N

N

A tooled methodology for the system architect’s needs
in simulation with autonomous driving application
Henri Sohier, Sahar Guermazi, Mouadh Yagoubi, Pascal Lamothe, Aldo
Maddaloni, Pascal Menegazzi, Yining Huang

» To cite this version:

Henri Sohier, Sahar Guermazi, Mouadh Yagoubi, Pascal Lamothe, Aldo Maddaloni, et al.. A
tooled methodology for the system architect’s needs in simulation with autonomous driving appli-
cation. 2019 IEEE International Systems Conference (SysCon), Apr 2019, Orlando, United States.
10.1109/SYSCON.2019.8836775 . hal-02297727

HAL Id: hal-02297727
https://hal.science/hal-02297727
Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02297727
https://hal.archives-ouvertes.fr

A Tooled Methodology for
the System Architect’s Needs in Simulation
with Autonomous Driving Application

Henri Sohier*, Sahar Guermazif, Mouadh Yagoubi*,
Pascal Lamothe!, Aldo Maddaloni$, Pascal Menegazzi¥ and Yining Huang*

*IRT SystemX, Palaiseau, France - {firstname.lastname} @irt-systemx.fr
TSherpa Engineering, La Garenne-Colombes, France - s.guermazi@sherpa-eng.com
tPSA Groupe, Velizy-Villacoublay, France - pascal.lamothe @mpsa.com
§Renault, Guyancourt, France - aldo.maddaloni @renault.com
TWaleo, Cergy-Pontoise, France - pascal.menegazzi@valeo.com

Abstract—Model Based Systems Engineering (MBSE) is a
promising solution to formalize and communicate information
about the design of complex systems, in particular for the
automotive industry which faces new challenges associated to
autonomous driving. Numerical simulation is commonly used
to support the design of these complex systems, but the pos-
sible relations with MBSE should be further investigated. This
work, conducted with academic and industrial partners at the
research institute IRT SystemX, aims at further bridging the
gap between system architecture and numerical simulation. An
industrial design problem related to the design of an autonomous
vehicle passing traffic lights is used to validate and illustrate
new methods and tools based on SysML. Their aim is to: 1)
guide the formulation of a question requiring simulation, called
solicitation, by the system architect 2) guide the design of a
simulation architecture by the simulation architect with a special
focus on the consistency with the system. A Java plugin was
developed in the SysML editor Papyrus for the solicitation, and
a SysML metamodel was defined for the simulation architecture.
The solicitation associated to the industrial design problem is
answered by a multiobjective optimization of the vehicle’s cost
and electrical consumption using a co-simulation between the
tools Simulink and Amesim.

Index Terms—MBSE, SysML, System architect, Solicitation,
Simulation architect, Model Identity Card

I. INTRODUCTION
A. Context

The research institute IRT SystemX gathers industrial and
academic partners to complete projects which generally last
three to four years. One of the main objectives of the project
AMC is to bridge the gap between systems engineering on one
hand and complex simulations on the other hand by defin-
ing a step-by-step methodology supported by new software
functions. Simulation is considered itself a potential complex
system which can have a different topology from the original
system it represents, especially because of the implementation
of physics phenomena. It also includes different specifications
from the system, typically regarding the accuracy or the speed
of the simulation models. In this case, the role of simulation

architect, which has recently emerged ([1]), seems to be
necessary to specify the simulation. As shown in Fig. 1,
the left branch of the idealized system V-model can lead to
multiple needs in terms of simulation, at any step. A simulation
architect can answer these needs by designing and integrating
the simulations which will provide the results necessary for the
system, following idealized simulation V-models. The indus-
trial partners involved on this topic in the project AMC include
large companies from the automotive and aeronautics industry
(PSA Groupe, Renault, Valeo, Airbus) as well as software
developers and service providers (Sherpa Engineering, Digital
Product Simulation, Siemens). In the project AMC, a practical
design problem allows the different partners first to identify
the issues and lacks in the current design processes, and then
to test possible solutions. This design problem concerns the
early design of an autonomous vehicle which can pass traffic
lights. It is presented in section II and then used to illustrate
each proposition.

Stakeholder
needs

Needs in terms

of simulation
Simulation design
and integration

Final system

Fig. 1. Use of the simulation in a system V-model.

B. Today’s role of systems engineering and simulation

Companies show a growing interest for systems engineering
which aims at formalizing the multidisciplinary design of
complex systems offering multiple services to the user. It is
especially true in the automotive industry where new services
gradually improve the autonomous driving capacity of the
cars, from parking to lane keeping or platooning. Autonomous
driving sheds light on the control systems which have been
historically designed with systems engineering-like approaches
([2]). In the general landscape of systems engineering, Model-
Based Systems Engineering (MBSE) appears as particularly
promising. In a model, diagrams are easier to formalize than
text, and they are an efficient way to communicate. MBSE is
under maturation and efforts are now underway to offer user-
friendly tools, a clear design methodology, and a modeling lan-
guage at the right level of complexity. Regarding the tools, the
SysML editor Papyrus has an open-source code which forms a
great basis for new developments ([3]) in spite of a relatively
complex interface and certain bugs. Some commercial tools
like MagicDraw have customers in the automotive industry
like the car manufacturer Renault ([4]). New tools or new
plugins are also made available by startup companies whose
funders often have experience in the automotive industry ([5],
[6]). However, the MBSE tools are generally still not the
design backbone they could be. Regarding the methodology,
different approaches exist and some of them are gaining in
importance, often by means of courses and certifications ([7],
[8]), some of which are specifically addressed to the employees
of car manufacturers like PSA Groupe ([8]). Some approaches
aim at partially automatizing the design process through the re-
use of functions and components ([9]). Finally, regarding the
language, SysML can be considered as relatively hard to use,
which can lead to a new organizational silo in the company.
However, SysML is a well-known, rich standard which is often
taken as a reference or as a source of inspiration, like for the
language used in the tool Capella ([10]).

Although still relatively independent from systems engineer-
ing, simulation is now a common tool in most companies.
The simulation development and the system development can
be carried out by the same experts, but large companies can
distinguish these tasks. PSA Groupe organized the simulation
in groups adapted to different physics, from vibration to com-
bustion and electricity, but also to computing issues such as
optimization, uncertainties and model reduction. The resulting
simulations are sometimes labeled as “functional”, “multi-
body”, or “finite elements” ([11]). Renault started a division
called “Model Factory” with hundred people in France, India
and Korea dedicated to the simulation ([12]). The representa-
tiveness of the simulation, i.e. its likeness with the system it
represents, is still often hard to quantify and can limit some
decisions. In spite of its limits, the use of simulation is ex-
pected to grow with the development of autonomous vehicles.
Indeed, the validation of their reliability may need billions
miles of driving ([13]) which could be partially virtualized.

C. Gap between systems engineering and simulation

In systems engineering, some of the questions raised by
the design process can be answered thanks to simulation. The
link between systems engineering and simulation is sometimes
very direct, like in the tool STIMULUS ([14]) where formal
textual requirements and state diagrams can be tested thanks
to random variables, or like in the tool CIL4Sys ([5]) where
formal sequence and state diagrams typically representing con-
trol laws can be tested thanks to on-the-shelf or simple plant
simulation models and user-defined environments. However,
finer and more complex simulation models can be required for
a better representation of the effects of control laws, or to test a
physical solution. In this case, it becomes more difficult to mix
the system and the simulation as they generally start to involve
different people and have different topologies. Furthermore,
while experts in control have the ability to make the necessary
formal diagrams, MBSE can be considered as semi-formal or
even informal ([15]), which limits such automations.

Thus, the design process can raise questions which can only
be answered by simulation experts. There is currently little
help to identify the information to communicate to these ex-
perts as well as the format to use. How to describe the system
or the part of the system to simulate, the level of detail, the
environment scenarios, or the simulation objectives? MBSE,
which facilitates the communication of system specifications,
should be used as a basis to formulate the questions about
the system. New methodology, metadata and tool based on
SysML are first presented in the section III dedicated to the
solicitation from the system architect.

This solicitation represents the simulation needs. It is used
to design the simulation means respecting the desired quality,
cost, and delivery. The corresponding architecture tasks are
considered to be carried out by a simulation architect. For
example, the simulation architect has to find existing simula-
tion models as well as pre- and post-processing functions in
a cross-disciplinary approach given the expected accuracy or
the costs of acquisition and execution. He also has to specify
the missing simulation models and functions, and to check
whether the simulation models correctly represent the system.
New methodology and metadata guiding the architecture of
the simulation are presented in section IV.

Thus, the simulation architecture is distinguished from the
system architecture. This separation appears in [16] which
refers to a “domain model” describing the system and to
an “analysis model” describing the simulation, with block-
to-block relations. However, these relations are mainly based
on a generic simulation block and cannot alone show the
complexity of the simulation architecture. In many works,
simulation is seen as an enriched version of the system and
the distinction between the system and the simulation is
more tenuous. In [17], the simulation includes a system and
simulation parameters. In [18] and [19], the simulation is based
on blocks called “Analyzable Product Models” dedicated to
design properties and on blocks called “Analysis Building
Blocks” dedicated to generic equations like physical laws.

In several works, a SysML architecture is converted into a
runable format, like in [20] which focuses on parametric
diagrams, or in [21] and [22]. Depending on the approach,
additional modeling can be required in the runable format.

The remainder of this paper is organized as follows. The
industrial design problem of the project AMC is first presented
in section II; New methodology, metadata and tool for the
solicitation from the system architect for a new simulation
are then presented in section III; New methodology, metadata
and tool specification for the design of a new simulation
architecture answering the needs of the system architect are
presented in section IV; Finally, the simulation obtained for
the industrial design problem and its results are presented in
section V.

II. INDUSTRIAL DESIGN PROBLEM

The industrial design problem used in the project and in
this paper is related to the design of an autonomous vehicle
passing traffic lights. A SysML model has first been developed
with the tool PhiSystem based on Papyrus and provided by the
partner Sherpa. It represents the complete car, with a special
focus on the ability to pass traffic lights. The process followed
is a synthesis of the different partners’ approaches in systems
engineering.

As represented in Fig. 2, the stakeholders are first identified,
from marketing to logistics or regulations. The needs in terms
of function, performance or constrain are then reviewed for
each stakeholder. For example, the marketing requires to have
an electrical consumption and a noise below certain thresholds.
The needs are finally organized in services, like “autonomous

driving”, “acoustics” and “energy”.

Vehicle
= = ®
Regulations and Standards @Quug»)
Marketing

& o
Logistics -
©]

Quality Project

Industrial System

Fig. 2. Stakeholders of the considered industrial design problem.

The system design is then carried out at three different
levels. First, in the operational level, the system is described
for each service as a black box. The use cases permit to list
for each service the systems expected capacities, like “staying
on a lane”, “passing the traffic lights” or “following a car”.
For each use case, the necessary exchanges between the system
and the environment actors are defined in operational sequence
diagrams. Operational activity diagrams help to specify the
behavior of the system between these exchanges. Each oper-
ational sequence diagram is associated to a single operational
state like “active”, “non active” or “fault”. All the operational
states are summarized in an operational state diagram.

The operational sequence diagrams, where the system is
a black box, are then transformed into functional sequence
diagrams where the system is divided into functions like
“Control the vehicle” or “Provide power”. Likewise, each
function can then be divided into sub-functions in more func-
tional sequence diagrams. All the functions, sub-functions and
functional exchanges interconnecting them are summarized
in a multi-layer internal block diagram. The first layer is
represented in Fig. 3. Functional activity diagrams can specify
the behavior of the functions used in the functional sequence
diagrams. Fig. 4 shows an activity diagram for the control
function. If there is a traffic light within a certain range,
the control function can output three different commands: 1)
In “Speed envelop”, the vehicle goes at the maximum safe
speed 2) In “Pass”, the vehicle keeps its current speed to pass
the traffic light 3) In “Stop”, the vehicle breaks to stop. The
“time to light” is the ratio of the distance between the vehicle
and the traffic light, to the current speed of the vehicle. Two
properties can be tuned: 1) the range from which the traffic
light starts to be taken into account 2) the shape of the speed
envelop, defined by the maximum acceptable deceleration.
These control properties affect the electrical consumption of
the vehicle.

d Vehicle

Communicate wit... : Control the vehicle

J @ [l [l
ol
o

I
18
Iy

}Commu?icate with ... - I Nanate
Host and mov...
[
’ [
A @ |
[l
SHBJ & W {3l
. © 7 5}
{t E
Fig. 3. Internal block diagram at the functional level.
[Distance too large]
[Green light] [Red light]
[Yellow light]
[Shmt time to light] [Short time to light given the last color change
Speed envelop

Fig. 4. Activity diagram of the control function for the traffic lights.

The last layer of sub-functions is finally allocated to compo-
nents like “Controller” or “Powertrain” which are also repre-
sented in a multi-layer internal block diagram. The detection of

the traffic light is carried out by a component called “Sensor”.
One of its properties represents the uncertain distance from
which the traffic light is detected. The better this property
is, the more expensive the sensor is. The properties of the
functions and components can be associated to requirements.
Fig. 5 represents a simplified version of the data model of the
system architecture.

[. Senice]—[Need}

|~Use case
diagram

'i:'Use case]_l Env. actor]

Q Op. sequence
diagram

[Func. Sequence
R e T2
[
- 0p. Func. [-
Function
exchange exchang
" "Func block
diagram

“[Op. activity| [Op. state

 Op. achvity) | Op. state
diagram

diagram diagram

egends T (P exchangeH Component]
! ; ! . |

:([] Diagram | © Operational phys Bock | B Propery
:[] Object i [] Functional | diagram

' — Formal link; < Physical Gl 'Reqmremenﬂ

The system architect needs a methodology and a tool to
filter the information. The tool is prototyped as a Java plugin
in PhiSystem and Papyrus. The following paragraphs focus
on the tool and its graphical interface as they validate the
underlying methodology and permit to understand it from a
user point of view. As shown in Fig. 6, a menu “Solicitation for
simulation” is added to the top bar. A sub-menu first permits
to copy the system architecture. This copy is an opportunity to
select a specific version and configuration of the system, and
to later modify or simplify some specifications of the system
in the simulation. Thus, it is way to acknowledge possible
differences between the designed system and the simulated
system, typically when it is too expensive to modify existing
simulations. However, it also complicates configuration man-
agement.

Use case diagram
Sequence diagrams

Summary of the sequence diagrams

Environment diagram

Fig. 5. Simplified data model of the system architecture.

In this context, it is considered that the system architect
is looking for the best control properties and the best sensor
properties to minimize both the cost and the electrical con-
sumption when passing traffic lights.

III. SOLICITATION FROM THE SYSTEM ARCHITECT

The solicitation from the system architect is a documented
question. It describes the needs in terms of simulation, in-
dependently from any choice in terms of simulations means.
Thus, the system architect does not handle simulation models.
In the design problem considered, the solicitation is the
documented question regarding the choice of control and
sensor properties to minimize both the cost and the electrical
consumption when passing traffic lights.

A. Filtered system architecture

If a question raises during the development of a system, the
system architect can formalize it thanks to the model-based
system architecture. Indeed, it precisely aims at facilitating
the communication of the system specifications which should
be used for the development of the simulation. However, the
system architect should not communicate the whole system
architecture every time a question raises. For example, the
system architect should not communicate information about
the color of the windows control buttons if he wants a fast an-
swer regarding the electrical consumption of the vehicle when
passing traffic lights. Similarly, the system architect should
not communicate precise details about the sensor design if
he wants a general simulation which does not take them into
account. The system architect has the global understanding of
the system which is required for such filtering, and he can
limit the information before it is shared with the simulation
developers.

[Selicitation for simulation | Windew Help

Copy the system architecture State diagram

|
Operational level » / T,
Functional level L - i .
Physical level 5 Functions hierarchy (BDD)

Requirements

\ Functions connection (IBD)

Filter out

Components connection (IBD)

Fig. 6. Menus added to the top bar in PhiSystem.

After the copy, the system architect must define the perime-
ter and the level of detail he expects in the simulation. An
important proposition is to select the elements to be simulated
following steps similar to the design process. The operational
level is first used to define the perimeter of the simulation,
and the functional level is then used to define the level of
detail of the simulation. The copied use case diagram can be
opened thanks to the submenu “Operational level / Use case
diagram”. As shown in Fig. 7, the use cases can be selected or
unselected with a right-click menu (the figure has been edited
to hide non-related menus). When a use case is selected, like
“to pass a traffic light”, the selection is extended to all the
use-cases it includes and all the use cases which include it.
When a use case is unselected, the unselection is extended
to all the use cases it includes, except if they are included
in other selected use cases. The selected use cases appear in
orange.

The tool directly looks for the related operational sequence
diagrams. These sequence diagrams and a summary of these
sequence diagrams can be opened with “Operational level”
submenus. They allow the system architect to narrow the
simulation perimeter by unselecting exchanges between the
system and its environment. The summary is a table in a
popup window where it is possible to unselect an individual
message, all the messages of a diagram, or all the messages
related to an element of the environment in all the diagrams.
The next “Operational level” submenu shows the environment

Autonemous driving

Signalling 2| [limate .2’

To stay on a lane

To pass traffic light:

. - j_ w= |
s
‘@ To drive autoncmouslh ':3' To follow a car = Obstadiest] m&
Driver i =] Y |
s

%

Select use case

l id obstacle:

Fig. 7. Selection of use cases.

involved in the simulation, and the following one shows the
states involved in the simulation (Fig. 8).

Vichicke
Control the vehick el I Provide power 5
&8 ¥
g| ﬁ | =
Unselect subfonctions

]

Choose the speed Adapt grid power
7]

Iheck traffic light status_ Store gectricity
7 =

|Calculate and transmit 5. Convert slectricity into

Selected
Initial Non active Activate Active
.—> Deactivate
i © ®
(e o,
] —/‘D Safety state
Take over & Function validity issue

Fig. 8. Representation of the selected states.

When the user clicks on the submenu “Functional level
/ Sequence diagrams”, the tool looks for and open the re-
lated functional sequence diagrams. The exchanges shown in
these diagrams are selected for the simulation, except those
which appear in the operational level and which have been
unselected. The next “Functional level” submenu shows the
functions hierarchy in a Block Definition Diagram (BDD). As
shown in Fig. 9, a right click on a selected function permits
to ignore its subfunctions and lower the level of detail of
the simulation. For example, it is possible to ignore that the
function “Navigate”, corresponding to the sensors, has been
designed with subfunctions such as “Acquire the shapes”,
“Acquire the motions” or “Merge the information”. Finally,
the last “Functional level” submenu shows the internal block
diagram with the functions selected for the simulation.

The submenu “Requirements” opens a popup window which
shows the requirements associated to all the functions and
components properties. It first highlights the requirements
directly coming from the needs of the stakeholders, like
the electrical consumption of the car. It also highlights the
requirements which arose during the design of the system and
which still have to be associated to specific numerical values.
The requirements from the needs represent the constraints of
the problem, and the requirements with no specific numerical
values represent the unknowns. It is possible to unselect
the requirements from the needs of specific services like
“acoustics” if they are out of the simulation’s scope.

Finally, the submenu “Filter out” deletes all the elements
which have not been selected for the simulation. This deletion

Fig. 9. Unselection of subfunctions in the BDD.

is done in the copy of the system architecture and keeps the
original system architecture unchanged.

B. Resulting question

The filtered requirements help to formulate the question as
they show the values which still have to be set, like the control
and sensor properties, as well as the values constrained by
stakeholder needs, like the cost or the electrical consumption.
Thus, the system architect can easily ask for an optimization
of the control and sensor properties to minimize the cost and
electrical consumption. The related software functions will be
part of a later article.

C. Environment scenarios to be tested

By definition, the environment, which is not under control,
is associated to uncertainty. For example, the system archi-
tecture specifies how the system behaves if it faces a traffic
light, but the traffic light is only a hypothetical event. Many
uncertainties are implicit, like the location of the traffic lights.
In a simulation, these uncertainties can either be defined in an
explicit form, or be reduced to specific values in order to keep
the number of simulation runs under an acceptable threshold.
For example, the simulation can be done with a traffic light
at exactly 500 meters.

The definition of the environmental scenarios is progres-
sively refined, from the general point of view of the system
architect which can choose a traffic light at 500 meters
along a straight road, to the more accurate points of view
of the simulation architect and experts. The related software
functions will be part of a later article.

IV. SIMULATION ARCHITECTURE

The solicitation from the system architect is handled by a
simulation architect. The simulation architect has a role similar
to the system architect, but instead of specifying components

to answer customer needs, he specifies simulation models and
software functions to answer the solicitation from the system
architect. It is chosen to describe the simulation models with
the properties of the “Model Identity Card” (MIC) which was
initially defined in a PhD thesis at Renault in interaction with
IRT SystemX ([23]). The MIC and FMI/FMU ([24]) have
some properties in common, but the MIC aims at specifying or
describing a simulation model rather than executing it. Thus,
[25] presents a software function converting a MIC into an
empty Modelica model, but this model then needs to be filled
with equations in order to be executed.

It is also chosen to represent the simulation models with
SysML blocks. These blocks are associated to the MIC prop-
erties through a stereotype defined in the profile diagram of

System/Feature-Service
1
1.*

— Variant/Config/Version

.
.

"1 Simulation Model

Version

“~— Component

MIC

‘ 1

0.~ Function

LA
) ** FunctionPort

1.

~—= FunctionParameter

0.1 MICParameter <

MICPort
1
1

Fig. 10.

«Stereotype»
MICArchitecture

+ objective: String [1]
+ author: String [1]
+ date: String [1]

]
«Metaclass>
Class

«Metaclass3)
Port

«Stereotype»
MIC

«Stereotype»
MICPort

1 1

0.1

FunctionaFlow MICVariable

Fig. 11. The MIC data model.

+ parts: MIC [*]

+ generallnformation: Information [1...
+ implementation: Implementation [...
+ quality: Quality [1..*]

+ physicalDefinition: Definition [1..*]

+ parameters: MICParameter [*]

+ ports: MICPort [*]

T

+ direction: FlowDirection [1]
+ physicalDomain: Domaine.
+ variables: MICVariable [1..%]

%

«Stereotype»
NegociationMICPort

+ initialPort: MICPort [1]

«Stereotype»
ProjectMIC

ZF

15N

«Stereotype»
SpecificationMIC|

«Stereotype»
ICapitalizationMIC|

«Stereotypex»

INegociationMIC|

D TrajectoryIntFlow il

L veh_loc
LocalisationIntFlow 55

trajectography

Fig. 10. The profile used for the MIC in PhiSystem.

«Cyber-PhysicalSystem>
Navigation

«Block, Capitalization MIC»
MIC_capit_Navigation

¥ localisation

¥| perception

obstacles

RoadInfo

Working in a SysML environment makes it convenient to
map the simulation to the system it represents, with two major
benefits. First, if a library archives the systems represented in
the past simulations, it is possible to identify those similar
to the solicitation, and re-use the corresponding simulation
models. Second, it permits to validate the correct representa-
tion of the system in the simulation. As shown in the data
model of Fig. 11, it is chosen to map: 1) the simulation
model to the system function it represents 2) the ports and
variables. A simulation model can be directly mapped to a
system component fulfilling different functions.

When a simulation model exists, the information describing
the simulation model is gathered in a “capitalization MIC”.
When an existing simulation model can be re-used after som
e modifications to solve some inconsistencies with the solici-
tation, the simulation architect can change the “capitalization
MIC” into a “negotiation MIC” to specify these modifications.
Fig. 12 shows an example of negotiation MIC for an existing
simulation model (on the right) based on the mapping with a
system function (on the left) related to the vehicle’s control.
In the simulation model, the ports in white are consistent with
the system function,the ports in grey are not, and the ports in
red are specifications of new ports replacing the ports in grey.
Thus, the port “Sensor”, which was covering very different
ports of the system function, is split into two.

The simulation architect can finally specify a new model,
to be developed from scratch, in a “specification MIC”.

road_signs

Fig. 12. Mapping of a function to a MIC in PhiSystem.

The interface of the specification MIC, and in particular its
ports, can be generated from the function (or component) it
represents in the solicitation.

All the simulation models are integrated in an internal block
diagram, whether they are associated to a capitalization, a
negotiation, or a specification MIC. The resulting architecture
of MICs, illustrated in Fig. 13, represent the system and the
environment defined in the solicitation. The MIC architec-
ture has global inputs and outputs. In the problem of the
autonomous vehicle passing traffic lights, the global inputs
are the control and sensor properties to be optimized, as well
as the environment properties to be changed in the different
scenarios. The global outputs, which typically are functions of
time, include the state of charge of the battery and the position
of the vehicle which permit together to calculate the electrical
consumption of the vehicle.

The architecture of MICs is completed by pre and post-
treatment as well as non-physical black boxes, like an eco-
nomic model outputting a cost, to finally form the simulation
architecture represented in Fig. 14. Indeed, the architecture
of MICs cannot reach alone the objective set by the system
architect, i.e. optimizing the control and sensor properties to
minimize the cost and electrical consumption. Each block of

O «Block, SystemEnvironment, MICArchitecture»
MIC|Physical models
q «part»

vehicle control

arts
«‘p . “part= [=#] CTRL_Navigation
communicate to drivel mic_capit_vehicle managem...
CTRL_Motion g CTRL
«part»
mic_capit_vehicle guidance
CTRL ‘Sensa

B Actuator Actuator_2[#]
L S_Vehicle
wheelFL Actuator :1- Actuator -
[WheelFR MecaFL
[€2] <
[8] WheslRL MecaFR [WheelFL
€2 WheelrR MecaRL WheelFR
«parts MecaRR «parts
B mic_capit_power generation mic_capit_vehicle motion
BrakeFL

BrakeFR
BrakeRL
BrakeRR

[5WheelRL
[Gwneams

«parts
mic_capit_Vehicle environment

road_signs E
road

Fig. 13. Architecture of MICs for the system and environment.

the simulation architecture is allocated to software resources
(such as Amesim or Simulink), and each software resource
is allocated to hardware resources (such as a computer or
a server), thus leading to a three-level representation of the
simulation. It is for example possible to check that the
resources respect the implementation constrains described in
each MIC (e.g. regarding the version of Simulink to use), and
to estimate the cost and performance of these resources. The
different tasks described in this section will be supported by
new software functions for the simulation architect.

Design space Constant param.
{4 {4
Simulation
{1}
: Optimizer [e-Cost
|\ Z
V—{u =4}
Sengors ck Control dharac. X
) Consumption
UV} LT
: Pre/Post treatment
Detgection
Control) IlI
hlteFree = o i
L[:];Constant param.
5]': MIC | Physical models 3 [Light color (t)
h—| 5] Required speed (t)
D ctual speed (1)
—3 State of charge (t)

— D) Position (t)

3] : Economic model L Cost
— ©

Fig. 14. Top-level view of the simulation architecture.

V. NUMERICAL SIMULATION

After the design of the simulation architecture by the
simulation architect, the missing models are developed by the
experts of different simulation areas. The simulation models
are then integrated and the simulation is executed. In the
industrial design problem, the functions to sense and control
are simulated using Matlab-Simulink, while the powertrain
and the vehicle energetics are simulated using a library of
Amesim. Matlab-Simulink and Amesim are integrated in
a co-simulation illustrated in Fig. 15. This co-simulation
is called at each iteration of the optimization process to
evaluate candidate solutions. We consider a multiobjective
optimizer as we aim at minimizing two conflictual objectives,
namely: the cost and the electrical consumption averaged
over multiple traffic lights. Among several state-of-the-art
algorithms, we choose the NSGA-II (Non dominated Sorting
Genetic Algorithm [26]) which is one of the most popular
and widely used algorithms in the field of evolutionary
multiobjective optimization. Experiments were conducted
using the following settings. Four design parameters were
considered. The first two are related to the control and were
presented in section II : the distance from which the traffic
light starts to be taken into account, and the maximum
acceptable deceleration. The two others permit to describe
the uncertain distance from which the traffic light is detected:
the detection mode and the scale of a Gumbel probabilistic
law. The population size was set to fifty. The optimization
was stopped after fifty iterations.

[y
Memory
Lolpos distt—»|dist_feu dist—»{dist
ot coul [—{coul_feu coul] V_ V_com
Clock To Workspace2
Traffic light Sense
Pilot (Traffic light)
N .
. —1d! ed Wiven V_vehi
Constant LMS Amesi si To Workspace1
mesim co-Sim:
I = I "3 " ElectricVehicle X . v@ .
N = o Workspace
Accel
P i I R S
H_’ Brake Actuate / Physical laws Compare Stop Simulation
Driver x 2 To Constant
Control
Vvehi =
a To Workspace10
Memory1

Fig. 15. Simulink view of the co-simulation (with Amesim).

After running the optimization, the simulation architect
provides post-treated results to the system architect in order
to take decisions. In our example, the returned results are
represented by a Pareto front that illustrates the trade-off
between optimal solutions (see Fig.16.)

D?z] I] I T I
07 [

068 |-
066 |-
064 |-
062 |-
06 |-
058 |
056 |-

054 1 I 1 I 1
0 100 200 300 400 500

Sensor cost index

Electrical consumption (%)

T00

Fig. 16. Optimization results : Pareto Front.

VI. CONCLUSION

This work further bridges the gap between system architec-
ture and simulation. Two tasks carried out by two different
roles are clearly distinguished. First, the system architect
formulates a solicitation for a simulation by using the part
of the system architecture associated to specific use cases. A
Java plugin has been implemented in a SysML editor based on
Papyrus to allow the system architect to define the perimeter
and the level of detail of the simulation, sparing him from
the tedious processing of SysML data. The definition of a
question based on the system requirements and the choice
of an environment scenario have been explored and will
also be facilitated by the plugin in the future. The second
task considered in this work is the design of a simulation
architecture by a simulation architect. A methodology sup-
ported by a metamodel has been developed to specify the
connections between the simulation models, to identify their
relations with the systems functions and components, and to
solve any inconsistency coming from the re-use of former
simulation models or from the lack of communication between
the system architect and the simulation experts. The solutions
presented in this work have been defined and validated thanks
to the industrial design problem of an autonomous vehicle
passing traffic lights. These solutions facilitate Agile project
management by permitting frequent simulation loops and by
improving the capitalization and re-use of simulation models.
They will be combined with additional software developments
whose objective is to improve the decision of the architects,
when looking for former simulation models or when reviewing
the simulation results for example.

REFERENCES

[1] F. Retho, “Collaborative methodology for virtual product building to sup-
port aerial vehicles with electrical propulsion design,” Theses, Supélec,
May 2015.

[2] A. Forrai, Embedded Control System Design: A Model Based Approach.
Springer Science & Business Media, 2012.

[3] F. Bordeleau and E. Fiallos, “Model-based engineering: A new era
based on Papyrus and open source tooling.” in OSS4MDE@ MoDELS.
Citeseer, 2014, pp. 2-8.

[4] “No Magic acquisition completed,” https://bit.ly/2TOGB2w accessed
Feb. 10, 2019.

[5] “CIL4Sys Engineering,” http://cil4sys.com/ accessed Feb. 10, 2019.

[6]
[7]

[8]
[9]

[10]

(1]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

“Syscience,” https://www.syscience.fr/ accessed Feb. 10, 2019.

MIT, “Architecture and systems engineering,”
https://sysengonline.mit.edu/ accessed Feb. 10, 2019.
CESAMES, “Formation d’introduction a
https://bit.ly/2gBiASO accessed Feb. 10, 2019.

C. Yang, P. Ménégazzi, J.-D. Piques, O. Coppin, P. Chesse, and
D. Chalet, “MBSE approach adapted to vehicle energy consumption
optimization,” in NAFEMS World Congress 2017, 2017.

P. Roques, “MBSE with the ARCADIA method and the Capella tool,” in
8th European Congress on Embedded Real Time Software and Systems
(ERTS 2016), 2016.

PSA Groupe, “Challenges et enjeux de la simulation numérique,” 2017,
https://bit.ly/2QxcsWY accessed Feb. 10, 2019.

Renault, “Chef d’équipe Model Factory,” https://bit.ly/2FmSNbs ac-
cessed Feb. 10, 2019.

N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182—
193, 2016.

Argosim, “STIMULUS for requirements,” https://bit.ly/2J1X132F ac-
cessed Feb. 10, 2019.

A. Rauzy, “Five theses for model-based systems engineering and model-
based safety assessment,” Norwegian University of Science and Tech-
nology, Tech. Rep., 2016.

E. Huang, R. Ramamurthy, and L. F. McGinnis, “System and simulation
modeling using SysML,” in 2007 Winter Simulation Conference, Dec
2007, pp. 796-803.

Y. Cao, Y. Liu, H. Fan, and B. Fan, “SysML-based uniform behavior
modeling and automated mapping of design and simulation model for
complex mechatronics,” Computer-Aided Design, vol. 45, no. 3, pp. 764—
776, 2013.

R. S. Peak, R. M. Burkhart, S. A. Friedenthal, M. W. Wilson, M. Bajaj,
and I. Kim, “Simulation-based design using SysML - Part 1: A para-
metrics primer,” in INCOSE international symposium, vol. 17, no. 1.
Wiley Online Library, 2007, pp. 1516-1535.

——, “Simulation-based design using SysML - Part 2: Celebrating
diversity by example,” in INCOSE International Symposium, vol. 17,
no. 1. Wiley Online Library, 2007, pp. 1536-1557.

Phoenix Integration, “ModelCenter MBSEPak,” https://bit.ly/2AngbzA
accessed Feb. 10, 2019.

C. J. Paredis and T. Johnson, “Using OMG’s SysML to support sim-
ulation,” in Proceedings of the 40th Conference on Winter Simulation.
Winter Simulation Conference, 2008, pp. 2350-2352.

R. Renier and R. Chenouard, “De SysML a Modelica : Aide a la
formalisation de modeles de simulation en conception préliminaire,” in
12éme Colloque National AIP PRIMECA, 2011.

G. Sirin, “Supporting multidisciplinary vehicle modeling: towards an
ontology-based knowledge sharing in collaborative model based systems
engineering environment,” Ph.D. dissertation, Chatenay-Malabry, Ecole
centrale de Paris, 2015.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Jung-
hanns, J. Mauf3, M. Monteiro, T. Neidhold, D. Neumerkel et al., “The
functional mockup interface for tool independent exchange of simulation
models,” in Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical Univeristy; Dresden; Germany, no. 063.
Linkoping University Electronic Press, 2011, pp. 105-114.

G. Fontaine, “Modélisation théorique et processus associés pour archi-
tectes modele dans un environnement multidisciplinaire,” Ph.D. disser-
tation, Paris Saclay, 2017.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE transactions on evo-
lutionary computation, vol. 6, no. 2, pp. 182-197, 2002.

I’architecture,”

