
HAL Id: hal-02297756
https://hal.science/hal-02297756

Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards easy program migration using language
virtualization

Théo Rogliano, Guillermo Polito, Pablo Tesone

To cite this version:
Théo Rogliano, Guillermo Polito, Pablo Tesone. Towards easy program migration using language
virtualization. IWST19 - International Workshop on Smalltalk Technologies, Aug 2019, Cologne,
Germany. �hal-02297756�

https://hal.science/hal-02297756
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Towards easy program migration using language
virtualization

Théo Rogliano
Inria, Univ. Lille, CNRS, Centrale Lille,

UMR 9189 - CRIStAL
Lille, France

Guillermo Polito
CNRS - UMR 9189 - CRIStAL, Univ.

Lille, Centrale Lille, Inria
France

guillermo.polito@univ-lille.fr

Pablo Tesone
Pharo Consortium

INRIA Nord Lille Europe
Lille, France

Abstract
Migrating programs between language versions is a daunting
task. A developer writes a program in a particular version
of a language and cannot foresee future language changes.
In this article, we explore a solution to gradual program
migration based on virtualization at the programming lan-
guage level. Our language virtualization approach adds a
backwards-compatibility layer on top of a recent language
version, allowing developers to load and run old programs
on the more recent infrastructure. Developers are then able
to migrate the program to the new language version or are
able to run it as it is. Our virtualization technique is based
on a dynamic module implementation and code intercession
techniques. Migrated and non-migrated parts co-exist in the
meantime allowing an incremental migration procedure. We
validate it by migrating legacy Pharo programs, MuTalk and
Fuel.

Keywords Migration, modularity, virtualization.

1 Introduction
Migrating programs is a complex task. A developer writes
her programs targeting a version of a programming language.
As languages, libraries and frameworks evolve, programs
using them become obsolete. The developer tries to keep
her programs as much as possible compatible but it is not
always possible or straightforward [12, 19]. Changes in the
language may break her programs. For example, in Pharo
2 there was a trait named TBehavior whereas now it does
not exist anymore. Programs using that trait are now broken.
Moreover, this problem is not exclusive to program forward-
porting (Pharo2 -> Pharo7) but also to back-porting (Pharo7
-> Pharo2) and to porting between language dialects (Squeak
-> Pharo).

When a language evolves to a certain point, the differ-
ences are so important that it becomes impossible to execute
pieces of code written in an old version of the language. We
identified the following evolutions provoking incompatible
code (Section 2):

Syntax changes. Changes in the syntaxmake programs
that were valid for one version invalid in another.

IWST’19, July, 2019, Cologne, Germany
2019.

Standard Library changes. Changes in the classes of
the standard library invalidate the code that uses it e.g.,
methods or classes removed, or methods with modified
semantics.

Meta model changes. Reflective languages expose their
meta model to the programs [11]. If the meta model
changes from one version to another, programs using
it are not able to run correctly anymore.

We explore the problems of program migration using a
virtualization approach. Virtualization is well-known in Op-
erating System (OS) and the problem it solves is similar to
ours. For example, Games running in Windows XP do not
run natively on Windows 10 due to different kernel infras-
tructure, file system and so on. Windows uses virtualization
in the form of a compatibility layer to solve this issue. The
technique consists of interposing a layer between a program
and the OS, called hypervisor. The role of the hypervisor is
to be an adapter: if the behavior is present it transmits calls
to the OS else it adapts them to make them compatible with
the new API.

We want to achieve the same results with a programming
language instead of an OS. This means interposing a virtual-
ization layer between a program and a language in order to
run old programs in a newer version of the language.

Toward this goal, we present a set of techniques required
to be able to load and run programs intended for older ver-
sions of the host language (Section 3). We implemented the
virtualization layer through the use of dynamic modules and
metalinks for code rewriting. Once the program is loaded,
developers are able to update the program to the new lan-
guage version or to run it as it is using the virtualization
layer. We validate the chosen infrastructure with different
migrating scenarios of Pharo programs (Section 5).

Contribution. The contributions of this paper are:

1. the design of a dynamic module system that allows us
to load partially broken code;

2. the identification of a set of migration problems and a
corresponding set of intercession techniques to make
them compatible to recent systems transparently;

3. an experience report on migrating two real-world li-
braries written from 7-9 years.

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

IWST’19, July, 2019, Cologne, Germany Théo Rogliano, Guillermo Polito, and Pablo Tesone

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

2 Motivation: Incompatible programs
When a developer tries to execute programs developed in an
older version into a newer version of the language, 3 main
situations occur:

Successfully loaded and running. This is the statewe
want the program to be in.

Successfully loaded but not running. The program
was loaded but some unexpected bugs appear. They
make the program unusable. Since the program is
loaded the developer is able to debug it. She changes
the source code of the program thus making it incom-
patible again with the version it was conceived for.

Unloadable. The program cannot be loaded. In order
to correctly load the program, the developer should
debug the loading process. Once the incompatibilities
are discovered, the program source code is modified to
comply with the newer language version. Finally, the
program is loaded and it arrives to one of the previous
state.

The 2 last cases are the problematic ones and are due
to language changes. We illustrate these changes through
examples:

2.1 Syntax changes
Syntax changes break the loading of a program. For exam-
ple, in old Pharo versions, the parser accepted two different
syntaxes for assignments, with an underscore a _ 2 or with
a colon followed by an equal a := 2. The former gradually
disappeared and now is not supported anymore. A program
using underscore as assignment is then not understood any-
more by the compiler therefore it does not compile.

2.2 Standard library changes.
Standard library changes break both loading and execution.

We can split them in three categories:

Renaming of methods or classes. For example, the
method String » includesSubString: changed into String
»includesSubstring:. Both the loader (to get the source
code) and the program relied on the former one re-
sulting in a doesNotUnderstand during the loading
process then during the execution.

Removal of methods or classes. The class PackageIn-
fo does not exist anymore breaking program relying
on it.

Behavioral modifications. A method classNamed:
which was returning nil if the class is absent, now
returns an Exception. The code expecting a nil in this
case is not valid anymore and must catch the exception
instead. 1

1We consider refactorings as a composition of the previous changes. We
will not detail them.

2.3 Meta-model changes.
Changes in the meta model also occur and break the loading
process. As an example, the Trait class has its own hierarchy
similar to the one of Class in Pharo 2. Both inherit from
Behavior andClassDescription and use a trait TPureBehavior.
In newer versions of Pharo, this hierarchy has been updated
and Trait is now a subclass of Class. The meta side of traits
has been reworked making their creation different and any
code relying on reflection on traits is obsolete.

3 Modules for Virtualization
To illustrate with an image we will reuse, an object oriented
program can be viewed as a patchwork or a puzzle consisting
of different entities, namely packages, classes, methods and
objects (Figure 1). They are linked by mainly three relation-
ships: subclassing, reference and message-send.

Figure 1. A program seen as many related entities forming
a puzzle.

Changes are associated with loosing some pieces of the
puzzles or the way they are linked (Figure 2). Our goal is to
make new pieces looking alike the old ones and manage to
link them. This is the role of the hypervisor.

Figure 2.Missing parts as time goes (e.g., removing classes
from standard library)

We propose the introduction of language hypervisor i.e., a
compatibility layer at the level of the programming language.
This component intercepts all the interactions of the loaded
code and the language environment (Figure 3). In this section,
we will detail the prerequisites for creating a hypervisor as
we intend. The following features are mandatory.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Towards easy program migration using language virtualization IWST’19, July, 2019, Cologne, Germany

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Figure 3. All the calls to missing parts from the program are
intercepted by the hypervisor and redirect to an equivalent
in the host environment.

3.1 Encapsulating changes
An unexpected side effect of loading an old application is the
corruption of the host language environment. For example,
the program depends on a different version of the class String.
The loading process manages to install version of String
required by the program, replacing its own String. The host
environment ends up with this version of String which is
not compatible with other current components. This is the
worst scenario as it breaks all the new libraries and cannot be
debugged.We require that the loading process does not affect
the host environment. We propose to solve this problem
using encapsulation techniques, here in the form of a module
system (Figure 4) .

Figure 4. Encapsulated entities in different modules. They
are only aware of what is inside the module (oval).

3.2 The module system in a nutshell
Our modules are composed of sets of name bindings:

Defined. A set containing the entities defined inside the
module.

Import. A set containing a binding to the entities we
used that come from the outside.

Undefined. A set containing existing references in the
module to entities not defined nor imported.

A module has the same API as the host environment API
so tools in the host environment are able to interact with the
modules transparently. Also the modules introduce the API
needed for its own management such as class creation for
itself, import, undefined references and so on. A same name
is allowed to appear in different modules, as each of these
bindings are independent.

Now, with the earlier example, the loading process loads
the program in a module. The class String expected by the
program will be loaded in the module and will be different
than the one of the host environment. Doing so, the incom-
patibility is isolated inside the loaded module. It only affects
its execution. Moreover, the developer is able to debug this
incompatibility and fix it without affecting the stability of
the host environment.
In our proposed solution, we have 3 modules: the hyper-

visor, the incompatible program under test and the host
language environment.

3.3 Late class creation
Now that we have the possibility to safely load the program
to virtualize, we can take a look on the loading difficulties.
The first cause of loading failure are missing classes that pre-
vents us from loading all the hierarchy below them (Figure 5).
New classes in Pharo are created by sending the message
#subclass: to the superclass as shown in Listing 1.

Point subclass: #ColorPoint
instanceVariableNames: 'color'
classVariableNames: ''
category:''

Listing 1. Example of class creation.

The superclass is then in charge of class creation by con-
figuring a class builder with the arguments of the message.
In case of a missing superclass, which is a common scenario,
we cannot create all the subclasses, the compiler will not
manage to resolve the receiver of the message subclass:. In
Listing 1, if the class Point is not available, we cannot send
the subclass message to it, hence we cannot create the class
ColorPoint. A similar problem appears with missing traits,
the users of the missing trait will not be configured properly
and will certainly be broken. From now on, we will use the
term behavior to refer to classes and traits.

To handle this problem, instead of executing a class defini-
tion directly; we transform the class definition message-send
into an Abstract Syntax Tree. It allows us to detect missing
references and to react to them. The class builder has been
enhanced to be configurable with such ASTs. For example, a
possible solution is to change the superclass of ColorPoint to
another class (e.g., Object) in the model and ask the builder
to make the class.
This solution works when there is a direct replacement

of the missing class. (e.g., if the class Point has just been
renamed.) However, if there is no direct replacement we
change the intended original definition and it will continue to
break the program. So, we require to have a better abstraction
for missing entities.

3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

IWST’19, July, 2019, Cologne, Germany Théo Rogliano, Guillermo Polito, and Pablo Tesone

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Figure 5. Behaviors are missing and we cannot load the
fractured pieces.

3.4 Representation of missing entities
We need to have a representation of missing behaviors for
two reasons. As stated above, for resolving, at least in a tem-
porary way, the missing references to those behaviors. The
second reason is we want to keep track of the dependencies
of the loaded program.
We want to load the program under test without modi-

fying it. In term of pieces of a puzzle, we want to keep the
expected shape of the pieces (Figure 6).

Figure 6. We know a piece is missing. We know it was
expecting a yellow part on the top. We create a stub piece
(dashed lines) with a yellow part on top and link it, waiting
for a better replacement

For that purpose, we used stubs classes or traits that will
contain the information obtained through static dependency
analysis. We call those stubs undefined classes for classes and
undefined traits for traits.

We encounter three scenarios:

Undefined classes. We create an undefined class by
subclassing the class UndefinedClass. We followed
the proposal solution of Polito et al [10]. The latter
redefine basicNew and doesNotUnderstand to prevent
instantiation.

Undefined traits. UndefinedTrait is a subclass of Trait.
Only the method isDefined is redefined to return false.
The creation of undefined trait is the same as for regu-
lar trait. A trait composition with an undefined trait
becomes undefined. An undefined trait is created when
a behavior refer to a missing trait.

Undefined traited classes. An undefined traited class
is a class that uses an undefined trait. As for undefined
classes we prevent the instantiation, here by applying
UndefinedTraitedClass on the class side of the target
class which redefines basicNew.

Figure 7. A program loaded with two undefined pieces. The
undefined pieces will be replaced later with real pieces.

At first, we load our program with stub classes (Figure
7). Once we found the corresponding classes, we are able to
throw away those stubs easily and replace them.

3.5 Dependency management
In some cases, the missing entities are still present in the host
environment and are compatible, so we want to use them. In
the last example Point is missing in the module containing
the program but is present in the host environment. We
would like to create a stub for Point and make it inherit from
the Point from the host environment.We need then to import
the point from the host. This creates a name conflict, we have
two times "Point" inside the same module. Point from the
host which will stay in the host but is imported and the
subclass Point we want to create. For doing so, we suggest
aliasing as a solution for this problem. We import Point
by giving it another name, an alias. With this mechanism,
you can solve the problem in different ways. As show in
Figure 8), you can use alias in the program’s module or in
the hypervisor.

Figure 8.We cannot ask for the first subclass message in the
hypervisor. The compiler will resolve it as the same and we
will build a circular hierarchy. Instead we rename the Point
from the host environment in the import.

With late class creation, undefined entities, modules and
aliases we are able to handle all the hindrance for creating a
hypervisor.

4 Virtualizer
The hypervisor is a module containing all that it is necessary
for the program to work and be compatible with the newer

4



441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Towards easy program migration using language virtualization IWST’19, July, 2019, Cologne, Germany

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

version of the language. It contains all modifications and
adaptations required to run the program in the host envi-
ronment without modifying the program nor the language
environment.

For example, it contains the undefined entities of the pro-
gram’s module, the program’s module imports them from the
hypervisor. Having the undefined entities in a module allows
us to resolve them without modifying the host environment
nor the loaded program (Figure 9).

Figure 9. The undefined entities of the program are in a
module called hypervisor. They are isolated and modifying
them impact only the hypervisor.

4.1 Intercession techniques for virtualization
We have 3 strategies for resolving incompatibilities:

Kernel indirection. We still have an entity with the
same name in the host environment. We assume some
methods are similar and we want to reuse them. We
then discard the undefined behavior and declare a new
subclass with the same format than the one from the
host environment. This way the methods are found
with a regular look up. If a method is still missing we
create it in the newly created behavior in the virtual-
ization layer.

Catching messages. This strategy is for missing classes
without similarities with the ones of the host environ-
ment. Our only information is their names, we lost
their methods or their layout. In some cases, we still
have the opportunity to consult old versions of the lan-
guage to retrieve the original classes. Under other cir-
cumstances, we have to implement them from the start.
We define those by subclassing Object. We then run
the tests and catch the doesNotUnderstand messages
which contains the names of the expected methods.
We then implement them by assuming the behavior
by testing (similar to Test Driven Developpement [1]).

Metalinks. In less common cases, a method still exists
but has been renamed. The lookup raises a doesNotUn-
derstand since the method was not found. We solved
the problem with metalinks [13]. Metalinks are used to
annotate AST nodes. An annotated AST is expanded,
compiled and executed on the fly thanks to the Reflec-
tiveMethod/CompiledMethod twin. In our case, using

metalinks allows us to replace the execution of the
original method with the new one. Even more, we are
able to translate different message-sends (e.g., the pa-
rameters have different orders between the versions).
The source code stays untouched while we still execute
the expected method.

4.2 Using the virtualizer: an example
In order to use our virtualization solution the developer
should perform the following steps.

1. She installs the program that works in a different ver-
sion of our language inside a module. During the load-
ing of the program, the module system detects miss-
ing dependencies and generates undefined entities for
them.

2. The virtualizer component transfers the undefined
entities to another module that is going to become the
hypervisor. We decomposed this in 2 stages, creating
the missing dependencies in the hypervisor and then
importing them.

3. She runs the program’s tests to find out potential prob-
lems to solve.

4. She analyzes and determines the best course of options
(if there is one) to simulate the missing behaviors or
the semantic mismatchs applying one of the stated
strategies.

5. When all the tests are processed and passed, it means
that the program is operational.

5 Validation
In order to validate our infrastructure, we port 2 old Pharo
programs to a newer version of Pharo.

Methodology. We consider a migration is successful if all
the tests are passed. If all the tests are passed, we assume
the program is working. Moreover we assume that the tests
are passed in the original version of Pharo. We only choose
programs with tests for this purpose.
For each of the programs to run we executed the steps

stated in Section 4.

Selected Scenarios. We chose 3 scenarios. The first one is
an exchange of libraries and serves the purpose of testing
the module system. The other two are program migrations
bringing each different challenges. The migration of MuTalk
was chosen for compiler challenges and the migration of
Fuel for file and objects creation challenges.

Threat to validity. In the case the test coverage is low, we
can only show that the tested parts are in the same state as
in earlier version. Non tested code is still supposed broken.

5.1 System/container collection
This scenario is our calibration test for modules. We use the
system tests (the tests of the current implementation of the

5



551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

IWST’19, July, 2019, Cologne, Germany Théo Rogliano, Guillermo Polito, and Pablo Tesone

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

language) with an alternate implementations of some collec-
tions and, the opposite, use another tests implementation on
the system collections. It allows us to assert that we can run
tests on independent implementations.

Figure 10. Exchanging tests between implementation.

We chose the Stack and LinkedList collections. In the sys-
tem, the implementation of Stack is based on LinkedList
whereas we introduce another implementation, called CT-
Stack, using an array (Figure 10). In the modules containing
the tests, we decide which implementation to use by redefin-
ing the Stack import. Both implementation pass the tests
of the other one. For LinkedList the general principle is the
same, except two redefinitions of import are done, LinkedList
and Link. We noticed that it’s possible to mix the system-
LinkedList with the CT-Link and vice versa.

Figure 11. Feature diagram of linked list tests

As for the results, all tests pass with a green light. This
scenario showed us that themodule system produces isolated
modules that are freely linkable between each other.

5.2 MuTalk
In this scenario, we produce a hypervisor for MuTalk2. Mu-
Talk a mutation testing framework which last commit dates
from 2013. We know the framework was working in old ver-
sions of the language (i.e., all tests were green). We chose it
2https://github.com/pavel-krivanek/mutalk

because mutation testing implies modification of methods
at runtime bringing interesting challenges since there is a
need of interfacing with the compiler.
Indeed thanks to this experiment we found a problem

when the program is modifying CompiledMethod objects
(object representing methods). In order to generate mutants
the program asks methods for their source code with the
getSource message and modifies it. In this scenario the get-
ter for source code has changed to sourceCode and we are
stuck with a doesNotUnderstand message (Figure 12). The
hypervisor is not involved in the process since the compiler
uses the CompiledMethod from the system. This problem is
a metamodel problem and allows us to develop our metalinks
strategy.

Figure 12. Scenario with a doesNotUnderstand

In this validation scenario, we identified 45 references
to missing entities in the framework. Out of the 45, 30 are
classes with the same name that a classes in the system.
We used the kernel indirection strategy in those cases. For
the others classes we used catching messages strategy. We
retrieved methods from Pharo 2 and implemented them in
only 3 classes. With our different strategies and thanks to
the use of metalinks, we managed to pass 355 out of 362.
The 4 failures and 3 errors remaining means some behaviors
are still missing or that we did not manage to retrieve the
correct semantic for some methods.

Note: We only talked about fixing 33 references out of
45. In the 12 remaining, 4 are global objects referenced with
the same name that we still have in the system. We applied
something similar to the kernel indirection strategy. The
missing 8 references could be the cause of the failing tests or
just present in the program but not used at all (dead code).

5.3 Fuel
This scenario is about the virtualization of Fuel 3 version 1.6,
last comitted in 2012. Fuel is a serialization/materialization
program still maintened to this day. Serialization implies I/O
management, file management and assumptions on objects.
3https://rmod.inria.fr/web/software/Fuel

6

https://github.com/pavel-krivanek/mutalk
https://rmod.inria.fr/web/software/Fuel


661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Towards easy program migration using language virtualization IWST’19, July, 2019, Cologne, Germany

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

This scenario presents an extra challenge. A newer version
of Fuel exists in Pharo and conflicts with our.
This time, we identified 79 missing references. 66 have

been resolved using the kernel indirection strategy.We quickly
got results in applying the catching message strategy since
the former bring us to our first hindrance.
This version of Fuel uses the class FileDirectory which

does not exist anymore. We retrieved an implementation
of FileDirectory from Pharo 1. In addition, a problem arises
because Fuel relies on an old implementation of streams.
To get around this matter we added in the hypervisor a
stream compatibility for files using the new implementation
of streams and FileReference. Thanks to this workaround we
managed to use an erzatz of FileDirectory and to get back
the file management.

Fuel uses extension methods on system classes but we do
not have any support for them yet. The question is how to
handle extension methods without breaking the properties
of our modules. For example, an extension method foo ex-
pects to be installed in the class String. We do not want it
to be installed in the class String of the host environment.
Conflicts arise in case another method foo has been imple-
mented in the meantime. Moreover, by doing so we break
our property to keep the host environment intact. Creating a
String class in the hypervisor specifically and installing the
method do not work. Moreover, similarly to the Compiled-
Method problem in MuTalk, the compiler use the String of
the host environment for creating strings. Those strings will
then not understand the method foo. We plan on handling
extension methods in the future.

Finally, Fuel assumes that it works in a single environment,
the Smalltalk global environment. It serializes and material-
izes objects in this environment. Since we installed it in an
isolated environment, it does not have free access to the host
environment (nowadays Smalltalk) creating incompatibili-
ties. For example, asking Fuel to materialize a LargeInteger
fails. Fuel asks the class using reflection to create the object.
The class LargeInteger was not an import of Fuel and is not
in its environment because it accesses it dynamically. It can-
not ask LargeInteger to create the large integer requested.
Moreover, Fuel also uses Smalltalk for reflective operations
on itself and does not find itself in it provoking incompat-
ibilities too. Reflective libraries require more work in case
of their introduction into a module system, for example an
installing environment for objects. We also plan to overcome
this problem in future works.
The solution is incomplete with failure of a lot of tests

(19 passes/239 tests) but this scenario taught us a lot on
unforeseen difficulties and on a new kind of incompatibilities.

5.4 Lessons learned
Thanks to the previous validation scenarios, we learned that
our solution encounters its limits when the program tries
to do reflective operations. For example, in a library exists

a specialization of String called MyString with a method
lookForAnother that look for a specific method only in the
superclass (String). Since in our solution, we insert a class
between String andMyString, the method lookForAnother
fails since it will look in the superclass which is not String
anymore. Those cases need to be analyzed one by one and
are resolved with metalinks. We have a similar problem with
the resolution of symbols. They are, in Pharo, resolved in
a global scope. With the introduction of a module system
symbols are now resolved inside the module scope instead of
the global one. Though, in some cases like in Fuel, we would
like to not only resolve symbols in a module scope but in
something more "global" like a set of modules.

6 Related Work
6.1 OS virtualization
A similar solution is used for porting applications in differ-
ent versions of operating systems. Windows’s application
compatibility layers (Application Compatibility Toolkit4) at-
tempts to run poorly written applications or those written
for earlier versions of the platform. It exposes a layer that
emulates the old versions of the API.

FreeBSD includes a Linux compatibility layer (https://www.
freebsd.org/doc/handbook/linuxemu.html) that enables binaries
built specifically for Linux to run on FreeBSD. FreeBSD
also provides other Unix-like system emulations, including
NDIS, NetBSD, PECoff, SVR4, and different CPU versions of
FreeBSD. NetBSD includes similar Unix-like system emula-
tion.
All these virtualization layers are provided by the plat-

form without any support to modify them. Moreover, it is
impossible to create extensions to support applications that
expect old versions of third party libraries (i.e., libraries that
are not part of the operating system).

6.2 Application migration
In the literature, solutions exist to help developers in migrat-
ing applications. For example, they analyze and extract the
required refactorings from one version of the host environ-
ment to another [5, 6, 8, 19]. These solutions provide different
level of automatic generation of refactorings. For example,
Wu et al [19] propose a solution to automatically extract
the required refactorings from one version to another of a
library comparing the source code and the call graph. Henkel
et al [8] propose to generate the set of refactorings from cap-
turing the changes performed by the developer. However,
they all modify the original program making it incompatible
with the older version of the language.

4https://docs.microsoft.com/en-us/windows/desktop/
win7appqual/application-compatibility-toolkit--act-

7

https://www.freebsd.org/doc/handbook/linuxemu.html
https://www.freebsd.org/doc/handbook/linuxemu.html
https://docs.microsoft.com/en-us/windows/desktop/win7appqual/application-compatibility-toolkit--act-
https://docs.microsoft.com/en-us/windows/desktop/win7appqual/application-compatibility-toolkit--act-


771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

IWST’19, July, 2019, Cologne, Germany Théo Rogliano, Guillermo Polito, and Pablo Tesone

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

6.3 Encapsulation techniques
Solutions exist to encapsulate changes. Allan Wills propose
Capsules. Capsules in Fresco [17] chose to modify the class
definition in order to have the same name several times.
In their solution, a class owns meta-data such as the au-
thor name, the date of creation and the prerequisites of the
classes. The idea is to encapsulate a class like data in a net-
work. Modular Smalltalk [18], The Java Module System [16]
Newspeak [4] and Matriona [15] offer encpsulation solutions
based on name scoping. Some solutions based , this time, on
methods scoping [3] also exist. Bergel et al. analyze module
diversity and explain many of them [2, 14]. Finally some
solutions [7, 9] allow the developer to modify the program
under migration without affecting the host environment.
However, these solutions do not provide a way of perform-
ing the changes without affecting the original source code.

7 Conclusion
In this article, we presented a set of language changes caus-
ing problems in loading or running programs. We proposed
a solution based on virtualization to migrate programs de-
spite those problems. We designed an infrastructure based
on dynamic modules and metalinks in this goal and chose
to validate it with real migration scenarios. Although our
solution does not yet cover the entire selected scenarios, the
selected programs load and are expected to run. The infras-
tructure needs to take into account extension methods and
have a better environment handling.
As a future work, we plan to extend our solution to in-

clude the missing features. Moreover, we plan to continue
using this solution to migrate old application to newer ver-
sions of Pharo. Other possible path of evolution is the au-
tomatic hypervisor generation using refactoring detection
techniques[8, 19].

Acknowledgments
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council, CPER
Nord-Pas de Calais/FEDERDATAAdvanced data science and
technologies 2015-2020. The work is supported by I-Site ERC-
Generator Multi project 2018-2022. We gratefully acknowl-
edge the financial support of the Métropole Européenne de
Lille.

References
[1] Kent Beck. 2002. Test Driven Development: By Example. Addison-

Wesley Longman.
[2] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. 2005. An-

alyzing Module Diversity. Journal of Universal Computer Science 11,
10 (Nov. 2005), 1613–1644. http://rmod.inria.fr/archives/papers/
Berg05cModuleDiversity.pdf

[3] Alexandre Bergel, Stéphane Ducasse, and Roel Wuyts. 2003. Class-
boxes: A Minimal Module Model Supporting Local Rebinding. In Pro-
ceedings of Joint Modular Languages Conference (JMLC’03) (LNCS),

Vol. 2789. Springer-Verlag, 122–131. https://doi.org/10.1007/
b12023 Best Paper Award.

[4] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William
Maddox, and Eliot Miranda. 2010. Modules as Objects in Newspeak.
In Proceedings of the 24th European conference on Object-oriented pro-
gramming (ECOOP’10), Theo D’Hondt (Ed.). Springer-Verlag, Berlin,
Heidelberg, 405–428. http://dl.acm.org/citation.cfm?id=1883978.
1884007

[5] Aline Brito, Laerte Xavier, André C. Hora, and Marco Tulio Valente.
2018. APIDiff: Detecting API breaking changes. 2018 IEEE 25th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER) (2018), 507–511.

[6] Kingsum Chow and David Notkin. 1996. Semi-automatic update of
applications in response to library changes.. In icsm, Vol. 96. 359.

[7] Marcus Denker, Tudor Gîrba, Adrian Lienhard, Oscar Nierstrasz, Lukas
Renggli, and Pascal Zumkehr. 2007. Encapsulating and Exploiting
Change with Changeboxes. In Proceedings of International Confer-
ence on Dynamic Languages (ICDL 2007). ACM Digital Library, 25–49.
https://doi.org/10.1145/1352678.1352681

[8] Johannes Henkel and Amer Diwan. 2005. CatchUp!: capturing and
replaying refactorings to support API evolution. In Proceedings Inter-
national Conference on Software Engineering (ICSE 2005). 274–283.

[9] Jens Lincke and Robert Hirschfeld. 2012. Scoping changes in self-
supporting development environments using context-oriented pro-
gramming. In Proceedings of the International Workshop on Context-
Oriented Programming. ACM, 2.

[10] Guillermo Polito, Stéphane Ducasse, and Luc Fabresse. 2017. First-
Class Undefined Classes for Pharo. In Proceedings of the 12th Edition of
the International Workshop on Smalltalk Technologies (IWST ’17). ACM,
New York, NY, USA, Article 9, 8 pages. https://doi.org/10.1145/
3139903.3139914

[11] Fred Rivard. 1996. Smalltalk: a Reflective Language. In Proceedings of
REFLECTION ’96. 21–38.

[12] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How
Do Developers React to API Deprecation?: The Case of a Smalltalk
Ecosystem. In Proceedings of the ACM SIGSOFT 20th International Sym-
posium on the Foundations of Software Engineering (FSE ’12). ACM,
New York, NY, USA, Article 56, 11 pages. https://doi.org/10.1145/
2393596.2393662

[13] David Röthlisberger, Marcus Denker, and Éric Tanter. 2008. Unantici-
pated Partial Behavioral Reflection: Adapting Applications at Runtime.
Journal of Computer Languages, Systems and Structures 34, 2-3 (July
2008), 46–65. https://doi.org/10.1016/j.cl.2007.05.001

[14] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Roel
Wuyts. 2004. Composable Encapsulation Policies. In Proceedings of Eu-
ropean Conference on Object-Oriented Programming (ECOOP’04) (LNCS),
Vol. 3086. Springer Verlag, 26–50. https://doi.org/10.1007/b98195

[15] M. Springer, H. Masuhara, and R. Hirschfeld. 2016. Hierarchical Layer-
Based Class Extensions in Squeak/Smalltalk. In Modularity’2016.

[16] Rok Strniša, Peter Sewell, and Matthew Parkinson. 2007. The java
module system: core design and semantic definition. In OOPSLA ’07:
Proceedings of the 22nd annual ACM SIGPLAN conference on Object
oriented programming systems and applications. ACM, New York, NY,
USA, 499–514. https://doi.org/10.1145/1297027.1297064

[17] Alan Wills. 1991. Capsules and Types in Fresco. In Proceedings ECOOP
’91 (LNCS), P. America (Ed.), Vol. 512. Springer-Verlag, Geneva, Switzer-
land, 59–76.

[18] Allen Wirfs-Brock and Brian Wilkerson. 1988. An Overview of Modu-
lar Smalltalk. In Proceedings OOPSLA ’88. 123–134.

[19] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim.
2010. Aura: a hybrid approach to identify framework evolution. In
2010 ACM/IEEE 32nd International Conference on Software Engineering,
Vol. 1. IEEE, 325–334.

8

http://rmod.inria.fr/archives/papers/Berg05cModuleDiversity.pdf
http://rmod.inria.fr/archives/papers/Berg05cModuleDiversity.pdf
https://doi.org/10.1007/b12023
https://doi.org/10.1007/b12023
http://dl.acm.org/citation.cfm?id=1883978.1884007
http://dl.acm.org/citation.cfm?id=1883978.1884007
https://doi.org/10.1145/1352678.1352681
https://doi.org/10.1145/3139903.3139914
https://doi.org/10.1145/3139903.3139914
https://doi.org/10.1145/2393596.2393662
https://doi.org/10.1145/2393596.2393662
https://doi.org/10.1016/j.cl.2007.05.001
https://doi.org/10.1007/b98195
https://doi.org/10.1145/1297027.1297064

	Abstract
	1 Introduction
	2 Motivation: Incompatible programs
	2.1 Syntax changes
	2.2 Standard library changes.
	2.3 Meta-model changes.

	3 Modules for Virtualization
	3.1 Encapsulating changes
	3.2 The module system in a nutshell
	3.3 Late class creation
	3.4 Representation of missing entities
	3.5 Dependency management

	4 Virtualizer
	4.1 Intercession techniques for virtualization
	4.2 Using the virtualizer: an example

	5 Validation
	5.1 System/container collection
	5.2 MuTalk
	5.3 Fuel
	5.4 Lessons learned

	6 Related Work
	6.1 OS virtualization
	6.2 Application migration
	6.3 Encapsulation techniques

	7 Conclusion
	References

