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Abstract. Large strain hardening is the main material description ingredient for cold bulk 

forming process simulations. Hardening identification of large strains is a trade-off between 

cost, standardization and the ability to represent the experiment, but there are no standard 

procedures to date. In this proposed approach, large strains (larger than 1) are reached using 

an industrial wire drawing process, and measured data for identification are obtained from 

standard tensile tests. Fast semi-analytical post-processing was possible despite the significant 

process-inherited strain heterogeneity. The parameters of state-of-the-art hardening models 

were identified, and the robustness was demonstrated to reach far beyond the strain level 

attained in the experiments. As a consequence, accurate and robust large strain hardening 

modelling was achieved from standard (tensile test) acquisition by using industrial wire 

drawing pre-strains.  
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1. Introduction 

Metal forming process simulations using the finite element method (FEM) has become a 

common engineering tool for use in industry. The material model is one of the key ingredients 

dictating the predictive ability of such software. In parallel with the development of advanced 

material models, there is a necessity to identify the parameters associated with these models 

for different materials. 

Material models attempt to describe the effects of the different physical mechanisms that 

occur during and after the deformation of the metal like dislocation generation and pile-up, 

grain refinement, recrystallization, recovery, texture evolution, etc. These deformation 

mechanisms are induced at macroscopic scale by strain, temperature and strain rate, which 

have an influence over the hardening or softening of the metal. Physically-based models have 

been proposed to take into account these phenomena, based on the early works of Avrami [1]. 

Alternatively, phenomenological models have been proposed at the macroscopic scale, in 

order to heuristically describe the experimentally observed macroscopic behaviour. Critical 

reviews of both model families are available in the literature (see, e.g., [2]), showing that both 

are suitable to describe complex mechanical behaviour, with the first family predicting also 

certain evolutions at microstructure scale. It is noteworthy that FEM simulation software are 

mainly based on phenomenological models, because of their reduced number of material 

constants that can be identified more easily [3]. 

Modern parameter identification methods were established approximately two decades ago to 

support the massive dissemination of FE simulations in the metal forming industry. FE-based 

inverse methods allowed accurate consideration of the actual geometry, strain rate and 

temperature conditions in a test sample, along with any heterogeneity [4], [5]. Various testing 

methods were proposed to reach the desired strain range and strain rates. In particular, 

compression (uniaxial or plane strain) and torsion tests have been able to reach large strain 

levels compatible with forging applications [2], [6]. As a consequence, at the end of the last 

century, complete databases with material models and parameters were generated for most 

commercially available materials used for bulk metal forming. The robustness and 

affordability of these databases made them the first choice for industrial forming simulation.  

With the recent evolution in metal forming, new issues have risen related to material 

parameter determination. Initially, the loading mode for typical characterization experiments 

is not necessarily the same as that during forging applications, raising questions about the 

applicability of the corresponding parameters. Thus, the development of adequate large strain 

characterization experiments is still a major topic of investigation for both bulk [2] and sheet 

[7] metal forming. More pragmatically, specific experimental equipment is required for such 

characterization, which is increasingly less compatible with current cost and time pressures on 

the forming industry. Indeed, characterization and identification skills are not easily found in 

the manufacturing industry, representing an external expense. However, new material grades 

are still being made available at a constant rate as a consequence of weight reduction 

strategies. Due to these contradictory trends, it is increasingly more common that parameters 
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for new material grades are determined based on tensile tests, which is the experimental data 

supplied by material suppliers with each material batch.  

Presently, material data of poor quality are being commonly used in numerical simulations 

despite the powerful methodologies available in the literature [8], [9]. In this paper, a 

pragmatic but rigorous parameter identification approach is proposed for bulk metal forming 

applications at room temperature, making use of tensile tests subsequent to industrial wire 

drawing sequences. Such sequential drawing experiments are already performed by 

steelmakers to determine the so-called ultimate drawing limit of a material [10], but they can 

also be used to characterize all the drawing processes [11]. As a consequence, the proposed 

procedure does not actually require additional tests but makes use of an existing experiment 

that permits the large strains required for proper characterization of hardening behaviour. 

Moreover, no data acquisition is required during these large strain experiments, meaning that 

only simple tensile tests are used for this purpose. Consequently, the experimental part for 

large strain parameter identification is significantly simplified, and the cost is reduced to a 

minimum. The accuracy and robustness of the results do not suffer from this simplification 

and are instead strengthened. The paper is limited to the family of phenomenological models, 

due to their extended usage in forming applications. 

The outline of this paper is as follows. The proposed experimental procedure is presented in 

Section 2, followed by the parameter identification methodology in Section 3. The results and 

their consequences are discussed in Section 4, before drawing the main conclusions. 

 

2. Experimental method and computation results 

The investigated material was a low-carbon steel wire of 7.5 mm diameter, which is typical 

for cold bulk forming, with a longitudinal initial yield stress of YS = 400 MPa, an ultimate 

tensile strength of UTS = 635 MPa, and a tensile fracture strain of A = 31,9%. The 

experiments consisted in a sequence of six wire drawing operations followed by as many 

tensile tests, plus one tensile test on the original material before the first wire drawing.  A 

wire drawing forming process is schematically illustrated in Figure 1.  The wire is drawn 

through a die to reduce its diameter. After each diameter reduction, tensile test samples are cut 

from the resulting wire. The remaining wire is drawn through another die to reduce again the 

diameter etc. 

 



4 

 

 

Figure 1. Schematic representation of a typical wire drawing operation within the multi-step 

wire drawing process used in the investigation, in preparation of the tensile tests series. 

 

 

 

The drawing operations were used to reach large strain levels, as shown in Table 1. The 

tensile tests served to record the material response at the various strain levels. The 

engineering strain is calculated as ∆𝐿/𝐿0, where ∆𝐿 is the change in length and 𝐿0 the initial 

reference length of the sample. In practice, the length evolutions are determined from the 

diameter reduction using volume conservation. This use of the wire drawing to reach large 

strains is made here with the same approach as [11], under the assumption that equivalent 

plastic strain can be used as the single relevant hardening variable. This is of course a 

simplification of the physical reality. Young et al. [12], for example, have shown that the 

evolution of the flow stress vs equivalent plastic strain during wire drawing deviates from that 

revealed by torsion test. A fibrous texture of elongated subgrains is formed by drawing 

leading to a constant hardening slope, while more equiaxed subgrains are observed in torsion 

leading to a steady state flow stress. However, these differences appear only for true strain 

values larger than 2. For lower strain values, multiple wire drawing and wire torsion were 

shown to reveal the same hardening curve. It is noteworthy that both these tests induce strain 

heterogeneity through the wire’s cross-section. Consequently, a model needs to be elaborated 

to extract the yield stress from the measured force / torque evolution. In the case of multiple 

wire drawing, one cannot use single-pass analytical models [13] to predict the effects of a 

multi-pass configuration. Thus, in this article, each drawing pass will be simulated 

individually. The analysis of the multi-step wire drawing process itself is not the aim of the 

paper; in-depth studies can be found in the literature [14]–[16]. 
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Table 1. Sequence of wire drawing operations and the resulting diameters and strains (initial 

diameter of the steel wire equal to 7.5 mm). 

 

Drawing pass number 1 2 3 4 5 6 

Wire diameter [mm] 7.23 6.26 5.60 5.00 4.48 4.01 

Total engineering strain [%] 7.5 43 79 124 180 250 

 

 

Figure 2 shows the engineering stress vs. engineering strain curves for the seven wires. All 

the tensile curves were performed in triplicate to check repeatability. This sequential 

combination of a forming process and a standard characterization test allows for classical 

post-processing of the measured data, while large strains are reached by using an available 

industrial process.  

In industrial wire drawing, the multiple drawing steps follow each other at great speed. 

Therefore, the metal is self-heating due to the large deformation in a short amount of time and 

thermal effects occur. However, in the case of this study, the process is interrupted after each 

drawing operation in order to cut the tensile test samples, and the material is cooled down at 

room temperature. This allows us to study the material at low temperature at any drawing 

sequence. On the other hand, the drawing sequence may induce significant heterogeneity in 

the strain field [14]. FE simulations were used to elucidate and quantify this effect.  

 

 

Figure 2. Experimental tensile engineering (left) and true (right) stress-strain curves for the 

initial and subsequently drawn wires. The thick grey lines show the fraction of the curves 

used for parameter identification. The curves are labelled with numbers that will be reused in 

the next figures. 
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The wire drawing operations were simulated with the FE software Forge
® 

Nxt 1.1. The 

material behaviour was described by a Hollomon law 𝜎 = 600 𝜀0.16, based on a previous 

study on the same wires [17]. Since temperature and rate sensitivity have a limited impact on 

the strain distribution during wire drawing, the corresponding parameters were selected from 

the database of Forge
® 

Nxt. Similarly, friction was neglected in the simulations, thus the 

resulting strain heterogeneity can be considered as a lower bound of the experimental one. 

Axisymmetric 2D simulations were performed due to the symmetry of the wires, tools and 

loading. The mesh density was uniform and element size was selected so that about ten 

elements were present across the smallest wire radius, for the coarsest investigated mesh. The 

robustness of the results with respect to the selection of both material parameters and mesh 

density was numerically investigated, as shown hereafter. 

The strain field in the wire cross-section was heterogeneous, following the same typical 

profile shown in Figures 3a and 3b. For each drawing sequence, the minimum strain was in 

the core of the wire. The strain value was well approximated by the analytical strain based on 

the cross-sectional area reduction but was slightly larger. The maximum strain for each drawn 

wire was reached a short distance from the outer skin. The relative strain variation across the 

wire’s cross-section was as large as 129% after the first drawing, indicating that using the 

ideal drawing strains for parameter identification [17], [18] could lead to significant errors. 

Table 2 quantitatively illustrates the strain heterogeneity created by the process. It is clear that 

taking this heterogeneity into account is recommended to compute a proper simulation of the 

tensile test.  

 

 

Table 2. Strain heterogeneity in the wires’ cross-section, based on the equivalent strain values 

after each drawing pass at the middle of the wire (𝜀0), the point of maximal strain (𝜀𝑚𝑎𝑥) and 

the outer surface of the wire (𝜀𝑅).  

Drawing 
pass # 

𝜀0 𝜀𝑚𝑎𝑥 𝜀𝑅 𝜀𝑚𝑎𝑥 − 𝜀0

𝜀0
 (%) 

1 0.076 0.17 0.14 129 

2 0.35 0.51 0.41 46 

3 0.59 0.78 0.77 33 

4 0.81 1.09 1.03 35 

5 1.04 1.34 1.19 28 

6 1.29 1.59 1.42 23 

 

 

Numerical tests showed that the strain distribution was relatively robust with respect to any 

changes in the numerical parameters (see Figure 3b). In particular, it is noteworthy that the 

strain distribution showed no sensitivity to the hardening parameters used for the simulation 

(as illustrated in Figure 3c). This outcome is different from the other resulting properties, such 
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as the drawing forces or the residual stresses [19]. This observation will be further exploited 

in Section 3 to develop the parameter identification procedure. 

 

 

 

Figure 3. Strain distribution in the cross-section of the drawn wires as calculated by FEA 

using a Swift hardening law: (a). influence of the mesh size (b) and influence of the hardening 

coefficient (c).  

 

 

The FEA simulation of the subsequent tensile tests showed that the strain distribution remains 

strictly identical to the initial one, uniformly increasing with the amount of tensile strain, as 

illustrated in Figure 4. As a consequence, a full FEA model is not required for the simulation 

of these heterogeneous tensile tests. The simulation could be performed analytically, starting 

from the initial strain distribution calculated from the FEA. This approach drastically 

decreases the time needed to perform the parameter identification, which requires many 

computations. 
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Figure 4. Strain evolution during a tensile test FE simulation following a wire drawing 

simulation. 

 

 

The tensile test simulations aim to compute the force 𝐹(𝑡) and the displacement 𝐷(𝑡) applied 

on the sample, at each time increment, in order to compare them to the experimentally 

measured quantities. By integrating the tensile true stress component over the wire’s cross-

section, the force applied on the sample is calculated as 

 𝐹(𝑡) = ∫ 2𝜋𝑟𝜎𝑦(𝑟, 𝑡)𝑑𝑟
𝑅(𝑡)

𝑟=0
, (1) 

since the tensile stress component is equal to the flow stress 𝜎𝑦 under uniaxial loading. The 

local yield stress at each material point r and at each time step t is calculated as a function of 

the equivalent plastic strain  

 𝜎𝑦(𝑟, 𝑡) = 𝑓 (𝜀𝑒𝑞(𝑟, 𝑡)). (2) 

Explicit examples of such hardening functions will be given in Section 3. The total equivalent 

strain is obtained by adding the equivalent strain due to the tensile test 𝜀𝑒𝑞
(𝑈𝑇)(𝑡) to the local 

pre-strain induced by the drawing passes 𝜀𝑒𝑞
(𝑝𝑟𝑒)(𝑟) prior to the test: 

 𝜀𝑒𝑞(𝑟, 𝑡) = 𝜀𝑒𝑞
(𝑝𝑟𝑒)(𝑟) + 𝜀𝑒𝑞

(𝑈𝑇)(𝑡). (3) 

It is noteworthy that in pure uniaxial tension the equivalent strain is identical to the tensile 

plastic strain component: 

 𝜀𝑒𝑞
(𝑈𝑇)(𝑡) ≡ 𝜀11

𝑝(𝑈𝑇)(𝑡) = 𝜀11
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𝑒𝑙(𝑈𝑇)(𝑡). (4) 

In a tensile test, one can relate the total tensile strain component 𝜀11
𝑡𝑜𝑡(𝑈𝑇)(𝑡) to the 

instantaneous change in the sample’s length 𝐷(𝑡) 
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 𝜀11
𝑡𝑜𝑡(𝑈𝑇)

(𝑡) = ln (
𝐿(𝑡)

𝐿0
) = ln (1 +

𝐷(𝑡)

𝐿0
), (5) 

where 𝐿0 is the initial length of the tensile specimen, 𝐿(𝑡) its actual length at time 𝑡 and 

𝜀11
𝑒𝑙(𝑈𝑇)

= 𝜎11 𝐸⁄  with E the Young modulus. An average elastic strain was computed for the 

entire cross-section at each increment, since complete unloading cannot occur locally. This is 

the reason for the significant residual stress fields after multiple wire drawing, with tensile 

residual stresses on the outer surface and compressive stresses at core [20].  

This completes the model of uniaxial tension, relating 𝐹(𝑡) to 𝐷(𝑡). In equation (1), the time 

evolution of radius 𝑅 is calculated from the total strain, using volume conservation: 

 𝜀11
𝑡𝑜𝑡(𝑈𝑇)(𝑡) = ln (

𝐴0

𝐴(𝑡)
)  with 𝐴(𝑡) = 2𝜋𝑅(𝑡). (6) 

To summarize, drawing experiments were used to generate large pre-strains in subsequently 

drawn wires. Tensile tests were used to generate force-displacement tensile curves at six pre-

strain levels in addition to the initial wire. Given the significant strain heterogeneity in the 

wires’ cross-sections, the experimental curves were not converted into stress-strain curves. 

Finally, FE simulations were used to reveal the strain distributions in the six wires’ transverse 

cross-sections. These data were used to determine the hardening parameter identification 

procedure described in Section 3. 

 

3. Parameter identification procedure 

In a cold forging simulation, J2 elasto-plasticity is classically adopted, along with an isotropic 

hardening model [5], [21], [22]. Rate and temperature effects may also be introduced for some 

applications, although these were not considered in this investigation. In turn, several 

hardening models from the literature were adopted, and their parameters identified with 

respect to the experimental dataset. The equations for the six models considered in the 

investigation are shown in Eq. (7): 

 𝜎𝑉 = 𝜎0 + 𝑄(1 − exp (−𝑏𝜀)̅), 

𝜎𝑆 = 𝑘(𝜀0 + 𝜀)̅𝑛, 

𝜎𝐻𝑆ℎ = 𝐴 − (𝐴 − 𝐵)exp [−𝑓(𝜀0 + 𝜀)̅𝑔], 

𝜎𝐻𝑆𝑝 = 𝐶𝜀̃𝑞 exp (𝑝𝜀̃ +
𝑚

�̃�
)  with 𝜀̃ = 𝜀0 + 𝜀,̅    (7) 

𝜎𝑆𝑉 = 𝜎𝑆 + 𝜎𝑉, 

𝜎𝑆𝐻𝑆 = 𝛼𝜎𝑆 + (1 − 𝛼)𝜎𝐻𝑆ℎ, 

where 𝜀 ̅ represents the equivalent strain, 𝜎𝑉, 𝜎𝑆… designate the flow stress and the other 

terms are constant material parameters. The indices designate the Voce (V), Swift (S), 

Hockett-Sherby (HSh), and Hansel-Spittel (HSp) models [23], [24] as well as their 

combinations: Swift-Voce (SV) and Swift-Hockett-Sherby (SHS) [25]. These 

phenomenological models make use of power and exponential functions in different 

combinations, involving different numbers of parameters: three (V, S), five (HSh, HSp), six 
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(SV) or seven (SHS). The power law is the simplest and oldest hardening model meant to 

describe the effect of dislocation density increase [26]. At large strains, as the physical 

hardening mechanism shifts from planar slip to cross slip, an exponential hardening term can 

be added to it [27]. At higher strains, flow stress saturation is observed due to restauration and 

dislocation annihilation, which is approached by Voce’s saturating model [28]. The Hockett-

Sherby model almost saturates with the combination of the exponential and the power law 

terms [29]. Finally, the Hansel-Spittel equation is not a rheological model itself, but a 

combination of sub-models that can be activated / deactivated. Actually, in the rest of the 

article, one term will be neglected by setting 𝑝 = 0, so that HSp will be computed as 

 𝜎𝐻𝑆𝑝 = 𝐶𝜀̃𝑞 exp (
𝑚

�̃�
). (8) 

This choice is consistent with the material model database used in the Forge NxT software for 

cold forming, where parameter p is always set to zero to deactivate the corresponding term.  

All the physical phenomena occurring during forming were modelled here only with the use 

of plastic strain. This is of course a simplification or the physical reality, yet such 

phenomenological models are the basis of nowadays FE process simulation. The physical 

mechanisms accompanying the hardening phenomenon are not in the focus of the study, but 

only their macroscopic effect.  

The parameters of the different hardening laws were identified to minimize the following 

cost-function: 

 𝛷 = ∑ 𝛼𝑖𝛷𝑖
𝑁𝑡𝑒𝑠𝑡𝑠
𝑖=1  ;  𝛷𝑖 = √∑ (𝐹𝑖,𝑗

𝑒𝑥𝑝 − 𝐹𝑖,𝑗
𝑐𝑎𝑙𝑐)

2

‖𝐹𝑖
𝑒𝑥𝑝‖

2
⁄

𝑛𝑖
𝑗=1  (9) 

with ‖𝐹𝑖
𝑒𝑥𝑝‖

2
= ∑ (𝐹𝑖,𝑗

𝑒𝑥𝑝)2𝑛𝑖
𝑗=1 , 

where 𝑁𝑡𝑒𝑠𝑡𝑠 designates the number of tensile tests used for the identification (maximum 

seven, in this case), i
n  is the number of points on the experimental tensile curve i, while 

𝐹𝑖,𝑗
𝑒𝑥𝑝

and 𝐹𝑖,𝑗
𝑐𝑎𝑙𝑐 designate the experimental and calculated tensile forces, respectively. The 

weighting coefficients 𝛼𝑖 verify the classical condition ∑ 𝛼𝑖 = 1𝑖 . 

 Although this study aims to show the benefits of using large strain experiments in parameter 

identification, these benefits should not be obtained at the expense of a poorer accuracy at 

small strains. To prevent such an artefact, the weight of the first tensile test performed on the 

undeformed material was set at a value 50 times larger than the rest of the weighting 

coefficients, which were taken to be equal to each other (𝛼𝑖 =
1

50
𝛼0, 𝑖. 𝑒. 𝛼0 = 50𝛼𝑖). 

As a first step, the parameters for the six hardening models were identified with respect to the 

seven available tensile tests (one on the initial wire, and one after each of the six drawing 

steps). The minimization was performed using both an evolutionary algorithm and a gradient-

type algorithm. The evolutionary algorithm was launched several times using several initial 

guesses to ensure that most of the solution space had been evaluated. After the end of each 

computation, the gradient algorithm was launched to find the closest best minimum. Then, the 

evolutionary algorithm was re-launched to widen the possible range of solutions. This 
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succession of evolutionary and gradient algorithms was continued until no more improvement 

was achieved. The parameter space was defined based on the literature. For each model, the 

maximum and the minimum values for each parameter was set to be in the same order of 

magnitude as the lowest and biggest already identified parameter found in the literature for 

any given metallic material. This sequence of identification iterations with different 

algorithms, including an evolutionary one, is aimed to avoid local minima, although it is 

impossible to demonstrate that the reached solution is the global optimum. 

Figure 5 summarizes the optimum values of the cost function reached for each model and 

compares the seven predicted and experimental force-displacement curve pairs for each 

model. 
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Figure 5. Obtained cost function values (top) and the comparison between the simulated 

(thin) and experimental (thick) tensile curves corresponding to the identified parameters. The 

numbers (i) indicate the index of each experimental tensile curve, as defined in Figure 2. 
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The simpler Voce and Swift models showed the lowest accuracy. The Hockett-Sherby and 

Swift-Voce models provided a better prediction. The lowest values of the cost function were 

obtained with the Swift-Hockett-Sherby model, followed closely by the Hansel-Spittel model. 

As the cost function decreased below 0.01, the models fit remarkably well to the seven tensile 

curves simultaneously. 

It is noteworthy that the number of drawing / tensile steps and the amounts of drawing pre-

strain were chosen relatively arbitrarily. The choice was driven by the drawing process 

technology and industrial availability rather than by the specific needs of the parameter 

identification procedure. Consequently, the sensitivity of the parameter identification results 

to the arbitrary selection of the experimental reference data was investigated by repeating the 

identification for various sub-sets of the available experimental data. The following 

combinations of experimental tensile data were considered: 

 All available data (designated “0123456”), 

 Only the tensile test on the initial wire (designated “0”), 

 Tensile tests on original wire and after 6
th

 drawing (“06”), 

 Tensile tests on original wire and after 3
rd

 drawing (“03”), 

 Tensile tests on original wire and after 1
st
, 2

nd
 and 3

rd
 drawing (“0123”). 

In each of these cases, the parameter identification procedure described above was applied for 

all the models. The flow curves predicted by the various models with the parameters obtained 

from the different identifications are summarized in Figure 5. For completeness, the sets of 

parameter values corresponding to the various identifications are provided in the appendix. 

For several models, the predictions obtained using all the available tensile tests (thick blue 

curves) were significantly different from those obtained when using only the initial curve 

(thick red curves). This general trend clearly emphasizes the need to include large strain 

experiments in the parameter identification data. Very often, the addition of only one tensile 

curve, corresponding to the last drawing pass, significantly improved the prediction. 

Nonetheless, it is clear from Figure 6 that different input data lead to different flow curves. 

Moreover, the robustness of the identified parameters with respect to the experimental input is 

not necessarily increasing with model accuracy. The less robust model with respect to the 

experimental input data were Hansel-Spittel and Hockett-Sherby, for which the difference of 

predicted flow stress at a strain of 1 can reach 300MPa depending of the choice of 

experimental input. The accurate SHS model exhibited deviations at large strains in one case, 

when greater accuracy was sought at low and moderate strains (case “0123”). The most robust 

model appeared to be Swift-Voce. 
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Figure 6. Flow curves of the studied material, as predicted by the various models. The legend 

indicates the tensile experiments used for the parameter identification for each curve: “0” 

designates the test on the initial wire, and “i” designates the tensile test after the “i-th” 

drawing pass. 

 

These trends were also confirmed by all the models at larger strains – as shown in Figure 7. 

The SV model appears almost insensitive to the selection of experimental data, up to very 

large strains. This robustness has already been emphasized in the literature for steels and in 

particular for sheet metal forming applications [30], [31]. It is noteworthy that the true strain 

levels of 4…5 that are shown in Figure 7 are much larger than those obtained in the 

experiments. However, such strains are common in bulk metal forming, making it important 

to assess the accuracy and robustness of the model predictions for these conditions.  
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Figure 7. Predicted flow curves for very large strains from the three most accurate models of 

the series, as identified using various combinations of experimental input data. 

 

 

4. Discussion 

The current results corroborate numerous references, confirming that the material flow curves 

depend significantly on the particular experimental dataset and hardening model used for the 

parameter identification procedure. Consequently, both the data and the modelling used for 

this purpose require careful preparation.  

The wire drawing process gives rise to large strains and delays necking due to the locally low 

stress triaxiality values. One drawback associated with this pre-straining approach is the 

heterogeneous characteristic of the resulting strain distribution. In previous investigations, 

promising results were obtained by replacing the real strain distribution with the uniform ideal 

pre-strain value calculated from the wire diameter reduction [11], [18]. With this simplified 

procedure, experimental stress-strain curves can be extracted from tensile tests. These 

experimental curves, shifted right by the corresponding pre-strain, would describe successive 

segments of the material’s flow curve. To explore the accuracy of this hypothesis, the drawing 

ratio of the first drawing step in our series was set to a value significantly smaller than the 

material’s uniform elongation. In this way, the experimental flow curve segment 

corresponding to this first drawn wire should overlay the experimental flow curve of the 

original wire. Figure 8a shows the experimental true stress-strain curves corresponding to the 

original wire and to the first drawn wire offset by the corresponding ideal pre-strain. The two 

curves do not overlap due to the ideal value of the drawing strain being smaller than the real 

strains induced by the real process. It is noteworthy that this error accumulates as the number 

of drawing sequences increases. Consequently, the resulting flow curve will lay higher, 

compared to the procedure using the FE-predicted pre-strains, as illustrated in Figure 8b. 

The gap in this figure shows that the benefits decrease when using the large strain 

experiments. The observed inconsistency may depend on the model, experiments and 

weighting factors used during the identification. Figure 9 shows the flow curves obtained with 
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the FEA and analytical pre-strains, respectively, using the SHS model, the complete set of 

seven tensile tests and equal weighting factors (𝛼0 = 𝛼1 = ⋯ 𝛼7)
2
. The value of the cost 

function was 0.0027 (FEA) and 0.0024 (analytical). However, the errors in the analytical 

strain distributions were compensated by the high flexibility of the model resulted in spurious 

inflexions in the flow curve, which significantly reduced the usefulness of the large strain 

dataset. Similar conclusions have been drawn in the literature concerning parameter 

identification for anisotropic yield functions with increasing flexibility [32]. 

 

 

Figure 8. a) Experimental flow curves corresponding to the original wire (solid line) and to 

the first drawn wire (dashed). The latter curve is offset by the ideal strain corresponding to the 

diameter reduction from 7.5 to 7.24 mm during the first drawing sequence. b) Flow curves 

calculated using the SHS model, the seven tensile curves and the pre-strains determined by 

FE (solid line) or analytically (dashed line). 

 

 

 

  

                                                 

2
 As a reminder, until now, all the optimisations have been made with the tensile curve corresponding to the 

undrawn wire weighted 50 times more than the others in the cost function. 
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Figure 9. Flow curves calculated using the SHS model: the seven tensile curves and pre-

strains are determined by FE (solid line) or analytically (dashed line). The weights of all the 

seven tensile curves (including the original one) were set to be equal to each other. 

 

These observations further underline the importance of taking the heterogeneous strain 

distribution into account, as proposed in this paper. Nevertheless, strain ranges in excess of 

that covered by these experiments show that the flow curve predictions are still subject to 

potential errors, as illustrated by the comparison of the various models in the previous section. 

From the various trials, the Swift-Voce model, although not the most accurate model, 

combines very good accuracy with excellent robustness at large strains, as already underlined 

in the literature [30], [31]. As a consequence, the following procedure could be adopted to 

enhance the robustness of the identified parameters: 

 Identify the Swift-Voce model using the available experiments. In addition to the stress 

values, the slope at the end of the last tensile curve can be added to the cost function for 

optimal robustness. 

 Calculate the stress value predicted by the Swift-Voce model for a large strain – typically, 

the largest strain level envisioned in the foreseen applications.  

 Add this “virtual” point to the experimental data set – possibly with a relatively lower 

weight, depending on the degree of confidence in the Swift-Voce model for the particular 

material being studied. 

 Identify the favourite – or imposed – model with respect to this enhanced data set.  

This procedure provides the best fit to the available experiments, with an additional attempt 

for protection against large strain deviations. The idea was applied to the current case using 

the Hansel-Spittel and the Swift-Hockett-Sherby models. A “virtual point” was calculated 

400

500

600

700

800

900

1000

1100

0 0,2 0,4 0,6 0,8 1 1,2 1,4

Fl
o

w
 s

tr
es

s 
[M

Pa
]

plastic strain

FE-based ; ao=ai

ideal ; ao=ai

FE-based ; a0 = ai

analytical ; a0 = ai

FE-based; 𝛼𝑖 = 𝛼0 50⁄  

Analytical; 𝛼𝑖 = 𝛼0 50⁄  



18 

 

with the Swift-Voce model for an arbitrary strain equal to 5. The resulting flow curves are 

shown in Figure 10, along with the flow curves determined without the virtual point (in both 

cases, the entire set of available tensile curves were used). The use of the virtual point had an 

influence on the results, as the strain values reach significantly outside the range covered by 

the experiments. The differences were more significant for the Hansel-Spittel model, 

especially as all its terms were activated for the sake of illustration. In the case of the more 

robust SHS law, the influence of the virtual point was weaker. Its effect could be controlled 

by increasing the weight of the virtual point in the cost function. These preliminary results 

illustrate the potential of this approach. However, further investigations are required to 

conclude about its real usefulness and to establish a general solution for the choice of the 

virtual point, its weight etc. 

 

 

 

Figure 10. a) Flow curves calculated using the HSp model by adding a virtual point to the 

optimization process (solid line) to the seven tensile curves or without it (dashed line). The 

point has the same weight as a tensile curve in the identification process. b) Flow curves 

calculated with SHS model by adding a virtual point to the optimization process to the seven 

tensile curves or without it. Different curves correspond to different weights of the point in 

the identification process. 
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5. Summary and conclusions 

The main objective of this work was to simplify the experimental procedure required for 

accurate large strain parameter identification of the hardening laws in cold bulk metal 

forming. For this purpose, industrial wire drawing experiments were successfully used. Large 

strain levels were achieved using this method, which increased the range of applicability of 

the identified parameters. The material response was quantified using classic tensile tests. 

These indirectly reflected the process effect without requiring any measurements during the 

forming process itself. The strain field due to drawing was strongly heterogeneous, but the 

tensile test could be analysed analytically. Consequently, the parameter identification 

procedure was decoupled from the FE simulation for efficiency. As a potential extension, the 

same approach could be extended to rolling, for the large strain hardening characterizations of 

either bulk or sheet metals. 

The relative accuracy and robustness of several hardening models were investigated over a 

strain range up to 1.5. The best accuracy was obtained using the Swift-Hockett-Sherby model, 

followed closely by the Hansel-Spittel and Swift-Voce models. In terms of robustness, the 

Swift-Voce model showed the lowest sensitivity to the available input data. Consequently, 

this model could serve to enhance the identification robustness at large strains for any other 

preferred (or imposed) model. The Swift-Hockett-Sherby model was the most accurate and, 

with one exception, exhibited low sensitivity to the experimental inputs.  
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Appendix 

 

The following tables present the numerical values of the parameters associated with the 

different models used in figure 6. 

 

Voce 

n° of tensile test parameters 

  σ0 Q b 

0,1,2,3,4,5,6 381,652 338,290 25,402 

0 381,502 338,549 25,386 

0,6 381,699 338,214 25,406 

0,3 381,852 338,159 25,376 

0,1,2,3 381,725 338,161 25,411 

 

Swift 

n° of tensile test parameters 

  k ε0 n 

0,1,2,3,4,5,6 1039,455 0 0,175 

0 1085,364 0,0011 0,190 

0,6 991,226 0 0,162 

0,3 1008,458 0 0,167 

0,1,2,3 1039,154 0 0,175 

 

Hockett-Sherby 

n° of tensile test parameters 

  A B ε0 f g 

0,1,2,3,4,5,6 1166,977 208,017 0 1,687 0,370 

0 740,931 361,632 0 15,221 0,857 

0,6 1177,076 222,540 0 1,687 0,384 

0,3 1032,270 252,082 0 2,363 0,440 

0,1,2,3 908,632 275,742 0 3,542 0,505 

 

Hansel-Spittel 

n° of tensile test parameters 

  C q ε0 m p 

0,1,2,3,4,5,6 1005,632 0,141 0,014 -0,006 0 

0 828,738 0 0,027 -0,022 0 

0,6 880,521 0,048 0,023 -0,016 0 

0,3 829,567 0 0,027 -0,022 0 

0,1,2,3 953,4 0,104 0,018 -0,01 0 
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Swift-Voce 

n° of tensile test parameters 

  k σ0 ε0 Q b n 

0,1,2,3,4,5,6 7323,237 -6334,383 0,0055 10,881 0 0,018 

0 7328,249 -6330,433 0,0062 10,881 0 0,018 

0,6 7339,919 -6348,145 0,0057 10,881 0 0,018 

0,3 7335,467 -6360,378 0,0044 10,882 0 0,017 

0,1,2,3 7473,528 -6499,552 0,0044 10,885 0 0,017 

 

Swift-Hockett-Sherby 

n° of tensile test parameters 

  k ε0 n A B f g α 

0,1,2,3,4,5,6 46664,763 0,0013 0,263 355,637 248,025 121,567 1,383 0,013 

0 47010,589 0,0013 0,270 357,717 252,138 126,322 1,389 0,014 

0,6 45705,948 0,0020 0,252 337,699 229,170 112,979 1,357 0,014 

0,3 45930,647 0,0016 0,248 320,180 222,358 150,332 1,441 0,015 

0,1,2,3 9838,693 0 0,772 671,095 384,973 27,317 0,961 0,038 

 

The next table corresponds to figure 8b. 

Swift-Hockett-Sherby 𝜶𝟎 = 𝟓𝟎𝜶𝒊 

FEM/Analytic parameters 

  k ε0 n A B f g α 

FEM 46664,763 0,0013 0,263 355,637 248,025 121,567 1,383 0,013 

Analytic 53103,363 0,0012159 0,25864 318,241 231,302 213,735 1,536 0,013 

 

The next table corresponds to figure 9. 

Swift-Hockett-Sherby 𝜶𝟎 = 𝜶𝒊 

FEM/Analytic parameters 

  k ε0 n A B f g α 

FEM 4551,7194 0 0,06241 -1194,5 -1351 3,30172 2,777 0,382 

Analytic 11165,258 04284 0,02832 -4868,4 -4949,5 129,125 9,71 0,367 

 

The next tables corresponds to figure 10. 

Hansel-Spittel 

with/without virtual point parameters 

  C q ε0 m p 

without point 803,730 0,006 0,0251 -0,019 0,196 

with point 1015,701 0,146 0,0139 -0,006 -0,013 

 

 



24 

 

Swift-Hockett-Sherby 

with/without virtual point parameters 

  k ε0 n A B f g α 

without point 46664,763 0,0012855 0,2629 355,637 248,025 121,567 1,383 0,013 

*1 76067,587 0,0033702 0,16929 59,6358 0,52047 585,551 1,82 0,012 

*10 50143,952 0,0100075 0,19554 247,273 90,8602 46,8484 1,084 0,014 

*25 43184,461 0,0012886 0,24941 400,239 266,716 119,717 1,45 0,013 

*50 79075,478 0,0029551 0,15542 78,4894 0,51894 588,06 1,867 0,011 

 


