angu-
lar and 2 major versions of Pharo. As many frameworks are
developed on top of programming languages, the evolution
of these languages may break the compatibility of frame-
works based on them. This problem is known as backward
compatibility problem.

Once a software system has used a legacy framework, i.e.
a framework that can not be used directly in the current
version of the programming language used for the company
application, the developers need to develop solutions to run
their applications in the last development environment. One
solution is tomigrate the applications to the last environment
using another framework. In the case of a legacy Graphi-
cal User Interface (GUI) framework, the developers need to
switch framework. For example, Swing, AWT and JavaFX
have been removed from the last Java version and a new
version of Spec is in progress.

Those evolution force companies to update their software
systems regularly to avoid being stuck in old technologies.
To reduce the time induced by such modernization many
research papers proposed solutions tomigrate the GUI part of

IWST’19, August 27–29, 2019, Cologne, Germany
2019.

applications [6, 9, 11, 12]. None of them proposed a solution
adapted for the Spec framework.

To support the migration of Spec GUI, we present a three-
step approach. It includes a GUI meta-model, a strategy to
generate the model, and another to create the target GUI. To
validate this approach, we developed a tool which migrates
Spec applications to Spec 2. Then, we validated our approach
on 6 real projects that used both simple and complex user
interfaces. Our migration succeeded for 5 projects out of 6.
Since Spec 2 is still in active development, we only tested
our approach on projects that can be written with the basic
components already implemented in Spec 2 e.g. input, text,
list.
First, in Section 2, we review the literature on GUI meta-

modeling. Section 3 describes the differences between Spec
framework and the other GUI framework. Section 4 describes
our migration approach. We present our implementation
in Section 5. In Section 7, we present our results. Finally,
in Section 8, we discuss the results obtained with our tool
and future work.

2 Related Works
In the following we present meta-models found in the litera-
ture to represent GUI.

The OMG designed the Knowledge Discovery Metamodel
(KDM) standard to support the evolution of software. The
standard defined a meta-model to represent a piece of soft-
ware at a high level of abstraction. It includes, among other
things, a UI package which represents the components and
behavior of a GUI.

The main entity of the UI meta-model is UIResource. It can
be refined as UIDisplay or UIField. UIDisplay corresponds to
the physical support on which the interface will be displayed,
e.g. a computer screen, a printed report, etc. UIField corre-
sponds to a user interface widget, e.g. a form, a text field, a
panel, etc. An UIResource might be composed of other UIRe-
sources to represent the DOM, and UIActions to represent
the behavior of the user interface.
The Interaction Flow Modeling Language (IFML) is spe-

cialized in modeling applications with a GUI. The aim of
1

IWST’19, August 27–29, 2019, Cologne, Germany Clement Dutriez, Benoît Verhaeghe, and Mustapha Derras

IFML [1] is to provide tools to describe the visible parts of
an application. In the IFML meta-model, the visible elements
of the GUI are called ViewElements. A ViewElement can be
refined as a ViewContainer or a ViewComponent. ViewCon-
tainer represents a container of other ViewContainers or
ViewComponents, e.g. a window, an HTML Page, a pane, etc.
The authors use this relation of containment to represent
the DOM.
A ViewComponent corresponds to a widget which dis-

plays its content, e.g. a form, a data grid, an image gallery
etc. It can be linked to multiple ViewComponentParts to rep-
resent the data inside the component. The data can be an
input field inside a form, an image element of a gallery, etc.

In their studies, Gotti and Mbarki [5] and Sánchez Ramón
et al. [10] used the KDM meta-models. Both authors added
the Attribute entity to the meta-model.

Fleurey et al. [3] did not explicitly describe the GUI meta-
model, but we extracted information from their navigation
meta-model. They have, among other things, three elements
in their UI meta-model that represent the main window of
the application, the graphical entities and their associated
events to represent the behavioral part of the application.
The UI meta-model of Garcés et al. [4] differs from the

previous ones. In their representation, a widget corresponds
to data found in a database directly displayed in a table. This
difference is due to the context of their work. They migrated
User Interface of Oracle Forms applications which are really
different from modern GUI framework.

Memon et al. [7] designed a meta-model with two entities:
widgets and attributes. An UI window is composed of a set
of widgets that can have attributes.
Samir et al. [9] worked on the migration of Java-Swing

applications to Ajax web applications. They created a meta-
model to represent the UI of the original application. This
meta-model is stored in a XUL (XML-based User interface
Language) file and represents the widgets with their at-
tributes and the layout. These widgets belong to a Window
and can fire events when an input is performed. The input
and the event correspond to the Action and the Event entities
of the KDM model. The XUL format has been discontinued.
Shah and Tilevich [11] used a tree architecture to repre-

sent the UI. Each node corresponds to a component with its
attributes. The root of the tree is the top-level component of
the represented GUI.
Joorabchi and Mesbah [6] represented a user interface

with a set of UI elements. Those elements are basic widgets
such as text, button, input. Each element can be linked to
multiple attributes and actions.

Mesbah et al. [8] did not present directly their meta-model
for the user interface. However, they used a DOM-tree rep-
resentation to analyze different web pages. The meta-model
also includes an event entity for the behavioral part. They
used different instances of their UI meta-model to represent
the web pages of the application.

All the authors used the notion of widget that represents a
visual entity of the user interface. And, most of them have an
entity attribute that represents a characteristic of a widget.
Finally, they used a tree representation and the root of this
tree represent the main frame of the GUI.

3 Comparison of Spec and Spec 2
Spec and Spec 2 are frameworks that allow developers to
write GUI for Pharo applications. Both divides the GUI defi-
nition into three steps:

• Widgets organization. Spec and Spec 2 frameworks
define the GUI organization in one method in which
is defined the layout of the application. At this step,
apart from the layout, all widgets are abstracts but are
defined using a symbol. The properties of the layout
components, for example, the height, are also defined
in this section.

• Widgets initialization. In this step a concrete User
Interface component is created for each abstract wid-
get defined in the previous step. It also defines the
properties of the widget such as its label, its color etc.

• Events declaration. Developers should define the
user interactions, e.g. click, hover, with the widgets in
this step.

Even though the GUI definition is done in the same way
for both frameworks, there is one notable difference. In Spec,
the organization of the widgets is defined using only one
class which can be used to define the layouts of the GUI. In
Spec 2, the layouts are defined using multiple classes that
are also User Interface elements.

4 Migration approach
This section presents the migration approach we designed.
First, Section 4.1 describes the migration process. Section 4.2
presents our GUI meta-model.

4.1 Migration process
From the state of the art, we designed an approach for the
migration.

Migrated
application

Source code model extraction

GUI model
extractionSource code model

Source
application

GUI model

Export

Figure 1. Our GUI migration process

2

Switching of GUI framework: IWST’19, August 27–29, 2019, Cologne, Germany

Figure 1 presents the process divided into the following
three steps:

1. Source code model extraction.We build a model repre-
senting the source code of the original application. It
produces a FAMIX [2] smalltalk model which allows
one to easily query the former application for the next
step.

2. GUI model extraction. We analyze the source code
model to detect the visual code elements describing
the GUI. The GUI meta-model is described Section 4.2.

3. Export. We re-create the GUI in the target language.
This step creates the classes and the necessary config-
uration classes to run the exported user interface.

4.2 GUI Meta-model
To represent the User Interface of an application, we designed
a GUI meta-model presented Figure 2. In the following, we
present the entities of the meta-model.

Widget

ContainerLeaf

0..*

widgets

container

Attribute
widget

0..*attributes

0..*

callerevents

1..*
Event

Page

Figure 2. GUI meta-model

The main entity is Widget. It represents one component
of the User Interface. It can be refined as Leaf or Container.
A container is a widget that can contain other widgets,

e.g. a panel, a fieldset, a window. It is essential to represent
the DOM heavily used in the literature. A leaf corresponds
to a basic visible UI element, e.g. an input, a textfield.

A page is a type of container that represents a window. It
corresponds to the root of an application GUI.
Finally, each widget is linked to multiple attributes and

events. Attributes represent properties of the widget, e.g. its
color, its size. Events represent all user interactions that the
widget can handle, e.g. click, double-click, mouse hover.

5 Implementation
To test our approach, we implemented a migration tool. It is
developed in Pharo using the Moose platform and allows one
to migrate from Spec to Spec 2. Note that we do not migrate
the behavior of the application. This will be the focus of
future works.

5.1 Import
As presented Section 4.1, the extraction of the GUI model
is divided into two steps: the source code model extraction
and the GUI model extraction.

For the source code model extraction, we rely on a FAMIX
Smalltalk importer that allows one to create a Smalltalk
model for source code. Because an image does not include
only the code of the old application, we must provide the list
of packages in which the application is designed.

For the second step, our tool creates the GUI model form
the source code model.
First, we provide to the tool the main window to extract.

It is one page of the application. As presented in Section 3, a
Spec UI is defined in three steps: the widgets organization;
the widgets definition; and the events declaration, that will
be the focus of future works.

1 defaultSpec
2 ↑ SpecLayout composed
3 newRow : [: row |
4 row add : #labelA .
5 row add : #buttonA .
6] ;
7 yourself .

Figure 3. Widgets organization creation in Spec

For the widget organization, the tool analysis the method
defaultSpec. It uses the FAMIX navigation query system to
explore the DOM. Figure 3 presents an example of organiza-
tion creation using Spec.
First, line 3, the tool detects the invocation of newRow:,

so it creates a horizontal panel entity in the model, which
is a type of container. Then, line 4 and 5, it extracts the
affectations of two widgets inside the previous panel. Once
the widgets are created, the tool adds them inside the panel.

1 initializeWidgets
2 buttonA := s e l f newButton disable ;
3 label : ' normal ' ;
4 yourself .
5 labelA := (s e l f instantiate : LabelPresenter)
6 label : ' normal : ' ;
7 yourself .

Figure 4. Widgets definition creation in Spec

Figure 4 presents a snippet of code used to define widgets
in Spec. In this user interface two widgets are created lines 2
and 5. Our tool uses the name of the attribute in which a
widget is affected to link the widget organization to the
widget definition. In our example, the widget found Figure 3
line 4 corresponds to the one found Figure 4 line 5.

3

IWST’19, August 27–29, 2019, Cologne, Germany Clement Dutriez, Benoît Verhaeghe, and Mustapha Derras

Once the affectation of the widget is detected in widgets
definition, our tool analyzes instantiate invocations to de-
termine what type of widget should be created. To do so, it
uses two heuristics: using a keyword that corresponds to
a basic widgets, e.g. newButton, newLabel, newTextInput,
or using the method instantiate: with the widget type as
argument. This latter allows one to create a basic component
or to create a customized one such as another user interface.
Line 5, self instantiate: LabelPresenter corresponds to the
creation of a text widget. Unlike the first example, the widget
creation line 2, self newButton, uses the short way to create
a basic widget element. So in the example, our tool creates a
button widget.

Finally, our tool analyzes invocations on widgets to create
their attributes. Lines 2 and 3, it creates the attributes label,
with for the latter the value false, and add them to the button
widget. Line 6, it creates a label attribute for the label widget.

5.2 Export
Once the GUI model is generated, it is possible to export the
application. To generate the code, the tool has two visitors
that respectively export the widgets organization and the
widgets definition part. It also creates the minimal methods
to be able to launch the application from the User Interface
of Pharo.

6 Validation
In this section we present the applications we migrated with
our tool to validate our approach Section 6.1. Section 6.2
presents the metrics used to evaluate our approach.

6.1 Case study
In the following, we present the 6 projects we migrated to
validate our tool and approach.

• Refactoring is an application used by developers to
refactor their code. It comes with a GUI that show the
elements concerned by the refactoring and allows the
developers to select which refactor actions they want
to apply.

• Setting has a GUI to configure the settings for the
Pharo code formatting configuration.

• CriticToolbar represents the toolbar of an applica-
tion. It is composed of 3 buttons.

• DemoButton is part of the Demo package of Pharo. It
is used to show the different configurations of a Spec
button.

• DemoForm is also part of the Demo package of Pharo.
Its GUI contains multiple type of widgets such as text,
text input, check box, slider. To create the DemoForm
GUI, the developers have used multiple pages with 2
pages inside the main one.

• DBManager provides a GUI to manage the connec-
tions between Pharo and databases. Its user interface
is divided into multiple pages.

6.2 Validation metrics
We validate our approach in two steps: First, we check that
all entities of interest are extracted; Second, we validate that
we can re-export these widgets and that the visual aspect of
the migrated application is correct, i.e. similar to the original
one.

For the first validation, we manually count and check the
entities of the user interface. Table 1 presents a summary of
those numbers.
For the second validation, we check that the entities of

the original applications are exported correctly. Each Page
corresponds to a Pharo class that implements the necessary
methods for GUI definition as presented Section 3.
We also check that the exported pages have the same

visual aspect as the original ones. It is a subjective evaluation,
and we are looking for an automatic solution.

7 Results and Discussion
In Section 7.1, we present the results for both the import and
the export of Spec applications to Spec 2. Then, Section 7.2,
we discuss the obtained results.

7.1 Results
Table 1 summarizes the extraction results.

For the import, our tool extracts 100% of the widgets for all
the projects except the Critic one. For this latter, the widget
definition does not follow the regular way to create User
Interface. So, our tool cannot analyze the project.
For the Attributes extraction, our tool is less efficient. It

extracts less than 25% of the attributes of the Refactoring and
the Setting applications, 80% for the DemoForm and Critic
projects, 74% for the DemoButton application, and 89% for
the DBManager project.
For the export, we visually compared the result of the

export with the original application. We present in the two
following comparisons that show the main differences.

(a) CriticToolbar original (b) CriticToolbar exported

Figure 5. Visual comparison of CriticToolbar

Figure 5 presents the visual differences between the origi-
nal (Spec) version, left hand, and the migrated (Spec 2) one,
right-hand. We can see that there is only one minimal dif-
ference. The buttons do not have the same height in the
exported version. This difference is due to current Spec 2
limitation

4

Switching of GUI framework: IWST’19, August 27–29, 2019, Cologne, Germany

Table 1. Extraction results

Refactoring Setting CriticToolbar DemoButton DemoForm DBMananer

Widgets number 7 11 5 15 41 37
(multiple pages) (multiple pages)

Widgets imported 100% 100% error 100% 100% 100%
Attributes number 8 8 5 19 20 29
Attributes imported 12.5% 25% 80% 74% 80% 89%

(a) DBManager original (b) DBManager exported

Figure 6. Visual comparison of DBManager

Figure 6 presents the visual differences for the DBManager
application. Again on the left-hand side there is the original
page, on the right-hand side the page after the migration.
There are many differences in this example. The text of the
buttons at the left of the image is not present, the buttons at
the right of the image are enabled but are disabled in the orig-
inal application and are not correctly placed. Apart the last
difference that comes from an application developers hack,
all the differences are due to attribute extraction problems.
Finally, the drop-box input has visual differences between
the original and the exported application. It is due to widgets
implementation. We discussed this point Section 7.2.2.

7.2 Discussion
Section 7.2.1 discuses the applications chosen for the valida-
tion. Section 7.2.2 presents how the future developments of
Spec 2 can impact our solution.

7.2.1 User Interface definition
To validate our tool, we selected projects that used the Spec
standard way to express widget definition. However, it is
possible in Pharo to define the User Interface not extending
the methods defined by the Spec framework. In this case, our
tool is not able to extract the widgets of the application.

7.2.2 Widget implementations
Our tool exports the GUI with a similar aspect. This is eased
because the visual aspect of basic components does not
change between Spec and Spec 2. If a component is imple-
mented differently in the target framework, the visual aspect

is impacted. It is the case of the drop-box input presented
Figure 6.
This lead to difficulties for automatic validation of the

migrated GUI produced by our tool. It is possible to count the
number of widgets and attributes but it may not be sufficient
because of different visual aspect implementation.

8 Conclusion and Future works
In this paper, we exposed a preliminary work on the GUI
migration problem. We proposed an approach based on a
GUI meta-model and a migration process in three steps. We
implemented this process in a tool to perform the migration
from Spec applications to Spec 2. Then, we validated our tool
on 6 Pharo projects.

We were able to extract correctly the widget organization
of 5 projects out of 6. However, our tool does not extract all
the attributes and works only with applications using the
Spec defined methods. Dealing with all non-standard Spec
application is our next challenge.

References
[1] Marco Brambilla and Piero Fraternali. 2014. Interaction flow modeling

language: Model-driven UI engineering of web and mobile apps with
IFML. Morgan Kaufmann.

[2] Stéphane Ducasse, Nicolas Anquetil, Usman Bhatti, An-
dre Cavalcante Hora, Jannik Laval, and Tudor Girba. 2011.
MSE and FAMIX 3.0: an Interexchange Format and Source
Code Model Family. Technical Report. RMod – INRIA Lille-
Nord Europe. http://rmod.inria.fr/archives/reports/
Duca11c-Cutter-deliverable22-MSE-FAMIX30.pdf

[3] Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, and
Jean-Marc Jezéquel. 2007. Model-Driven Engineering for Software

5

http://rmod.inria.fr/archives/reports/Duca11c-Cutter-deliverable22-MSE-FAMIX30.pdf
http://rmod.inria.fr/archives/reports/Duca11c-Cutter-deliverable22-MSE-FAMIX30.pdf

IWST’19, August 27–29, 2019, Cologne, Germany Clement Dutriez, Benoît Verhaeghe, and Mustapha Derras

Migration in a Large Industrial Context. In Model Driven Engi-
neering Languages and Systems, Gregor Engels, Bill Opdyke, Dou-
glas C. Schmidt, and Frank Weil (Eds.), Vol. 4735. Springer Berlin
Heidelberg, Berlin, Heidelberg, 482–497. https://doi.org/10.1007/
978-3-540-75209-7_33

[4] Kelly Garcés, Rubby Casallas, Camilo Álvarez, Edgar Sandoval, Ale-
jandro Salamanca, Fredy Viera, Fabián Melo, and Juan Manuel Soto.
2017. White-box modernization of legacy applications: The oracle
forms case study. Computer Standards & Interfaces (Oct. 2017), 110–122.
https://doi.org/10.1016/j.csi.2017.10.004

[5] Zineb Gotti and Samir Mbarki. 2016. Java Swing Modernization
Approach - Complete Abstract Representation based on Static and
Dynamic Analysis:. In Proceedings of the 11th International Joint
Conference on Software Technologies (2016). SCITEPRESS - Science
and Technology Publications, 210–219. https://doi.org/10.5220/
0005986002100219

[6] Mona Erfani Joorabchi and Ali Mesbah. 2012. Reverse Engineering iOS
Mobile Applications. In 2012 19th Working Conference on Reverse Engi-
neering (2012-10). IEEE, 177–186. https://doi.org/10.1109/WCRE.
2012.27

[7] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI rip-
ping: reverse engineering of graphical user interfaces for testing. In
Reverse Engineering, 2003. WCRE 2003. Proceedings. 10th Working Con-
ference on (2003). IEEE, 260–269. https://doi.org/10.1109/WCRE.
2003.1287256

[8] Ali Mesbah, Arie van Deursen, and Stefan Lenselink. 2012. Crawling
Ajax-Based Web Applications through Dynamic Analysis of User In-
terface State Changes. ACM Transactions on the Web 6, 1 (2012), 1–30.
https://doi.org/10.1145/2109205.2109208

[9] Hani Samir, Amr Kamel, and Eleni Stroulia. 2007. Swing2Script: Mi-
gration of Java-Swing applications to Ajax Web applications. In 14th
Working Conference on Reverse Engineering (WCRE 2007).

[10] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús Gar-
cía Molina. 2014. Model-driven reverse engineering of legacy graphical
user interfaces. Automated Software Engineering 21, 2 (2014), 147–186.
https://doi.org/10.1007/s10515-013-0130-2

[11] Eeshan Shah and Eli Tilevich. 2011. Reverse-engineering user inter-
faces to facilitate porting to and across mobile devices and platforms.
In Proceedings of the compilation of the co-located workshops on DSM’11,
TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, \& VMIL’11 (2011). ACM,
255–260.

[12] Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai,
Laurent Deruelle, Stéphane Ducasse, and Mustapha Derras. 2019. GUI
Migration using MDE from GWT to Angular 6: An Industrial Case.
Hangzhou, China. https://hal.inria.fr/hal-02019015

6

https://doi.org/10.1007/978-3-540-75209-7_33
https://doi.org/10.1007/978-3-540-75209-7_33
https://doi.org/10.1016/j.csi.2017.10.004
https://doi.org/10.5220/0005986002100219
https://doi.org/10.5220/0005986002100219
https://doi.org/10.1109/WCRE.2012.27
https://doi.org/10.1109/WCRE.2012.27
https://doi.org/10.1109/WCRE.2003.1287256
https://doi.org/10.1109/WCRE.2003.1287256
https://doi.org/10.1145/2109205.2109208
https://doi.org/10.1007/s10515-013-0130-2
https://hal.inria.fr/hal-02019015

	Abstract
	1 Introduction
	2 Related Works
	3 Comparison of Spec and Spec 2
	4 Migration approach
	4.1 Migration process
	4.2 GUI Meta-model

	5 Implementation
	5.1 Import
	5.2 Export

	6 Validation
	6.1 Case study
	6.2 Validation metrics

	7 Results and Discussion
	7.1 Results
	7.2 Discussion

	8 Conclusion and Future works
	References

