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Abstract
The current explosion of embedded systems (i.e., IoT, Edge
Computing) implies the need for generating tailored and cus-
tomized software for these systems. Instead of using specific
runtimes (e.g., MicroPython, eLua, mRuby), we advocate
that bootstrapping specific language kernels is a promising
higher-level approach because the process takes advantage
of the generated language abstractions, easing the task for
a language developer. Nevertheless, bootstrapping language
kernels is still challenging because current debugging tools
are not suitable for fixing the possible failures that occur
during the process.

In this paper, we take the Pharo bootstrap process as an
example to analyse the different challenges a language de-
veloper faces. We propose a taxonomy of failures appearing
during bootstrap and their causes. Based on this analysis, we
identify future research directions: (1) prevention measures
based on the reification of implicit virtual machine contracts,
and (2) hybrid debugging tools that unify the debugging of
high-level code from the bootstrapped language with low-
level code from the virtual machine.

Keywords bootstrap, language kernels, IoT

1 Introduction
Bootstraping consists in initializing a system through a pro-
cess implemented in the same system it initializes. This is
achieved by using a previous functional version of this system
that we call host. A reflective system is a computational sys-
tem which is capable of reasoning and acting upon itself [4].
Thus, the bootstrap process for a reflective system takes ad-
vantage of the self modification capabilities provided by the
same language it is bootstrapping [9].

Defects in the definition of the bootstrapped language man-
ifest as failures at different stages of the bootstrap process:
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Generation, Loading or Execution. During this process, code
from different sources is executed by different execution ma-
chineries: the bytecode of the application that performs the
bootstrap is interpreted by the host virtual machine (VM),
the language definition non-compiled code is interpreted by
an AST interpreter, and the virtual machine is executed as
machine code. Traditional debugging tools are constrained
to debug at only one level of execution. This makes them
unsuitable for solving errors in a bootstrap process.

To illustrate this problem, consider a language definition
that does not define the class LargeInteger. The system is suc-
cessfully generated and loaded, and its main application starts
to execute. If during its execution, adding two instances of
SmallInteger produces an overflow, the virtual machine will
try to fetch the class LargeInteger from the system memory to
store the result, failing with a segmentation fault error. This
behaviour is hardcoded in the VM implementation. Nowa-
days, the only way to debug this error is debugging the ex-
ecution of the VM. For the case of the Pharo VM we use
a C debugging tool such as GDB. But by debugging at the
level of the language in which the VM is implemented, we
have access only to generic low level tools to read the high
level components of the bootstrapped language. This causes
the lost of the bootstrapped language abstractions, making it
difficult to find the corresponding defect back in the language
definition.

In this paper we aim to respond the next research questions:
1. What are the problems a language developer faces dur-

ing the bootstrapping of a reflective language kernel,
and what is a useful classification for them?

2. What are the tools for preventing and for debugging
these problems, considering the trade-off between con-
straining the new language to prevent possible problems
at expense of losing freedom on the language definition.

For responding the previous questions:
1. As the product of experiencing bootstrapping a mini-

mal Pharo-based kernel, we present a classification of
1
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defects in the language definition and their associated
causes regarding requirements originated in the VM or
in the bootstrapped system’s application.

2. We propose an initial approach to develop a toolset for
bootstrapping reflective language kernels, including a
language development framework and language-hybrid
debugging tools.

To explain our solution we start by describing the process
of bootstrapping a reflective kernel taking Pharo as example
(Section 2). Showing different kinds of failures that occur
during the process, we argue that the current debugging tools
are unsuitable for debugging bootstraps (Section 3). Next we
present our classification of defects in the language defini-
tion, relating them with its cause in the VM or application
requirements (Section 4). Based on our defects classifica-
tion we present different solutions that intend to solve each
kind of defect (Section 5). We relate our analysis with differ-
ent approaches for generating custom software for resource
constrained devices (Section 6). Finally we present our con-
clusions and the future work (Section 7).

Assumptions. We make the next assumptions: The Bootstrap-
per has no defects. The VM has no defects. The bootstrapped
kernels must execute in the same VM as the host system.
Therefore adding debugging features to the VM is not part of
our approach.

2 The current Pharo bootstrap process in a
nutshell

The Pharo bootstrap process comprises the generation, load
and execution of a custom object-memory (OM) starting from
its language definition (Figure 1). The language definition
is the static definition for all the classes in the bootstrapped
language.

The generation stage is performed by a standard Pharo
application, named bootstrapper, that runs in a Pharo system
which serves as host. In this stage the OM is assembled in the
host memory and by the end of it, the OM is serialized and
written to disk.

Afterwards, the Pharo virtual machine (VM) loads and exe-
cutes the generated OM, which fulfills the VM requirements.

Terminology. We introduce the next terms to be used during
the paper. A defect or bug [2] as an unintended mistake intro-
duced by the programmer in the source representation of a
program. A failure is an unwanted executional behavior that
is externally observable by a developer while the process is
running [11]. A critical failure [12] is a failure that interrupts
the execution of the process.

In the language definition, the definition of each class com-
prises its structural definition and the definition of its methods.
The structural definition comprises the name of the class, its
type and its instance variables (considering the order in which
they are defined).

Language Definition

Host System
       Bootstrapper

bootstrapped Object-memory

1

VM

bootstrapped Object-memory

2 3

Generate

Load Execute

Figure 1. The three main stages of the Pharo bootstrap pro-
cess.

2.1 Object-memory Generation
The bootstrapper creates an empty OM and fills it with all the
classes and objects for the bootstrapped system. Afterwards,
it serializes the OM and writes it to disk outside the host.
No validations are performed when serializing and writing
the OM, therefore we assume that the serializing and writing
process is always successful.

The bootstrapper takes advantage of the reflective features
of the bootstrapped language for generating the OM [10].
This means that it prefers executing operations in which the
bootstrapped system modifies itself via reflective operations,
instead of manipulating the OM directly via non-reflective
operations. This strategy minimizes the coupling between
the bootstrapper and the language it bootstraps, by partially
delegating the logic of the bootstrap process to reflective
methods in the language definition. For example, the language
definition provides a ClassBuilder class that knows how to
install classes in the generated language. The bootstrapper
uses this class to install the final version of the system’s
classes.

We distinguish two kinds of operations performed during
this stage:

Non-reflective operations. The bootstrapper installs classes
and objects in the OM executing its own methods (methods
defined in the host), which take as argument the structural
definition of some classes in the language definition, and
create objects in the OM.
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Language Definition

Host System

       Bootstrapper AST 
interpreter

bootstrapped Object-memory

1NR
aBootstrapper 
  createStubFromDefinition: 
          arrayDefinition

Large
Int

…ArrayAppli-
cation

Small
Int

class
Array

[stub]

nil

[stub]

false

[stub]

true

[stub]

class 
Small

Int
[stub]

… …

Figure 2. OM Generation: Non-Reflective operations. The
bootstrapper modifies the OM by executing its own methods.

For example: To install the class Array (Figure 2), the
bootstrapper gets the definition for the structure of the class
from the language definition and uses it as the argument
(arrayDefinition) for the method createStubFromDefinition. This
method is defined in the bootstrapper. It generates and installs
a stub of the class Array directly in the OM.

Reflective operations. The bootstrapper uses a custom AST
interpreter that executes reflective methods defined in the
language definition to modify the OM. Methods defined in
the language definition are not installed in the host. To execute
them, the bootstrapper parses their code, obtaining their AST
representation, which is given to the AST interpreter. This
interpreter visits the AST and performs its execution with no
need to install the method, nor to compile it.

For example, to generate a new instance of Array, instead
using a method in the bootstrapper that creates the object
through a non-reflective operation, we send the message new
to the class Array installed in the OM. (Figure 3). Because the
message we want to execute is defined inside the language
definition and not in the host, the bootstrapper needs to use
a custom AST interpreter to execute these instructions and
limit the scope of its effects to the OM. By the end of this
stage the OM is serialized and written to disk.

2.2 Object-memory Loading by Virtual Machine
When the VM starts, it first fetches a set of objects at specific
locations in the OM. Failures occur at this stage if the gen-
erated OM does not fulfill the structural requirements of the
VM.

Host System

bootstrapped Object-memory

specialObjectsArray

       Bootstrapper AST interpreter
1R

anArray

aBootstrapper       
     interpret: ‘Array new’

…
class
Array

>>new
…nil false true

class 
Small

Int

class 
Large

Int

Figure 3. OM Generation: Reflective operations. The boot-
strapper modifies the OM executing reflective methods de-
fined in the language definition.

For example, nil, false and true are expected to be the first
objects in memory (Figure 4).

Notice that no method from the generated language is in-
terpreted (executed) by the VM during this stage.

bootstrapped Object-memory
specialObjectsArray

nil false true

VM
2

class 
Large

Int

class
Small

Int
… …

class
Array

Application
>>run
 {^ SmallInt
   maxVal + 1}

Figure 4. OM Loading. The VM loads the OM fetching spe-
cific objects from it. The expected structure for this objects is
defined inside the VM.

2.3 Application Execution
Once the OM was loaded, the VM starts interpreting (exe-
cuting) the system’s Application code, whose entry point has
been defined inside the language definition. In our examples
the method run in the Application class is the system’s entry
point (Figure 5).

We consider the application execution as part of the boot-
strap process to include the analysis of failures appearing
during this stage. For the same reason we consider as part of
the language definition the code associated to the Application.

Let us suppose our Application starts with the expression:
SmallInteger maxVal + 1. The result of the expression Small-
Integer maxVal is the maximum possible value stored in an

3
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instance of SmallInteger. The addition operation for SmallInte-
ger is defined in the language definition using a VM primitive,
as follows:

Class SmallInteger {....
>> + aNumber {

<primitive: 1>
}

...}

VM primitives are implemented inside the VM. When the
VM encounters a primitive tag while interpreting Pharo code,
it will execute its internal implementation for that primitive.
Depending on the primitive, its implementation in the VM
might require the presence of certain Pharo classes in the OM,
as we explain next.

In the VM implementation of <primitive:1> when the result
of the addition produces an overflow for SmallInteger, the re-
turned value will be an instance of LargeInteger. Consequently,
the VM fetches from a specific position in the specialObject-
sArray, the reference to the class LargeInteger, and uses this
class to instantiate the returned value.

bootstrapped Object-memory
specialObjectsArray

nil false true Application

VM
3

>>run
 {^ SmallInt
   maxVal + 1}

class 
Large

Int

class
Small

Int
…

class
Array

Figure 5. Application Executing. The VM executes the sys-
tem’s Application.

3 Problem: Current Debugging Tools are
Unsuitable

Defects in the language definition manifest as different kinds
of failures at different stages of the bootstrap process. When
a failure occurs during the OM Generation, we use the host
debugger to find its cause by debugging the bootstrapper
application execution. When a failure occurs during the Load-
ing or Execution stages we use a debugger, such as GDB, for
debugging the VM execution.

We call fix to a change in the source representation of a
program that eliminates a defect.

In the next subsections we illustrate with examples why
the current debugging tools are not enough for debugging
the bootstrapper process. For some failures we provide mul-
tiple possible causes in the form of defects in the language
definition.

3.1 Debugging the OM Generation Stage
We use the native debugger of the host system to debug the
bootstrapper while generating the OM.

3.1.1 Debugging Non-reflective operations
Non-reflective operations use methods defined in the boot-
strapper. The host debugger does not provide enough infor-
mation to find the cause of the failure. This is mainly because
the defect belongs to the language definition, whose valid-
ity depends on the VM requirements, which are not explicit
during the debugging process.

We illustrate these problems through the following two
examples: Missing definition and Wrong format.

Missing definition. Let us suppose our language definition
misses the definition of the class Array. The bootstrapper fails
with a critical error, showing the message ’Class Array not
found’. To solve this error we need to provide a structurally
VM compatible definition for the class Array, such as:
Class Array {

superclass: 'Object'
instVars: [ ]
type: 'variable'

... }

A valid definition must contain the name, type and instance
variables expected by the VM. Because there’s no formal
specification of the VM requirements, the language developer
needs to infer this information from the source code of the
VM. We summarize this error in the next table:

F1. Missing Definition for Required Element
Failure Class Array not found
Level Critical
Origin VM requirement
Defect Class Array is not defined

Wrong format for class type. Let us suppose that the lan-
guage definition now contains the class Array, but its structure
is not the one expected by the VM: the type is set as ’fixed’ but
it should be ’variable’.
Class Array {

superclass: 'Object'
instVars: [ ]
type: 'fixed' ¨ incorrect type is a structural defect.¨

... }

The failure will only manifest when the bootstrapper tries
to create an instance for this class. We summarize the error as
follows:

F2. Instance Creation Fails
Failure AssertionFailure: new instance of Array is nil.
Level Critical
Origin Bootstrapper requirement
Defect Incorrect structural definition for class Array

To infer that the defect is in the type of the class Array, the
developer must deal with low level Pharo code belonging to

4
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the VM simulator library, which reads and writes the OM. It
also requires that the language developer is familiarized with
the types required by the VM.

3.1.2 Debugging Reflective operations
Reflective operations use methods defined in the language
definition, which are not installed in the host. These methods
are executed using a custom AST interpreter. The only way
to debug a failure that occurs during these operations, is to
debug the AST interpreter execution. The interpreter execu-
tion hinders the execution trace of the interpreted code from
the language definition. The next example illustrates a failure
in kind of operations.

Semantic defect in reflective method. According to the VM
requirements, each class stores its methods in an instance
of the class MethodDictionary. Accordingly, the bootstrapper
executes the reflective message MethodDictionary » at: put:,
defined in the language definition, to store the methods for
each class. Let us consider a definition for this method, which
contains a semantic defect:
MethodDictionary { ...

>> at: index put: value {
array at: (index + 1) ¨ adding 1 is a semantic defect.¨

put: value.
}

... }

We get the failure:
F3. Interpreter Fails with Generic Error
Failure Interpreter generic exception error
Level Critical
Origin VM requirement
Defect Semantic defect in reflective method

MethodDictionary»at:put:
The stack trace shows information about the execution

of the interpreter, while the execution trace of the reflective
method is hidden inside the interpreter’s interpreter-failure-
stack. (Figure 6)

Figure 6. Stack trace for AST interpreter generic error.

Because the messages from the language definition are
not installed in the host, they are not available from the host
debugger either. The host debugger functionalities can not

be used on methods from the language definition. Therefore
it is not possible to place breakpoints inside the language
definition methods, nor to perform the execution step by step.

3.2 Debugging the OM Loading Stage
Failures during this stage are critical and prevent the VM to
initialize. Therefore, to debug them we need a debugger for
the VM (such as gdb or lldb).

Wrong format for instance variables. The VM requires that
the class Behavior contains 3 instance variables: superclass,
methodDict, format. Modifying the order in which these vari-
ables are defined introduces a structural error:

Class Behavior {
superclass : 'Object'
instVars: [ superclass format methodDict ] ¨ wrong order for in-

stance variables is a structural defect.¨
type : 'fixed'

...}

We get the next failure:
F4. Wrong memory access
Failure segmentation fault in C
Level Critical
Origin VM requirement
Defect class Behavior instance variables format and

methodDict are defined in the wrong order.
It is difficult to access objects in the OM using such a

low-level debugger because it only provides generic low-
level tools to read the memory. The debugger is agnostic to
the abstractions of the bootstrapped language. There’s no
execution stack trace for the bootstrapped language.

3.3 Debugging the Application Execution
The VM has already initialized, and the application entry
point has started its execution. However, if primitive exe-
cutions make the process fail, the VM fails showing a seg-
mentation fault error. This situation is analogus to the failure
F4.

Another kind of failure for this stage is independent from
the VM requirements and it’s produced by semantic errors in
code executed by the application, that has no connection with
VM requirements. This kind of failures include critical and
non-critical failures.

Semantic defect in application code. As an example, let us
suppose our application entry point evaluates a variable before
initializing it.

Class Application { ...
>> run {

| x |
x := x + 1 ¨ use non-initialized variable is a semantic defect.¨
}

...}

5
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F5. Application Failure
Failure Stack overflow
Level Critical
Origin Application
Defect Use non-initialized variable.

The debugger provides a Basic Smalltalk execution stack
trace as follows:

Smalltalk stack dump:
0xbffc8fd0 M>species 0x6e4e350: a(n) bad class
0xbffc7c0c M>copyReplaceFrom:to:with: 0x6e4e350: a(n) bad class
0xbffc7c30 M>, 0x6e4e350: a(n) bad class
0xbffc7c5c I>doesNotUnderstand: activeProcess 0x6e2f7c0: a(n) bad class
0xbffc7c88 I>doesNotUnderstand: activeProcess 0x6e2f7c0: a(n) bad class
...

This stack trace is produced by the VM implementation,
and it is shown besides the VM execution stack trace in C
which starts as follows:

C stack backtrace & registers:
0 Pharo 0x000b4d1e reportStackState + 813
1 Pharo 0x000b49dc error + 28
2 Pharo 0x0007ae82 copyToOldSpacebytesformat + 90
3 Pharo 0x00061e50 copyAndForward + 194
4 Pharo 0x0007abdd scavengeReferentsOf + 289
...

The debugger only provides generic low level tools to read
the OM, consequently the abstractions of the language to
access and manipulate objects are lost.

4 Classification of Defects in the Language
Definition

After experimenting with the Pharo bootstrap process, we
analyzed the encountered failures and their associated de-
fects, and we propose a classification for them. We analyze
defects found only in the language definition and not in the
bootstrapper, nor in the VM; because we assume that the boot-
strapper and the VM are free of defects. Our analysis does
not consider syntax defects because they are solved using the
current debugging tools in the host. We classify these defects
as follows:

4.1 Structural Defects
They occur when the language definition misses the definition
of a class required by the VM, or when the structural defini-
tion of a required class doesn’t match the format expected by
the VM.

Structural defects always cause critical failures in the stage
they arise (Generation, Loading or Executing). Meaning that
they always interrupt the execution of the process.

From the examples presented in Section 3, failures F1, F2
and F4 are caused by structural defects.

It follows that to prevent this kind of defects the language
definition must define the minimal set of classes required
by the VM, and that these classes must comply with the
format expected by the VM.

4.2 Semantic Defects
A method in the language definition has a correct syntax
(meaning that it could be compiled), but its execution pro-
duces a wrong result. Semantic defects cause critical and
non-critical failures, which arise in any of the 3 stages of the
process. From the examples presented in Section 3, failures
F3 and F5 are produced by semantic defects.

We make the distinction between semantic defects man-
ifested during reflective operations in the OM Generation
stage (e.g.,failure F3), and semantic defects manifested dur-
ing the Application Execution stage (e.g.,failure F5). Notice
that during the OM Loading stage, no methods belonging to
the bootstrapped language are interpreted by the VM; instead,
only parts of the OM structure (special objects and classes)
are fetched by the VM.

4.2.1 Semantic Defects Manifested during the OM
Generation

During the OM Generation the bootstrapper executes two
kinds of operations: non-reflective, which take as input struc-
tural information from the language definition, but do not
execute methods from the language definition; and reflective,
which execute methods defined in the language definition.

Methods from the language definition that participate in
reflective operations during the OM Generation modify the
OM. Thus, a semantic defect in one of these methods affects
the process of generating the OM, whether by interrupting it
such as in failure F3, or by producing a corrupted OM that
fails in a posterior stage such as in failure F5.

To illustrate this, let us consider a semantic defect in the
class ClassBuilder, which is used during the Generation stage
to install the definitive version of all classes in the OM. The se-
mantic defect is in the method ClassBuilder » instSpec, which
returns an integer that encodes the type for a class. The value
associated to each type is defined by a VM requirement. Thus,
the expected value 16 for classes of type words is a require-
ment of the VM. The defect we show next is returning the
value 10 instead of 16 for the type words.

Class ClassBuilder {...
>> instSpec{

...
(self isBytes) ifTrue: [ ^ 16 ].
(self isWords) ifTrue: [ ^ 16 ]. ¨ semantic defect, the ex-

pected value is 10, not 16.¨
...
}

....}

In this example it is clear that to prevent this kind of defect
methods in the language definition that collaborate with
the OM Generation must be aware of the VM requirements.

The presented defect produces a critical failure during the
Loading stage, in which the VM will crash showing a seg-
mentation fault error, because it reads the memory of the
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instances of a class type words, such as WordArray, as if they
were instances of a class type bytes.

4.2.2 Semantic Defects Manifested during the
Application Execution

Another kind of semantic defects are those that exist in-
side methods that are executed during Application Execution.
These defects are independent from the VM requirements,
except when they relate to the usage of VM primitives, such
as in our example of adding two instances of SmallInteger that
cause an overflow, shown in Section 1.

Defects of this kind produce critical or non-critical failures
during the Execution stage.

Example: The application entry point references a class
that is not defined.

5 Towards an Unified Toolset for Developing
Reflective Languages

In this section we propose solutions for each kind of defect de-
scribed in Section 4. The proposed solutions are complemen-
tary, intended to work together, conforming a unified toolset
for bootstrapping reflective language kernels. The solutions
proposed in Section 5.1 and in Section 5.3 are preventive
and they intend to avoid the appearance of failures during
bootstrap, which could be related to semantic or structural
defects. While the solutions proposed in Section 5.2 deal with
those failures which can not be prevented, this kind of defects
are always semantic.

5.1 A Framework for Developing VM-compatible
Language Kernels

Every VM requirement over the OM is structural. They arise
from assumptions the VM makes about specific objects exist-
ing in the OM and their byte level structure.

These assumptions manifest in the next two scenarios:

• During the OM Loading stage: the VM always fetches
the same objects in the same order, until the Application
entry point is reached.

• During the execution of VM Primitives: the VM fetches
specific classes for instantiating objects. The number
of primitives defined in the VM is finite (around 200).

VM assumptions are finite and therefore they comprise
a finite number of objects that must exist in the OM and
that must have a specific byte level structure. Discovering
the minimal set of VM requirements is the first step towards
defining static tests that apply on the OM and moreover on
the language definition. Additionally, to help the process of
defining a language from scratch, we could provide a base-
language definition that produces a VM compatible OM, and
which can be modified or extended by the language developer
to create its own language.

This framework intents to solve structural-defects described
in Section 4.1. Each part of the framework is explained in the
next paragraphs.

Static tests for the Language Definition. The VM require-
ments will be explicitly reflected in these tests. These tests
will be applied on the language definition before the bootstrap
process starts. They will check the existence and format of
the classes required by the VM. Classes required during the
OM Loading stage are always the same and therefore our
tests will always check for their presence. This is because if
one of them is missing, the bootstrap process will fail during
the OM Generation or during the Load stage.

Classes required by the execution of VM primitives depend
on which primitives do the bootstrapped system application
executes. We will use a static analysis on the language def-
inition to obtain all the primitives used inside its methods.
A dynamic analysis using the simulated execution environ-
ment described in Section 5.3 will complement the previous
one, reducing even more the list of required primitives. How-
ever the primitives list obtained using our dynamic analysis
is a subset of the list of primitives the application requires
when executing in a real world environment. Consequently
the question of how to fix bugs associated to the absence of
classes required by primitives that executed during real world
execution, but are missing in the dynamic analysis primitives
list, remains open and will be explored by us in future work.

As a first step, our tests will check for all the classes re-
quired by the VM for loading the OM and by all the VM
primitives. Each test will indicate if its tested class is:

• required by the loading stage. If one of these tests fail,
the generated OM will fail to load.

• required by one of the primitives obtained by the dy-
namic analysis. If one of these tests fail, the system will
fail during its execution stage.

• required by one of the primitives obtained from the
static analysis. If one of these tests fail, the system
may still execute and never fail, or it can fail during its
execution.

• required by one of the primitives that does not belong
to the language definition. The failure of this kind of
tests says nothing about possible failures of the system.

Static tests for the OM. VM-compatible OMs share a com-
mon structure. Therefore it is possible to define an Object-
memory format for performing static tests on the OM as it
is generated. By studying this structure we will determine a
standard file format for VM compatible object-memories, in
a similar way the Executable and Linkable Format (ELF) [1]
defines a standard format for executable files, widely used
in UNIX systems. This format will be used to perform static
validations on the OM, which will be specially useful during
its Generation stage and at the end of it. We currently have
an inspector for the OM which is capable of obtaining its
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classes and special objects at different steps during the OM
Generation stage. We are working on creating static tests on
these retrieved classes and objects.

The set of tests for the OM and for the Language defi-
nition will explicit the VM requirements for the language
developer.

An extendable base language definition. It is possible to
provide a base language definition that contains the minimal
set of valid structural definitions required by the VM. This
base definition will provide a very simple application entry
point, for example it could call to the primitive for quitting the
system. When the static tests are applied to the base definition,
all of them they will pass. The base definition is bootstrapped,
the result is a VM-compatible OM which is load by the VM
and quits as soon as it starts its execution.

The language developer will be free to extend this base
definition adding new classes and methods, or to modify it
as much as he wants, to the point of deciding not to use
any of its classes and instead to provide a definition built by
himself from scratch. Naturally, the developer runs the risk of
introducing defects to the language definition when extending
base language definition. Structural defects will be caught by
the static tests we just described, however semantical defects
will require appropriate debugging tools to be fixed.

We are working on the definition of the VM requirements
and also on the definition of an extendable minimal base
language definition. We need to do more experimentation
and research to determine a good language base, and/or an
appropriate way to extend it, that minimizes the constrains
over the range of bootstrapped languages that will be extended
from it.

A generic bootstrapper application. We are working on im-
plementing a generic bootstrapper that takes as input an ex-
tended version of the base language definition.

The language developer may introduce structural defects
in the language definition while extending it. Therefore it is
necessary to statically test the language definition checking
that it contains the minimal set of valid structural definitions
required by the VM. If the structural requirements are fulfilled,
the bootstrapper will be able to install in the OM the stubs for
those classes required to perform reflective operations.

The bootstrapper must be configurable regarding the ex-
ecution of reflective operations provided by the language
definition. In case of semantic defects, the bootstrapped will
use the hybrid debugger described in Section 5.2 to find their
cause. Reflective operations defined in the language definition
are used to install classes, methods and the application entry
point.

5.2 Debugger for the OM Generation
The following components of our solution solve semantic-
defects manifested in reflective operations during the OM
Generation, described in Section 4.2.1.

Hybrid-Debugger for OM Generation. Semantic defects man-
ifested during reflective operations interrupt the generation
stage or corrupt the OM.

Tools for developing and debugging these reflective func-
tionalities are necessary. But they can not be tested in iso-
lation, to make sense they need the bootstrapper execution
environment and the VM simulator environment. We want an
integrated debugging environment that mixes VM simulator
execution, bootstrapper execution and generated language
execution.

We propose the use of an Hybrid Debugger for debugging
the reflective code used during the bootstrap, the host code
from the bootstrapper and the VM simulation code.

• For the bootstrapper code we use the existing debugger
in the host.

• The reflective code is executed using a steppable AST
interpreter, we require to have a debugger that allows
us to debug the language definition code.

• For the VM sym code, we use the existing debugger
in the host, but we need an extension to be able to
inspect and manipulate structures used by the VM (
e.g., inspect and manipulate objects in the OM).

5.3 Simulated High Level Execution Environment
A high level execution and debugging environment imple-
mented in the host system is a useful tool for fixing defects
manifested during the Application Execution, as described in
Section 4.2.2. It will allow us to test the application code in
an environment where the VM is implemented as a high level
library, which could be implemented on top of the current
VM simulator library.

This solution comprises two parts:

• This environment will use an extended version of our
custom steppable AST interpreter to interpret the ap-
plication code. The interpretation process will use our
high-level VM simulator for primitive evaluation.

• The environment must also provide and a high level im-
plementation for the object-memory. Our custom step-
pable AST interpreter will use this high-level object
memory as the memory of the system. Our implementa-
tion could be based in the current VM simulator library
for manipulating low level object-memories.

6 Related Work
Nowadays there are different approaches for generating cus-
tom software for constrained systems.

An automated-approach to miniaturize JavaScript (JS) ap-
plications to run in IoT devices was developed by Morales
et al. [6]. They do not modify the application code, but they
only configure the JS interpreter turning on and off specific
features of the interpreter that have impact on performance.
The MoMIT solution searches empirically the appropriate

8



Challenges in Debugging Bootstraps of Reflective Kernels IWST19, August 27–29, 2019, Cologne, Germany

configuration of the JS interpreter to run a specific applica-
tion. Because this solution is automated, debugging tools are
not applicable.

A non-automated approach is MicroPython [5], which
is a lean and efficient implementation of Python 3 that in-
cludes a small subset of the Python standard library, datatypes
and functionalities. MicroPython is optimised to run in con-
strained environments. The system sources are written in C
and they include different modules, among them the system’s
virtual machine, which is completely independent from the
Python 3 virtual machine. The system modules are compiled
under different configurations to produce different versions
of MicroPython, named ports.

Developing a new module for extending the MicroPython
language requires rebuilding the port in which the module
is intended to work. The new module must be written in
C. In case of failures during the building, the error must be
debugged using a C debugger. At this level the high level
abstractions of the MicroPython language are not available.

MicroPython doesn’t provide debugging tools for develop-
ing applications, therefore debugging code at the MicroPy-
thon level requires to use a debugger to debug the VM exe-
cution at the C code level. However MicroPython provides
a REPL which, according to some user experience, partially
compensates the need for debugging tools because it allows
to execute code interactively in the client.

Another approach is eLua [3], which offers the full imple-
mentation of the Lua Programming Language to the embed-
ded world.

eLua provides a modular structure offering diverse com-
ponents among which we find the interpreter and a console
for developing and transfering files. eLua is written in C, and
its sources contain platform-specific modules for various mi-
crocontrollers. The set of used components is specified when
the project is compiled and can be adjusted to reduce the
amount of the code. In case of failure during the building the
developer must debug C code.

Same as MicroPython, for extending eLua a new module
must be written in C. In case the building process fails, it is
necessary to debug the C code.

For developing applications, the eLua project aims to pro-
vide a development environment, including debugging tools,
on the microcontroller itself, without the need to install a spe-
cific development environment on the PC side. However, the
Debugging feature (remote/on target) is not yet implemented
in the eLua project.

mRuby [7] is the lightweight implementation of the Ruby
language, its syntax is Ruby 2.x compatible. In mRuby, the
compiler and the interpreter are separated, this leads to reduc-
tion in the memory requirements during program executions.
When building the interpreter the developer must choose the
corresponding toolchain, comprising the mRuby compiler
and its corresponding architecture.

mRuby can be extended by creating extensions in C and/or
Ruby. It is necessary to use the library manager mrbgems,
specifically created to integrate extensions into mruby. If there
is missing dependencies, mrbgem dependencies solver will
reference centralized repositories. In case of failures when the
extension is written in C, it must be debugged in C, presenting
the same problems described in this paper.

mRuby provides a debugger for debugging code at the
mRuby code level [8].

7 Conclusion and Future Work
Taking the Pharo bootstrap process as example, we presented
an analysis of the challenges of bootstrapping reflective lan-
guage kernels and using the analysis we propose solutions for
easing the developing process.

We divided the process in 3 stages: Object-memory Gen-
eration, Object-memory Loading and Application Execution.
We make the distinction between Reflective operations and
Non-reflective operations, performed during the Generation
stage. We use this them as guide to classify the different kinds
of failures that arise during the process.

Linking failures and their defects in the language definition,
and analysing their origin in the requirements of the VM or
the system application, we created a suitable classification of
defects. In this classification we recognize 3 kinds of defects:

• Structural defects, originated in VM requirements.
• Semantic defects in reflective code, also originated in

VM requirements.
• Semantic defects in application code, originated in ap-

plication requirements.

We use this classification of defects to guide the design of
solutions for solving them.

Finally we propose research directions for finding solutions
that solve each one of the described defects.

• For preventing structural errors we propose an Exten-
sible Base Language Definition that contains all the
structural definitions required by the VM. This defini-
tion will be extended by the language developer.

• For debugging reflective operations as part of the boot-
strapper execution, we propose a Hybrid-Language De-
bugger that provide debugging support at the level of
execution for the VM simulator, the bootstrapper and
the generated language.

• For debugging the application code we propose a high
level execution and debugging environment in which
the VM and the OM are implemented in high level.
This implementation could be based in the current VM
simulator code.

As a future work, we plan to continue working on the research
directions proposed in this paper.
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