
HAL Id: hal-02297688
https://hal.science/hal-02297688v1

Submitted on 26 Sep 2019 (v1), last revised 23 Apr 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TinyBlog: Develop your First Web App with Pharo
Olivier Auverlot, Stéphane Ducasse, Luc Fabresse

To cite this version:
Olivier Auverlot, Stéphane Ducasse, Luc Fabresse. TinyBlog: Develop your First Web App with
Pharo. Square Bracket Associates, In press. �hal-02297688v1�

https://hal.science/hal-02297688v1
https://hal.archives-ouvertes.fr

TinyBlog: Develop your First

Web App with Pharo

Olivier Auverlot, Stéphane Ducasse and Luc Fabresse

June 19, 2019

Copyright 2017 by Olivier Auverlot, Stéphane Ducasse and Luc Fabresse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations v

1 About this book 1

1.1 Structure . 1

1.2 Pharo Installation . 2

1.3 Naming Rules . 3

1.4 Resources . 3

I Core Tutorial

2 TinyBlog Application: Core model 7

2.1 TBPost Class . 7

2.2 Post Visibility . 8

2.3 Initialization . 9

2.4 Posts Creation Methods . 9

2.5 Creating a Post . 10

2.6 Adding Some Unit Tests . 10

2.7 Post Queries . 11

2.8 Conclusion . 12

3 TinyBlog: Extending and Testing the Model 13

3.1 TBBlog class . 13

3.2 Only One Blog Object . 14

3.3 Testing the Model . 14

3.4 A First Test . 15

3.5 Increasing Test Coverage . 16

3.6 Other Functionalities . 16

3.7 Testing data . 18

3.8 Possible Extensions . 19

3.9 Conclusion . 19

i

Contents

4 Data Persitency using Voyage and Mongo 21

4.1 Configure Voyage to Save TBBlog Objects 21

4.2 Saving a Blog . 23

4.3 Revising Unit Tests . 23

4.4 Querying the Database . 24

4.5 If we would Save Posts [Discussion] . 24

4.6 Configure an External Mongo Database [Optional] 25

4.7 Conclusion . 27

5 First Steps with Seaside 29

5.1 Starting Seaside . 30

5.2 Bootstrap for Seaside . 30

5.3 Define our Application Entry Point . 31

5.4 First Simple Rendering . 33

5.5 Architecture . 34

5.6 Conclusion . 35

6 Web Components for TinyBlog 37

6.1 Visual Components . 37

6.2 Using the TBScreenComponent component 39

6.3 Pattern of Component Definition . 39

6.4 Populating the Blog . 40

6.5 Definition of TBHeaderComponent . 40

6.6 Usage of TBHeaderComponent . 40

6.7 Composite-Component Relationship . 41

6.8 Render an header . 41

6.9 List of Posts . 43

6.10 The PostComponent . 44

6.11 Display Posts . 45

6.12 Debugging Errors . 46

6.13 Displaying the List of Posts with Bootstrap 46

6.14 Instantiating Components in renderContentOn: 47

6.15 Conclusion . 48

7 Managing Categories 49

7.1 Displaying Posts by Category . 49

7.2 Category Rendering . 51

7.3 Updating Post List . 52

7.4 Look and Layout . 52

7.5 Modular Code with Small Methods . 54

7.6 Conclusion . 56

8 Authentication and Session 57

8.1 A Simple Admin Component (v1) . 58

8.2 Adding ’admin’ Button . 58

8.3 Header Revision . 60

ii

Contents

8.4 Admin Button Activation . 60

8.5 ’disconnect’ Button Addition . 61

8.6 Modal Window for Authentication . 62

8.7 Authentication Component Rendering . 64

8.8 Authentication Component Integration . 65

8.9 Naively Managing Logins . 66

8.10 Managing Errors . 66

8.11 Modeling the Admin . 67

8.12 Blog admin . 69

8.13 Setting a New Admin . 69

8.14 Integrating the Admin Information . 70

8.15 Storing the Admin in the Current Session 70

8.16 Definition and use of specific session . 70

8.17 Storing the Current Admin . 72

8.18 Simplified navigation . 72

8.19 Managing Deconnection . 72

8.20 Simplified Navigation to the Public Part . 73

8.21 Conclusion . 73

9 Administration Web Interface and Automatic Form Generation 75

9.1 Describing Domain Data . 75

9.2 Post Description . 77

9.3 Automatic Component Creation . 78

9.4 Building a post report . 78

9.5 AdminComponent Integration with PostsReport 79

9.6 Filter Columns . 80

9.7 Report Enhancements . 81

9.8 Post Administration . 82

9.9 Post Addition . 83

9.10 CRUD Action Implementation . 83

9.11 Post Addition . 83

9.12 Refreshing Posts . 86

9.13 Better Form Look . 87

9.14 Conclusion . 88

10 Deploying TinyBlog 89

10.1 Deploying in the cloud . 89

10.2 Login on PharoCloud . 89

10.3 Preparing your Pharo image Pharo for PharoCloud 90

10.4 Manually deploying on PharoCloud’s Ephemeric Cloud 91

10.5 Automatic Deployment on PharoCloud’s Ephemeric Cloud 91

10.6 About Dependencies . 93

iii

Contents

II Optional Elements

11 Loading Chapter Code 97

11.1 Chapter 3: Extending and Testing the Model 97

11.2 Chapter 4: Data Persitency using Voyage and Mongo 97

11.3 Chapter 5: First Steps with Seaside . 98

11.4 Chapitre 6: Web Components for TinyBlog 98

11.5 Chapitre 7: Managing Categories . 98

11.6 Chapitre 8: Authentication and Session . 99

11.7 Chapitre 9: Administration Web Interface and Automatic Form Generation . 99

11.8 Chapitre 10: Deploying TinyBlog . 99

12 Save your code 101

12.1 Up to Pharo 6.0 . 101

12.2 With Pharo 70 . 102

iv

Illustrations

1-1 The TinyBlog application. 2

2-1 TBPost: a really basic class mostly handling data. 7

2-2 Inspector on a TBPost instance. 10

3-1 TBBlog: A simple class containing posts. 13

5-1 Starting the Seaside server. 29

5-2 Running Seaside. 30

5-3 Browsing the Seaside Bootstrap Library. 31

5-4 A Bootstrap element and its code. 32

5-5 TinyBlog is a registered Seaside application. 33

5-6 A first Seaside web page. 33

5-7 Main components of TinyBlog (public view). 34

5-8 Architecture of TinyBlog. 35

6-1 Component Architecture of the Public View (opposed to the

Administration View). 37

6-2 Visual Components of TinyBlog. 38

6-3 ApplicationRootComponent temporarily uses a ScreenComponent
that contains a HeaderComponent. 39

6-4 First visual rendering of TBScreenComponent. 40

6-5 TinyBlog with a Bootstrap header. 42

6-6 The ApplicationRootComponent uses PostsListComponent. 43

6-7 TinyBlog displaying a basic posts list. 44

6-8 Using PostComponents to diplays each Posts. 44

6-9 TinyBlog with a List of Posts. 46

7-1 L’architecture des composants de la partie publique with categories. 49

7-2 Categories and Posts. 53

7-3 Post list with a better layout. 54

7-4 Final TinyBlog Public UI. 56

v

Illustrations

8-1 Authentication flow. 57

8-2 Simple link to the admin part. 59

8-3 Header with an admin button. 59

8-4 Admin component under definition. 61

8-5 Authentication component. 63

8-6 Error message in case wrong identifiers. 68

8-7 Navigation and identification in TinyBlog. 71

9-1 Post managment. 76

9-2 Administration components. 76

9-3 Magritte report with posts. 80

9-4 Administration Report. 82

9-5 Post report with links. 84

9-6 Basic rendering of a post. 85

9-7 Post form addition with Bootstrap. 88

10-1 Ephemeric Cloud administration Pharo image. 92

10-2 Your TinyBlog Application on PharoCloud. 92

vi

CHA P T E R 1
About this book

In this book, we will guide you to develop a mini project: a small web appli-
cation, named TinyBlog, that manages a blog system (see its final state in
Figure 1-1). The idea is that a visitor of the web site can read the posts and
that the post author can connect to the web site as admin to manage its posts
(add, remove and modify existing ones).

TinyBlog is a small pedagogical application that will show you how to define
and deploy a web application using Pharo / Seaside / Mongo and frameworks
available in Pharo such as NeoJSON.

Our goal is that you will be able to reuse and adapt such an infrastructure to
create your own web applications.

1.1 Structure

In the first part called ”Core Tutorial”, you will develop and deploy, Tiny-
Blog, an application and its administration using Pharo, the Seaside applica-
tion web server framework as well as some other frameworks such as Voyage
and Magritte. Deployment with Mongo DB is optional but it allows you to see
that Voyage is an elegant facade to persist your data within Mongo.

In the second part and optional part, we will show you some optional aspects
such as data export, use of Mustache or how to expose your application using
a REST API.

Presented solutions are sometimes not the best. This is done that way to
offer you a room for improvement. Our goal is not to be exhaustive. We
present one way to develop TinyBlog nevertheless we invite the reader to
read further references such as books or tutorials on Pharo to deepen his ex-
pertise and enhance his application.

1

About this book

Figure 1-1 The TinyBlog application.

Finally, to help you to get over possible errors and avoid to get stuck, the last
chapter describes how to load the code described in each chapter.

1.2 Pharo Installation

In this tutorial, we suppose that you are using Pharo 6.1 with an image in
which many frameworks and web libraries have been loaded: Seaside (component-
based web application server), Magritte (an automatic generation report sys-
tem based on descriptions), Bootstrap (a library to visually tune web applica-
tions), Voyage (a framework to save your objects in document databases) and
some others.

To develop your application and follow this tutorial, we suggest to use the
image available at the following URL: http://mooc.pharo.org/image/PharoWeb-60.

zip since it contains all the mandatory packages.

You can rebuild this web Pharo image in Pharo 6.1 (http://pharo.org/download)
with the following script:

2

http://mooc.pharo.org/image/PharoWeb-60.zip
http://mooc.pharo.org/image/PharoWeb-60.zip
http://pharo.org/download

1.3 Naming Rules

Metacello new
smalltalkhubUser: 'PharoExtras' project: 'PharoWeb';
configuration: 'PharoWeb';
version: #stable;
load

1.3 Naming Rules

In the following, we prefix all the class names TB (for TinyBlog). You may:

• either choose another prefix (by example TBM) to be able to load the
solution side by side to your own. This way you will be able to compare
the two solutions,

• either choose the same prefix to fusion the proposed solutions in your
code. The merge tool will help you see the differences and learn from
the changes. This solution may be more complex if you implement
your own extra functionalities.

1.4 Resources

Pharo has many strong pedagogial resources as well as a super friendly com-
munity of users. Here is a list of resources:

• http://books.pharo.org proposes books around Pharo. Pharo by Exam-
ple can help you to discove the language and its libraries. Entreprise
Pharo: a Web Perspective presents other aspects useful for web devel-
opment.

• http://book.seaside.st is one of the books on Seaside. It is currently un-
der migration as an open-source book https://github.com/SquareBracketAssociates/

DynamicWebDevelopmentWithSeaside.

• http://mooc.pharo.org proposes an excellent Mooc with more that 90
videos explaining syntactically points as well as object programming
key concepts.

• http://discord.gg/Sj2rhxn is a discord channel where many Pharoers ex-
change information and help each other.

3

http://books.pharo.org
http://book.seaside.st
https://github.com/SquareBracketAssociates/DynamicWebDevelopmentWithSeaside
https://github.com/SquareBracketAssociates/DynamicWebDevelopmentWithSeaside
http://mooc.pharo.org
http://discord.gg/Sj2rhxn

Part I

Core Tutorial

CHA P T E R2
TinyBlog Application: Core

model

In this chapter, we start to develop a part of the domain model of TinyBlog.
The model is particularly simple: it starts with a post. In the next chapter we
will add a blog containing a list of posts.

2.1 TBPost Class

We start with the post representation. It is super simple as shown by Figure
2-1. It is defined by the class TBPost:

Object subclass: #TBPost
instanceVariableNames: 'title text date category visible'
classVariableNames: ''
package: 'TinyBlog'

A blog post is described by 5 instance variables.

isVisible
isUnclassified

visible
date
title
text
category

Post

Figure 2-1 TBPost: a really basic class mostly handling data.

7

TinyBlog Application: Core model

Variable Signification

title post title
text post text
date date of writing
category name of the category of the post
visible is the post publicly visible or not?

All of these variables have corresponding accessor methods in the ’accessing’
protocol. You can use a refactoring to automatically create all the following
methods:

TBPost >> title
^ title

TBPost >> title: aString
title := aString

TBPost >> text
^ text

TBPost >> text: aString
text := aString

TBPost >> date
^ date

TBPost >> date: aDate
date := aDate

TBPost >> visible
^ visible

TBPost >> visible: aBoolean
visible := aBoolean

TBPost >> category
^ category

TBPost >> category: anObject
category := anObject

2.2 Post Visibility

We should add methods to make a post visible or not and also test if it is visi-
ble. Those methods are defined in the ’action’ protocol.

TBPost >> beVisible
self visible: true

TBPost >> notVisible
self visible: false

8

2.3 Initialization

2.3 Initialization

The initializemethod (’initialization’ protocol) sets the date to the cur-
rent day and the visibility to false: the user must explicitly make a post vis-
ible. This allows him to write drafts and only publish a post when the post
is finished. By default, a post belongs to the ’Unclassified’ category that we
define at the class level. This category name is defined on class-side by the
unclassifiedTagmethod.

TBPost class >> unclassifiedTag
^ 'Unclassified'

Pay attention the method unclassifiedTag should be defined on the class-
side of the class TBPost (click on the class button to define it). The other
methods are defined on the instance-side: it means that they will be applied
to TBBlog instances.

TBPost >> initialize
super initialize.
self category: TBPost unclassifiedTag.
self date: Date today.
self notVisible

In the solution above, it would be better that the initializemethod does
not hard code the reference to the TBPost class. Propose a solution. The
sequence 3 of the week 6 of the Mooc can help you to understand why it is
better to avoid hardcoding class references (See http://mooc.pharo.org).

2.4 Posts Creation Methods

On class-side, we add class methods (i.e. methods execute on class) to ease
posts creation for blogs - usually such kind of methods are grouped in the
protocol ’instance creation’.

We define two methods.

TBPost class >> title: aTitle text: aText
^ self new

title: aTitle;
text: aText;
yourself

TBPost class >> title: aTitle text: aText category: aCategory
^ (self title: aTitle text: aText)

category: aCategory;
yourself

9

http://mooc.pharo.org

TinyBlog Application: Core model

Figure 2-2 Inspector on a TBPost instance.

2.5 Creating a Post

Let us create posts to check a bit the created objects. Using the Playground
tools execute the following expression:

TBPost
title: 'Welcome in TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.'
category: 'TinyBlog'

When you inspect the code above (right click and ”Inspect it”), you will ob-
tain an inspector on the newly created object as shown in Figure 2-2.

2.6 Adding Some Unit Tests

Manually looking at objects is not a way to systematically verifying that such
objects follow some expected invariant. Even though the model is quite sim-
ple we can define some tests. In Test Driven Developpement mode we write
test first. Here we prefered to let you define a little class to familiarize with
the IDE. Let us fix this!

We define the class TBPostTest (as subclass of the class TestCase).

10

2.7 Post Queries

TestCase subclass: #TBPostTest
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Tests'

Let us define a two tests.

TBPostTest >> testWithoutCategoryIsUnclassified

| post |
post := TBPost
title: 'Welcome to TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.'.

self assert: post title equals: 'Welcome to TinyBlog' .
self assert: post category = TBPost unclassifiedTag.

TBPostTest >> testPostIsCreatedCorrectly

| post |
post := TBPost

title: 'Welcome to TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.'
category: 'TinyBlog'.

self assert: post title equals: 'Welcome to TinyBlog' .
self assert: post text equals: 'TinyBlog is a small blog engine
made with Pharo.' .

Your tests should pass.

2.7 Post Queries

In the protocol ’testing’, define the following methods that checks whether a
post is visible, and whether it is classified or not.

TBPost >> isVisible
^ self visible

TBPost >> isUnclassified
^ self category = TBPost unclassifiedTag

It is not really good to hardcode a reference to the class TBPost in a method
body. Propose a solution.

In addition, let us take the time to update our test to take advantage of the
new behavior.

TBPostTest >> testWithoutCategoryIsUnclassified

| post |
post := TBPost
title: 'Welcome to TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.'.

11

TinyBlog Application: Core model

self assert: post title equals: 'Welcome to TinyBlog' .
self assert: post isUnclassified.
self deny: post isVisible

2.8 Conclusion

We develop a first part of the model (the class TBPost) and some tests. We
strongly suggest writing some other unit tests to make sure that your model
fully work.

12

CHA P T E R3
TinyBlog: Extending and Testing

the Model

In this chapter we extend the model and add more tests. Note that when you
will get fluent in Pharo, you will tend to write first your tests and then exe-
cute tests to code in the debugger. We did not do it because coding in the de-
bugger requires more explanation. You can see such a practice in the Mooc
video entitled Coding a Counter in the Debugger (See http://mooc.pharo.org) and
read the book Learning Object-Oriented Programming, Design with TDD in Pharo
(http://books.pharo.org).

Before starting, use back the code of the previous chapter or use the infor-
mation of Chapter ??.

3.1 TBBlog class

We develop the class TBBlog that contains posts (as shown by Figure 3-1).
We define some unit tests.

Here is its definition:

isVisible
isUnclassified

visible
date
title
text
category

Post

allBlogPosts
allBlogPostsFromCategory

posts
Blog

Figure 3-1 TBBlog: A simple class containing posts.

13

http://mooc.pharo.org
http://books.pharo.org

TinyBlog: Extending and Testing the Model

Object subclass: #TBBlog
instanceVariableNames: 'posts'
classVariableNames: ''
package: 'TinyBlog'

We initialize the posts instance variable to an empty collection.

TBBlog >> initialize
super initialize.
posts := OrderedCollection new

3.2 Only One Blog Object

In the rest of this project, we assume that we will manage only one blog.
Later, you may add the possibility to manage multiple blogs such as one per
user of the TinyBlog application. Currently, we use a Singleton design pat-
tern on the TBBlog class. However pay attention since this pattern intro-
duces a kind of global variable in your application and brings less modularity
to your system. Therefore avoid to make explicit references to the singleton,
better use an instance variable whose value first refers to the singleton so
that later you can pass another object without being forced to rewrite every-
thing. Do not generalize what we are doing for this class.

Since all the management of a singleton is a class behavior, we define such
methods at the class level of TBBlog. We define an instance variable at the
class level:

TBBlog class
instanceVariableNames: 'uniqueInstance'

Then we define two methods to manage the singleton.

TBBlog class >> reset
uniqueInstance := nil

TBBlog class >> current
"answer the instance of the TBRepository"
^ uniqueInstance ifNil: [uniqueInstance := self new]

We redefine the class method initialize so that when the class is loaded in
memory the singleton got reset.

TBBlog class >> initialize
self reset

3.3 Testing the Model

We now adopt a Test-Driven Development approach i.e., we will write a unit
test first and then develop the functionality until the test is green. We will
repeat this process for each functionality of the model.

14

3.4 A First Test

We create unit tests in the TBBlogTest class that belongs to the TinyBlog-
Tests tag. A tag is just a label to sort classes inside a package (See menu item
’Add Tag...’). We use a tag because using two packages will make this project
more complex. However, while implementing a real application, it is recom-
mended to have one (or multiple) separate test packages.

TestCase subclass: #TBBlogTest
instanceVariableNames: 'blog post first'
classVariableNames: ''
package: 'TinyBlog-Tests'

Before each test execution, the setUpmethod initializes the test context
(also called test fixture). For example, it erases the blog content, adds one
post and creates another temporary post that is not saved.

Pay attention since we will have to modify such behavior in the future else
each time we will run the test we will destroy our data. This is an example of
the kind of insidious behavior that a singleton introduces.

TBBlogTest >> setUp
blog := TBBlog current.
blog removeAllPosts.

first := TBPost title: 'A title' text: 'A text' category: 'First
Category'.

blog writeBlogPost: first.

post := (TBPost title: 'Another title' text: 'Another text'
category: 'Second Category') beVisible

As you may notice, we test different configurations. Posts do not belong to
the same category, one is visible and the other is not visible.

At the end of each test, the tearDownmethod is executed and resets the blog.

TBBlogTest >> tearDown
TBBlog reset

Here we see one of the limits of using a Singleton. Indeed, if you deploy a
blog and then execute the tests, you will lose all posts that have been cre-
ated because we reset the Blog singleton. We will address this problem in the
future.

We will now develop tests first and then implement all functionalities to
make them green.

3.4 A First Test

The first test adds a post in the blog and verifies that this post is effectivly
added.

15

TinyBlog: Extending and Testing the Model

TBBlogTest >> testAddBlogPost
blog writeBlogPost: post.
self assert: blog size equals: 2

If you try to execute it, you will notice that this test is not green (does not
pass) because we did not define the methods writeBlogPost:, removeAll-
Posts and size. Let’s add them:

TBBlog >> removeAllPosts
posts := OrderedCollection new

TBBlog >> writeBlogPost: aPost
"Add the blog post to the list of posts."
posts add: aPost

TBBlog >> size
^ posts size

The previous test should now pass (i.e. be green).

3.5 Increasing Test Coverage

We should also add tests to cover all functionalities that we introduced.

TBBlogTest >> testSize
self assert: blog size equals: 1

TBBlogTest >> testRemoveAllBlogPosts
blog removeAllPosts.
self assert: blog size equals: 0

3.6 Other Functionalities

We follow the test-driven way of defining methods: First we define a test.
Then we verify that this test is failing. Then we define the method under test
and finally verify that the test passes.

All Posts

Let’s a test that fails:

TBBlogTest >> testAllBlogPosts
blog writeBlogPost: post.
self assert: blog allBlogPosts size equals: 2

And the model code that makes it succeed:

TBBlog >> allBlogPosts
^ posts

Your test should pass.

16

3.6 Other Functionalities

Visible Posts

We define a new unit test accessing visible blogs:

TBBlogTest >> testAllVisibleBlogPosts
blog writeBlogPost: post.
self assert: blog allVisibleBlogPosts size equals: 1

We add the corresponding method:

TBBlog >> allVisibleBlogPosts
^ posts select: [:p | p isVisible]

Verify that the test passes.

All Posts of a Category

The following test verifies that we can access all the posts of a given cate-
gory. Once defined, we should make sure that the test failed.

TBBlogTest >> testAllBlogPostsFromCategory
self assert: (blog allBlogPostsFromCategory: 'First Category')
size equals: 1

Then we can define the functionality and make sure that our test passes.

TBBlog >> allBlogPostsFromCategory: aCategory
^ posts select: [:p | p category = aCategory]

Verify that the test passes.

All visible Posts of a Category

The following test verifies that we can access all the visible posts of a given
category. Once defined, we should make sure that the test failed.

TBBlogTest >> testAllVisibleBlogPostsFromCategory
blog writeBlogPost: post.
self assert: (blog allVisibleBlogPostsFromCategory: 'First
Category') size equals: 0.

self assert: (blog allVisibleBlogPostsFromCategory: 'Second
Category') size equals: 1

Then we can define the functionality and make sure that our test passes.

TBBlog >> allVisibleBlogPostsFromCategory: aCategory
^ posts select: [:p | p category = aCategory

and: [p isVisible]]

Verify that the test passes.

17

TinyBlog: Extending and Testing the Model

Check unclassified posts

The following test verifies that we do not have unclassified blogs in our test
fixture.

TBBlogTest >> testUnclassifiedBlogPosts
self assert: (blog allBlogPosts select: [:p | p isUnclassified
]) size equals: 0

Verify that the test passes.

Retrieve all categories

Again we define a new test and verify that it fails.

TBBlogTest >> testAllCategories
blog writeBlogPost: post.
self assert: blog allCategories size equals: 2

We then add the new behavior.

TBBlog >> allCategories
^ (self allBlogPosts collect: [:p | p category]) asSet

Verify that the test passes.

3.7 Testing data

To help you testing the application, you can add the following method that
creates multiple posts.

TBBlog class >> createDemoPosts
"TBBlog createDemoPosts"
self current

writeBlogPost: ((TBPost title: 'Welcome in TinyBlog' text:
'TinyBlog is a small blog engine made with Pharo.' category:
'TinyBlog') visible: true);
writeBlogPost: ((TBPost title: 'Report Pharo Sprint' text:

'Friday, June 12 there was a Pharo sprint / Moose dojo. It was a
nice event with more than 15 motivated sprinters. With the help
of candies, cakes and chocolate, huge work has been done'
category: 'Pharo') visible: true);
writeBlogPost: ((TBPost title: 'Brick on top of Bloc -

Preview' text: 'We are happy to announce the first preview
version of Brick, a new widget set created from scratch on top
of Bloc. Brick is being developed primarily by Alex Syrel
(together with Alain Plantec, Andrei Chis and myself), and the
work is sponsored by ESUG.
Brick is part of the Glamorous Toolkit effort and will provide

the basis for the new versions of the development tools.'
category: 'Pharo') visible: true);

18

3.8 Possible Extensions

writeBlogPost: ((TBPost title: 'The sad story of unclassified
blog posts' text: 'So sad that I can read this.') visible: true);
writeBlogPost: ((TBPost title: 'Working with Pharo on the

Raspberry Pi' text: 'Hardware is getting cheaper and many new
small devices like the famous Raspberry Pi provide new
computation power that was one once only available on regular
desktop computers.' category: 'Pharo') visible: true)

If you inspect the result of the following snippet, you will see that the cur-
rent blog contains 5 posts:

TBBlog createDemoPosts ; current

Be aware that if you execute this createDemoPostsmethod multiple times,
your blog singleton object will contain multiple copies of these posts.

3.8 Possible Extensions

Many extensions can be made such as: retrieve the list of categories that
contains at least one visible post, delete a category and all posts that it con-
tains, rename a category, move a post from one category to another, make
(in)visible one category and all its content, etc. We encourage you to develop
some of them.

3.9 Conclusion

You now have the full model of TinyBlog as well as some unit tests. You are
now ready to implement more advanced functionality such as the database
storage or a first Web front-end. Do not forget to save your code.

19

CHA P T E R 4
Data Persitency using Voyage

and Mongo

Until now we used model objects stored in memory and it works well because
saving the Pharo image also saves these objects. Nevertheless, it would be
better to save these objects (blog posts) into an external database. Pharo sup-
ports multiple object serializers such Fuel (binary format) or STON (text for-
mat). These serializers are useful and powerful. Often with a single line of
code we can save a full graph on objects as explained in the Enterprise Pharo
book available at http://books.pharo.org.

In this chapter, we will use another possibility: saving data in a document
database such as Mongo (https://www.mongodb.com) using the Voyage frame-
work. Voyage provides a unified API to store and retrieve objects in various
document-based databases such as Mongo or UnQLite. But first, we will use
Voyage and its capacity to simulate an external database in memory. This
is really useful during development. Then, you may install a local Mongo
database and access it through Voyage. As you will see, this second step will
have a really little impact on our code.

The last chapter explains how to load the code of previous chapters if needed.

4.1 Configure Voyage to Save TBBlog Objects

By defining the class method isVoyageRoot, we declare that objects of this
class must be saved into the database as root objects. It means that the database
will contain as many documents as instances of this class.

21

http://books.pharo.org
https://www.mongodb.com

Data Persitency using Voyage and Mongo

TBBlog class >> isVoyageRoot
"Indicates that instances of this class are top level documents
in noSQL databases"

^ true

We should establish connection to real database or work in memory. Let’s
start to work in memory by using this expression:

VOMemoryRepository new enableSingleton.

The enableSingletonmessage indicates to Voyage that we will use only one
database. This will free us to specify the database each time. We create and
initialize the database in memory in a class-side method named initial-
izeVoyageOnMemoryDB.

TBBlog class >> initializeVoyageOnMemoryDB
VOMemoryRepository new enableSingleton

The reset class method re-initializes the database. The initialize class
method ensures that the database is initialized when we load TinyBlog’s
code. Do not forget to execute this expression TBBlog initialize to ensure
that the database is initialized.

TBBlog class >> reset
self initializeVoyageOnMemoryDB

TBBlog class >> initialize
self reset

The class-side currentmethod is trickier. Before using Voyage, we imple-
mented a simple singleton pattern (TBBlog current). However, it does not
work anymore because imagine that we saved our blog and that the server
stopped by accident or that we would reload a new version of the code, it
would re-initialize the connection and create a new fresh instance of the
blog. It would then be possible to end up with a different instance than the
saved one.

So we change the implementation of the current class method to make a
database request and retrieve saved objects. Since we only save one blog
object, it only consists in doing: self selectOne: [:each | true] or
self selectAll anyOne. If the database contains no instance, we create a
new one and save it.

TBBlog class >> current
^ self selectAll

ifNotEmpty: [:x | x anyOne]
ifEmpty: [self new save]

We can also remove the class instance variable named uniqueInstance that
we previously used to store our singleton object.

TBBlog class
instanceVariableNames: ''

22

4.2 Saving a Blog

4.2 Saving a Blog

Each time we modify a blog object, we must propagate changes into the database.
For example, we modify the writeBlogPost: method to save the blog when
we add a new post.

TBBlog >> writeBlogPost: aPost
"Write the blog post in database"
self allBlogPosts add: aPost.
self save

We also save the blog when removing (removemethod) a post from a blog.

TBBlog >> removeAllPosts
posts := OrderedCollection new.
self save.

4.3 Revising Unit Tests

We now save blogs in a database, either in memory or in an external Mongo
server, through Voyage. We must be careful with unit tests that modify the
database because they may corrupt production data. To circumvent this dan-
gerous situation, a test should not modify the state of the system.

To solve this situation, before running a test we will keep a reference to the
current blog and create a new context and restore it after test execution.

Let’s add an instance variable previousRepository in the TBBLogTest class.

TestCase subclass: #TBBlogTest
instanceVariableNames: 'blog post first previousRepository'
classVariableNames: ''
package: 'TinyBlog-Tests'

Then, we modify the setUpmethod to save the database before each test
execution. We create a temporary database object that will be used by the
test.

TBBlogTest >> setUp
previousRepository := VORepository current.
VORepository setRepository: VOMemoryRepository new.
blog := TBBlog current.
first := TBPost title: 'A title' text: 'A text' category: 'First

Category'.
blog writeBlogPost: first.
post := (TBPost title: 'Another title' text: 'Another text'

category: 'Second Category') beVisible

In the tearDownmethod executed after each test, we restore the original
database object.

23

Data Persitency using Voyage and Mongo

TBBlogTest >> tearDown
VORepository setRepository: previousRepository

4.4 Querying the Database

The database is currently in memory and we can access to the blog object us-
ing the current class-side method of the TBBlog class. It is enough to show
the API of Voyage since it will be the same to access a real Mongo database.

You can create posts:

TBBlog createDemoPosts

You can count the number of blog saved. count is part of the Voyage API. In
this example, we get the result 1 because the blog is implemented as a Single-
ton.

TBBlog count
>1

Similarly, you can retrieve all saved root objects of one kind.

TBBlog selectAll

You can also remove a root objet using the removemessage.

You can discover more about the Voyage API by looking at:

• the Class class,

• the VORepository class which is the root of the hierarchy of all databases
either in memory or external.

Those queries will be more relevant with more objects but they would be
similar.

4.5 If we would Save Posts [Discussion]

This section should not be implemented. It is only described as an exam-
ple (More information about Voyage can be found in the Enterprise Pharo
book http://books.pharo.org). We want to illustrate that declaring a class as
a Voyage root has an influence on how an instance of this class is saved and
reloaded.

So far, a post (an instance of TBPost) is not declared as a Voyage root. Post
objects are therefore saved as sub-parts into the blog object they belong
to. It implies that a post is not guaranteed to be unique after saving and re-
loading from the database. Indeed, after loading each blog objects will have
their own posts objects even if some posts were shared before saving. Shared
objects before saving will be duplicated for each root objects after loading.

24

http://books.pharo.org

4.6 Configure an External Mongo Database [Optional]

We can declare posts as root objects meaning that a post can be saved in-
dependently from a blog. It implies that saved blogs have a reference to a
TBPost object. This would preserve posts sharing between blog objects.

However, not all objects should be root objects. If we represent post com-
ments, we would not define them as root objects too because manipulating a
comment outside of its context (a post) does not make sense.

Post as Root = Uniqueness

If you want to share posts and make them unique between multiple blogs,
therefore, the TBPost class must be declared as a root in the database. In this
case, posts are saved as autonomous entities and instances of TBBlog will
reference posts entities instead of embedding them. The consequence is that
a post is unique and can be shared via reference from a blog. To achieve this,
we would define the following methods:

TBPost class >> isVoyageRoot
"Indicates that instances of this class are top level documents
in noSQL databases"

^ true

During the addition of a post to a blog, it would be important to save both
the blog and the new post.

TBBlog >> writeBlogPost: aPost
"Write the blog post in database"
posts add: aPost.
aPost save.
self save

TBBlog >> removeAllPosts
posts do: [:each | each remove].
posts := OrderedCollection new.
self save.

In the removeAllPostsmethod, we first remove all posts, then update the
collection and finally save the blog.

4.6 Configure an External Mongo Database [Optional]

By using Voyage, we can easily save our model objects into a Mongo database.
This section explains how to proceed and the few modifications to make into
our code. This is not mandatory to do it. Even if you do it, we encourage you
to continue to work with a memory database afterwards.

25

Data Persitency using Voyage and Mongo

Installing Mongo

Regardless of your operating system (Linux, MacOS or Windows), you can in-
stall a local Mongo server on your machine (cf. https://www.mongodb.com).
This is useful to test your application without requiring an internet connec-
tion. Instead directly installing Mongo, we suggest to install Docker (https:
//www.docker.com) on your machine and execute a Mongo container using
the following command line:

docker run --name mongo -p 27017:27017 -d mongo

Note The running Mongo server must not use authentication (it is not
the case with the default installation) because the new SCRAM authentica-
tion mechanism used by Mongo 3.0 is currently not supported by Voyage.

Some useful Docker commands:

to stop your Mongo docker container
docker stop mongo

to re-start your container
docker start mongo

to delete your container (it must be stopped before)
docker rm mongo

Connecting a Local Mongo Server

Once installed, you can connect to a Mongo server directly from Pharo. We
define the method named initializeLocalhostMongoDB to establish the
connection to the local Mongo server (localhost, default port) and access the
database named ’tinyblog’.

TBBlog class >> initializeLocalhostMongoDB
| repository |
repository := VOMongoRepository database: 'tinyblog'.
repository enableSingleton.

Reset the class to set a new connection to the database.

TBBlog class >> reset
self initializeLocalhostMongoDB

Now, if you recreate demo posts, they are automatically saved into your local
Mongo database:

TBBlog reset.
TBBlog createDemoPosts

26

https://www.mongodb.com
https://www.docker.com
https://www.docker.com

4.7 Conclusion

In Case of Trouble

If you need to re-initialize completely an external database, you can use the
dropDatabasemethod.

(VOMongoRepository
host: 'localhost'
database: 'tinyblog') dropDatabase

You can also do it in command line when mongod is running with:

mongo tinyblog --eval "db.dropDatabase()"

or by connecting to the docker container it is running in:

docker exec -it mongo bash -c 'mongo tinyblog --eval
"db.dropDatabase()"'

Points of Attention: Changing TBBlog Definition

When you use an external Mongo database instead of a memory one, each
time you add new root objects or modify the definition of some root objects,
it is important to reset the cache maintained by Voyage. It can be done us-
ing:

VORepository current reset

4.7 Conclusion

Voyage proposes a nice API to transparently manage storage of objects either
into memory or in a document database. Application data are now saved into
a database and we are ready to build the web user interface.

27

CHA P T E R 5
First Steps with Seaside

In this chapter, we will setup Seaside and build our first Seaside component.
In the next chapters, we will develop the public part of TinyBlog, then the
authentication system, followed by the administration part reserved to blog
administrators.

All along, we will define Seaside components http://www.seaside.st. A refer-
ence book is available online http://book.seaside.st and the firsts chapters
may help you and be a great companion of this tutorial book.

All the following work is independent of Voyage and the Mongo database. As
usual, you can download the code of previous chapters as explained in the
last chapter.

Figure 5-1 Starting the Seaside server.

29

http://www.seaside.st
http://book.seaside.st

First Steps with Seaside

Figure 5-2 Running Seaside.

5.1 Starting Seaside

Seaside should be already loaded in your PharoWeb image. If not, please re-
fer to the loading chapter.

There are two ways to start Seaside. The first one consists in executing the
following snippet:

ZnZincServerAdaptor startOn: 8080.

The second one uses the graphical tool named ”Seaside Control Panel” (World
Menu>Tools>Seaside Control Panel). In the contextual menu (right clic) of
this tool, select ”add adaptor...” and add a server of type ZnZincServer-
Adaptor, then define the port number (e.g. 8080) it should run on (cf. Figure
5-1). By opening a web browser on the URL http://localhost:8080, you should
see the Seaside home page as displayed on Figure 5-2.

5.2 Bootstrap for Seaside

The Bootstrap library is directly accessible from Pharo and Seaside. The
repository and the documentation of Bootstrap for Pharo is available there:
http://smalltalkhub.com/#!/~TorstenBergmann/Bootstrap. But it is already loaded
into the PharoWeb image we are using with this book.

You can also find a public demonstration here: http://pharo.pharocloud.com/

bootstrap or directly browse the examples locally in your browser by clicking

30

http://localhost:8080
http://smalltalkhub.com/#!/~TorstenBergmann/Bootstrap
http://pharo.pharocloud.com/bootstrap
http://pharo.pharocloud.com/bootstrap

5.3 Define our Application Entry Point

Figure 5-3 Browsing the Seaside Bootstrap Library.

on the bootstrap link in the list of applications hosted by Seaside or directly
enter this URL http://localhost:8080/bootstrap. You should see Bootstrap ex-
amples as shown in Figure 5-3.

By clicking on the Examples link at the bottom of the page, you can see both
Bootstrap graphical elements and the Seaside code needed to obtain them
(cf. Figure 5-4).

5.3 Define our Application Entry Point

Create a class named TBApplicationRootComponent which will be the entry
point of the application.

WAComponent subclass: #TBApplicationRootComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

We register the TinyBlog application into the Seaside application server by
defining the initialize class method into the 'initialization' protocol.
We also integrate dependencies to the Bootstrap framework (CSS and JS files
will be embedded in the application).

31

http://localhost:8080/bootstrap

First Steps with Seaside

Figure 5-4 A Bootstrap element and its code.

TBApplicationRootComponent class >> initialize
"self initialize"
| app |
app := WAAdmin register: self asApplicationAt: 'TinyBlog'.
app

addLibrary: JQDeploymentLibrary;
addLibrary: JQUiDeploymentLibrary;
addLibrary: TBSDeploymentLibrary

Once declared, you should execute this method with TBApplicationRoot-
Component initialize. Indeed, class-side initializemethods are exe-
cuted at loading-time of a class but since the class already exists, we must
execute it by hand.

We also add a method named canBeRoot to specify that TBApplication-
RootComponent is not a simple Seaside component but a complete applica-
tion. This component will be automatically instantiated when a user con-
nects to the application.

TBApplicationRootComponent class >> canBeRoot
^ true

You can verify that your application is correctly registered into Seaside by
connecting to the Seaside server through your web browser, click on ”Browse
the applications installed in your image” and then see that TinyBlog ap-
pears in the list as illustrated on Figure 5-5. Alternatively, you can visit http:
//localhost:8080/TinyBlog.

32

http://localhost:8080/TinyBlog
http://localhost:8080/TinyBlog

5.4 First Simple Rendering

Figure 5-5 TinyBlog is a registered Seaside application.

Figure 5-6 A first Seaside web page.

5.4 First Simple Rendering

Let’s add an instance method named renderContentOn: in rendering pro-
tocol to make our application displaying something.

TBApplicationRootComponent >> renderContentOn: html
html text: 'TinyBlog'

If you open http://localhost:8080/TinyBlog in your web browser, the page should
look like the one on Figure 5-6.

You can customize the web page header and declare it as HTML 5 compliant
by redefining the updateRoot: method.

33

http://localhost:8080/TinyBlog

First Steps with Seaside

HeaderComponent
CategoriesComponent

PostComponent

Root
Component

TBPostsListComponent

Figure 5-7 Main components of TinyBlog (public view).

TBApplicationRootComponent >> updateRoot: anHtmlRoot
super updateRoot: anHtmlRoot.
anHtmlRoot beHtml5.
anHtmlRoot title: 'TinyBlog'

The title: message is responsible for setting the page title, as can be seen
in your web browser’s title bar. The TBApplicationRootComponent com-
ponent is the root component of our application. It will not display a lot of
things. In the following, it will contain and display other components. For
example, a component to display posts to the blog readers, a component to
administrate the blog and its posts, ...

5.5 Architecture

We are now ready to define the visual components of our web application.

Overview of TinyBlog

Figure 6-2 shows an overview of them and their responsibilities while Fig-
ure 5-8 shows the general architecture of our application and the relations
between those components.

34

5.6 Conclusion

renderContentOn:
updateRoot:

main

ApplicationRoot
Component

children
renderContentOn:
updateRoot:

blog
header

ScreenComponent

renderContentOn:

HeaderComponent

renderContentOn:
currentCategory
PostsListComponent

renderContentOn:

title
date
text
post:

PostComponent

renderContentOn:
renderCategoryLinkOn:

posts
categories

CategoriesComponent

Registry Entry Point

User

renderContentOn:
report
AdminComponent

renderContentOn:

PostsReport

Admin

renderContentOn:
validate

AuthentificationComponent

renderContentOn:

AdminHeader
Component

Figure 5-8 Architecture of TinyBlog.

Description of the Main Components

To ease your understanding of the incremental development of this applica-
tion, Figure 5-8 describes the targeted architecture.

• ApplicationRootComponent is the entry point registered into Seaside.
This component contains components inheriting from the abstract
class ScreenComponent.

• ScreenComponent is the root of the components used to build the
public and administration view of the application. It is composed of
a header.

• PostsListComponent is the main component that displays the posts.
It is composed of instances of PostComponent) and manages cate-
gories.

• AdminComponent is the main component of the administration view.
It is composed of a report component (instance of PostsReport) built
using Magritte.

5.6 Conclusion

We are now ready to start the development of the described components.
In the next chapters, we guide you linearly to develop those components. If
you feel lost at some point, we invite you to come back on this architecture
overview to better understand what we are developing.

35

CHA P T E R6
Web Components for TinyBlog

In this chapter, we build the public view of TinyBlog that displays the posts
of the blog. Figure 6-1 shows the components we will work on during this
chapter. If you feel lost at any moment, please refer to it.

Before starting, you can load the code of previous chapters as described in
the last chapter of this book.

6.1 Visual Components

Figure 6-2 shows the visual components we will define in this chapter and
where they will be displayed.

renderContentOn:
updateRoot:

main

ApplicationRoot
Component

children
renderContentOn:
updateRoot:

blog
header

ScreenComponent

renderContentOn:

HeaderComponent

renderContentOn:
currentCategory
PostsListComponent

renderContentOn:

title
date
text
post:

PostComponent

User

Figure 6-1 Component Architecture of the Public View (opposed to the Adminis-

tration View).

37

Web Components for TinyBlog

HeaderComponent

PostComponent

Root
Component

TBPostsListComponent

Figure 6-2 Visual Components of TinyBlog.

The TBScreenComponent component

All components contained in TBApplicationRootComponent will be sub-
classes of the abstract class TBScreenComponent. This class allows us to fac-
torize shared behavior between all our components.

WAComponent subclass: #TBScreenComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

All components need to access the model of our application. Therefore, in
the ’accessing’ protocol, we add a blogmethod that returns the current in-
stance of TBBlog (the singleton). In the future, if you want to manage multi-
ple blogs, you will modify this method and return the blog object it has been
configured with.

TBScreenComponent >> blog
"Return the current blog. In the future we will ask the
session to return the blog of the currently logged in user."
^ TBBlog current

Let’s define a method renderContentOn: on this new component that tem-
porarily displays a message. If you refresh your browser, nothing appears
because this new component is not displayed at all yet.

TBScreenComponent >> renderContentOn: html
html text: 'Hello from TBScreenComponent'

38

6.2 Using the TBScreenComponent component

renderContentOn:
updateRoot:

main

ApplicationRoot
Component

children
renderContentOn:
updateRoot:

blog
header

ScreenComponent

renderContentOn:

HeaderComponent

Figure 6-3 ApplicationRootComponent temporarily uses a ScreenCompo-
nent that contains a HeaderComponent.

6.2 Using the TBScreenComponent component

In the final architecture, TBScreenComponent is an abstract component and
should not be used directly. Nevertheless, we will use it temporarily while
developing other components.

Let’s add an instance variable main in TBApplicationRootComponent class.
We obtain the situation described in Figure 6-3.

WAComponent subclass: #TBApplicationRootComponent
instanceVariableNames: 'main'
classVariableNames: ''
package: 'TinyBlog-Components'

We initialize this instance variable in the initializemethod with a new
instance of TBScreenComponent.

TBApplicationRootComponent >> initialize
super initialize.
main := TBScreenComponent new

We make the TBApplicationRootComponent to render this sub-component.

TBApplicationRootComponent >> renderContentOn: html
html render: main

We do not forget to declare that the object contained in main instance vari-
able is a sub-component of TBApplicationRootComponent by redefining the
childrenmethod.

TBApplicationRootComponent >> children
^ { main }

Figure 6-4 shows the result that you should obtain in your browser. Cur-
rently, there is only the text: Hello from TBScreenComponent displayed
by the TBScreenComponent sub-component. (voir figure 6-4).

6.3 Pattern of Component Definition

We will often use the same following steps:

• first, we define a class and the behavior of a new component;

39

Web Components for TinyBlog

Figure 6-4 First visual rendering of TBScreenComponent.

• then, we reference it from an existing component that uses it;

• and we express the composite/sub-component relationship by redefin-
ing the childrenmethod.

6.4 Populating the Blog

You can inspect the blog object returned by TBBlog current and verify that
it contains some posts. You can also do it simply as:

TBBlog current allBlogPosts size

If it does not, execute:

TBBlog createDemoPosts

6.5 Definition of TBHeaderComponent

Let’s define a component named TBHeaderComponent that renders the com-
mon header of all pages of TinyBlog. This component will be inserted on the
top of all components such as TBPostsListComponent. We use the pattern
described above: define the class of the component, reference it from its en-
closing component and redefine the childrenmethod.

Here the class definition:

WAComponent subclass: #TBHeaderComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

6.6 Usage of TBHeaderComponent

Remember that TBScreenComponent is the (abstract) root of all components
in our final architecture. Therefore, we will introduce our header into TB-
ScreenComponent so that all its subclasses will inherit it. Since, it is not
desirable to instantiate the TBHeaderComponent each time a component is
called, we store the header in an instance variable named header.

40

6.7 Composite-Component Relationship

WAComponent subclass: #TBScreenComponent
instanceVariableNames: 'header'
classVariableNames: ''
package: 'TinyBlog-Components'

We initialize it in the initializemethod categorized in the ’initialization’
protocol:

TBScreenComponent >> initialize
super initialize.
header := self createHeaderComponent

TBScreenComponent >> createHeaderComponent
^ TBHeaderComponent new

Note that we use a specific method named createHeaderComponent to cre-
ate the instantiate the header component. Redefining this method makes
it possible to completely change the header component that is used. We
will use that to display a different header component for the administration
view.

6.7 Composite-Component Relationship

In Seaside, sub-components of a component must be returned by the com-
posite when sending it the childrenmessage. So, we must define that the
TBHeaderComponent instance is a children of the TBScreenComponent com-
ponent in the Seaside component hierarchy (and not in the Pharo classes
hierarchy). We do so by specializing the method children. In this example,
it returns a collection of one element which is the instance of TBHeaderCom-
ponent referenced by the header instance variable.

TBScreenComponent >> children
^ { header }

6.8 Render an header

In the renderContentOn: method (’rendering’ protocol), we can now display
the sub-component (the header):

TBScreenComponent >> renderContentOn: html
html render: header

If you refresh your browser, nothing appears because the TBHeaderCompo-
nent has no rendering. Let’s add a renderContentOn: method on it that
displays a Bootstrap navigation header:

41

Web Components for TinyBlog

Figure 6-5 TinyBlog with a Bootstrap header.

TBHeaderComponent >> renderContentOn: html
html tbsNavbar beDefault; with: [

html tbsContainer: [
self renderBrandOn: html

]]

TBHeaderComponent >> renderBrandOn: html
html tbsNavbarHeader: [

html tbsNavbarBrand
url: self application url;
with: 'TinyBlog']

Your browser should now display what is shown on Figure 6-5. As usual in
Bootstrap navigation bar, the link on the title of the application (tbsNavbarBrand)
enable users to go back to home page of the application.

Possible Enhancements

The blog name should be customizable using an instance variable in the TB-
Blog class and the application header component should display this title.

42

6.9 List of Posts

renderContentOn:
updateRoot:

main

ApplicationRoot
Component

children
renderContentOn:
updateRoot:

blog
header

ScreenComponent

renderContentOn:

HeaderComponent

renderContentOn:

PostsListComponent

Figure 6-6 The ApplicationRootComponent uses PostsListComponent.

6.9 List of Posts

Let’s create a TBPostsListComponent inheriting from TBScreenComponent
to display the list of all posts. Remember that we speak about the public ac-
cess to the blog here and not the administration interface that will be devel-
oped later.

TBScreenComponent subclass: #TBPostsListComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

We can now modify TBApplicationRootComponent, the main component
of the application, so that it displays this new component as shown in figure
6-6. To achieve this, we modify its initializemethod:

TBApplicationRootComponent >> initialize
super initialize.
main := TBPostsListComponent new

We add a setter method named main: to dynamically change the sub-component
to display but by default it is an instance of TBPostsListComponent.

TBApplicationRootComponent >> main: aComponent
main := aComponent

We now add a temporary renderContentOn: method (in the ’rendering’
protocol) on TBPostsListComponent to test during development (cf. Fig-
ure 6-7). In this method, we call the renderContentOn: of the super-class
which renders the header component.

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html text: 'Blog Posts here !!!'

If you refresh TinyBlog in your browser, you should now see what is shown
in figure 6-7.

43

Web Components for TinyBlog

Figure 6-7 TinyBlog displaying a basic posts list.

renderContentOn:
updateRoot:

main

ApplicationRoot
Component

children
renderContentOn:
updateRoot:

blog
header

ScreenComponent

renderContentOn:

HeaderComponent

renderContentOn:

PostsListComponent

renderContentOn:

title
date
text
post:

PostComponent

Figure 6-8 Using PostComponents to diplays each Posts.

6.10 The PostComponent

Now we will define TBPostComponent to display the details of a post. Each
post will be graphically displayed by an instance of TBPostComponent which
will show the post title, its date and its content as shown in figure 6-8.

WAComponent subclass: #TBPostComponent
instanceVariableNames: 'post'
classVariableNames: ''
package: 'TinyBlog-Components'

TBPostComponent >> initialize
super initialize.
post := TBPost new

44

6.11 Display Posts

TBPostComponent >> title
^ post title

TBPostComponent >> text
^ post text

TBPostComponent >> date
^ post date

The renderContentOn: method defines the HTML rendering of a post.

TBPostComponent >> renderContentOn: html
html heading level: 2; with: self title.
html heading level: 6; with: self date.
html text: self text

About HTML Forms

In a future chapter on the administration view, we will show how to use
Magritte to add descriptions to model objects and then use them to auto-
matically generate Seaside components. This is powerful and free developers
to manually describe forms in Seaside.

To give you a taste of that, here the equivalent code as above using Magritte:

TBPostComponent >> renderContentOn: html
"DON'T WRITE THIS YET"
html render: post asComponent

6.11 Display Posts

Before displaying available posts in the database, you should check that your
blog contains some posts:

TBBlog current allBlogPosts size

If it contains no posts, you can recreate some:

TBBlog createDemoPosts

Now, we just need to modify the TBPostsListComponent >> renderCon-
tentOn: method to display all visible posts in the database:

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
self blog allVisibleBlogPosts do: [:p |

html render: (TBPostComponent new post: p)]

Refresh you web browser and you should get an error.

45

Web Components for TinyBlog

Figure 6-9 TinyBlog with a List of Posts.

6.12 Debugging Errors

By default, when an error occurs in a web application, Seaside returns an
HTML page with the error message. You can change this message or during
development, you can configure Seaside to open a debugger directly in Pharo
IDE. To configure Seaside, just execute the following snippet:

(WAAdmin defaultDispatcher handlerAt: 'TinyBlog')
exceptionHandler: WADebugErrorHandler

Now, if you refresh the web page in your browser, a debugger should open on
Pharo side. If you analyze the stack, you should see that we forgot to define
the following method:

TBPostComponent >> post: aPost
post := aPost

You can define this method in the debugger using the Create button. After
that, press the Proceed button. The web application should now correctly
renders what is shown in Figure 6-9.

6.13 Displaying the List of Posts with Bootstrap

Let’s use Bootstrap to make the list of posts more beautiful using a Bootstrap
container thanks to the message tbsContainer::

46

6.14 Instantiating Components in renderContentOn:

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [

self blog allVisibleBlogPosts do: [:p |
html render: (TBPostComponent new post: p)]]

Your web application should look like Figure 6-2.

6.14 Instantiating Components in renderContentOn:

We explained that the childrenmethod of a component should return its
sub-components. Indeed, before executing the renderContentOn: method
of a composite, Seaside needs to retrieve all its sub-components and their
state. However, if sub-components are instantiated in the renderContentOn:
method of the composite (such as in TBPostsListComponent>>renderCon-
tentOn:), it is not needed that children returns those sub-components.

Note that, instantiating sub-components in the rendering method is not a
good practice since it increases the loading time of the web page.

If we would store all sub-components that display posts, we should add an
instance variable postComponents.

TBPostsListComponent >> initialize
super initialize.
postComponents := OrderedCollection new

Initialize it with posts.

TBPostsListComponent >> postComponents
postComponents := self readSelectedPosts

collect: [:each | TBPostComponent new post: each].
^ postComponents

Redefine the childrenmethod and of course render these sub-components
in renderContentOn::

TBPostsListComponent >> children
^ self postComponents, super children

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [
self postComponents do: [:p |

html render: p]]

We do not do this in TinyBlog because it makes the code more complex.

47

Web Components for TinyBlog

6.15 Conclusion

In this chapter, we developed a Seaside component that renders a list of
posts. In the next chapter, we will improve this by displaying posts’ cate-
gories.

Notice that we did not care about web requests or the application state. A
Seaside programmer only define components and compose them as we would
do in desktop applications.

A Seaside component is responsible of rendering itself by redefining its ren-
derContentOn: method. It should also returns its sub-components (if no
instantiated during each rendering) by redefining the childrenmethod.

48

CHA P T E R 7
Managing Categories

In this chapter, we add the possibility to sort posts in a category. Figure 7-1
shows you on which components we will work in this chapter.

You can find instructions to load the code of previous chapter in Chapter 11.

7.1 Displaying Posts by Category

Posts are sorted by a category. If no category is specified, posts are sorted in
a special category called ”Unclassified”. To manage a list of categories, we
will define a component named TBCategoriesComponent.

renderContentOn:
updateRoot:

main

ApplicationRoot
Component

children
renderContentOn:
updateRoot:

blog
header

ScreenComponent

renderContentOn:

HeaderComponent

renderContentOn:
currentCategory
PostsListComponent

renderContentOn:

title
date
text
post:

PostComponent

renderContentOn:
renderCategoryLinkOn:

posts
categories

CategoriesComponent

User

Figure 7-1 L’architecture des composants de la partie publique with categories.

49

Managing Categories

Displaying Categories

We need a component to display a list of categories defined in the blog. This
component should support the selection of one category. This component
should be able to communicate with the component TBPostsListComponent
to give it the currently selected category. Figure 7-1 described the situation.

Remember that a category is simply expressed as a string in the model we
defined in Chapter 2 and how the following test illustrates it:

testAllBlogPostsFromCategory
self assert: (blog allBlogPostsFromCategory: 'First Category')

size equals: 1

Component Definition

Let us define a new component named TBCategoriesComponent. It keeps a
sorted collection of string representing each category as well as a reference
to the component managing the post list.

WAComponent subclass: #TBCategoriesComponent
instanceVariableNames: 'categories postsList'
classVariableNames: ''
package: 'TinyBlog-Components'

We define the associated accessors.

TBCategoriesComponent >> categories
^ categories

TBCategoriesComponent >> categories: aCollection
categories := aCollection asSortedCollection

TBCategoriesComponent >> postsList: aComponent
postsList := aComponent

TBCategoriesComponent >> postsList
^ postsList

We define a creation method as a class method.

TBCategoriesComponent class >> categories: categories postsList:
aTBScreen

^ self new categories: categories; postsList: aTBScreen

From the Post List

In the class TBPostsListComponent, we need to add an instance variable to
store the current category.

50

7.2 Category Rendering

TBScreenComponent subclass: #TBPostsListComponent
instanceVariableNames: 'currentCategory'
classVariableNames: ''
package: 'TinyBlog-Components'

We define its associated accessors.

TBPostsListComponent >> currentCategory
^ currentCategory

TBPostsListComponent >> currentCategory: anObject
currentCategory := anObject

The method selectCategory:

We define the method selectCategory: (protocol ’actions’) to communi-
cate the current category to the TBPostsListComponent component.

TBCategoriesComponent >> selectCategory: aCategory
postsList currentCategory: aCategory

7.2 Category Rendering

We can now define method for the rendering of the category component on
the page. Let us call it renderCategoryLinkOn:with:, we define in particu-
lar that clicking on a category will select it as the current one. We use a call-
back (message callback:). The argument of this message is a block that can
contains any Pharo expression. This illustrates how simple is to call function
to react to event.

TBCategoriesComponent >> renderCategoryLinkOn: html with: aCategory
html tbsLinkifyListGroupItem

callback: [self selectCategory: aCategory];
with: aCategory

The method renderContentOn: of TBCategoriesComponent is simple: we
iterate on all categories and we display them using Bootstrap.

TBCategoriesComponent >> renderContentOn: html
html tbsListGroup: [

html tbsListGroupItem
with: [html strong: 'Categories'].

categories do: [:cat |
self renderCategoryLinkOn: html with: cat]]

We are nearly there. We need to display the list of categories and update the
posts based on the current category.

51

Managing Categories

7.3 Updating Post List

Now we should update the list of posts. We modify the rendering method of
the component TBPostsListComponent.

The method readSelectedPosts collects the posts to be displayed. It fil-
ters them based on the current category. When the current category is nil,
it means that the user did not select yet a category. Therefore we display all
the posts. When the current category is something else than nil, the user se-
lected a category and the application display the corresponding posts.

TBPostsListComponent >> readSelectedPosts
^ self currentCategory

ifNil: [self blog allVisibleBlogPosts]
ifNotNil: [self blog allVisibleBlogPostsFromCategory: self

currentCategory]

We modify now the method responsible of the post list rendering:

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html render: (TBCategoriesComponent

categories: (self blog allCategories)
postsList: self).

html tbsContainer: [
self readSelectedPosts do: [:p |

html render: (TBPostComponent new post: p)]]

An instance of the component TBCategoriesComponent is added to the page
and allows one to select the current category (see Figure 7-2).

As previously explained, a new instance of TBCategoriesComponent is cre-
ated each time the component TBPostsListComponent is rendered, there-
fore it is not mandatory to add it to the children sublist of the component.

Possible Enhancements

Hardcodeing class name and the creation logic of categories and posts is not
really optimal. Propose some solution.

7.4 Look and Layout

We will not place better the component TBPostsListComponent using a
more ’responsive’ design (as shown in Figure 7-3). It means that the CSS style
should adapt the component to the available space.

Components are placed in a Bootstrap container then positioned on a line
with two columns. Column dimension is determined based on the view-
port and resolution of the device used. The 12 columsn of Bootstrap are dis-
tributed over the category and post lists.

52

7.4 Look and Layout

Figure 7-2 Categories and Posts.

In the case of a low resolution, the list of categories is placed above the post
list (each element using 100% of the container width).

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [

html tbsRow showGrid;
with: [

html tbsColumn
extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [

html render: (TBCategoriesComponent
categories: (self blog allCategories)
postsList: self)].

html tbsColumn
extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [

self readSelectedPosts do: [:p |
html render: (TBPostComponent new post: p)]]]]

You should obtain a situation close to the one presented in Figure 7-3.

53

Managing Categories

Figure 7-3 Post list with a better layout.

When one selects a category, the post list is updated. However, the selected
category is not selected. We modify the following method to address this
point.

TBCategoriesComponent >> renderCategoryLinkOn: html with: aCategory
html tbsLinkifyListGroupItem

class: 'active' if: aCategory = self postsList currentCategory;
callback: [self selectCategory: aCategory];
with: aCategory

Even if the code works, we cannot keep the method renderContentOn: in
such state. It is far too long and not reusable. Propose a solution.

7.5 Modular Code with Small Methods

Here is our solution to the previous problem. To ease reading and future
reuse, we start to define component creation methods.

TBPostsListComponent >> categoriesComponent
^ TBCategoriesComponent

categories: self blog allCategories
postsList: self

TBPostsListComponent >> postComponentFor: aPost
^ TBPostComponent new post: aPost

54

7.5 Modular Code with Small Methods

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html
tbsContainer: [html tbsRow

showGrid;
with: [

html tbsColumn
extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [html render: self categoriesComponent].

html tbsColumn
extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [self readSelectedPosts

do: [:p | html render: (self postComponentFor: p)]
]]]

Another Pass

We continue to cut this method in other smaller methods. We create one
method for each of the elementary tasks.

TBPostsListComponent >> basicRenderCategoriesOn: html
html render: self categoriesComponent

TBPostsListComponent >> basicRenderPostsOn: html
self readSelectedPosts do: [:p |
html render: (self postComponentFor: p)]

Then we use such tasks to simplify the method renderContentOn:.

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html

tbsContainer: [
html tbsRow

showGrid;
with: [self renderCategoryColumnOn: html.

self renderPostColumnOn: html]]

TBPostsListComponent >> renderCategoryColumnOn: html
html tbsColumn

extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [self basicRenderCategoriesOn: html]

55

Managing Categories

Figure 7-4 Final TinyBlog Public UI.

TBPostsListComponent >> renderPostColumnOn: html
html tbsColumn

extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [self basicRenderPostsOn: html]

The final application is showing in Figure 7-4.

7.6 Conclusion

We defined an interface for our blog using a set of components each speci-
fying its own state and responsibility. Many web applications are built the
same way reusing components. You have the foundation to build more ad-
vanced web application.

In the next chapter, we show how to manage authentification to access the
post admin part of our application.

Possible Enhancements

As exercise you can:

• sort category alphabetically, or

• add a link named ’All’ in the category list to display all the posts.

56

CHA P T E R8
Authentication and Session

In this chapter we will develop a traditional scenario: the user should login
to access to the administration part of the application. He does it using a lo-
gin and password.

Figure 8-1 shows the architecture that we will reach in this chapter.

Let us start to put in place a first version that allows one to navigate between
the part of TinyBlog rendered by the component TBPostsListComponent
and a first draft of the administration component as shown in Figure 8-2.
This illustrates how to invoke a component.

renderContentOn:
updateRoot:

main

ApplicationRoot
Component

children
renderContentOn:
updateRoot:

blog
header

ScreenComponent

renderContentOn:

HeaderComponent

renderContentOn:
currentCategory
PostsListComponent

renderContentOn:

title
date
text
post:

PostComponent

renderContentOn:
renderCategoryLinkOn:

posts
categories

CategoriesComponent

renderContentOn:

AdminComponent
(V1)

Admin Authentification

renderContentOn:
validate

AuthentificationComponent

renderContentOn:

AdminHeader
Component

Figure 8-1 Authentication flow.

57

Authentication and Session

In the following we will build and integrate a component managing the login
based on modal interaction. This will illustrate how we can elegantly map
filed inputs to instance variables of a component.

Finally we will show how the user information is stored into the current ses-
sion.

8.1 A Simple Admin Component (v1)

Let us define a really super simple administration component. This compo-
nent inherits from the class TBScreenComponent as mentioned in previous
chapters and illustrated in Figure 8-1.

TBScreenComponent subclass: #TBAdminComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

We define a first version of the rendering method to be able to test our ap-
proach.

TBAdminComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [

html heading: 'Blog Admin'.
html horizontalRule]

8.2 Adding ’admin’ Button

We add now a button in the header of the site (component TBHeaderCom-
ponent) so that the user can access to the admin as shown in Figure 8-2. To
do so, we modify the existing components: TBHeaderComponent (header) et
TBPostsListComponent (public part).

Let us add a button in the header:

TBHeaderComponent >> renderContentOn: html
html tbsNavbar beDefault; with: [

html tbsContainer: [
self renderBrandOn: html.
self renderButtonsOn: html

]]

TBHeaderComponent >> renderButtonsOn: html
self renderSimpleAdminButtonOn: html

TBHeaderComponent >> renderSimpleAdminButtonOn: html
html form: [

html tbsNavbarButton
tbsPullRight;

58

8.2 Adding ’admin’ Button

Figure 8-2 Simple link to the admin part.

Figure 8-3 Header with an admin button.

with: [
html tbsGlyphIcon iconListAlt.
html text: ' Admin View']]

When you refresh the web browser, the admin buttin is present but it does
not have any effect (See Figure 8-3).

We should define a callback on this button (message callback:) to replace
the current component (TBPostsListComponent) by the administration
component (TBAdminComponent).

59

Authentication and Session

8.3 Header Revision

Let us revise the definition of TBHeaderComponent by adding a new instance
variable named component to store and access to the current component (ei-
ther post list or admin component). This will allow us to access to the com-
ponent from the header.

WAComponent subclass: #TBHeaderComponent
instanceVariableNames: 'component'
classVariableNames: ''
package: 'TinyBlog-Components'

TBHeaderComponent >> component: anObject
component := anObject

TBHeaderComponent >> component
^ component

We add a new class method.

TBHeaderComponent class >> from: aComponent
^ self new
component: aComponent;
yourself

8.4 Admin Button Activation

We modify the component instantiation in TBScreenComponentmethod to
pass the component which will be under the header.

TBScreenComponent >> createHeaderComponent
^ TBHeaderComponent from: self

Note that the method createHeaderComponent is defined in the superclass
TBScreenComponent and it is applicable to all the subclasses.

We can add now the callback on the button:

TBHeaderComponent >> renderSimpleAdminButtonOn: html
html form: [
html tbsNavbarButton
tbsPullRight;
callback: [component goToAdministrationView];
with: [

html tbsGlyphIcon iconListAlt.
html text: ' Admin View']]

We just need to define the method goToAdministrationView on the compo-
nent TBPostsListComponent:

TBPostsListComponent >> goToAdministrationView
self call: TBAdminComponent new

60

8.5 ’disconnect’ Button Addition

Figure 8-4 Admin component under definition.

Before clicking on the admin button, you should renew the current session
by clicking on ’New Session’: it will recreate the component TBHeaderCom-
ponent.

You should get the situation presented in Figure 8-4. The ’Admin’ button
allows one to access the admin part v1.

Pay attention not to click twice on the admin button because we do not man-
age it yet for the admin part. We will replace it by a Disconnect button.

8.5 ’disconnect’ Button Addition

When we display the admin part, we will replace the header component by a
new one. This new header will display a disconnect button.

Let us define this new header component:

TBHeaderComponent subclass: #TBAdminHeaderComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

TBAdminHeaderComponent >> renderButtonsOn: html
html form: [self renderDisconnectButtonOn: html]

The TBAdminComponent component must use this header:

TBAdminComponent >> createHeaderComponent
^ TBAdminHeaderComponent from: self

61

Authentication and Session

Now we can specialize our new admin header to display a disconnect button.

TBAdminHeaderComponent >> renderDisconnectButtonOn: html
html tbsNavbarButton

tbsPullRight;
callback: [component goToPostListView];
with: [

html text: 'Disconnect '.
html tbsGlyphIcon iconLogout]

TBAdminComponent >> goToPostListView
self answer

What is see is that the message answer gives back the control to the compo-
nent that calls it. So we go back the post list.

Reset the current session by clicking on ’New Session’. Then you can click
on the ’Admin’ button, you should see now the admin v1 display itself with
a ’Disconnect’ button. This button allows on to go back the public part as
shown in Figure 8-2.

call:/answer: Notion

When you study the previous code, you see that we use the call:/answer:
mechanism of Seaside to navigate between the components TBPostsList-
Component and TBAdminComponent.

The message call: replaces the current component with the one passed in
argument and gives it the flow of control. The message answer: returns a
value to this call and gives back the flow of control to the calling argument.
This mechanism is really poweful and elegant. It is explained in the vidéo
1 of week 5 of the Pharo Mooc (http://rmod-pharo-mooc.lille.inria.fr/MOOC/

WebPortal/co/content_5.html).

8.6 Modal Window for Authentication

Let us develop now a authentication component that when invoked will open
a dialog box to request the login and password. The result we want to obtain
is shown in Figure 8-5.

There are are some libraries of components ready to be used. For example,
the Heimdal project available at http://www.github.com/DuneSt/ offers an au-
thentication component or the Steam project https://github.com/guillep/steam

offers ways to interrogate google ou twitter accounts.

Authentication Component Definition

We define a new subclass of WAComponent and its accessors. This component
contains a login, a password and a component which invoked it to access to

62

http://rmod-pharo-mooc.lille.inria.fr/MOOC/WebPortal/co/content_5.html
http://rmod-pharo-mooc.lille.inria.fr/MOOC/WebPortal/co/content_5.html
http://www.github.com/DuneSt/
https://github.com/guillep/steam

8.6 Modal Window for Authentication

Figure 8-5 Authentication component.

the admin part.

WAComponent subclass: #TBAuthentificationComponent
instanceVariableNames: 'password account component'
classVariableNames: ''
package: 'TinyBlog-Components'

TBAuthentificationComponent >> account
^ account

TBAuthentificationComponent >> account: anObject
account := anObject

TBAuthentificationComponent >> password
^ password

TBAuthentificationComponent >> password: anObject
password := anObject

TBAuthentificationComponent >> component
^ component

TBAuthentificationComponent >> component: anObject
component := anObject

The instance variable component will be initialized by the following class
method: classe suivante :

TBAuthentificationComponent class >> from: aComponent
^ self new

component: aComponent;
yourself

63

Authentication and Session

8.7 Authentication Component Rendering

The following method renderContentOn: defines the contents of a dialog
box with the ID myAuthDialog. This ID will be used to select the component
that should be made visible when in modal mode.

This dialog box has a header and a body. Note the use of the messages tb-
sModal, tbsModalBody:, and tbsModalContent: which supports a modal
interaction with the component.

TBAuthentificationComponent >> renderContentOn: html
html tbsModal

id: 'myAuthDialog';
with: [

html tbsModalDialog: [
html tbsModalContent: [

self renderHeaderOn: html.
self renderBodyOn: html]]]

The header displays a button to close the dialog box and a title with large
fonts. Note that you can also use the ESC key to close the modal window box.

TBAuthentificationComponent >> renderHeaderOn: html
html

tbsModalHeader: [
html tbsModalCloseIcon.
html tbsModalTitle

level: 4;
with: 'Authentication']

The body of the component displays the input field for the login identifier,
password and some buttons.

TBAuthentificationComponent >> renderBodyOn: html
html

tbsModalBody: [
html tbsForm: [

self renderAccountFieldOn: html.
self renderPasswordFieldOn: html.
html tbsModalFooter: [self renderButtonsOn: html]

]]

The method renderAccountFieldOn: shows how the value of an input field
is passed and stored in an instance variable of a component when the user
finishes its input.

The parameter of the callback: message is a bloc which takes as argument
the value of the input field.

64

8.8 Authentication Component Integration

TBAuthentificationComponent >> renderAccountFieldOn: html
html

tbsFormGroup: [html label with: 'Account'.
html textInput

tbsFormControl;
attributeAt: 'autofocus' put: 'true';
callback: [:value | account := value];
value: account]

The same process is used for the password.

TBAuthentificationComponent >> renderPasswordFieldOn: html
html tbsFormGroup: [

html label with: 'Password'.
html passwordInput

tbsFormControl;
callback: [:value | password := value];
value: password]

Finally in the following renderContentOn: method, two buttons are added
at the bottom of the modal window. The 'Cancel' button which allows one
to close the window using the attribute ’data-dismiss’ and the 'SignIn' but-
ton which sends the validate using a callback.

The enter key is bound to the 'SignIn' button activation when using the
method tbsSubmitButton. This method sets the ’type’ attribute to ’submit’.

TBAuthentificationComponent >> renderButtonsOn: html
html tbsButton

attributeAt: 'type' put: 'button';
attributeAt: 'data-dismiss' put: 'modal';
beDefault;
value: 'Cancel'.

html tbsSubmitButton
bePrimary;
callback: [self validate];
value: 'SignIn'

In the validatemethod, we simply send a message to the main component
giving it the information entered by the user.

TBAuthentificationComponent >> validate
^ component tryConnectionWithLogin: self account andPassword: self

password

8.8 Authentication Component Integration

To integrate our authentication component, we modify the Admin button of
the header component (TBHeaderComponent) as follows:

65

Authentication and Session

TBHeaderComponent >> renderButtonsOn: html
self renderModalLoginButtonOn: html

TBHeaderComponent >> renderModalLoginButtonOn: html
html render: (TBAuthentificationComponent from: component).
html tbsNavbarButton

tbsPullRight;
attributeAt: 'data-target' put: '#myAuthDialog';
attributeAt: 'data-toggle' put: 'modal';
with: [

html tbsGlyphIcon iconLock.
html text: ' Login']

The method renderModalLoginButtonOn: starts by rendering the compo-
nent TBAuthentificationComponent within this web page. This compo-
nent is created during each display and it does not have to be returned by
the childrenmethod. In addition, we add ’Login’ button with a icon lock.
When the user clicks on this button, the modal dialog identified with the ID
myAuthDialog will be displayed.

Reloading the TinyBlog page, you should see now a ’Login’ button in the
header (button that will pop up the authentication we just developed) as il-
lustrated by Figure 8-5.

8.9 Naively Managing Logins

When you click on the ’SignIn’ button you get an error. Using the Pharo de-
bugger, you can see that we should define the method tryConnectionWith-
Login:andPassword: on the component TBPostsListComponent since it is
the one sent by the callback of the button.

TBPostsListComponent >> tryConnectionWithLogin: login andPassword:
password

(login = 'admin' and: [password = 'topsecret'])
ifTrue: [self goToAdministrationView]
ifFalse: [self loginErrorOccurred]

For the moment we store directly the login and password in the method and
this is not really a good practice.

8.10 Managing Errors

We defined the method goToAdministrationView. Let us add the method
loginErrorOccured and a mechanism to display an error message when the
user does not use the correct identifiers as shown in Figure 8-6.

For this we will add a new instance variable showLoginError that represents
the fact that we should display an error.

66

8.11 Modeling the Admin

TBScreenComponent subclass: #TBPostsListComponent
instanceVariableNames: 'currentCategory showLoginError'
classVariableNames: ''
package: 'TinyBlog-Components'

The method loginErrorOccurred specifies that an error should be dis-
played.

TBPostsListComponent >> loginErrorOccurred
showLoginError := true

We add a method to test this state.

TBPostsListComponent >> hasLoginError
^ showLoginError ifNil: [false]

We define also an error message.

TBPostsListComponent >> loginErrorMessage
^ 'Incorrect login and/or password'

We modify the method renderPostColumnOn: to perform a specific task to
handle the errors.

TBPostsListComponent >> renderPostColumnOn: html
html tbsColumn

extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [

self renderLoginErrorMessageIfAnyOn: html.
self basicRenderPostsOn: html]

The method renderLoginErrorMessageIfAnyOn: displays if necessary an
error message. It sets the instance variable showLoginError so that we do
not display the error undefinitely.

TBPostsListComponent >> renderLoginErrorMessageIfAnyOn: html
self hasLoginError ifTrue: [

showLoginError := false.
html tbsAlert

beDanger ;
with: self loginErrorMessage

]

8.11 Modeling the Admin

We do not want to store the administrator identifiers in the code as we did
previously. We revise this now and will store the identifiers in a model: a
class Admin.

67

Authentication and Session

Figure 8-6 Error message in case wrong identifiers.

Let us start to enrich our TinyBlog model with the notion of administrator.
We define a class named TBAdministrator characterized by it pseudo, login
and password.

Object subclass: #TBAdministrator
instanceVariableNames: 'login password'
classVariableNames: ''
package: 'TinyBlog'

TBAdministrator >> login
^ login

TBAdministrator >> login: anObject
login := anObject

TBAdministrator >> password
^ password

Note that we do not store the admin password in the instance variable pass-
word but its hash encoded in SHA256.

TBAdministrator >> password: anObject
password := SHA256 hashMessage: anObject

We define also a new instance creation method.

TBAdministrator class >> login: login password: password
^ self new

login: login;
password: password;
yourself

You can verify that the model works by executing the following expression:

luc := TBAdministrator login: 'luc' password: 'topsecret'.

68

8.12 Blog admin

8.12 Blog admin

We decide for simplicity that a blog has one admin. We add the instance vari-
able adminUser and an accessor in the classe TBBlog to store the blog admin.

Object subclass: #TBBlog
instanceVariableNames: 'adminUser posts'
classVariableNames: ''
package: 'TinyBlog'

TBBlog >> administrator
^ adminUser

We define a default login and password that we use as default. As we will see
later, we will modify such attributes and these modified attributes will be
saved at the same time that the blog in a database.

TBBlog class >> defaultAdminPassword
^ 'topsecret'

TBBlog class >> defaultAdminLogin
^ 'admin'

Now we create a default admin.

TBBlog >> createAdministrator
^ TBAdministrator

login: self class defaultAdminLogin
password: self class defaultAdminPassword

And we initialize the blog to set a default administrateur.

TBBlog >> initialize
super initialize.
posts := OrderedCollection new.
adminUser := self createAdministrator

8.13 Setting a New Admin

We should not recreate the blog:

TBBlog reset; createDemoPosts

We can now modify the admin information as follows:

|admin|
admin := TBBlog current administrator.
admin login: 'luke'.
admin password: 'thebrightside'.
TBBlog current save

Note that without doing anything, the blog admin information has been
saved by Voyage in the database. Indeed the class TBBlog is a Voyage root,

69

Authentication and Session

all its atttributes are automatically stored in the database when it received
the message save.

Possible Enhancements

Define some tests for the extensions by writing new unit tests.

8.14 Integrating the Admin Information

Let us modify the method tryConnectionWithLogin:andPassword: so that
it uses the current blog admin identifiers. Note that we are comparing the
hash SHA256 of the password since we do not store the password.

TBPostsListComponent >> tryConnectionWithLogin: login andPassword:
password

(login = self blog administrator login and: [
(SHA256 hashMessage: password) = self blog administrator

password])
ifTrue: [self goToAdministrationView]
ifFalse: [self loginErrorOccurred]

8.15 Storing the Admin in the Current Session

With the current setup, when the blog admin wants to navigate between the
private and public part, he must reconnects each time. We will simplify this
situation but storing the current admin information in the session when the
connection is succesful.

A session object is given to the each instance of the application. Such ses-
sion allows on to keep information which are shared and accessible between
components.

We will then store the current admin in a session and modify the compo-
nents to display buttons that support a simplified navigation when the ad-
min is logged.

When he explicitely disconnect or when the session expires, we delete the
current session.

Figure 8-7 shows the navigation between the pages of TinyBlog.

8.16 Definition and use of specific session

Let us start to define a subclass of WASession and name it TBSession. We
add in this new class an instance variable that stores the current admin.

70

8.16 Definition and use of specific session

Partie publique (non connecté) Fenêtre modale d’identification

Partie administration (connecté)Partie publique (connecté)

Figure 8-7 Navigation and identification in TinyBlog.

WASession subclass: #TBSession
instanceVariableNames: 'currentAdmin'
classVariableNames: ''
package: 'TinyBlog-Components'

TBSession >> currentAdmin
^ currentAdmin

TBSession >> currentAdmin: anObject
currentAdmin := anObject

We define a method isLogged allows one to know if the administration is
logged.

TBSession >> isLogged
^ self currentAdmin notNil

Now we should indicate to Seaside to use TBSession as the class of the cur-
rent session for our application. This initialization is done in the class method
initialize in the class TBApplicationRootComponent as follows:

TBApplicationRootComponent class >> initialize
"self initialize"
| app |
app := WAAdmin register: self asApplicationAt: 'TinyBlog'.
app

preferenceAt: #sessionClass put: TBSession.
app

addLibrary: JQDeploymentLibrary;

71

Authentication and Session

addLibrary: JQUiDeploymentLibrary;
addLibrary: TBSDeploymentLibrary

Do not forget to exectute this expression TBApplicationRootComponent
initialize before testing the application.

8.17 Storing the Current Admin

When a connection is successful, we add the admin object to the current
session using the message currentAdmin:. Note that the current session
is available to every Seaside component via self session.

TBPostsListComponent >> tryConnectionWithLogin: login andPassword:
password

(login = self blog administrator login and: [
(SHA256 hashMessage: password) = self blog administrator

password])
ifTrue: [

self session currentAdmin: self blog administrator.
self goToAdministrationView]

ifFalse: [self loginErrorOccurred]

8.18 Simplified navigation

To put in place the simplified navigation we discussed above, we modify the
header to display either a login button or a a simple navigation button to the
admin part without forcing any reconnection. For this we use the session
and the fact that we can know if a user is logged.

TBHeaderComponent >> renderButtonsOn: html
self session isLogged

ifTrue: [self renderSimpleAdminButtonOn: html]
ifFalse: [self renderModalLoginButtonOn: html]

You can test this new navigation but first create a new session (’New Ses-
sion’ button). One reconnected the admin is added in session. Note that the
deconnection button does not work correctly since it does invalidate the ses-
sion.

8.19 Managing Deconnection

We add a method reset on our session object to delete the current admin,
invalidate the current session and redirect to the application entry point.

72

8.20 Simplified Navigation to the Public Part

TBSession >> reset
currentAdmin := nil.

self requestContext redirectTo: self application url.
self unregister.

Now we modify the header deconnection button to send the message reset
to the correct session.

TBAdminHeaderComponent >> renderDisconnectButtonOn: html
html tbsNavbarButton

tbsPullRight;
callback: [self session reset];
with: [

html text: 'Disconnect '.
html tbsGlyphIcon iconLogout]

Now we ’Disconnect’ button works the way it should.

8.20 Simplified Navigation to the Public Part

We can add now a button in the header of the admin part to go back to the
public part without being forced to get disconnected.

TBAdminHeaderComponent >> renderButtonsOn: html
html form: [
self renderDisconnectButtonOn: html.
self renderPublicViewButtonOn: html]

TBAdminHeaderComponent >> renderPublicViewButtonOn: html
self session isLogged ifTrue: [

html tbsNavbarButton
tbsPullRight;
callback: [component goToPostListView];
with: [

html tbsGlyphIcon iconEyeOpen.
html text: ' Public View']]

Now you can test the naviagtion. It should correspond to the situation de-
picted by Figure 8-7.

8.21 Conclusion

We put in place an authentication for TinyBlog. We create a reusable modal
component. We made the distinction between component displayed when a
user is connected or ot not and ease the navigation of a connected user using
session.

We are now ready for the administration part of the application and we will
work on this in the next chapter. We will take advantage of it to show and
advanced aspect: the automatic form generation.

73

Authentication and Session

Possible Enhancements

You can:

• Add the admin logging in the header

• Manage multipel admin accounts.

74

CHA P T E R9
Administration Web Interface

and Automatic Form Generation

We will now develop the administration part of TinyBlog. In previous chap-
ter, we define Seaside components that interact together and where each
component is responsible for its internal state, behavior and its graphical
rendering.

In this chapter, we want to show that we can go a step further and generate
Seaside components from object descriptions using the Magritte framework.

Figure 9-1 shows a part of the result we will obtain, the other part being post
edition.

Figure 9-2 shows a survey of the architecture that we will develop in this
chapter.

9.1 Describing Domain Data

Magritte is a library that allows one to generate various representations once
the objects are described. Coupled with Seaside, Magritte generates forms
and reports. The Quuve of the Debris Publishing company is a brillant exam-
ple of Magritte power: all tables and reports are automatically generated (see
http://www.pharo.org/success).

Data validation is also done at the Magritte level instead of being dispersed
in the user interface code. This chapter will not cover such aspects. Resources
on Magritte are a chapter in the Seaside book (http://book.seaside.st) as well
as a tutorial under writing available at https://github.com/SquareBracketAssociates/

Magritte.

75

http://www.pharo.org/success
http://book.seaside.st
https://github.com/SquareBracketAssociates/Magritte
https://github.com/SquareBracketAssociates/Magritte

Figure 9-1 Post managment.

renderContentOn:
updateRoot:

main

ApplicationRoot
Component

children
renderContentOn:
updateRoot:

blog
header

ScreenComponent

renderContentOn:

HeaderComponent

renderContentOn:
currentCategory
PostsListComponent

renderContentOn:

title
date
text
post:

PostComponent

renderContentOn:
renderCategoryLinkOn:

posts
categories

CategoriesComponent

renderContentOn:
report
AdminComponent

renderContentOn:

PostsReport

Admin

renderContentOn:
validate

AuthentificationComponent

renderContentOn:

AdminHeader
Component

Figure 9-2 Administration components.

9.2 Post Description

A description is an object that specifies information on the datat of our model
as well as its type, whether the information is mandatory, if it should be
sorted and what is the default value.

9.2 Post Description

Let us start to describe the five instance variable of TBPost with Magritte.
Then we will show how we can get a form generated for us.

We will define the five following methods in the protocol ’magritte-descriptions’
of the class TBPost. Note that the method names are not important but we
follow a convention. This is the pragma <magritteDescription> (method
annotation) that allows Magritte to identify descriptions.

The post title is a string of characters that is mandatory.

TBPost >> descriptionTitle
<magritteDescription>
^ MAStringDescription new

accessor: #title;
beRequired;
yourself

A post test is a multi-line that is mandatory.

TBPost >> descriptionText
<magritteDescription>
^ MAMemoDescription new

accessor: #text;
beRequired;
yourself

The category is represented as a string and it does not have to be given. In
such case the post will be sorted in the ’Unclassified’ category.

TBPost >> descriptionCategory
<magritteDescription>
^ MAStringDescription new

accessor: #category;
yourself

The post creation time is important since it is used to sort posts. It is then
required.

TBPost >> descriptionDate
<magritteDescription>
^ MADateDescription new

accessor: #date;
beRequired;
yourself

77

Administration Web Interface and Automatic Form Generation

The visible instance variable should be a Boolean and it is required.

TBPost >> descriptionVisible
<magritteDescription>
^ MABooleanDescription new

accessor: #visible;
beRequired;
yourself

We could enrich the descriptions so that it is not possible to publish a post
with a date before the current day. We could change the description of a cat-
egory to make sure that a category is part of a predefined list of categories.
We do not do it to keep it to the main point.

9.3 Automatic Component Creation

Once a post described we can generate a Seaside component by sending a
message asComponent to an post instance.

aTBPost asComponent

Let us see how we can use this in the following.

9.4 Building a post report

We will develop a new component that will be used by the component TBAd-
minComponent. The TBPostReport component is a report that will contain
all the posts. As we will see below the report Seaside component will be gen-
erated automatically from Magritte. We could have develop only one com-
ponent but we prefer to distinguish it from the admin component for future
evolution.

The PostsReport Component

Post list is displayed using a report dynamically generated by Magritte. We
will use Magritte to implement the different behaviors of the admin activity
(post list, post creation, edition, delete of a post).

The component TBPostsReport is a subclass of TBSMagritteReport that
manages reports with Bootstrap.

TBSMagritteReport subclass: #TBPostsReport
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

We add a creation method that takes a blog as argument.

78

9.5 AdminComponent Integration with PostsReport

TBPostsReport class >> from: aBlog
| allBlogs |
allBlogs := aBlog allBlogPosts.
^ self rows: allBlogs description: allBlogs anyOne
magritteDescription

9.5 AdminComponent Integration with PostsReport

Let us now revise our TBAdminComponent to display this report.

We add an instance variable report and its accessors in the class TBAdmin-
Component.

TBScreenComponent subclass: #TBAdminComponent
instanceVariableNames: 'report'
classVariableNames: ''
package: 'TinyBlog-Components'

TBAdminComponent >> report
^ report

TBAdminComponent >> report: aReport
report := aReport

Since the report is a son component of the admin component we should not
forget to redefine the method children. Note that the collection contains
the subcomponents defined in the superclass (header component) and those
in current class (report component).

TBAdminComponent >> children
^ super children copyWith: self report

In initializemethod we instantiate a report by giving it a blog instance.

TBAdminComponent >> initialize
super initialize.
self report: (TBPostsReport from: self blog)

Let us modify the admin part rendering to display the report.

TBAdminComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [

html heading: 'Blog Admin'.
html horizontalRule.
html render: self report]

You can test this change by refreshing your web browser.

79

Administration Web Interface and Automatic Form Generation

Figure 9-3 Magritte report with posts.

9.6 Filter Columns

By default, a report displays the full data of each post. However, some columns
are not useful We should filter the columns. Here we only keep the title, cat-
egory and publication date.

We add a class method for the column selection and modifier the method
from: to use this.

TBPostsReport class >> filteredDescriptionsFrom: aBlogPost
"Filter only some descriptions for the report columns."

^ aBlogPost magritteDescription
select: [:each | #(title category date) includes: each accessor
selector]

TBPostsReport class >> from: aBlog
| allBlogs |
allBlogs := aBlog allBlogPosts.
^ self rows: allBlogs description: (self
filteredDescriptionsFrom: allBlogs anyOne)

Figure 9-3 shows the situation that you should get.

80

9.7 Report Enhancements

9.7 Report Enhancements

The previous report is pretty raw. There is no title on columns and the dis-
play column order is not fixed. This can change from one instance to the
other. To handle this, we modify the description for each instance variable.
We specify a priority and a title (message label:) as follows:

TBPost >> descriptionTitle
<magritteDescription>
^ MAStringDescription new

label: 'Title';
priority: 100;
accessor: #title;
beRequired;
yourself

TBPost >> descriptionText
<magritteDescription>
^ MAMemoDescription new

label: 'Text';
priority: 200;
accessor: #text;
beRequired;
yourself

TBPost >> descriptionCategory
<magritteDescription>
^ MAStringDescription new

label: 'Category';
priority: 300;
accessor: #category;
yourself

TBPost >> descriptionDate
<magritteDescription>
^ MADateDescription new

label: 'Date';
priority: 400;
accessor: #date;
beRequired;
yourself

TBPost >> descriptionVisible
<magritteDescription>
^ MABooleanDescription new

label: 'Visible';
priority: 500;
accessor: #visible;
beRequired;
yourself

You should obtain the situation such as represented by Figure 9-4.

81

Administration Web Interface and Automatic Form Generation

Figure 9-4 Administration Report.

9.8 Post Administration

We can now put in place a CRUD (Create Read Update Delete) allowing to
generate posts. For this, we will add a new column (instance of MACommand-
Column) to the report. This column will group the different operations using
the addCommandOn: message. This method allows one to define a link that
will execute a method of the current object. We give access to the blog the
report is build for.

TBSMagritteReport subclass: #TBPostsReport
instanceVariableNames: 'blog'
classVariableNames: ''
package: 'TinyBlog-Components'

TBSMagritteReport >> blog
^ blog

TBSMagritteReport >> blog: aTBBlog
blog := aTBBlog

The method from: adds a new column to the report. It groups the different
operations.

TBPostsReport class >> from: aBlog
| report blogPosts |
blogPosts := aBlog allBlogPosts.
report := self rows: blogPosts description: (self
filteredDescriptionsFrom: blogPosts anyOne).
report blog: aBlog.
report addColumn: (MACommandColumn new

82

9.9 Post Addition

addCommandOn: report selector: #viewPost: text: 'View';
yourself;

addCommandOn: report selector: #editPost: text: 'Edit';
yourself;

addCommandOn: report selector: #deletePost: text: 'Delete';
yourself).
^ report

We will have to define the methods linked to each operation in the following
section.

In addition this method is a bit lengthly and it does not separate the report
definition from the operation definition. A possible solution is to create an
instance method named addCommands and to call it explicitly. Try to do it to
practice.

9.9 Post Addition

Addition a post is not associated with a post and we place just before the
main report. Since this behavior is then part of the component TBPostsRe-
port, we should redefine the method renderContentOn: of the component
TBPostsReport to insert a link add.

TBPostsReport >> renderContentOn: html
html tbsGlyphIcon iconPencil.
html anchor

callback: [self addPost];
with: 'Add post'.

super renderContentOn: html

Login another time and you should get the situation as it is represented in
Figure 9-5.

9.10 CRUD Action Implementation

Each action (Create/Read/Update/Delete) should invoke methods of the in-
stance of TBPostsReport. We implement them now. A personalized form
is built based on the requested operation (it is not necessary to have a save
butten when the user is just viewing a post).

9.11 Post Addition

Let us begin with post addition. The following method renderAddPostForm:
iillustres the power of Magritte to generate forms:

83

Administration Web Interface and Automatic Form Generation

Figure 9-5 Post report with links.

TBPostsReport >> renderAddPostForm: aPost
^ aPost asComponent

addDecoration: (TBSMagritteFormDecoration buttons: { #save
-> 'Add post' . #cancel -> 'Cancel'});

yourself

Here the message asComponent, sent to the object of class TBPost, creates
directly a component. We add a decoration to this component to manage
ok/cancel.

The method addPost displays the component returned by the method ren-
derAddPostForm: and when a new post is created, it is added for the blog.
The method writeBlogPost: saves the changes the user may do.

TBPostsReport >> addPost
| post |
post := self call: (self renderAddPostForm: TBPost new).
post ifNotNil: [blog writeBlogPost: post]

In this method we see another use of the message call: to give the control
to a component. The link to add a post allows one to display a creation form
that we will make better looking later (See Figure 9-6).

84

9.11 Post Addition

Figure 9-6 Basic rendering of a post.

Post Display

To display a post in read-only mode, we define two methods similar to the
previous. Note that we use the readonly: true to indicate that the form is
not editable.

TBPostsReport >> renderViewPostForm: aPost
^ aPost asComponent

addDecoration: (TBSMagritteFormDecoration buttons: { #cancel
-> 'Back' });

readonly: true;
yourself

Looking at a post does not require any extra action other than rendering it.

TBPostsReport >> viewPost: aPost
self call: (self renderViewPostForm: aPost)

Post Edition

To edit a post, we use the same approach.

TBPostsReport >> renderEditPostForm: aPost
^ aPost asComponent addDecoration: (

TBSMagritteFormDecoration buttons: {
#save -> 'Save post'.
#cancel -> 'Cancel'});

yourself

Now the method editPost: gets the value of the call: message and saves
the changes made.

85

Administration Web Interface and Automatic Form Generation

TBPostsReport >> editPost: aPost
| post |
post := self call: (self renderEditPostForm: aPost).
post ifNotNil: [blog save]

Removing a post

We must now adding the method removeBlogPost: to the class TBBlog:

TBBlog >> removeBlogPost: aPost
posts remove: aPost ifAbsent: [].
self save.

Let us add a unit test:

TBBlogTest >> testRemoveBlogPost
self assert: blog size equals: 1.
blog removeBlogPost: blog allBlogPosts anyOne.
self assert: blog size equals: 0

To avoid an unwanted operation, we use a modal dialog so that the user con-
firms the deletion of the post. One the post is displayed, the list of managed
posts by TBPostsReport is changed and should be refresh.

TBPostsReport >> deletePost: aPost
(self confirm: 'Do you want remove this post ?')

ifTrue: [blog removeBlogPost: aPost]

9.12 Refreshing Posts

The methods addPost: and deletePost: are working well but the display
is not refreshed. We need to refresh the post lists using the expression self
refresh.

TBPostsReport >> refreshReport
self rows: blog allBlogPosts.
self refresh.

TBPostsReport >> addPost
| post |
post := self call: (self renderAddPostForm: TBPost new).
post
ifNotNil: [blog writeBlogPost: post.

self refreshReport]

TBPostsReport >> deletePost: aPost
(self confirm: 'Do you want remove this post ?')

ifTrue: [blog removeBlogPost: aPost.
self refreshReport]

86

9.13 Better Form Look

The report is not working and it even manage input constraints: for exam-
ple, mandatory fields should be filled up.

9.13 Better Form Look

To take advantage of Bootstrap, we will modify Magritte definitions. First we
specify that the report rendering based on Bootstrap.

A container in Magritte is the element that will contain the other compo-
nents created from descriptions.

TBPost >> descriptionContainer
<magritteContainer>
^ super descriptionContainer

componentRenderer: TBSMagritteFormRenderer;
yourself

We want can now pay attention of the different input fields and improve
their appearance.

TBPost >> descriptionTitle
<magritteDescription>
^ MAStringDescription new

label: 'Title';
priority: 100;
accessor: #title;
requiredErrorMessage: 'A blog post must have a title.';
comment: 'Please enter a title';
componentClass: TBSMagritteTextInputComponent;
beRequired;
yourself

TBPost >> descriptionText
<magritteDescription>
^ MAMemoDescription new

label: 'Text';
priority: 200;
accessor: #text;
beRequired;
requiredErrorMessage: 'A blog post must contain a text.';
comment: 'Please enter a text';
componentClass: TBSMagritteTextAreaComponent;
yourself

TBPost >> descriptionCategory
<magritteDescription>
^ MAStringDescription new

label: 'Category';
priority: 300;
accessor: #category;
comment: 'Unclassified if empty';

87

Administration Web Interface and Automatic Form Generation

Figure 9-7 Post form addition with Bootstrap.

componentClass: TBSMagritteTextInputComponent;
yourself

TBPost >> descriptionVisible
<magritteDescription>
^ MABooleanDescription new

checkboxLabel: 'Visible';
priority: 500;
accessor: #visible;
componentClass: TBSMagritteCheckboxComponent;
beRequired;
yourself

Based on new Magritte descriptions, forms generated now use Bootstrap. For
example, the post form edition should not looks like Figure 9-7.

9.14 Conclusion

In this chapter we defined the administration of TinyBlog based on report
built out of the posts contained in the current blog. We added links to man-
age CRUD for each post. What we show is that adding descriptions on post let
us generate Seaside components automatically.

88

CHA P T E R 10
Deploying TinyBlog

In this chapter we will show you how to deploy your Pharo application. In
particular we will show how to deploy on the cloud.

10.1 Deploying in the cloud

Now that TinyBlog is ready we will see how we can deploy your applica-
tion on a server on the web. If you want to deploy your application on a
server that you administrate, we suggest reading the last chapter of ”Enter-
prise Pharo: a Web Perspective” (http://books.pharo.org). In the following we
present a simpler solution offered by PharoCloud.

10.2 Login on PharoCloud

PharoCloud is hosting Pharo applications and it offers the possibility to freely
tests its services (ephemeric cloud subscription).

Prepare your PharoCloud account:

• Create an account on http://pharocloud.com

• Activate your account

• Connect to this account

• Activate ”Ephemeric Cloud” to get an id (API User ID) and password
(API Auth Token)

• Click on ”Open Cloud Client” and login with the previous ids

89

http://books.pharo.org
http://pharocloud.com

Deploying TinyBlog

• Once connected, you should get a web page that allows you to upload a
zip archive containing a Pharo image and its companion Pharo changes
file.

10.3 Preparing your Pharo image Pharo for PharoCloud

Get a fresh new image

You should

• First downaload a fresh PharoWeb image from http://files.pharo.org/

mooc/image/PharoWeb-60.zip.

• Launch this image and now we will configure it.

Seaside configuration

We remove the Seaside demo applications and the development tools

"Seaside Deployment configuration"
WAAdmin clearAll.
WAAdmin applicationDefaults removeParent: WADevelopmentConfiguration

instance.
WAFileHandler default: WAFileHandler new.
WAFileHandler default

preferenceAt: #fileHandlerListingClass
put: WAHtmlFileHandlerListing.

WAAdmin defaultDispatcher
register: WAFileHandler default
at: 'files'.

Loading TinyBlog

We load the latest version of the TinyBlog application. To load the version
we propose you can use :

"Load TinyBlog"
Gofer new

smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadFinalApp.

"Create Demo posts if needed"
#TBBlog asClass createDemoPosts.

You can also load your TinyBlog code from your Smalltalkhub repository.
For example doing:

90

http://files.pharo.org/mooc/image/PharoWeb-60.zip
http://files.pharo.org/mooc/image/PharoWeb-60.zip

10.4 Manually deploying on PharoCloud’s Ephemeric Cloud

"Load TinyBlog"
Gofer new

smalltalkhubUser: 'XXXX' project: 'TinyBlog';
package: 'TinyBlog';
load.

"Create Demo posts if needed"
#TBBlog asClass createDemoPosts.

TinyBlog as Default Seaside Application

We now set Tinyblog as the default Seaside application and we run the HTTP
webserver:

"Tell Seaside to use TinyBlog as default app"
WADispatcher default defaultName: 'TinyBlog'.

"Register TinyBlog on Seaside"
#TBApplicationRootComponent asClass initialize.

Lancer Seaside :

"Start HTTP server"
ZnZincServerAdaptor startOn: 8080.

Save the Image

Save your image (Menu World > save) and locally test it in your web browser
at: http://localhost:8080.

10.4 Manually deploying on PharoCloud’s Ephemeric Cloud

• Create a zip archive that contains the previously saved images and
changes files: PharoWeb.image et PharoWeb.changes.

• Drag and drop this zip file on the Ephemeric Cloud and activate the
image using the play button as shown in Figure 10-1.

By clicking on the public URL given by PharoCloud you will be able to display
your TinyBlog application as shown by Figure 10-2.

10.5 Automatic Deployment on PharoCloud’s Ephemeric

Cloud

Instead of creating a zip archive and using your web browser, the documen-
tation of PharoCloud (http://docs.swarm.pharocloud.com/) shows how to de-
ploy automatically by executing the following code (it takes some time):

91

http://localhost:8080
http://docs.swarm.pharocloud.com/

Figure 10-1 Ephemeric Cloud administration Pharo image.

Figure 10-2 Your TinyBlog Application on PharoCloud.

10.6 About Dependencies

|client EPHUSER EPHTOKEN|

Metacello new
smalltalkhubUser: 'mikefilonov' project: 'EphemericCloudAPI';
configuration: 'EphemericCloudAPI';
load.

ephUser :='<REST API UserID>'.
ephToken :='<REST API Token>'.
client := EphemericCloudClient userID: EPHUSER authToken: EPHTOKEN.

(client publishSelfAs: 'glimpse')
ifTrue:[ZnZincServerAdaptor startOn: 8080]
ifFalse: [client lastPublishedInstance hostname]

10.6 About Dependencies

Good development practice in Pharo are to specific explicitly the dependen-
cies on the used packages. This ensures the fact that we can reproduce a soft-
ware artefact. Such reproducibility supports then the use of an integration
server such as Travis or Jenkins. For this a configuration (a special class) de-
fines the architecture of a project (dependencies to other projects as well as
structure of your projects) and the associated version. This is this way that
we build automatically the PharoWeb image

In this book we do not cover this point. A full chapter is dedicated to the ex-
pression of configurations in the book named ”Deep Into Pharo” (cf. http:
//books.pharo.org).

93

http://books.pharo.org
http://books.pharo.org

Part II

Optional Elements

CHA P T E R 11
Loading Chapter Code

This chapter contains the expressions to load the code described in each of
the chapters. Such expressions can be executed in the PharoWeb 5 image
(http://files.pharo.org/mooc/image/PharoWeb-5.0.zip) or in PharoWeb 6.1 (http:
//files.pharo.org/mooc/image/PharoWeb-61.zip).

When you start for example the chapter 4, you can load all the code of the
previous chapters (1, 2, and 3) by following the process described in the fol-
lowing section ’Chapter 4’.

Obviously, we believe that this is better that you use you own code but hav-
ing our code at hand can help you in case you would be stuck.

11.1 Chapter 3: Extending and Testing the Model

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter2solution;
configuration: 'TinyBlog';
load.

Run the tests! To do so, you can use the TestRunner (World menu > Test Run-
ner), look for the package TinyBlog-Tests and click on ”Run Selected”. All
tests should be green.

11.2 Chapter 4: Data Persitency using Voyage and Mongo

You can load the correction of the previous chapter as follow:

97

http://files.pharo.org/mooc/image/PharoWeb-5.0.zip
http://files.pharo.org/mooc/image/PharoWeb-61.zip
http://files.pharo.org/mooc/image/PharoWeb-61.zip

Loading Chapter Code

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter3solution;
configuration: 'TinyBlog';
load.

Once loaded execute the tests.

11.3 Chapter 5: First Steps with Seaside

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter4solution;
configuration: 'TinyBlog';
load.

Execute the tests.

To test the application, start the HTTP server:

ZnZincServerAdaptor startOn: 8080.

Open your web browser at http://localhost:8080/TinyBlog

You may need to recreate some posts as follows:

TBBlog reset ; createDemoPosts

11.4 Chapitre 6: Web Components for TinyBlog

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter5solution;
configuration: 'TinyBlog';
load

Same process as above.

11.5 Chapitre 7: Managing Categories

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter6solution;
configuration: 'TinyBlog';

98

11.6 Chapitre 8: Authentication and Session

load

To test the application, start the HTTP server:

ZnZincServerAdaptor startOn: 8080.

Open your web browser at http://localhost:8080/TinyBlog

You may need to recreate some posts as follows:

TBBlog reset ; createDemoPosts

11.6 Chapitre 8: Authentication and Session

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter7solution;
configuration: 'TinyBlog';
load

To test the application, start the HTTP server:

ZnZincServerAdaptor startOn: 8080.

11.7 Chapitre 9: Administration Web Interface and Auto-

matic Form Generation

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter8solution;
configuration: 'TinyBlog';
load

11.8 Chapitre 10: Deploying TinyBlog

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter9solution;
configuration: 'TinyBlog';
load

You should create an account on PharoCloud and use your IDs in the follow-
ing code:

99

Loading Chapter Code

ephUser :='<your PharoCloud Ephemeric login>'.
ephToken :='<your PharoCloud Ephemeric passwod>'.

"Seaside Deployment configuration"
WAAdmin clearAll.
WAAdmin applicationDefaults removeParent: WADevelopmentConfiguration

instance.
WAFileHandler default: WAFileHandler new.
WAFileHandler default

preferenceAt: #fileHandlerListingClass
put: WAHtmlFileHandlerListing.

WAAdmin defaultDispatcher
register: WAFileHandler default
at: 'files'.

"Load TinyBlog"
Gofer new

smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadFinalApp.

"Create Demo posts if needed"
#TBBlog asClass createDemoPosts.

"Tell Seaside to use TinyBlog as default app"
WADispatcher default defaultName: 'TinyBlog'.

"Register TinyBlog on Seaside"
TBApplicationRootComponent initialize.

Metacello new
smalltalkhubUser: 'mikefilonov' project: 'EphemericCloudAPI';
configuration: 'EphemericCloudAPI';
load.

"deployment on PharoCloud"
client := #EphemericCloudClient asClass userID: ephUser authToken:

ephToken.
(client publishSelfAs: 'TinyBlog')
ifTrue:[ZnZincServerAdaptor startOn: 8080]
ifFalse: [client lastPublishedInstance hostname]

When you execute the following code (it will take some time), your Pharo
image will be automatically be deployed on PharoCloud.

100

CHA P T E R 12
Save your code

When you save the Pharo image (left click on the Pharo background to ac-
cess the World menu and select ’save’ menuentry), it contains all objects
of the system as well as all classes. This solution is useful but fragile. We
will show you how Pharoers save their code as packages and send them on
a remote dedicated server. Until Pharo 6.0, Pharo offers the possibility to
save packages using Monticello: the package versioning tool of Pharo on
http://smalltalkhub.com or http://ss3.gemstone.com. From Pharo 70 Pharo
still support Monticello but offers a much better way to store your code on
github, bitbucket, or gitlab using git with a new dedicated tool.

12.1 Up to Pharo 6.0

The Pharo Mooc (http://mooc.pharo.org) contains video that describes the
procedure to save code such as the video of the Week 1 that shows haw to
develop a counter application and save the code: http://rmod-pharo-mooc.lille.

inria.fr/MOOC/Videos/W1/C019-W1S-Videos-Redo-Counter-Traditional-FR-V3-HD_

720p_4Mbs.m4v.

Create a code repository

There are multiple online servers to freely host your code repositories such
as Smalltalkhub http://smalltalkhub.com or SS3 http://ss3.gemstone.com.

• Create an account on http://smalltalkhub.com/.

• Connect on http://smalltalkhub.com/.

101

http://smalltalkhub.com
http://ss3.gemstone.com
http://mooc.pharo.org
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019-W1S-Videos-Redo-Counter-Traditional-FR-V3-HD_720p_4Mbs.m4v
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019-W1S-Videos-Redo-Counter-Traditional-FR-V3-HD_720p_4Mbs.m4v
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019-W1S-Videos-Redo-Counter-Traditional-FR-V3-HD_720p_4Mbs.m4v
http://smalltalkhub.com
http://ss3.gemstone.com
http://smalltalkhub.com/
http://smalltalkhub.com/

Save your code

• Create a project named ”TinyBlog” (if you encounter connection prob-
lems because this web site is still in beta version, try with another web
browser or use http://ss3.gemstone.com).

Save your packages

• In Pharo, open Monticello Browser using the world menu (left click on
the Pharo background).

• Add a new repository of type SmalltalkHub or HTTP for http://ss3.gemstone.

com.

• Select this repository and select the ’Add to package...’ in its contextual
menu (right click) to add this repository to the TinyBlog package.

• You can now select you ’TinyBlog’ package and click on the ’Save’ but-
ton.

• Write a description for your commit and save. Your code has been sent
to the server.

The code of your TinyBlog application is now saved in your ’TinyBlog’ repos-
itory on remote server (e.g. Smalltalkhub). You can now load this code in a
new Pharo image. In this tutorial, we recommend you to always use a Pharo
image with all Web packages already loaded (Pharo Web image) as men-
tioned in the first chapter. This way, you can always load your code without
dealing with dependencies with third-party packages.

12.2 With Pharo 70

We suggest you read the chapter in the book ”Managing Your Code with Ice-
berg” (available at http://books.pharo.org).

We list the key points here:

• Create a project on http://www.github.com or similar.

• Use Iceberg pour add a un projet, choose to clone from github by ex-
ample.

• Create a folder 'src' with the filelist or using the command line in the
folder that you just cloned.

• Open your project and add your packages (Define a baseline to be able
to reload your code – check https://github.com/pharo-open-documentation/

pharo-wiki/blob/master/General/Baselines.md)

• Commit your code.

• Push your code on github.

102

http://ss3.gemstone.com
http://ss3.gemstone.com
http://ss3.gemstone.com
http://books.pharo.org
http://www.github.com
https://github.com/pharo-open-documentation/pharo-wiki/blob/master/General/Baselines.md
https://github.com/pharo-open-documentation/pharo-wiki/blob/master/General/Baselines.md

	Illustrations
	About this book
	Structure
	Pharo Installation
	Naming Rules
	Resources

	Core Tutorial
	TinyBlog Application: Core model
	TBPost Class
	Post Visibility
	Initialization
	Posts Creation Methods
	Creating a Post
	Adding Some Unit Tests
	Post Queries
	Conclusion

	TinyBlog: Extending and Testing the Model
	TBBlog class
	Only One Blog Object
	Testing the Model
	A First Test
	Increasing Test Coverage
	Other Functionalities
	All Posts
	Visible Posts
	All Posts of a Category
	All visible Posts of a Category
	Check unclassified posts
	Retrieve all categories

	Testing data
	Possible Extensions
	Conclusion

	Data Persitency using Voyage and Mongo
	Configure Voyage to Save TBBlog Objects
	Saving a Blog
	Revising Unit Tests
	Querying the Database
	If we would Save Posts [Discussion]
	Post as Root = Uniqueness

	Configure an External Mongo Database [Optional]
	Installing Mongo
	Connecting a Local Mongo Server
	In Case of Trouble
	Points of Attention: Changing TBBlog Definition

	Conclusion

	First Steps with Seaside
	Starting Seaside
	Bootstrap for Seaside
	Define our Application Entry Point
	First Simple Rendering
	Architecture
	Overview of TinyBlog
	Description of the Main Components

	Conclusion

	Web Components for TinyBlog
	Visual Components
	The TBScreenComponent component

	Using the TBScreenComponent component
	Pattern of Component Definition
	Populating the Blog
	Definition of TBHeaderComponent
	Usage of TBHeaderComponent
	Composite-Component Relationship
	Render an header
	Possible Enhancements

	List of Posts
	The PostComponent
	About HTML Forms

	Display Posts
	Debugging Errors
	Displaying the List of Posts with Bootstrap
	Instantiating Components in renderContentOn:
	Conclusion

	Managing Categories
	Displaying Posts by Category
	Displaying Categories
	Component Definition
	From the Post List
	The method selectCategory:

	Category Rendering
	Updating Post List
	Possible Enhancements

	Look and Layout
	Modular Code with Small Methods
	Another Pass

	Conclusion
	Possible Enhancements

	Authentication and Session
	A Simple Admin Component (v1)
	Adding 'admin' Button
	Header Revision
	Admin Button Activation
	'disconnect' Button Addition
	call:/answer: Notion

	Modal Window for Authentication
	Authentication Component Definition

	Authentication Component Rendering
	Authentication Component Integration
	Naively Managing Logins
	Managing Errors
	Modeling the Admin
	Blog admin
	Setting a New Admin
	Possible Enhancements

	Integrating the Admin Information
	Storing the Admin in the Current Session
	Definition and use of specific session
	Storing the Current Admin
	Simplified navigation
	Managing Deconnection
	Simplified Navigation to the Public Part
	Conclusion
	Possible Enhancements

	Administration Web Interface and Automatic Form Generation
	Describing Domain Data
	Post Description
	Automatic Component Creation
	Building a post report
	The PostsReport Component

	AdminComponent Integration with PostsReport
	Filter Columns
	Report Enhancements
	Post Administration
	Post Addition
	CRUD Action Implementation
	Post Addition
	Post Display
	Post Edition
	Removing a post

	Refreshing Posts
	Better Form Look
	Conclusion

	Deploying TinyBlog
	Deploying in the cloud
	Login on PharoCloud
	Preparing your Pharo image Pharo for PharoCloud
	Get a fresh new image
	Seaside configuration
	Loading TinyBlog
	TinyBlog as Default Seaside Application
	Save the Image

	Manually deploying on PharoCloud's Ephemeric Cloud
	Automatic Deployment on PharoCloud's Ephemeric Cloud
	About Dependencies

	Optional Elements
	Loading Chapter Code
	Chapter 3: Extending and Testing the Model
	Chapter 4: Data Persitency using Voyage and Mongo
	Chapter 5: First Steps with Seaside
	Chapitre 6: Web Components for TinyBlog
	Chapitre 7: Managing Categories
	Chapitre 8: Authentication and Session
	Chapitre 9: Administration Web Interface and Automatic Form Generation
	Chapitre 10: Deploying TinyBlog

	Save your code
	Up to Pharo 6.0
	Create a code repository
	Save your packages

	With Pharo 70

