N

N
N

HAL

open science

TinyBlog: Develop your First Web App with Pharo

Olivier Auverlot, Stéphane Ducasse, Luc Fabresse

» To cite this version:

Olivier Auverlot, Stéphane Ducasse, Luc Fabresse. TinyBlog: Develop your First Web App with
Pharo. Square Bracket Associates, In press. hal-02297688v1

HAL Id: hal-02297688
https://hal.science/hal-02297688v1
Submitted on 26 Sep 2019 (v1), last revised 23 Apr 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02297688v1
https://hal.archives-ouvertes.fr

TinyBlog: Develop your First
Web App with Pharo

Olivier Auverlot, Stéphane Ducasse and Luc Fabresse

June 19, 2019

Copyright 2017 by Olivier Auverlot, Stéphane Ducasse and Luc Fabresse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

* to Share: to copy, distribute and transmit the work,

+ to Remix: to adapt the work,
Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the

resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the shabook I5TgX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9

lllustrations

About this book

NamingRules
Resources

Core Tutorial

TinyBlog Application: Core model

TBPostClass v v v v v v v i i e e
PostVisibility
Initialization

CreatingaPost
Adding Some UnitTests
PostQueries e e e e e
Conclusion oo v i i it

TinyBlog: Extending and Testing the Model

TBBlogclass oo
Only OneBlogObject
TestingtheModel
AFirstTest oo b i
Increasing Test Coverage
Other Functionalities
Testingdata
Possible Extensions
Conclusion v i i i

............. 10
............. 10
............. "
............. 12

Contents

w w N o

O O 00N N

13

............. 13
............. 19
............. 19

............. 15
............. 16

............. 16
............. 18
............. 19
............. 19

4.4
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
7-4
7.5
7.6

8.1
8.2
8.3

Contents

Data Persitency using Voyage and Mongo

Configure Voyage to Save TBBlogObjects
SavingaBlog
RevisingUnitTests o v v i i it e e e e e e e e e e e e
QueryingtheDatabase,
If we would Save Posts [Discussion] v v v v v v e e e e e e
Configure an External Mongo Database [Optional]
Conclusion o o o ot e e e

First Steps with Seaside

StartingSeaside L e e e e e
BootstrapforSeaside L e
Define our Application Entry Point
FirstSimpleRendering i i
Architecture o i e e e e e e e e e e e e
Conclusion L e e e e e e e e e

Web Components for TinyBlog

Visual Components o it i e e
Using the TBScreenComponentcomponent v v v v v v v .
Pattern of Component Definition
PopulatingtheBlog i e
Definition of TBHeaderComponent v v v v v v v v v v oo
Usage of TBHeaderComponent v v v v v v v v v oo v v v
Composite-Component Relationship
Renderanheader e
Listof Posts o o ot e e e e e
The PostComponent o v i i it e e e e e
Display POStS v v o e e e e
Debugging Errors o v v i i e e e e e e e e e e
Displaying the List of Posts with Bootstrap
Instantiating Components in renderContentOn:
Conclusion . . . v o o o e e e e e e e e e

Managing Categories

Displaying Postsby Category i i i v it
CategoryRendering i i i i i i i e e e e
Updating PostList o v v it e e e e
LookandLayout v v i i e e e e
Modular Code with Small Methods
Conclusion . . . v v o o e e e e e e e e e

Authentication and Session

ASimple Admin Component (V) . . . v v v v v v v vt e e e e e e
Adding‘admin’Button L L e e e e e
Header Revision o v v i i i e e e e e e e e e e e e e e e e

21
21
23
23
24
24
25
27

29
30
30
31
33
34
35

8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

9.10

9.1

9.12

9.13

9.14

10
10.1
10.2
10.3
10.4
10.5
10.6

Contents

Authentication Component Rendering
Authentication Component Integration
Naively Managing Logins
ManagingErrorso e e e
Modelingthe Admin v i it
Blogadmin e
SettingaNew Admin
Integrating the Admin Information
Storing the Admin in the CurrentSession
Definition and use of specificsession
Storing the CurrentAdmin
Simplified navigation oL o
Managing Deconnection oo
Simplified Navigation to the PublicPart
Conclusion . . v o v vt s e e e e e e e e e e e e

Administration Web Interface and Automatic Form Generation

DescribingDomainData. v v v vt it e e e
PostDescription v v i i e
Automatic ComponentCreation v v o oL
Buildingapostreport o e
AdminComponent Integration with PostsReport
Filter Columns o o o e e e e
ReportEnhancements
Post Administration L e
PostAddition e e
CRUD Action Implementation
Post Addition e e e e e
RefreshingPosts o o i i i
Better FormLook e
Conclusion . . o . o u e e e e e e e e e

Deploying TinyBlog

Deployinginthecloud
LoginonPharoCloud
Preparing your Pharo image Pharo for PharoCloud
Manually deploying on PharoCloud's EphemericCloud
Automatic Deployment on PharoCloud’s EphemericCloud
About Dependencieso e e e

61
62
64
65
66
66
67
69
69
70
70
70
72
72
72
73
73

75
75
77
78
78
79
80
81
82
83
83
83
86
87
88

89
89
89
90
91
91
93

1.1
1.2
1.3
1.4
1.5
11.6

1.7
11.8

12
121
12.2

Contents

Optional Elements

Loading Chapter Code 97
Chapter 3: Extending and TestingtheModel 97
Chapter 4: Data Persitency using VoyageandMongo 97
Chapter 5: First Stepswith Seaside 98
Chapitre 6: Web ComponentsforTinyBlog 98
Chapitre 7: Managing Categories v v v v v v v v v v v v .. 98
Chapitre 8: Authenticationand Session 99
Chapitre 9: Administration Web Interface and Automatic Form Generation . 99
Chapitre 10: Deploying TinyBlog 99
Save your code 101
UptoPharo6.0 v i i e e e e e e e e 101
WIithPharo70 o o e 102

1-1

2-1
2-2

5-3

7-3
7-4

lllustrations

The TinyBlog application. o i v

TBPost: a really basic class mostly handlingdata.
Inspector on a TBPostinstance.

TBBlog: A simple class containingposts.

Starting the Seasideserver.
RunningSeaside. i e
Browsing the Seaside Bootstrap Library.
A Bootstrap elementanditscode.
TinyBlog is a registered Seaside application.
Afirst Seasidewebpage. o oo
Main components of TinyBlog (publicview).
Architectureof TinyBlog. i

Component Architecture of the Public View (opposed to the

Administration VIeW). v o v e e e e e e e e e e e e e e e e
Visual Componentsof TinyBlog.

ApplicationRootComponent temporarily uses a ScreenComponent

that contains a HeaderComponent..
First visual rendering of TBScreenComponent..
TinyBlog with a Bootstrap header.
The ApplicationRootComponent uses PostsListComponent..
TinyBlog displaying a basicpostsllist.
Using PostComponents to diplayseach Posts.
TinyBlogwitha Listof Posts. oo

L'architecture des composants de la partie publique with categories.

Categoriesand POStS. o . i it e e e e e e
Post listwith a betterlayout.
Final TinyBlog PublicUL. v

10

13

29
30
31
32
33
33
34
35

37
38

39
40
42
43
44
44
46

49
53
54
56

91
9-2

9-4
9-5
9-6
9-7

10-1
10-2

lllustrations

Authenticationflow. L L e 57
Simplelinktotheadminpart. 59
Header with anadminbutton. 59
Admin component under definition., 61
Authenticationcomponent.o 63
Error message in case wrong identifiers. oL 68
Navigation and identificationin TinyBlog. 71
Postmanagment. L e e e e e 76
Administration components.o e e 76
Magritte reportwith posts. o o vt e 80
Administration Report. e e e 82
Postreportwithlinks. L e 84
Basicrenderingofapost. L L e 85
Post form addition with Bootstrap. 88
Ephemeric Cloud administration Pharoimage. 92
Your TinyBlog Application on PharoCloud. 92

vi

1.1

CHAPTER I .

About this book

In this book, we will guide you to develop a mini project: a small web appli-
cation, named TinyBlog, that manages a blog system (see its final state in
Figure 1-1). The idea is that a visitor of the web site can read the posts and
that the post author can connect to the web site as admin to manage its posts
(add, remove and modify existing ones).

TinyBlog is a small pedagogical application that will show you how to define
and deploy a web application using Pharo / Seaside / Mongo and frameworks
available in Pharo such as NeoJSON.

Our goal is that you will be able to reuse and adapt such an infrastructure to
create your own web applications.

Structure

In the first part called ”Core Tutorial”, you will develop and deploy, Tiny-
Blog, an application and its administration using Pharo, the Seaside applica-
tion web server framework as well as some other frameworks such as Voyage
and Magritte. Deployment with Mongo DB is optional but it allows you to see
that Voyage is an elegant facade to persist your data within Mongo.

In the second part and optional part, we will show you some optional aspects
such as data export, use of Mustache or how to expose your application using
a REST APIL.

Presented solutions are sometimes not the best. This is done that way to
offer you a room for improvement. Our goal is not to be exhaustive. We
present one way to develop TinyBlog nevertheless we invite the reader to
read further references such as books or tutorials on Pharo to deepen his ex-
pertise and enhance his application.

About this book

® 06 TinyBlog "
@ [+ [O eph-f188d5ee.swarm.pharocloud.com (4 @

TinyBlog 1 Ephemeric clo... 1 https://www.... l https://www.... 1 TinyBlog ’ Pharo books F + liII

TinyBlog

Categories .
Report Pharo Sprint

Al 25 March 2016

m Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than 15

motivated sprinters. With the help of candies, cakes and chocolate, huge work has been done

TinyBlog R .
Brick on top of Bloc - Preview

Unclassified

25 March 2016

We are happy to announce the first preview version of Brick, a new widget set created from
scratch on top of Bloc. Brick is being developed primarily by Alex Syrel (together with Alain
Plantec, Andrei Chis and myself), and the work is sponsored by ESUG. Brick is part of the
Glamorous Toolkit effort and will provide the basis for the new versions of the development
tools.

A Private area

Working with Pharo on the Raspberry Pi

Hardware is getting cheaper and many new small devices like the famous Raspberry Pi provide
new computation power that was one once only available on regular desktop computers.

Figure 1-1 The TinyBlog application.

Finally, to help you to get over possible errors and avoid to get stuck, the last
chapter describes how to load the code described in each chapter.

Pharo Installation

In this tutorial, we suppose that you are using Pharo 6.1 with an image in

which many frameworks and web libraries have been loaded: Seaside (component-
based web application server), Magritte (an automatic generation report sys-

tem based on descriptions), Bootstrap (a library to visually tune web applica-
tions), Voyage (a framework to save your objects in document databases) and
some others.

To develop your application and follow this tutorial, we suggest to use the
image available at the following URL: http://mooc.pharo.org/image/PharoWeb-60.
zip since it contains all the mandatory packages.

You can rebuild this web Pharo image in Pharo 6.1 (http://pharo.org/download)
with the following script:

http://mooc.pharo.org/image/PharoWeb-60.zip
http://mooc.pharo.org/image/PharoWeb-60.zip
http://pharo.org/download

1.3 Naming Rules

Metacello new
smalltalkhubUser: 'PharoExtras' project: 'PharoWeb';
configuration: 'PharoWeb';
version: #stable;
load

1.3 Naming Rules

In the following, we prefix all the class names TB (for TinyBlog). You may:

+ either choose another prefix (by example TBM) to be able to load the
solution side by side to your own. This way you will be able to compare
the two solutions,

« either choose the same prefix to fusion the proposed solutions in your
code. The merge tool will help you see the differences and learn from
the changes. This solution may be more complex if you implement
your own extra functionalities.

1.4 Resources

Pharo has many strong pedagogial resources as well as a super friendly com-
munity of users. Here is a list of resources:

* http://books.pharo.org proposes books around Pharo. Pharo by Exam-
ple can help you to discove the language and its libraries. Entreprise
Pharo: a Web Perspective presents other aspects useful for web devel-
opment.

* http://book.seaside.st is one of the books on Seaside. It is currently un-
der migration as an open-source book https://github.com/SquareBracketAssociates/
DynamicWebDevelopmentWithSeaside.

http://mooc.pharo.org proposes an excellent Mooc with more that 90
videos explaining syntactically points as well as object programming
key concepts.

http://discord.gg/Sj2rhxn is a discord channel where many Pharoers ex-
change information and help each other.

http://books.pharo.org
http://book.seaside.st
https://github.com/SquareBracketAssociates/DynamicWebDevelopmentWithSeaside
https://github.com/SquareBracketAssociates/DynamicWebDevelopmentWithSeaside
http://mooc.pharo.org
http://discord.gg/Sj2rhxn

Part |

Core Tutorial

CHAPTER

TinyBlog Application: Core
model

In this chapter, we start to develop a part of the domain model of TinyBlog.
The model is particularly simple: it starts with a post. In the next chapter we
will add a blog containing a list of posts.

2.1 TBPost Class

We start with the post representation. It is super simple as shown by Figure
2-1. It is defined by the class TBPost:

Object subclass: #TBPost
instanceVariableNames: 'title text date category visible'
classVariableNames: ''
package: 'TinyBlog'

A blog post is described by 5 instance variables.

Post
visible
date
title
text
category
isVisible
isUnclassified

Figure 2-1 TBPost: a really basic class mostly handling data.

TinyBlog Application: Core model

Variable Signification

title post title
text post text
date date of writing

category name of the category of the post
visible isthe post publicly visible or not?

All of these variables have corresponding accessor methods in the accessing’
protocol. You can use a refactoring to automatically create all the following
methods:

[TBPost >> title
~ title

[TBPost >> title: aString
title := aString

[TBPost >> text
" text

[TBPost >> text: aString
text := aString

[TBPost >> date
" date

[TBPost >> date: aDate
date := aDate

[TBPost >> visible

| ~ visible

[TBPost >> visible: aBoolean
visible := aBoolean

[TBPOst >> category
~ category

[TBPost >> category: anObject
category := anObject

2.2 Post Visibility
We should add methods to make a post visible or not and also test if it is visi-
ble. Those methods are defined in the ’action’ protocol.

TBPost >> beVisible
self visible: true

TBPost >> notVisible
self visible: false

2.3

2.4

2.3 Initialization

Initialization

The initialize method (initialization’ protocol) sets the date to the cur-
rent day and the visibility to false: the user must explicitly make a post vis-
ible. This allows him to write drafts and only publish a post when the post
is finished. By default, a post belongs to the "Unclassified’ category that we
define at the class level. This category name is defined on class-side by the
unclassifiedTag method.

TBPost class >> unclassifiedTag
* 'Unclassified’

Pay attention the method unclassifiedTag should be defined on the class-
side of the class TBPost (click on the class button to define it). The other
methods are defined on the instance-side: it means that they will be applied
to TBBlog instances.

TBPost >> initialize
super initialize.
self category: TBPost unclassifiedTag.
self date: Date today.
self notVisible

In the solution above, it would be better that the initialize method does
not hard code the reference to the TBPost class. Propose a solution. The
sequence 3 of the week 6 of the Mooc can help you to understand why it is
better to avoid hardcoding class references (See http://mooc.pharo.org).

Posts Creation Methods

On class-side, we add class methods (i.e. methods execute on class) to ease
posts creation for blogs - usually such kind of methods are grouped in the
protocol ’instance creation’.

We define two methods.

[TBPost class >> title: aTitle text: aText
* self new
title: aTitle;
text: aText;
yourself

[TBPost class >> title: aTitle text: aText category: aCategory
" (self title: aTitle text: aText)
category: aCategory;
yourself

http://mooc.pharo.org

2.5

2.6

TinyBlog Application: Core model

[JoN]] TinyBlogSelutionForChapter2.image
x -0 TBPost class>>#title:text:category: ~[x-o Playground PR
Scoped Variable History Navigato V| pape > Bm-=
| w c TBPost -all- titlectext:
: Tm{ © constants titleztext:categol Lt
2 Work ny: title: 'Welcome in TinyBlog'

¥ [2] TinyBlo instancecreatiol unclassifiedTag text: 'TinyBlog is a small blog engine made with

TinyBlog Pharo and Seaside'
Tests category: 'TinyBlog'
< = ¥ A Hier © Clas ? Con

title: aTitle text: aText category: aCategory
A (self title: aTitle text: aText)
category: aCategory; |

yourself
x -0 Inspector on a TBPost [IR |
1/40]
aTBPost > |
! Raw Meta
{
Variable H Value |
€ self aTBPost |
» 1 category TinyBlog’
» I date 6 August 2018
> T text “TinyBlog is a small blog engine made with Pharo and Seaside’
> T title 'Welcome in TinyBlog'
» (€ visible false
|
"a TBPost"

self

[TBPost class>>#titlectext:c... (5] Playground | [Inspector on a TBPost |

Figure 2-2 Inspector on a TBPost instance.

Creating a Post

Let us create posts to check a bit the created objects. Using the Playground
tools execute the following expression:

TBPost
title: 'Welcome in TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.'
category: 'TinyBlog'

When you inspect the code above (right click and "Inspect it”), you will ob-
tain an inspector on the newly created object as shown in Figure 2-2.

Adding Some Unit Tests

Manually looking at objects is not a way to systematically verifying that such
objects follow some expected invariant. Even though the model is quite sim-
ple we can define some tests. In Test Driven Developpement mode we write
test first. Here we prefered to let you define a little class to familiarize with
the IDE. Let us fix this!

We define the class TBPostTest (as subclass of the class TestCase).

10

2.7 Post Queries

[TestCase subclass: #TBPostTest
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Tests'

Let us define a two tests.
[TBPostTest >> testWithoutCategoryIsUnclassified

| post |
post := TBPost
title: 'Welcome to TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.'.
self assert: post title equals: 'Welcome to TinyBlog'
self assert: post category = TBPost unclassifiedTag.

[TBPostTest >> testPostIsCreatedCorrectly

| post |
post := TBPost
title: 'Welcome to TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.
category: 'TinyBlog'.
self assert: post title equals: 'Welcome to TinyBlog'
self assert: post text equals: 'TinyBlog is a small blog engine
made with Pharo.'

Your tests should pass.

2.7 Post Queries

In the protocol ’testing’, define the following methods that checks whether a
post is visible, and whether it is classified or not.

TBPost >> isVisible
~ self visible

TBPost >> isUnclassified
" self category = TBPost unclassifiedTag

It is not really good to hardcode a reference to the class TBPost in a method
body. Propose a solution.

In addition, let us take the time to update our test to take advantage of the
new behavior.
TBPostTest >> testWithoutCategoryIsUnclassified

| post |
post := TBPost
title: 'Welcome to TinyBlog'
text: 'TinyBlog is a small blog engine made with Pharo.'.

1

TinyBlog Application: Core model

i self assert: post title equals: 'Welcome to TinyBlog'
self assert: post isUnclassified.
self deny: post isVisible

2.8 Conclusion

We develop a first part of the model (the class TBPost) and some tests. We
strongly suggest writing some other unit tests to make sure that your model
fully work.

12

3.1

CHAPTER

TinyBlog: Extending and Testing
the Model

In this chapter we extend the model and add more tests. Note that when you
will get fluent in Pharo, you will tend to write first your tests and then exe-
cute tests to code in the debugger. We did not do it because coding in the de-
bugger requires more explanation. You can see such a practice in the Mooc
video entitled Coding a Counter in the Debugger (See http://mooc.pharo.org) and
read the book Learning Object-Oriented Programming, Design with TDD in Pharo
(http://books.pharo.org).

Before starting, use back the code of the previous chapter or use the infor-
mation of Chapter ??2.

TBBlog class

We develop the class TBBlog that contains posts (as shown by Figure 3-1).
We define some unit tests.

Here is its definition:

Post
visible
date Blog
title posts
text allBlogPosts
category allBlogPostsFromCategory
isVisible
isUnclassified

Figure 3-1 TBBlog: A simple class containing posts.

13

http://mooc.pharo.org
http://books.pharo.org

TinyBlog: Extending and Testing the Model

EObject subclass: #TBBlog
instanceVariableNames: 'posts'
classVariableNames: "'
package: 'TinyBlog'

We initialize the posts instance variable to an empty collection.

[TBBlog >> initialize
super initialize.
posts := OrderedCollection new

3.2 Only One Blog Object

In the rest of this project, we assume that we will manage only one blog.
Later, you may add the possibility to manage multiple blogs such as one per
user of the TinyBlog application. Currently, we use a Singleton design pat-
tern on the TBBlog class. However pay attention since this pattern intro-
duces a kind of global variable in your application and brings less modularity
to your system. Therefore avoid to make explicit references to the singleton,
better use an instance variable whose value first refers to the singleton so
that later you can pass another object without being forced to rewrite every-
thing. Do not generalize what we are doing for this class.

Since all the management of a singleton is a class behavior, we define such
methods at the class level of TBBlog. We define an instance variable at the
class level:

[TBBlog class
instanceVariableNames: 'uniqueInstance'

Then we define two methods to manage the singleton.

[TBBlog class >> reset
uniqueInstance := nil

>TBBlog class >> current
"answer the instance of the TBRepository"
~ uniqueInstance ifNil: [uniqueInstance := self new]

We redefine the class method initialize so that when the class is loaded in
memory the singleton got reset.

TBBlog class >> initialize
self reset
3.3 Testing the Model
We now adopt a Test-Driven Development approach i.e., we will write a unit

test first and then develop the functionality until the test is green. We will
repeat this process for each functionality of the model.

14

3.4 AFirst Test

We create unit tests in the TBBlogTest class that belongs to the TinyBlog-
Tests tag. A tag is just a label to sort classes inside a package (See menu item
"Add Tag..."). We use a tag because using two packages will make this project
more complex. However, while implementing a real application, it is recom-
mended to have one (or multiple) separate test packages.

TestCase subclass: #TBBlogTest
instanceVariableNames: 'blog post first'
classVariableNames: "'
package: 'TinyBlog-Tests'

Before each test execution, the setUp method initializes the test context
(also called test fixture). For example, it erases the blog content, adds one
post and creates another temporary post that is not saved.

Pay attention since we will have to modify such behavior in the future else
each time we will run the test we will destroy our data. This is an example of
the kind of insidious behavior that a singleton introduces.

ETBBlogTest >> setUp
blog := TBBlog current.
blog removeAllPosts.

first := TBPost title: 'A title' text: 'A text' category: 'First
Category'.
blog writeBlogPost: first.

post := (TBPost title: 'Another title' text: 'Another text'
category: 'Second Category') beVisible

As you may notice, we test different configurations. Posts do not belong to
the same category, one is visible and the other is not visible.

At the end of each test, the tearDown method is executed and resets the blog.

TBBlogTest >> tearDown
TBBlog reset

Here we see one of the limits of using a Singleton. Indeed, if you deploy a
blog and then execute the tests, you will lose all posts that have been cre-
ated because we reset the Blog singleton. We will address this problem in the
future.

We will now develop tests first and then implement all functionalities to
make them green.

3.4 AFirst Test

The first test adds a post in the blog and verifies that this post is effectivly
added.

15

TinyBlog: Extending and Testing the Model

TBBlogTest >> testAddBlogPost
blog writeBlogPost: post.
self assert: blog size equals: 2

If you try to execute it, you will notice that this test is not green (does not
pass) because we did not define the methods writeBlogPost:, removeAll-
Posts and size. Let’s add them:

[TBBlog >> removeAllPosts
posts := OrderedCollection new

ETBBlog >> writeBlogPost: aPost
"Add the blog post to the list of posts."
posts add: aPost

[TBBlog >> size
* posts size

The previous test should now pass (i.e. be green).

3.5 Increasing Test Coverage

We should also add tests to cover all functionalities that we introduced.
TBBlogTest >> testSize
self assert: blog size equals: 1

TBBlogTest >> testRemoveAllBlogPosts
blog removeAllPosts.
self assert: blog size equals: 0

3.6 Other Functionalities

We follow the test-driven way of defining methods: First we define a test.
Then we verify that this test is failing. Then we define the method under test
and finally verify that the test passes.

All Posts

Let’s a test that fails:

ETBBlogTest >> testAllBlogPosts
blog writeBlogPost: post.
self assert: blog allBlogPosts size equals: 2

And the model code that makes it succeed:

ETBBlog >> allBlogPosts
* posts

Your test should pass.

16

3.6 Other Functionalities

Visible Posts

We define a new unit test accessing visible blogs:

[TBBlogTest >> testAllVisibleBlogPosts
blog writeBlogPost: post.
self assert: blog allVisibleBlogPosts size equals: 1

We add the corresponding method:

[TBBlog >> allvisibleBlogPosts
" posts select: [:p | p isVisible]

Verify that the test passes.

All Posts of a Category

The following test verifies that we can access all the posts of a given cate-
gory. Once defined, we should make sure that the test failed.

ETBBlogTest >> testAllBlogPostsFromCategory
self assert: (blog allBlogPostsFromCategory: 'First Category')
size equals: 1

Then we can define the functionality and make sure that our test passes.

ETBBlog >> allBlogPostsFromCategory: aCategory
® posts select: [:p | p category = aCategory]

Verify that the test passes.

All visible Posts of a Category

The following test verifies that we can access all the visible posts of a given
category. Once defined, we should make sure that the test failed.

[TBBlogTest >> testAllvisibleBlogPostsFromCategory
blog writeBlogPost: post.
self assert: (blog allVisibleBlogPostsFromCategory: 'First
Category') size equals: 0.
self assert: (blog allVisibleBlogPostsFromCategory: 'Second
Category') size equals: 1

Then we can define the functionality and make sure that our test passes.

[TBBlog >> allvisibleBlogPostsFromCategory: aCategory
~ posts select: [:p | p category = aCategory
and: [p isVisible]]

Verify that the test passes.

17

TinyBlog: Extending and Testing the Model

Check unclassified posts

The following test verifies that we do not have unclassified blogs in our test
fixture.

TBBlogTest >> testUnclassifiedBlogPosts
self assert: (blog allBlogPosts select: [:p | p isUnclassified
1) size equals: ©

Verify that the test passes.

Retrieve all categories

Again we define a new test and verify that it fails.

ETBBlogTest >> testAllCategories
blog writeBlogPost: post.
self assert: blog allCategories size equals: 2

We then add the new behavior.

[TBBlog >> allCategories
* (self allBlogPosts collect: [:p | p category]) asSet

Verify that the test passes.

3.7 Testing data

To help you testing the application, you can add the following method that
creates multiple posts.

>TBBlog class >> createDemoPosts
"TBBlog createDemoPosts"
self current
writeBlogPost: ((TBPost title: 'Welcome in TinyBlog' text:
'TinyBlog is a small blog engine made with Pharo.' category:
'"TinyBlog') visible: true);
writeBlogPost: ((TBPost title: 'Report Pharo Sprint' text:
'Friday, June 12 there was a Pharo sprint / Moose dojo. It was a
nice event with more than 15 motivated sprinters. With the help
of candies, cakes and chocolate, huge work has been done'
category: 'Pharo') visible: true);
writeBlogPost: ((TBPost title: 'Brick on top of Bloc -
Preview' text: 'We are happy to announce the first preview
version of Brick, a new widget set created from scratch on top
of Bloc. Brick is being developed primarily by Alex Syrel
(together with Alain Plantec, Andrei Chis and myself), and the
work is sponsored by ESUG.
Brick is part of the Glamorous Toolkit effort and will provide
the basis for the new versions of the development tools.'
category: 'Pharo') visible: true);

18

3.8

39

3.8 Possible Extensions

writeBlogPost: ((TBPost title: 'The sad story of unclassified
blog posts' text: 'So sad that I can read this.') visible: true);

writeBlogPost: ((TBPost title: 'Working with Pharo on the
Raspberry Pi' text: 'Hardware is getting cheaper and many new
small devices like the famous Raspberry Pi provide new
computation power that was one once only available on regular
desktop computers.' category: 'Pharo') visible: true)

If you inspect the result of the following snippet, you will see that the cur-
rent blog contains 5 posts:

[TBBlog createDemoPosts ; current

Be aware that if you execute this createDemoPosts method multiple times,
your blog singleton object will contain multiple copies of these posts.

Possible Extensions

Many extensions can be made such as: retrieve the list of categories that
contains at least one visible post, delete a category and all posts that it con-
tains, rename a category, move a post from one category to another, make
(in)visible one category and all its content, etc. We encourage you to develop
some of them.

Conclusion
You now have the full model of TinyBlog as well as some unit tests. You are

now ready to implement more advanced functionality such as the database
storage or a first Web front-end. Do not forget to save your code.

19

4.1

CHAPTER

Data Persitency using Voyage
and Mongo

Until now we used model objects stored in memory and it works well because
saving the Pharo image also saves these objects. Nevertheless, it would be
better to save these objects (blog posts) into an external database. Pharo sup-
ports multiple object serializers such Fuel (binary format) or STON (text for-
mat). These serializers are useful and powerful. Often with a single line of
code we can save a full graph on objects as explained in the Enterprise Pharo
book available at http://books.pharo.org.

In this chapter, we will use another possibility: saving data in a document
database such as Mongo (https://www.mongodb.com) using the Voyage frame-
work. Voyage provides a unified API to store and retrieve objects in various
document-based databases such as Mongo or UnQLite. But first, we will use
Voyage and its capacity to simulate an external database in memory. This

is really useful during development. Then, you may install a local Mongo
database and access it through Voyage. As you will see, this second step will
have a really little impact on our code.

The last chapter explains how to load the code of previous chapters if needed.

Configure Voyage to Save TBBlog Objects
By defining the class method isVoyageRoot, we declare that objects of this

class must be saved into the database as root objects. It means that the database
will contain as many documents as instances of this class.

21

http://books.pharo.org
https://www.mongodb.com

Data Persitency using Voyage and Mongo

TBBlog class >> isVoyageRoot

"Indicates that instances of this class are top level documents
in noSQL databases"
true

A

We should establish connection to real database or work in memory. Let’s
start to work in memory by using this expression:

[VOMemoryRepository new enableSingleton.

The enableSingleton message indicates to Voyage that we will use only one
database. This will free us to specify the database each time. We create and
initialize the database in memory in a class-side method named initial-
izeVoyageOnMemoryDB.

TBBlog class >> initializeVoyageOnMemoryDB
VOMemoryRepository new enableSingleton

The reset class method re-initializes the database. The initialize class
method ensures that the database is initialized when we load TinyBlog’s
code. Do not forget to execute this expression TBBlog initialize to ensure
that the database is initialized.

TBBlog class >> reset
self initializeVoyageOnMemoryDB

TBBlog class >> initialize
self reset

The class-side current method is trickier. Before using Voyage, we imple-
mented a simple singleton pattern (TBBlog current). However, it does not
work anymore because imagine that we saved our blog and that the server
stopped by accident or that we would reload a new version of the code, it
would re-initialize the connection and create a new fresh instance of the
blog. It would then be possible to end up with a different instance than the
saved one.

So we change the implementation of the current class method to make a
database request and retrieve saved objects. Since we only save one blog
object, it only consists in doing: self selectOne: [:each | true]or
self selectAll anyOne. If the database contains no instance, we create a
new one and save it.
TBBlog class >> current
~ self selectAll
ifNotEmpty: [:x | x anyOne]
ifEmpty: [self new save]

We can also remove the class instance variable named uniqueInstance that
we previously used to store our singleton object.

TBBlog class
instanceVariableNames:

22

4.2 Saving a Blog

4.2 Saving a Blog

Each time we modify a blog object, we must propagate changes into the database.
For example, we modify the writeBlogPost: method to save the blog when
we add a new post.

[TBBlog >> writeBlogPost: aPost
"Write the blog post in database"
self allBlogPosts add: aPost.
self save

We also save the blog when removing (remove method) a post from a blog.

ETBBlog >> removeAllPosts
posts := OrderedCollection new.
self save.

4.3 Revising Unit Tests

We now save blogs in a database, either in memory or in an external Mongo
server, through Voyage. We must be careful with unit tests that modify the
database because they may corrupt production data. To circumvent this dan-
gerous situation, a test should not modify the state of the system.

To solve this situation, before running a test we will keep a reference to the
current blog and create a new context and restore it after test execution.

Let’s add an instance variable previousRepository in the TBBLogTest class.

TestCase subclass: #TBBlogTest
instanceVariableNames: 'blog post first previousRepository'
classVariableNames: ''
package: 'TinyBlog-Tests'

Then, we modify the setUp method to save the database before each test
execution. We create a temporary database object that will be used by the
test.

ETBBlogTest >> setUp

previousRepository := VORepository current.

VORepository setRepository: VOMemoryRepository new.

blog := TBBlog current.

first := TBPost title: 'A title' text: 'A text' category: 'First
Category'.

blog writeBlogPost: first.

post := (TBPost title: 'Another title' text: 'Another text'
category: 'Second Category') beVisible

In the tearDown method executed after each test, we restore the original
database object.

23

4.4

4.5

Data Persitency using Voyage and Mongo

TBBlogTest >> tearDown
VORepository setRepository: previousRepository

Querying the Database

The database is currently in memory and we can access to the blog object us-
ing the current class-side method of the TBBlog class. It is enough to show
the API of Voyage since it will be the same to access a real Mongo database.

You can create posts:

[TBBlog createDemoPosts

You can count the number of blog saved. count is part of the Voyage API. In
this example, we get the result 1 because the blog is implemented as a Single-
ton.

TBBlog count
>1

Similarly, you can retrieve all saved root objects of one kind.

[TBBlog selectAll

You can also remove a root objet using the remove message.
You can discover more about the Voyage API by looking at:
« the Class class,

+ the VORepository class which is the root of the hierarchy of all databases
either in memory or external.

Those queries will be more relevant with more objects but they would be
similar.

If we would Save Posts [Discussion]

This section should not be implemented. It is only described as an exam-
ple (More information about Voyage can be found in the Enterprise Pharo
book http://books.pharo.org). We want to illustrate that declaring a class as
a Voyage root has an influence on how an instance of this class is saved and
reloaded.

So far, a post (an instance of TBPost) is not declared as a Voyage root. Post
objects are therefore saved as sub-parts into the blog object they belong

to. It implies that a post is not guaranteed to be unique after saving and re-
loading from the database. Indeed, after loading each blog objects will have
their own posts objects even if some posts were shared before saving. Shared
objects before saving will be duplicated for each root objects after loading.

24

http://books.pharo.org

4.6 Configure an External Mongo Database [Optional]

We can declare posts as root objects meaning that a post can be saved in-
dependently from a blog. It implies that saved blogs have a reference to a
TBPost object. This would preserve posts sharing between blog objects.

However, not all objects should be root objects. If we represent post com-
ments, we would not define them as root objects too because manipulating a
comment outside of its context (a post) does not make sense.

Post as Root = Uniqueness

If you want to share posts and make them unique between multiple blogs,
therefore, the TBPost class must be declared as a root in the database. In this
case, posts are saved as autonomous entities and instances of TBBlog will
reference posts entities instead of embedding them. The consequence is that
a post is unique and can be shared via reference from a blog. To achieve this,
we would define the following methods:

TBPost class >> isVoyageRoot
"Indicates that instances of this class are top level documents
in noSQL databases"
~ true
During the addition of a post to a blog, it would be important to save both
the blog and the new post.

[TBBlog >> writeBlogPost: aPost
"Write the blog post in database"
posts add: aPost.
aPost save.
self save

[TBBlog >> removeAllPosts
posts do: [:each | each remove].
posts := OrderedCollection new.
self save.

In the removeAll1Posts method, we first remove all posts, then update the
collection and finally save the blog.

4.6 Configure an External Mongo Database [Optional]

By using Voyage, we can easily save our model objects into a Mongo database.
This section explains how to proceed and the few modifications to make into
our code. This is not mandatory to do it. Even if you do it, we encourage you
to continue to work with a memory database afterwards.

25

Data Persitency using Voyage and Mongo

Installing Mongo

Regardless of your operating system (Linux, MacOS or Windows), you can in-
stall a local Mongo server on your machine (cf. https://www.mongodb.com).
This is useful to test your application without requiring an internet connec-
tion. Instead directly installing Mongo, we suggest to install Docker (https:
//www.docker.com) on your machine and execute a Mongo container using
the following command line:

[docker run --name mongo -p 27017:27017 -d mongo

Note The running Mongo server must not use authentication (it is not
the case with the default installation) because the new SCRAM authentica-
tion mechanism used by Mongo 3.0 is currently not supported by Voyage.

Some useful Docker commands:

to stop your Mongo docker container
docker stop mongo

to re-start your container
docker start mongo

to delete your container (it must be stopped before)
docker rm mongo

Connecting a Local Mongo Server

Once installed, you can connect to a Mongo server directly from Pharo. We
define the method named initializelLocalhostMongoDB to establish the
connection to the local Mongo server (localhost, default port) and access the
database named 'tinyblog’.

ETBBlog class >> initializelLocalhostMongoDB
| repository |
repository := VOMongoRepository database: 'tinyblog'.
repository enableSingleton.

Reset the class to set a new connection to the database.

ETBBlog class >> reset
self initializelLocalhostMongoDB

Now, if you recreate demo posts, they are automatically saved into your local
Mongo database:

TBBlog reset.
TBBlog createDemoPosts

26

https://www.mongodb.com
https://www.docker.com
https://www.docker.com

4.7

4.7 Conclusion

In Case of Trouble

If you need to re-initialize completely an external database, you can use the
dropDatabase method.

(VOMongoRepository
host: 'localhost'
database: 'tinyblog') dropDatabase

You can also do it in command line when mongod is running with:

[mongo tinyblog --eval "db.dropDatabase()"

or by connecting to the docker container it is running in:

docker exec -it mongo bash -c 'mongo tinyblog --eval
"db.dropDatabase()""

Points of Attention: Changing TBBlog Definition

When you use an external Mongo database instead of a memory one, each
time you add new root objects or modify the definition of some root objects,
it is important to reset the cache maintained by Voyage. It can be done us-

ing:

[VORepository current reset

Conclusion
Voyage proposes a nice API to transparently manage storage of objects either

into memory or in a document database. Application data are now saved into
a database and we are ready to build the web user interface.

27

CHAPTER

First Steps with Seaside

In this chapter, we will setup Seaside and build our first Seaside component.
In the next chapters, we will develop the public part of TinyBlog, then the
authentication system, followed by the administration part reserved to blog
administrators.

All along, we will define Seaside components http://www.seaside.st. A refer-
ence book is available online http://book.seaside.st and the firsts chapters
may help you and be a great companion of this tutorial book.

All the following work is independent of Voyage and the Mongo database. As
usual, you can download the code of previous chapters as explained in the
last chapter.

x -0 Seaside Control Panel =

% ZnZincServerAdaptor zinc on port 8080 [running]

Stop Browse

Type: ZnZincServerAdaptor
Port: 8080

Encoding: utf-8

zinc on port 8080 [running]

Figure 5-1 Starting the Seaside server.

29

http://www.seaside.st
http://book.seaside.st

5.1

5.2

®e00o

Welcome to Seaside 3.1

First Steps with Seaside

[«][] (2] (@] [+]* ocnoss0s0

Welcome to Seaside 3.1

x

n

[2)

Welcome to Seaside 3.1

Congratulations, you have a working Seaside environment.

Getting started
Test the water with the steps below:

Try out some examples

o Counter, a simple Seaside component.
= Multi-Counter, showing how Seaside components can be re-used.
o Task, illustrating Seaside's innovative approach to application control fiow.

Create your first component

Name your component: MyFirstGomponent Create

. Browse the documentation
© The Seaside Book will teach you all you need to know about Seaside and how

o build killer web applications.

search | the Seaside site
Join the community

Join the mailing list to ask
questions and get help.

search | the mailing list
Diving In

Browse the applications
installed in your image.
Gonfigure your Seaside
development environment.
Gheck out examples of
Seaside's JQuery and JQuery

= The Seaside Tutorial has 12 chapters and introduces a sample application to

explain the main features of Seaside. =g

Seaside 3.1 changes

Seaside add-on libraries

Figure 5-2 Running Seaside.

Starting Seaside

Seaside should be already loaded in your PharowWeb image. If not, please re-
fer to the loading chapter.

There are two ways to start Seaside. The first one consists in executing the
following snippet:

[ZnZincServerAdaptor startOn: 8080.

The second one uses the graphical tool named ”Seaside Control Panel” (World
Menu>Tools>Seaside Control Panel). In the contextual menu (right clic) of
this tool, select "add adaptor...” and add a server of type ZnZincServer-
Adaptor, then define the port number (e.g. 8080) it should run on (cf. Figure
5-1). By opening a web browser on the URL http://localhost:8080, you should
see the Seaside home page as displayed on Figure 5-2.

Bootstrap for Seaside

The Bootstrap library is directly accessible from Pharo and Seaside. The
repository and the documentation of Bootstrap for Pharo is available there:
http://smalltalkhub.com/#!/~TorstenBergmann/Bootstrap. But it is already loaded
into the PharoWeb image we are using with this book.

You can also find a public demonstration here: http://pharo.pharocloud.com/
bootstrap or directly browse the examples locally in your browser by clicking

30

http://localhost:8080
http://smalltalkhub.com/#!/~TorstenBergmann/Bootstrap
http://pharo.pharocloud.com/bootstrap
http://pharo.pharocloud.com/bootstrap

53

5.3 Define our Application Entry Point

|3

8 06 Bootstrap for Seaside

[alr) @ @ \@\ + | @ Iocalhost: 8080 ¢ | Reader (O]
-1 Bootstrap for Seaside I Google Hangouts. I
m Bootstrap for Seaside Home:

Bootstrap for
Seaside

Combine the sleek, intuitive, and powerful mobile first front-end
framework together with the most productive web framework and
the hottest innovative open source development platform for faster
and easier web application development using the latest version of
Bootstrap for Seaside

Browse Examples

New Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 5-3 Browsing the Seaside Bootstrap Library.

on the bootstrap link in the list of applications hosted by Seaside or directly
enter this URL http://localhost:8080/bootstrap. You should see Bootstrap ex-
amples as shown in Figure 5-3.

By clicking on the Examples link at the bottom of the page, you can see both
Bootstrap graphical elements and the Seaside code needed to obtain them

(cf. Figure 5-4).

Define our Application Entry Point

Create a class named TBApplicationRootComponent which will be the entry

point of the application.

WAComponent subclass: #TBApplicationRootComponent
instanceVariableNames: ''

classVariableNames: "'
package: 'TinyBlog-Components'

We register the TinyBlog application into the Seaside application server by
defining the initialize class method into the 'initialization' protocol.
We also integrate dependencies to the Bootstrap framework (CSS and JS files
will be embedded in the application).

31

http://localhost:8080/bootstrap

First Steps with Seaside

- #|® + @ ocalnostsoso ¢ °

Bootstrap for Seaside Google Hangouts ¥ [
Batcned List

Widget Well donel You sucoessfully read this important alert message.
Breadcrumbs

Button Heads up! This alert needs your attention, but it's not super important
dropdowns
Buttons Warning! Best check yo self, you're not looking too good.

Button groups

Carousel ©Oh snap! Change a few things up and try submitting again.

Code

Links in Alerts

1o be done

Dropdowns

Alerts and
Confirmations.

Smalltalk source code

Forms

Giyphicons

renderExampleOn: htmi
Grid system
htmi heading level: 2; with: ‘Examples’.

Helper classes
html tosAlert
beSuccess;

Images
a with: [htm strong: ‘Well done". htmi text: * You successfully read this important alert message.'].

New Session Configure Halos Profile Memory XHTML 0/4 ms

Figure 5-4 A Bootstrap element and its code.

[TBApplicationRootComponent class >> initialize
"self initialize"
| app |
app := WAAdmin register: self asApplicationAt: 'TinyBlog'.
app
addLibrary: JQDeploymentLibrary;
addLibrary: JQUiDeploymentLibrary;
addLibrary: TBSDeploymentLibrary

Once declared, you should execute this method with TBApplicationRoot-
Component initialize. Indeed, class-side initialize methods are exe-
cuted at loading-time of a class but since the class already exists, we must
execute it by hand.

We also add a method named canBeRoot to specify that TBApplication-
RootComponent is not a simple Seaside component but a complete applica-
tion. This component will be automatically instantiated when a user con-
nects to the application.

TBApplicationRootComponent class >> canBeRoot
* true

You can verify that your application is correctly registered into Seaside by
connecting to the Seaside server through your web browser, click on "Browse
the applications installed in your image” and then see that TinyBlog ap-
pears in the list as illustrated on Figure 5-5. Alternatively, you can visit http:
//localhost:8080/TinyBlog.

32

http://localhost:8080/TinyBlog
http://localhost:8080/TinyBlog

54

5.4 First Simple Rendering

eo0o Dispatcher at / e

<> | (][22 (@] [+] ¥ ocmostsos0 ¢ [Readec J(O]
i Dispatcher at / -

ide™

Dispatcher at /

o Dispatcher

TinyBlog Application

bootstrap Application

bootstrap-examples Application

brouse Application

config Application

examples/ Dispatcher

files File Library

javascript/ Dispatcher

magritte/ Dispatcher

seaside Legacy redirection

status Application

tests/ Dispatcher

tools/ Dispatcher

welcome Application

Figure 5-5 TinyBlog is a registered Seaside application.
800 Seaside
alr | |D] (2] | [+ O ocahost:8080
Seaside
TinyBlog

Figure 5-6 A first Seaside web page.

First Simple Rendering
Let’s add an instance method named renderContentOn: in rendering pro-
tocol to make our application displaying something.

TBApplicationRootComponent >> renderContentOn: html
html text: 'TinyBlog'

If you open http://localhost:8080/TinyBlog in your web browser, the page should
look like the one on Figure 5-6.

You can customize the web page header and declare it as HTML 5 compliant
by redefining the updateRoot: method.

33

http://localhost:8080/TinyBlog

5.5

First Steps with Seaside

CategoriesComponent Root
Component HeaderComponent
8006 yBlog {'
(212} () (2] (@] []6 ocairoseaosy 3 e ||
TinyBlog e
\m Working with Pharo on the Raspberry Pi
Pharo 12 December 2015
Ty Haro ting cheaper and many Ik the famous Raspberry P provid
new computaton power that y avallable o reg his
capable “PI anables people of all ages to explore computing and combined

Unclassified
with powerful software environments like Pharo the Pi can be used for interesting projects.

@@signin : :
Brick on top of Bloc - Preview
12 D0cember 2016
We are happy to announce the fstpreview version of Brick, a new widget set created from
scrateh on 0p of Boc. Brick s eing developed primarly by Alex Syre (together with Alain
Plantec, Andrei Chis and myself), and the work is sponsored by ESUG. Brick is part of the
Glamorous Toolkit effort and will provide the basis for the new versions of the development tools.

Report Pharo Sprint

1200comber 2016

PostComponent Friday, une 12 here was a Pharo sprint/ Mooss dojo. It was aice event with more than 15
motiated spriners. With he help of candies, cakes and chocolate, uge work has been done

New Session Configure Halos Profile Memory XHTML 0/3 ms

TBPostsListComponent

Figure 5-7 Main components of TinyBlog (public view).

TBApplicationRootComponent >> updateRoot: anHtmlRoot
super updateRoot: anHtmlRoot.
anHtmlRoot beHtml5.
anHtmlRoot title: 'TinyBlog'

The title: message is responsible for setting the page title, as can be seen
in your web browser’s title bar. The TBApplicationRootComponent com-
ponent is the root component of our application. It will not display a lot of
things. In the following, it will contain and display other components. For
example, a component to display posts to the blog readers, a component to
administrate the blog and its posts, ...

Architecture

We are now ready to define the visual components of our web application.

Overview of TinyBlog

Figure 6-2 shows an overview of them and their responsibilities while Fig-
ure 5-8 shows the general architecture of our application and the relations
between those components.

34

5.6 Conclusion

Registry Entry Point

Apg:;a;:)c:‘li(:ot blog HeaderComponent
- header
:Eiz‘erContemOn' children renderContentOn:
updateRoot: : renderContentOn:
P! - updateRoot:
AdminHeader
—— Component
AuthentificationComponent
renderContentOn:
renderContentOn:
validate
CategoriesComponent AdminComponent
posts PostsListComponent report
categories [<—>| currentCategory renderContentOn:
renderContentOn: renderContentOn:
renderCategoryLinkOn:
titlePcvstCoch:ment PostsReport
?;(tte renderContentOn:
post:
User renderContentOn: Admin

Figure 5-8 Architecture of TinyBlog.

Description of the Main Components

To ease your understanding of the incremental development of this applica-
tion, Figure 5-8 describes the targeted architecture.

« ApplicationRootComponent is the entry point registered into Seaside.
This component contains components inheriting from the abstract
class ScreenComponent.

+ ScreenComponent is the root of the components used to build the
public and administration view of the application. It is composed of
a header.

* PostsListComponent is the main component that displays the posts.
It is composed of instances of PostComponent) and manages cate-
gories.

+ AdminComponent is the main component of the administration view.
It is composed of a report component (instance of PostsReport) built
using Magritte.

5.6 Conclusion
We are now ready to start the development of the described components.
In the next chapters, we guide you linearly to develop those components. If

you feel lost at some point, we invite you to come back on this architecture
overview to better understand what we are developing.

35

6.1

CHAPTER 6 .

Web Components for TinyBlog

In this chapter, we build the public view of TinyBlog that displays the posts
of the blog. Figure 6-1 shows the components we will work on during this
chapter. If you feel lost at any moment, please refer to it.

Before starting, you can load the code of previous chapters as described in
the last chapter of this book.

Visual Components

Figure 6-2 shows the visual components we will define in this chapter and
where they will be displayed.

ScreenComponent
blog

HeaderComponent
Component

A header
renderContenton: children renderContentOn:
updateRoot: rendercanlgntor\
updateRoot:

PostsListComponent
renderContentOn:

[__PostComponent |
title

date

text

post:

User renderContentOn:

Figure 6-1 Component Architecture of the Public View (opposed to the Adminis-
tration View).

37

Web Components for TinyBlog

Root
Component HeaderComponent
enoe TinyBlog o
(41>][] (2] (@] [+ iocatnost8080 [Reader ALY
TinyBlog /

Welcome in TinyBlog
2015.1211723000010000

TinyBlog is a smal blog engine made with Pharo.

Report Pharo Sprint
2015.12-1172800:0040000

Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than 15 motivated sprinters.
With the help of candies, cakes and chocolate, huge work has been done

Brick on top of Bloc - Preview

2015-12-11723:00:00400:00

PostComponent

We are happy o announce the first preview version of Brick, a new widget set created from scratch on top of Bloc.
Brick s being developed primarily by Alex Syrel (together with Alain Plantec, Andrei Chis and myself), and the work
Is sponsored by ESUG. Brick is part of the Glamorous Toolkit effort and will provide the basis for the new versions
of the development tools.

New Session Configure Halos Profie Memory XHTML 0/0 ms \

TBPostsListComponent

Figure 6-2 Visual Components of TinyBlog.

The TBScreenComponent component

All components contained in TBApplicationRootComponent will be sub-
classes of the abstract class TBScreenComponent. This class allows us to fac-
torize shared behavior between all our components.

WAComponent subclass: #TBScreenComponent
instanceVariableNames: ''
classVariableNames: "'
package: 'TinyBlog-Components'

All components need to access the model of our application. Therefore, in
the "accessing’ protocol, we add a blog method that returns the current in-
stance of TBB1log (the singleton). In the future, if you want to manage multi-
ple blogs, you will modify this method and return the blog object it has been
configured with.

TBScreenComponent >> blog
"Return the current blog. In the future we will ask the
session to return the blog of the currently logged in user."
* TBBlog current

Let’s define a method renderContentOn: on this new component that tem-
porarily displays a message. If you refresh your browser, nothing appears
because this new component is not displayed at all yet.

TBScreenComponent >> renderContentOn: html
html text: 'Hello from TBScreenComponent'

38

6.2 Using the TBScreenComponent component

t
ApplicationRoot blSo(;reenComponen HeaderComponent
Component header
main children renderContentOn:
renderContentOn: renderContentOn:
updateRoot: updateRoot:

Figure 6-3 ApplicationRootComponent temporarily uses a ScreenCompo-
nent that contains a HeaderComponent.

6.2 Using the TBScreenComponent component

In the final architecture, TBScreenComponent is an abstract component and
should not be used directly. Nevertheless, we will use it temporarily while
developing other components.

Let’s add an instance variable main in TBApplicationRootComponent class.
We obtain the situation described in Figure 6-3.

WAComponent subclass: #TBApplicationRootComponent
instanceVariableNames: 'main'
classVariableNames: "'
package: 'TinyBlog-Components'

We initialize this instance variable in the initialize method with a new
instance of TBScreenComponent.

»TBApplicationRootComponent >> initialize
super initialize.
main := TBScreenComponent new

We make the TBApplicationRootComponent to render this sub-component.

»TBApplicationRootComponent >> renderContentOn: html
html render: main

We do not forget to declare that the object contained in main instance vari-
able is a sub-component of TBApplicationRootComponent by redefining the
children method.

TBApplicationRootComponent >> children
* { main }

Figure 6-4 shows the result that you should obtain in your browser. Cur-
rently, there is only the text: Hello from TBScreenComponent displayed
by the TBScreenComponent sub-component. (voir figure 6-4).

6.3 Pattern of Component Definition

We will often use the same following steps:

« first, we define a class and the behavior of a new component;

39

6.4

6.5

6.6

Web Components for TinyBlog

< localhost:8080/TinyBlog ¢

TinyBlog
Hello from TBScreenComponent

Figure 6-4 First visual rendering of TBScreenComponent.

+ then, we reference it from an existing component that uses it;

+ and we express the composite/sub-component relationship by redefin-
ing the children method.

Populating the Blog

You can inspect the blog object returned by TBBlog current and verify that
it contains some posts. You can also do it simply as:

[TBBlog current allBlogPosts size

If it does not, execute:

[TBBlog createDemoPosts

Definition of TBHeaderComponent

Let’s define a component named TBHeaderComponent that renders the com-
mon header of all pages of TinyBlog. This component will be inserted on the
top of all components such as TBPostsListComponent. We use the pattern
described above: define the class of the component, reference it from its en-
closing component and redefine the children method.

Here the class definition:

WAComponent subclass: #TBHeaderComponent
instanceVariableNames: ''
classVariableNames: ''
package: 'TinyBlog-Components'

Usage of TBHeaderComponent

Remember that TBScreenComponent is the (abstract) root of all components
in our final architecture. Therefore, we will introduce our header into TB-
ScreenComponent so that all its subclasses will inherit it. Since, it is not
desirable to instantiate the TBHeaderComponent each time a component is
called, we store the header in an instance variable named header.

40

6.7

6.8

6.7 Composite-Component Relationship

WAComponent subclass: #TBScreenComponent
instanceVariableNames: 'header'
classVariableNames: "'
package: 'TinyBlog-Components'

We initialize it in the initialize method categorized in the ’initialization’
protocol:

TBScreenComponent >> initialize
super initialize.
header := self createHeaderComponent

TBScreenComponent >> createHeaderComponent
“ TBHeaderComponent new

Note that we use a specific method named createHeaderComponent to cre-
ate the instantiate the header component. Redefining this method makes

it possible to completely change the header component that is used. We
will use that to display a different header component for the administration
view,

Composite-Component Relationship

In Seaside, sub-components of a component must be returned by the com-
posite when sending it the children message. So, we must define that the
TBHeaderComponent instance is a children of the TBScreenComponent com-
ponent in the Seaside component hierarchy (and not in the Pharo classes
hierarchy). We do so by specializing the method children. In this example,
it returns a collection of one element which is the instance of TBHeaderCom-
ponent referenced by the header instance variable.

TBScreenComponent >> children
* { header }

Render an header
In the renderContentOn: method (‘rendering’ protocol), we can now display
the sub-component (the header):

TBScreenComponent >> renderContentOn: html
html render: header

If you refresh your browser, nothing appears because the TBHeaderCompo-
nent has no rendering. Let’s add a renderContentOn: method on it that
displays a Bootstrap navigation header:

41

Web Components for TinyBlog

(-]

(s W) TinyBlog e
4> | (] [2] (@] [+]@ localhost:8080 ¢ [Reader] (O]
TinyBlog

New Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 6-5 TinyBlog with a Bootstrap header.

ETBHeaderCOmponent >> renderContentOn: html
html tbsNavbar beDefault; with: [
html tbsContainer: [
self renderBrandOn: html
11

[TBHeaderComponent >> renderBrandOn: html
html tbsNavbarHeader: [
html tbsNavbarBrand
url: self application url;
with: 'TinyBlog']

Your browser should now display what is shown on Figure 6-5. As usual in
Bootstrap navigation bar, the link on the title of the application (tbsNavbarBrand)
enable users to go back to home page of the application.

Possible Enhancements

The blog name should be customizable using an instance variable in the TB-
Blog class and the application header component should display this title.

42

6.9

6.9 List of Posts

ScreenComponent

ApplicationRoot HeaderComponent
blog
Component
- header -
main - renderContentOn:
- children
renderContentOn: .
renderContentOn:

updateRoot: wateﬂoot:

PostsListComponent

renderContentOn:

Figure 6-6 The ApplicationRootComponent uses PostsListComponent.

List of Posts

Let’s create a TBPostsListComponent inheriting from TBScreenComponent
to display the list of all posts. Remember that we speak about the public ac-

cess to the blog here and not the administration interface that will be devel-
oped later.

TBScreenComponent subclass: #TBPostsListComponent
instanceVariableNames: ''
classVariableNames: "'
package: 'TinyBlog-Components'

We can now modify TBApplicationRootComponent, the main component
of the application, so that it displays this new component as shown in figure
6-6. To achieve this, we modify its initialize method:

TBApplicationRootComponent >> initialize
super initialize.
main := TBPostsListComponent new

We add a setter method named main: to dynamically change the sub-component
to display but by default it is an instance of TBPostsListComponent.

TBApplicationRootComponent >> main: aComponent
main := aComponent

We now add a temporary renderContentOn: method (in the 'rendering’
protocol) on TBPostsListComponent to test during development (cf. Fig-
ure 6-7). In this method, we call the renderContentOn: of the super-class
which renders the header component.

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html text: 'Blog Posts here !!!'

If you refresh TinyBlog in your browser, you should now see what is shown
in figure 6-7.

43

Web Components for TinyBlog

TinyBlog
4 # | |@] | + | @ localhost:3080 [[+

TinyBlog

Blog Posts here !l!

New Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 6-7 TinyBlog displaying a basic posts list.

ApplicationRoot blicreenComp onent HeaderComponent
Component heagder
main - renderContentOn:
- children
renderContentOn: .
updateRoot: renderContentOn:
p - updateRoot:
PostComponent
PostsListComponent gtalfe
text
renderContentOn: ex .
post:
renderContentOn:

Figure 6-8 Using PostComponents to diplays each Posts.

6.10 The PostComponent

Now we will define TBPostComponent to display the details of a post. Each
post will be graphically displayed by an instance of TBPostComponent which
will show the post title, its date and its content as shown in figure 6-8.

>WACOmponent subclass: #TBPostComponent
instanceVariableNames: 'post'
classVariableNames: "'

package: 'TinyBlog-Components'

ETBPostComponent >> initialize
super initialize.
post := TBPost new

a4

6.11 Display Posts

ETBPostComponent >> title
~ post title

ETBPostComponent >> text
~ post text

[TBPostComponent >> date
* post date

The renderContentOn: method defines the HTML rendering of a post.

TBPostComponent >> renderContentOn: html
html heading level: 2; with: self title.
html heading level: 6; with: self date.
html text: self text

About HTML Forms

In a future chapter on the administration view, we will show how to use
Magritte to add descriptions to model objects and then use them to auto-
matically generate Seaside components. This is powerful and free developers
to manually describe forms in Seaside.

To give you a taste of that, here the equivalent code as above using Magritte:

TBPostComponent >> renderContentOn: html
"DON'T WRITE THIS YET"
html render: post asComponent

6.11 Display Posts
Before displaying available posts in the database, you should check that your
blog contains some posts:

[TBBlog current allBlogPosts size

If it contains no posts, you can recreate some:

[TBBlog createDemoPosts
Now, we just need to modify the TBPostsListComponent >> renderCon-
tentOn: method to display all visible posts in the database:

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
self blog allvisibleBlogPosts do: [:p
html render: (TBPostComponent new post: p)]

Refresh you web browser and you should get an error.

45

Web Components for TinyBlog

inyBlog
< #| | @ | + | localhost:8080 ¢ o

TinyBlog

Welcome in TinyBlog
2015-12-11T23:00:00+00:00

[TinyBlog is a small blog engine made with Pharo.

|Report Pharo Sprint
2015-12-11T23:00:00+00:00
Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than

15 motivated sprinters. With the help of candies, cakes and chocolate, huge work has
been done

|Brick on top of Bloc - Preview
2015-12-11T23:00:00+00:00

'e are happy to announce the first preview version of Brick, a new widget set created from
scratch on top of Bloc. Brick is being developed primarily by Alex Syrel (together with Alain
Plantec, Andrei Chis and myself), and the work is sponsored by ESUG. Brick is part of the
Glamorous Toolkit effort and will provide the basis for the new versions of the development

New Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 6-9 TinyBlog with a List of Posts.

6.12 Debugging Errors

By default, when an error occurs in a web application, Seaside returns an
HTML page with the error message. You can change this message or during
development, you can configure Seaside to open a debugger directly in Pharo
IDE. To configure Seaside, just execute the following snippet:

(WAAdmin defaultDispatcher handlerAt: 'TinyBlog')
exceptionHandler: WADebugErrorHandler

Now, if you refresh the web page in your browser, a debugger should open on
Pharo side. If you analyze the stack, you should see that we forgot to define
the following method:

TBPostComponent >> post: aPost
post := aPost

You can define this method in the debugger using the Create button. After
that, press the Proceed button. The web application should now correctly
renders what is shown in Figure 6-9.

6.13 Displaying the List of Posts with Bootstrap

Let’s use Bootstrap to make the list of posts more beautiful using a Bootstrap
container thanks to the message tbsContainer::

46

6.14

6.14 Instantiating Components in renderContentOn:

TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [
self blog allvisibleBlogPosts do: [:p
html render: (TBPostComponent new post: p)] 1]

Your web application should look like Figure 6-2.

Instantiating Components in renderContentOn:

We explained that the children method of a component should return its
sub-components. Indeed, before executing the renderContentOn: method
of a composite, Seaside needs to retrieve all its sub-components and their
state. However, if sub-components are instantiated in the renderContentOn:
method of the composite (such as in TBPostsListComponent>>renderCon-
tentOn:), it is not needed that children returns those sub-components.

Note that, instantiating sub-components in the rendering method is not a
good practice since it increases the loading time of the web page.

If we would store all sub-components that display posts, we should add an
instance variable postComponents.

[TBPostsListComponent >> initialize
super initialize.
postComponents := OrderedCollection new

Initialize it with posts.

ETBPostsListComponent >> postComponents

postComponents := self readSelectedPosts
collect: [:each | TBPostComponent new post: each].
~ postComponents

Redefine the children method and of course render these sub-components
in renderContentOn::

ETBPostsListComponent >> children
~ self postComponents, super children

>TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [
self postComponents do: [:p |
html render: p 1 1]

We do not do this in TinyBlog because it makes the code more complex.

47

Web Components for TinyBlog

6.15 Conclusion

In this chapter, we developed a Seaside component that renders a list of
posts. In the next chapter, we will improve this by displaying posts’ cate-
gories.

Notice that we did not care about web requests or the application state. A
Seaside programmer only define components and compose them as we would
do in desktop applications.

A Seaside component is responsible of rendering itself by redefining its ren-
derContentOn: method. It should also returns its sub-components (if no
instantiated during each rendering) by redefining the children method.

48

CHAPTER

Managing Categories

In this chapter, we add the possibility to sort posts in a category. Figure 7-1
shows you on which components we will work in this chapter.

You can find instructions to load the code of previous chapter in Chapter 11.

7.1 Displaying Posts by Category

Posts are sorted by a category. If no category is specified, posts are sorted in
a special category called "Unclassified”. To manage a list of categories, we
will define a component named TBCategoriesComponent.

ApplicationRoot ScreenComponent

blog HeaderComponent |
Com onent header
renderContenton | children] renderContentOn:
updateRoot: renderContentOn:
- updateRoot:
CategoriesComponent
posts PostsListComponent
categories [<—>{ currentCategory
renderContentOn: renderContentOn:
renderCategoryLinkOn:

PostComponent |
title

date

text

post:

User renderContentOn:

Figure 7-1 L'architecture des composants de la partie publique with categories.

49

Managing Categories

Displaying Categories

We need a component to display a list of categories defined in the blog. This
component should support the selection of one category. This component
should be able to communicate with the component TBPostsListComponent
to give it the currently selected category. Figure 7-1 described the situation.

Remember that a category is simply expressed as a string in the model we
defined in Chapter 2 and how the following test illustrates it:

testAllBlogPostsFromCategory
self assert: (blog allBlogPostsFromCategory: 'First Category')
size equals: 1

Component Definition

Let us define a new component named TBCategoriesComponent. It keeps a
sorted collection of string representing each category as well as a reference
to the component managing the post list.

EWACOmponent subclass: #TBCategoriesComponent
instanceVariableNames: 'categories postsList'
classVariableNames: "'
package: 'TinyBlog-Components'

We define the associated accessors.

[TBCategoriesComponent >> categories
" categories

[TBCategoriesComponent >> categories: aCollection
categories := aCollection asSortedCollection

ETBCategoriesComponent >> postsList: aComponent
postsList := aComponent

[TBCategoriesComponent >> postsList
~ postslist

We define a creation method as a class method.

[TBCategoriesComponent class >> categories: categories postslList:
aTBScreen
self new categories: categories; postsList: aTBScreen

A

From the Post List

In the class TBPostsListComponent, we need to add an instance variable to
store the current category.

50

7.2

7.2 Category Rendering

ETBScreenComponent subclass: #TBPostsListComponent
instanceVariableNames: 'currentCategory'
classVariableNames: "'
package: 'TinyBlog-Components'

We define its associated accessors.

ETBPostsListComponent >> currentCategory
" currentCategory

>TBPostsListComponent >> currentCategory: anObject
currentCategory := anObject

The method selectCategory:

We define the method selectCategory: (protocol ’actions’) to communi-
cate the current category to the TBPostsListComponent component.

TBCategoriesComponent >> selectCategory: aCategory
postsList currentCategory: aCategory

Category Rendering

We can now define method for the rendering of the category component on
the page. Let us call it renderCategoryLinkOn:with:, we define in particu-
lar that clicking on a category will select it as the current one. We use a call-
back (message callback:). The argument of this message is a block that can
contains any Pharo expression. This illustrates how simple is to call function
to react to event.

TBCategoriesComponent >> renderCategoryLinkOn: html with: aCategory
html tbsLinkifyListGroupItem
callback: [self selectCategory: aCategory 1];
with: aCategory

The method renderContentOn: of TBCategoriesComponent is simple: we
iterate on all categories and we display them using Bootstrap.

TBCategoriesComponent >> renderContentOn: html
html tbsListGroup: [
html tbsListGroupItem
with: [html strong: 'Categories' 1].
categories do: [:cat |
self renderCategoryLinkOn: html with: cat]]

We are nearly there. We need to display the list of categories and update the
posts based on the current category.

51

Managing Categories

7.3 Updating Post List

Now we should update the list of posts. We modify the rendering method of
the component TBPostsListComponent.

The method readSelectedPosts collects the posts to be displayed. It fil-
ters them based on the current category. When the current category is nil,
it means that the user did not select yet a category. Therefore we display all
the posts. When the current category is something else than nil, the user se-
lected a category and the application display the corresponding posts.

ETBPostsListComponent >> readSelectedPosts
* self currentCategory
ifNil: [self blog allVisibleBlogPosts]
ifNotNil: [self blog allVisibleBlogPostsFromCategory: self
currentCategory]

We modify now the method responsible of the post list rendering:

[TBPostsListComponent >> renderContentOn: html

super renderContentOn: html.

html render: (TBCategoriesComponent
categories: (self blog allCategories)
postsList: self).

html tbsContainer: [

self readSelectedPosts do: [:p |
html render: (TBPostComponent new post: p)] 1]

An instance of the component TBCategoriesComponent is added to the page
and allows one to select the current category (see Figure 7-2).

As previously explained, a new instance of TBCategoriesComponent is cre-
ated each time the component TBPostsListComponent is rendered, there-
fore it is not mandatory to add it to the children sublist of the component.

Possible Enhancements

Hardcodeing class name and the creation logic of categories and posts is not
really optimal. Propose some solution.

7.4 Look and Layout

We will not place better the component TBPostsListComponent using a
more ‘responsive’ design (as shown in Figure 7-3). It means that the CSS style
should adapt the component to the available space.

Components are placed in a Bootstrap container then positioned on a line
with two columns. Column dimension is determined based on the view-
port and resolution of the device used. The 12 columsn of Bootstrap are dis-
tributed over the category and post lists.

52

7.4 Look and Layout

80O TinyBlog "

&) [+ [@ tocalhost:8080 ¢)

TinyBlog

Categories

TinyBlog
Pharo

Unclassified

Report Pharo Sprint

11 December 2015

Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than 15
motivated sprinters. With the help of candies, cakes and chocolate, huge work has been done

Brick on top of Bloc - Preview

11 December 2015

We are happy to announce the first preview version of Brick, a new widget set created from
scratch on top of Bloc. Brick is being developed primarily by Alex Syrel (together with Alain

New Session Configure Halos Profile Memory XHTML 0/4 ms

Figure 7-2 Categories and Posts.

In the case of a low resolution, the list of categories is placed above the post
list (each element using 100% of the container width).

[TBPostsListComponent >> renderContentOn: html

super renderContentOn: html.

html tbsContainer: [

html tbsRow showGrid;
with: [
html tbsColumn
extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [
html render: (TBCategoriesComponent
categories: (self blog allCategories)
postsList: self)].
html tbsColumn
extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [
self readSelectedPosts do: [:p |
html render: (TBPostComponent new post: p) 1 1 1 1]

You should obtain a situation close to the one presented in Figure 7-3.

53

Managing Categories

TinyBlog

< 2| @ | + | localhost:8080 E2 Reacer I

TinyBlog

Report Pharo Sprint

TinyBlog 11 December 2015

Pharo Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than 15
motivated sprinters. With the help of candies, cakes and chocolate, huge work has been done

Unclassified

Brick on top of Bloc - Preview

11 December 2015

We are happy to announce the first preview version of Brick, a new widget set created from
scratch on top of Bloc. Brick is being developed primarily by Alex Syrel (together with Alain
Plantec, Andrei Chis and myself), and the work is sponsored by ESUG. Brick is part of the
Glamorous Toolkit effort and will provide the basis for the new versions of the development
tools.

Working with Pharo on the Raspberry Pi

Hardware is getting cheaper and many new small devices like the famous Raspberry Pi provide
new computation power that was one once only available on regular desktop computers.

New Session Configure Halos Profile Memory XHTML 4/10ms

Figure 7-3 Post list with a better layout.

When one selects a category, the post list is updated. However, the selected
category is not selected. We modify the following method to address this
point.

TBCategoriesComponent >> renderCategoryLinkOn: html with: aCategory

html tbsLinkifylListGroupItem
class: 'active' if: aCategory = self postsList currentCategory;
callback: [self selectCategory: aCategory 1];
with: aCategory

Even if the code works, we cannot keep the method renderContentOn: in
such state. It is far too long and not reusable. Propose a solution.

7.5 Modular Code with Small Methods

Here is our solution to the previous problem. To ease reading and future
reuse, we start to define component creation methods.

54

[TBPostsListComponent >> categoriesComponent

A

TBCategoriesComponent
categories: self blog allCategories
postsList: self

>TBPostsListC0mp0nent >> postComponentFor: aPost

~ TBPostComponent new post: aPost

7.5 Modular Code with Small Methods

ETBPostsListComponent >> renderContentOn: html
super renderContentOn: html.

html
tbsContainer: [html tbsRow
showGrid;
with: [
html tbsColumn
extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [html render: self categoriesComponent].
html tbsColumn
extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [self readSelectedPosts
do: [:p | html render: (self postComponentFor: p)]
111

Another Pass

We continue to cut this method in other smaller methods. We create one
method for each of the elementary tasks.

[TBPostsListComponent >> basicRenderCategoriesOn: html
html render: self categoriesComponent

[TBPostsListComponent >> basicRenderPostsOn: html
self readSelectedPosts do: [:p |
html render: (self postComponentFor: p)]

Then we use such tasks to simplify the method renderContentOn:.

>TBPostsListComponent >> renderContentOn: html
super renderContentOn: html.
html
tbsContainer: [
html tbsRow
showGrid;
with: [self renderCategoryColumnOn: html.
self renderPostColumnOn: html]]

ETBPostsListComponent >> renderCategoryColumnOn: html
html tbsColumn
extraSmallSize: 12;
smallSize: 2;
mediumSize: 4;
with: [self basicRenderCategoriesOn: html]

55

7.6

Managing Categories

806 TinyBlog Pl
(@) [£]0 ecamoscoo e ©
TinyBlog

Categories

Report Pharo Sprint

All

24 March 2016
m Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than 15
motivated sprinters. With the help of candies, cakes and chocolate, huge work has been done
TinyBlog
Brick on top of Bloc - Preview
Unclassified

24 March 2016

We are happy to announce the first preview version of Brick, a new widget set created from
scratch on top of Bloc. Brick is being developed primarily by Alex Syrel (together with Alain
Plantec, Andrei Chis and myself), and the work is sponsored by ESUG. Brick is part of the
Glamorous Toolkit effort and will provide the basis for the new versions of the development
tools.

Working with Pharo on the Raspberry Pi

Hardware is getting cheaper and many new small devices like the famous Raspberry Pi provide
new computation power that was one once only available on regular desktop computers.

New Session Configure Halos Profile Memory XHTML 0/3 ms

Figure 7-4 Final TinyBlog Public Ul.

TBPostsListComponent >> renderPostColumnOn: html
html tbsColumn
extraSmallSize: 12;
smallSize: 10;
mediumSize: 8;
with: [self basicRenderPostsOn: html]

The final application is showing in Figure 7-4.

Conclusion

We defined an interface for our blog using a set of components each speci-
fying its own state and responsibility. Many web applications are built the
same way reusing components. You have the foundation to build more ad-
vanced web application.

In the next chapter, we show how to manage authentification to access the
post admin part of our application.

Possible Enhancements
As exercise you can:
» sort category alphabetically, or
+ add a link named ’All’ in the category list to display all the posts.

56

CHAPTER

Authentication and Session

In this chapter we will develop a traditional scenario: the user should login

to access to the administration part of the application. He does it using a lo-
gin and password.

Figure 8-1 shows the architecture that we will reach in this chapter.

Let us start to put in place a first version that allows one to navigate between
the part of TinyBlog rendered by the component TBPostsListComponent
and a first draft of the administration component as shown in Figure 8-2.
This illustrates how to invoke a component.

oati ScreenComponent
ApplicationRoot
Component :L?agder HeaderComponent
main - -
renderContentOn: children) renderContentOn:
updateRoot: renderContentOn:
Lupcateroot updateRoot:

AdminHeader
Component

y 4
AuthentificationComponent

renderContentOn:

renderContentOn:

validate
CategoriesComponent AdminComponent
posts PostsListComponent (V1)
categories [<—>| currentCategory
renderContentOn: renderContentOn: renderContentOn:
renderCategoryLinkOn:

PostComponent
title

date

text

post:
renderContentOn:

Admin Authentification

Figure 8-1 Authentication flow.

57

Authentication and Session

In the following we will build and integrate a component managing the login
based on modal interaction. This will illustrate how we can elegantly map
filed inputs to instance variables of a component.

Finally we will show how the user information is stored into the current ses-
sion.

8.1 A Simple Admin Component (v1)

Let us define a really super simple administration component. This compo-
nent inherits from the class TBScreenComponent as mentioned in previous
chapters and illustrated in Figure 8-1.

TBScreenComponent subclass: #TBAdminComponent
instanceVariableNames: "'
classvVariableNames: "'
package: 'TinyBlog-Components'

We define a first version of the rendering method to be able to test our ap-
proach.

TBAdminComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [
html heading: 'Blog Admin'.
html horizontalRule]

8.2 Adding ‘admin’ Button

We add now a button in the header of the site (component TBHeaderCom-
ponent) so that the user can access to the admin as shown in Figure 8-2. To
do so, we modify the existing components: TBHeaderComponent (header) et
TBPostsListComponent (public part).

Let us add a button in the header:

[TBHeaderComponent >> renderContentOn: html
html tbsNavbar beDefault; with: [
html tbsContainer: [
self renderBrandOn: html.
self renderButtonsOn: html

11

>TBHeaderC0mp0nent >> renderButtonsOn: html
self renderSimpleAdminButtonOn: html

ETBHeaderCOmponent >> renderSimpleAdminButtonOn: html
html form: [
html tbsNavbarButton
tbsPullRight;

58

8.2 Adding'admin’ Button

eoe i @ 0
TinyBlog
Categories
Unclassified 6 August 2018
TinyBlog TinyBlog is a
Pharo

6 August 2018
admin

Welcome in Tin

= localh

TinyBlog

o0 e < m @ o localhost

| TinyBlog

| TinyBlog

Blog Admin

blog engine made with Phar |

eport Pharo Sprint

Friday, June 12 there was a Pharo sprint / Moos

motivated sprinters. With the help of candies, ¢

Brick on top of Bloc -

6 August 2018

New Session Configure Halos Profile Memory XHTML 2/3 ms

New Session Configure Halos Profile Memory XHTML 0/0 ms

Figure 8-2 Simple link to the admin part.

TinyBlog

‘ Categories

S a|= localhost:B080/T [V 3 [»

TinyBlog |+

El Admin View

m Welcome in TinyBlog

Pharo

19 August 2018

TinyBlog is a small blog engine made with Pharo.

meee Report Pharo Sprint

19 August 2018

Unclassified

Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than 15
motivated sprinters. With the help of candies, cakes and chocolate, huge work has been done

Brick on top of Bloc - Preview

19 August 2018

We are happy to announce the first preview version of Brick, a new widget set created from
scratch on top of Bloc. Brick is being developed primarily by Alex Syrel (together with Alain
Plantec, Andrei Chis and myself), and the work is sponscred by ESUG. Brick is part of the

Figure 8-3 Header with an admin button.

with: [

html tbsGlyphIcon iconListAlt.

html text:

' Admin View']]

When you refresh the web browser, the admin buttin is present but it does
not have any effect (See Figure 8-3).

We should define a callback on this button (message callback:) to replace
the current component (TBPostsListComponent) by the administration
component (TBAdminComponent).

59

8.3

8.4

Authentication and Session

Header Revision

Let us revise the definition of TBHeaderComponent by adding a new instance
variable named component to store and access to the current component (ei-
ther post list or admin component). This will allow us to access to the com-
ponent from the header.

EWAComponent subclass: #TBHeaderComponent
instanceVariableNames: 'component'
classVariableNames: "'

package: 'TinyBlog-Components'

ETBHeaderCOmponent >> component: anObject
component := anObject

TBHeaderComponent >> component
~ component

We add a new class method.

ETBHeaderComponent class >> from: aComponent
~ self new

component: aComponent;

yourself

Admin Button Activation

We modify the component instantiation in TBScreenComponent method to
pass the component which will be under the header.

TBScreenComponent >> createHeaderComponent
* TBHeaderComponent from: self

Note that the method createHeaderComponent is defined in the superclass
TBScreenComponent and it is applicable to all the subclasses.

We can add now the callback on the button:

ETBHeaderCOmponent >> renderSimpleAdminButtonOn: html
html form: [
html tbsNavbarButton

tbsPullRight;
callback: [component goToAdministrationView 1;
with: [

html tbsGlyphIcon iconListAlt.
html text: ' Admin View' 1]

We just need to define the method goToAdministrationView on the compo-
nent TBPostsListComponent:

TBPostsListComponent >> goToAdministrationView
self call: TBAdminComponent new

60

8.5

8.5 'disconnect’ Button Addition

o0 @ < 5] [rer] localhost:8080/TinyBlog?_s=UbjXH._ (] ul [

TinyBlog +
TinyBlog B Admin View
Blog Admin

Figure 8-4 Admin component under definition.

Before clicking on the admin button, you should renew the current session
by clicking on 'New Session’: it will recreate the component TBHeaderCom-
ponent.

You should get the situation presented in Figure 8-4. The ’Admin’ button
allows one to access the admin part v1.

Pay attention not to click twice on the admin button because we do not man-
age it yet for the admin part. We will replace it by a Disconnect button.

'disconnect’ Button Addition

When we display the admin part, we will replace the header component by a
new one. This new header will display a disconnect button.

Let us define this new header component:

ETBHeaderComponent subclass: #TBAdminHeaderComponent
instanceVariableNames: "'
classVariableNames: "'
package: 'TinyBlog-Components'

ETBAdminHeaderComponent >> renderButtonsOn: html
html form: [self renderDisconnectButtonOn: html]

The TBAdminComponent component must use this header:

[TBAdminComponent >> createHeaderComponent
~ TBAdminHeaderComponent from: self

61

Authentication and Session

Now we can specialize our new admin header to display a disconnect button.

[TBAdminHeaderComponent >> renderDisconnectButtonOn: html
html tbsNavbarButton

tbsPullRight;
callback: [component goToPostListView];
with: [

html text: 'Disconnect
html tbsGlyphIcon iconLogout]

[TBAdminComponent >> goToPostListView
self answer

What is see is that the message answer gives back the control to the compo-
nent that calls it. So we go back the post list.

Reset the current session by clicking on 'New Session’. Then you can click
on the ’Admin’ button, you should see now the admin v1 display itself with
a 'Disconnect’ button. This button allows on to go back the public part as
shown in Figure 8-2.

call:/answer: Notion

When you study the previous code, you see that we use the call:/answer:
mechanism of Seaside to navigate between the components TBPostsList-
Component and TBAdminComponent.

The message call: replaces the current component with the one passed in
argument and gives it the flow of control. The message answer: returns a
value to this call and gives back the flow of control to the calling argument.
This mechanism is really poweful and elegant. 1t is explained in the vidéo

1 of week 5 of the Pharo Mooc (http://rmod-pharo-mooc.lille.inria.fr/MOOC/
WebPortal/co/content_5.html).

Modal Window for Authentication

Let us develop now a authentication component that when invoked will open
a dialog box to request the login and password. The result we want to obtain
is shown in Figure 8-5.

There are are some libraries of components ready to be used. For example,
the Heimdal project available at http://www.github.com/DuneSt/ offers an au-
thentication component or the Steam project https://github.com/guillep/steam
offers ways to interrogate google ou twitter accounts.

Authentication Component Definition

We define a new subclass of WAComponent and its accessors. This component
contains a login, a password and a component which invoked it to access to

62

http://rmod-pharo-mooc.lille.inria.fr/MOOC/WebPortal/co/content_5.html
http://rmod-pharo-mooc.lille.inria.fr/MOOC/WebPortal/co/content_5.html
http://www.github.com/DuneSt/
https://github.com/guillep/steam

8.6 Modal Window for Authentication

8 06 TinyBlog P

) (S) (=)

Authentification

Account:
[
Password:
[

GCancel | SO

Figure 8-5 Authentication component.

the admin part.

-WAComponent subclass: #TBAuthentificationComponent
instanceVariableNames: 'password account component'
classVariableNames: "'
package: 'TinyBlog-Components'

[TBAuthentificationComponent >> account
* account

-TBAuthentificationComponent >> account: anObject
account := anObject

-TBAuthentificationComponent >> password
* password

-TBAuthentificationComponent >> password: anObject
password := anObject

-TBAuthentificationComponent >> component
~ component

[TBAuthentificationComponent >> component: anObject
component := anObject

The instance variable component will be initialized by the following class
method: classe suivante :
TBAuthentificationComponent class >> from: aComponent
" self new
component: aComponent;
yourself

63

8.7

Authentication and Session

Authentication Component Rendering

The following method renderContentOn: defines the contents of a dialog
box with the ID myAuthDialog. This ID will be used to select the component
that should be made visible when in modal mode.

This dialog box has a header and a body. Note the use of the messages tb-
sModal, tbsModalBody:, and tbsModalContent: which supports a modal
interaction with the component.

[TBAuthentificationComponent >> renderContentOn: html
html tbsModal
id: 'myAuthDialog';
with: [
html tbsModalDialog: [
html tbsModalContent: [

self renderHeaderOn: html.
self renderBodyOn: html]] 1]

The header displays a button to close the dialog box and a title with large
fonts. Note that you can also use the ESC key to close the modal window box.

[TBAuthentificationComponent >> renderHeaderOn: html
html
tbsModalHeader: [
html tbsModalCloseIcon.
html tbsModalTitle
level: 4;
with: 'Authentication']

The body of the component displays the input field for the login identifier,
password and some buttons.

[TBAuthentificationComponent >> renderBodyOn: html
html
tbsModalBody: [
html tbsForm: [
self renderAccountFieldOn: html.
self renderPasswordFieldOn: html.
html tbsModalFooter: [self renderButtonsOn: html]

11

The method renderAccountFieldOn: shows how the value of an input field
is passed and stored in an instance variable of a component when the user
finishes its input.

The parameter of the callback: message is a bloc which takes as argument
the value of the input field.

64

8.8 Authentication Component Integration

»TBAuthentificationComponent >> renderAccountFieldOn: html
html
tbsFormGroup: [html label with: 'Account'.
html textInput

tbsFormControl;
attributeAt: 'autofocus' put: 'true';
callback: [:value | account := value];

value: account]

The same process is used for the password.

[TBAuthentificationComponent >> renderPasswordFieldOn: html
html tbsFormGroup: [
html label with: 'Password'.
html passwordInput
tbsFormControl;
callback: [:value | password := value 1;
value: password]

Finally in the following renderContent0On: method, two buttons are added
at the bottom of the modal window. The 'Cancel' button which allows one
to close the window using the attribute 'data-dismiss’ and the 'SignIn' but-
ton which sends the validate using a callback.

The enter key is bound to the 'SignIn' button activation when using the
method tbsSubmitButton. This method sets the 'type’ attribute to ’submit’.

[TBAuthentificationComponent >> renderButtonsOn: html
html tbsButton
attributeAt: 'type' put: 'button';
attributeAt: 'data-dismiss' put: 'modal’;
beDefault;
value: 'Cancel'.
html tbsSubmitButton
bePrimary;
callback: [self validate];
value: 'SignIn'

In the validate method, we simply send a message to the main component
giving it the information entered by the user.

TBAuthentificationComponent >> validate
* component tryConnectionWithLogin: self account andPassword: self
password

8.8 Authentication Component Integration

To integrate our authentication component, we modify the Admin button of
the header component (TBHeaderComponent) as follows:

65

8.9

8.10

Authentication and Session

TBHeaderComponent >> renderButtonsOn: html
self renderModalLoginButtonOn: html

TBHeaderComponent >> renderModalLoginButtonOn: html
html render: (TBAuthentificationComponent from: component).
html tbsNavbarButton
tbsPullRight;
attributeAt: 'data-target' put: '#myAuthDialog';
attributeAt: 'data-toggle' put: 'modal';
with: [
html tbsGlyphIcon iconLock.
html text: ' Login']

The method renderModalLoginButtonOn: starts by rendering the compo-
nent TBAuthentificationComponent within this web page. This compo-
nent is created during each display and it does not have to be returned by
the children method. In addition, we add 'Login’ button with a icon lock.
When the user clicks on this button, the modal dialog identified with the ID
myAuthDialog will be displayed.

Reloading the TinyBlog page, you should see now a Login’ button in the
header (button that will pop up the authentication we just developed) as il-
lustrated by Figure 8-5.

Naively Managing Logins

When you click on the ’SignIn’ button you get an error. Using the Pharo de-
bugger, you can see that we should define the method tryConnectionwith-
Login:andPassword: on the component TBPostsListComponent since it is
the one sent by the callback of the button.

TBPostsListComponent >> tryConnectionWithLogin: login andPassword:
password
(login = 'admin' and: [password = 'topsecret' 1])
ifTrue: [self goToAdministrationView]
ifFalse: [self loginErrorOccurred]

For the moment we store directly the login and password in the method and
this is not really a good practice.

Managing Errors

We defined the method goToAdministrationView. Let us add the method
loginErrorOccured and a mechanism to display an error message when the
user does not use the correct identifiers as shown in Figure 8-6.

For this we will add a new instance variable showLoginError that represents
the fact that we should display an error.

66

8.1 Modeling the Admin

TBScreenComponent subclass: #TBPostsListComponent
instanceVariableNames: 'currentCategory showLoginError'
classVariableNames: "'
package: 'TinyBlog-Components'

The method loginErrorOccurred specifies that an error should be dis-
played.

TBPostsListComponent >> loginErrorOccurred
showLoginError := true

We add a method to test this state.

TBPostsListComponent >> hasLoginError
* showLoginError ifNil: [false]

We define also an error message.

TBPostsListComponent >> loginErrorMessage
~ 'Incorrect login and/or password’

We modify the method renderPostColumnOn: to perform a specific task to
handle the errors.

ETBPostsListComponent >> renderPostColumnOn: html
html tbsColumn

extraSmallSize: 12;

smallSize: 10;

mediumSize: 8;

with: [
self renderLoginErrorMessageIfAnyOn: html.
self basicRenderPostsOn: html]

The method renderLoginErrorMessageIfAnyOn: displays if necessary an
error message. It sets the instance variable showLoginError so that we do
not display the error undefinitely.

>TBPostsListComponent >> renderLoginErrorMessageIfAnyOn: html
self hasLoginError ifTrue: [
showLoginError := false.
html tbsAlert
beDanger ;
with: self loginErrorMessage

Modeling the Admin

We do not want to store the administrator identifiers in the code as we did
previously. We revise this now and will store the identifiers in a model: a
class Admin.

67

Authentication and Session

eoe < ® 0 localhost g hla

TinyBiog +
TinyBlog & Login
Categories. Inccorect login and/or password

Al

Welcome in TinyBlog

10 August 2018

Pharo

TinyBlog TinyBlog is a small blog engine made with Pharo.

Unclassified

Report Pharo Sprint
10 August 2018
Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than 15

motivated sprinters. With the help of candies, cakes and chocolate, huge work has been done

Brick on top of Bloc - Preview
10 August 2018

We are happy to announce the first preview version of Brick, a new widget set created from
scratch on top of Bloc. Brick Is being developed primarily by Alex Syrel (together with Alain
Plantec, Andrei Chis and myself), and the work is sponsored by ESUG. Brick s part of the

New Session Configure Halos Profile Memory XHTML 2/0ms

Figure 8-6 Error message in case wrong identifiers.

Let us start to enrich our TinyBlog model with the notion of administrator.
We define a class named TBAdministrator characterized by it pseudo, login
and password.

EObject subclass: #TBAdministrator
instanceVariableNames: 'login password'
classVariableNames: "'
package: 'TinyBlog'

[TBAdministrator >> login
* login

[TBAdministrator >> login: anObject
login := anObject

[TBAdministrator >> password
~ password

Note that we do not store the admin password in the instance variable pass-
word but its hash encoded in SHA256.

[TBAdministrator >> password: anObject
password := SHA256 hashMessage: anObject

We define also a new instance creation method.

[TBAdministrator class >> login: login password: password
* self new

login: login;

password: password;

yourself

You can verify that the model works by executing the following expression:

[luc := TBAdministrator login: 'luc' password: 'topsecret'.

68

8.12 Blog admin

8.12 Blog admin

We decide for simplicity that a blog has one admin. We add the instance vari-
able adminUser and an accessor in the classe TBBlog to store the blog admin.

[Object subclass: #TBBlog
instanceVariableNames: 'adminUser posts'
classVariableNames: '’
package: 'TinyBlog'

[TBBlog >> administrator
~ adminUser

We define a default login and password that we use as default. As we will see
later, we will modify such attributes and these modified attributes will be
saved at the same time that the blog in a database.

ETBBlog class >> defaultAdminPassword
" 'topsecret'

[TBBlog class >> defaultAdminLogin
"~ 'admin'

Now we create a default admin.

[TBBlog >> createAdministrator
~ TBAdministrator
login: self class defaultAdminLogin
password: self class defaultAdminPassword

And we initialize the blog to set a default administrateur.

[TBBlog >> initialize
super initialize.
posts := OrderedCollection new.
adminUser := self createAdministrator

8.13 Setting a New Admin

We should not recreate the blog:

[TBBlog reset; createDemoPosts

We can now modify the admin information as follows:

[admin]|

admin := TBBlog current administrator.
admin login: 'luke'.

admin password: 'thebrightside'.
TBBlog current save

Note that without doing anything, the blog admin information has been
saved by Voyage in the database. Indeed the class TBBlog is a Voyage root,

69

Authentication and Session

all its atttributes are automatically stored in the database when it received
the message save.

Possible Enhancements

Define some tests for the extensions by writing new unit tests.

8.14 Integrating the Admin Information

Let us modify the method tryConnectionWithLogin:andPassword: so that
it uses the current blog admin identifiers. Note that we are comparing the
hash SHA256 of the password since we do not store the password.

ETBPostsListComponent >> tryConnectionWithLogin: login andPassword:
password
(login = self blog administrator login and: [
(SHA256 hashMessage: password) = self blog administrator
password 1)
ifTrue: [self goToAdministrationView]
ifFalse: [self loginErrorOccurred]

8.15 Storing the Admin in the Current Session

With the current setup, when the blog admin wants to navigate between the
private and public part, he must reconnects each time. We will simplify this
situation but storing the current admin information in the session when the
connection is succesful.

A session object is given to the each instance of the application. Such ses-
sion allows on to keep information which are shared and accessible between
components.

We will then store the current admin in a session and modify the compo-
nents to display buttons that support a simplified navigation when the ad-
min is logged.

When he explicitely disconnect or when the session expires, we delete the
current session.

Figure 8-7 shows the navigation between the pages of TinyBlog.

8.16 Definition and use of specific session

Let us start to define a subclass of WASession and name it TBSession. We
add in this new class an instance variable that stores the current admin.

70

8.16 Definition and use of specific session

Partie publique (non connecté) Fenétre modale d’identification

eoe ¢ o ©0/o = locahost [o
Tinymion +

TinyBlog & Login

Categories

Welcome in TinyBlog
10 August 018
TiyBiog i asmal log egine ade with P

Al
Praro

mees Report Pharo Sprint

Uncassfieg | 10ARUSZ0TS
Friday, June 12 there was a Pharo sprint / Moose dojo, It was e event with more than 15
motivated sprinters. With the help of candies, Cakes and chocolate, huge work has been done.

Brick on top of Bloc - Preview

New Session Gonfigure Halos Profie Memory XHTML 0/0 ms

(connecté)

locainost 6| a eo0e ¢

Partie publique Partie administration (connecté)
e 0 = [

eo0e ¢ o

Tiotion

TinyBlog /w%g/\ ®Pubiic View | Disconnect G

- Blog Admin

Welcome in TinyBlog
- 10 August 2018

onaro TinyBlog is a small blog engine made with Pharo.

mees Report Pharo Sprint
Unclassified 10 August 2018
Frday, dune /Mossa doo. 1

Brick on top of Bloc - Preview

New Session Configure Halos Profie Memory XHTML 2/2 ms

New Session Configure Halos Profle Memory XHTML 0/0 ms

Figure 8-7 Navigation and identification in TinyBlog.

[wWASession subclass: #TBSession
instanceVariableNames: 'currentAdmin'
classVariableNames: "'

package: 'TinyBlog-Components'

TBSession >> currentAdmin
~ currentAdmin

[TBSession >> currentAdmin: anObject
currentAdmin := anObject

We define a method isLogged allows one to know if the administration is
logged.

TBSession >> islogged
~ self currentAdmin notNil

Now we should indicate to Seaside to use TBSession as the class of the cur-
rent session for our application. This initialization is done in the class method
initialize in the class TBApplicationRootComponent as follows:

[TBApplicationRootComponent class >> initialize
"self initialize"

| app |
app := WAAdmin register: self asApplicationAt: 'TinyBlog'.
app
preferenceAt: #sessionClass put: TBSession.
app

addLibrary: JQDeploymentLibrary;

71

Authentication and Session

i addLibrary: JQUiDeploymentlLibrary;
L addLibrary: TBSDeploymentLibrary

Do not forget to exectute this expression TBApplicationRootComponent
initialize before testing the application.

8.17 Storing the Current Admin

When a connection is successful, we add the admin object to the current
session using the message currentAdmin:. Note that the current session
is available to every Seaside component via self session.

[TBPostsListComponent >> tryConnectionWithLogin: login andPassword:
password
(login = self blog administrator login and: [
(SHA256 hashMessage: password) = self blog administrator
password 1)
ifTrue: [
self session currentAdmin: self blog administrator.
self goToAdministrationView]
ifFalse: [self loginErrorOccurred]

8.18 Simplified navigation

To put in place the simplified navigation we discussed above, we modify the
header to display either a login button or a a simple navigation button to the
admin part without forcing any reconnection. For this we use the session
and the fact that we can know if a user is logged.

TBHeaderComponent >> renderButtonsOn: html
self session islLogged
ifTrue: [self renderSimpleAdminButtonOn: html]
ifFalse: [self renderModalLoginButtonOn: html]

You can test this new navigation but first create a new session ('New Ses-
sion’ button). One reconnected the admin is added in session. Note that the
deconnection button does not work correctly since it does invalidate the ses-
sion.

8.19 Managing Deconnection

We add a method reset on our session object to delete the current admin,
invalidate the current session and redirect to the application entry point.

72

8.20

8.21

8.20 Simplified Navigation to the Public Part

TBSession >> reset
currentAdmin := nil.
self requestContext redirectTo: self application url.
self unregister.

Now we modify the header deconnection button to send the message reset
to the correct session.

>TBAdminHeaderComponent >> renderDisconnectButtonOn: html
html tbsNavbarButton

tbsPullRight;
callback: [self session reset];
with: [

html text: 'Disconnect
html tbsGlyphIcon iconLogout]

Now we ’Disconnect’ button works the way it should.

Simplified Navigation to the Public Part

We can add now a button in the header of the admin part to go back to the
public part without being forced to get disconnected.

ETBAdminHeaderCOmponent >> renderButtonsOn: html
html form: [
self renderDisconnectButtonOn: html.
self renderPublicViewButtonOn: html]

[TBAdminHeaderComponent >> renderPublicViewButtonOn: html
self session islLogged ifTrue: [
html tbsNavbarButton

tbsPullRight;
callback: [component goToPostListView 1;
with: [

html tbsGlyphIcon iconEyeOpen.
html text: ' Public View']]

Now you can test the naviagtion. It should correspond to the situation de-
picted by Figure 8-7.

Conclusion

We put in place an authentication for TinyBlog. We create a reusable modal
component. We made the distinction between component displayed when a
user is connected or ot not and ease the navigation of a connected user using
session.

We are now ready for the administration part of the application and we will
work on this in the next chapter. We will take advantage of it to show and
advanced aspect: the automatic form generation.

73

Authentication and Session

Possible Enhancements
You can:
» Add the admin logging in the header

+ Manage multipel admin accounts.

74

9.1

CHAPTER

Administration Web Interface
and Automatic Form Generation

We will now develop the administration part of TinyBlog. In previous chap-
ter, we define Seaside components that interact together and where each
component is responsible for its internal state, behavior and its graphical
rendering.

In this chapter, we want to show that we can go a step further and generate
Seaside components from object descriptions using the Magritte framework.

Figure 9-1 shows a part of the result we will obtain, the other part being post
edition.

Figure 9-2 shows a survey of the architecture that we will develop in this
chapter.

Describing Domain Data

Magritte is a library that allows one to generate various representations once
the objects are described. Coupled with Seaside, Magritte generates forms
and reports. The Quuve of the Debris Publishing company is a brillant exam-
ple of Magritte power: all tables and reports are automatically generated (see
http://www.pharo.org/success).

Data validation is also done at the Magritte level instead of being dispersed

in the user interface code. This chapter will not cover such aspects. Resources

on Magritte are a chapter in the Seaside book (http://book.seaside.st) as well

as a tutorial under writing available at https://github.com/SquareBracketAssociates/
Magritte.

75

http://www.pharo.org/success
http://book.seaside.st
https://github.com/SquareBracketAssociates/Magritte
https://github.com/SquareBracketAssociates/Magritte

(800 TinyBlog

=y | + [locainost:8080

m

epibud arxiv FogBugz casa trip baremes twitter MSaca Gdocs

ZtLXL ¢
ESUG: 2015 mlarchives weekly

TinyBlog

Blog Admin

Add post
Title Category Date
‘Youpi Unclassified 23 December 2015
Tiny Blog Tutorial Tiny Blog 13 December 2015
Cours 2 Lome Cours

13 December 2015

New Session Configure Halos Profile Memory XHTML 2/3 ms

View Edit Delete
View Edit Delete

View Edit Delete

Figure 9-1 Post managment.
— ScreenComponent
Ap&l)lr(:‘at:nn;t:ot blog HeaderComponent
main d header
e vy — children renderContentOn:
Ler:ji?;%c;rgte. ntOn: renderContentOn:
[updaiehoot. updateRoot:
/ AdminHeader
Authentifi Component
ifi p
renderContentOn:
renderContentOn:
validate
CategoriesComponent AdminComponent
posts PostsListComponent report
categories [<—>| currentCategory renderContentOn:
renderContentOn: renderContentOn:
renderCategoryLinkOn:
i PostComponent PostsReport
title | rosisheport |
date -
text renderContentOn:
post:
renderContentOn: Admin

Figure 9-2 Administration components.

9.2

9.2 Post Description

A description is an object that specifies information on the datat of our model
as well as its type, whether the information is mandatory, if it should be
sorted and what is the default value.

Post Description

Let us start to describe the five instance variable of TBPost with Magritte.
Then we will show how we can get a form generated for us.

We will define the five following methods in the protocol 'magritte-descriptions’
of the class TBPost. Note that the method names are not important but we
follow a convention. This is the pragma <magritteDescription> (method
annotation) that allows Magritte to identify descriptions.

The post title is a string of characters that is mandatory.

TBPost >> descriptionTitle
<magritteDescription>
" MAStringDescription new
accessor: #title;
beRequired;
yourself

A post test is a multi-line that is mandatory.

TBPost >> descriptionText
<magritteDescription>
~ MAMemoDescription new
accessor: #text;
beRequired;
yourself

The category is represented as a string and it does not have to be given. In
such case the post will be sorted in the 'Unclassified’ category.

TBPost >> descriptionCategory
<magritteDescription>
~ MAStringDescription new
accessor: #category;
yourself

The post creation time is important since it is used to sort posts. It is then
required.

TBPost >> descriptionDate
<magritteDescription>
" MADateDescription new
accessor: #date;
beRequired;
yourself

77

9.3

9.4

Administration Web Interface and Automatic Form Generation

The visible instance variable should be a Boolean and it is required.

TBPost >> descriptionVisible
<magritteDescription>
* MABooleanDescription new
accessor: tvisible;
beRequired;
yourself

We could enrich the descriptions so that it is not possible to publish a post
with a date before the current day. We could change the description of a cat-
egory to make sure that a category is part of a predefined list of categories.
We do not do it to keep it to the main point.

Automatic Component Creation

Once a post described we can generate a Seaside component by sending a
message asComponent to an post instance.

[aTBPost asComponent

Let us see how we can use this in the following.

Building a post report

We will develop a new component that will be used by the component TBAd-
minComponent. The TBPostReport component is a report that will contain
all the posts. As we will see below the report Seaside component will be gen-
erated automatically from Magritte. We could have develop only one com-
ponent but we prefer to distinguish it from the admin component for future
evolution.

The PostsReport Component

Post list is displayed using a report dynamically generated by Magritte. We
will use Magritte to implement the different behaviors of the admin activity
(post list, post creation, edition, delete of a post).

The component TBPostsReport is a subclass of TBSMagritteReport that
manages reports with Bootstrap.

TBSMagritteReport subclass: #TBPostsReport
instanceVariableNames: "'
classvVariableNames: "'
package: 'TinyBlog-Components'

We add a creation method that takes a blog as argument.

78

9.5 AdminComponent Integration with PostsReport

TBPostsReport class >> from: aBlog
| allBlogs |
allBlogs := aBlog allBlogPosts.
~ self rows: allBlogs description: allBlogs anyOne
magritteDescription

9.5 AdminComponent Integration with PostsReport

Let us now revise our TBAdminComponent to display this report.

We add an instance variable report and its accessors in the class TBAdmin-
Component.

ETBScreenComponent subclass: #TBAdminComponent
instanceVariableNames: 'report’
classVariableNames: "'
package: 'TinyBlog-Components'

ETBAdminCOmponent >> report
* report

ETBAdminCOmponent >> report: aReport
report := aReport

Since the report is a son component of the admin component we should not
forget to redefine the method children. Note that the collection contains
the subcomponents defined in the superclass (header component) and those
in current class (report component).

[TBAdminComponent >> children
* super children copyWith: self report

In initialize method we instantiate a report by giving it a blog instance.

[TBAdminComponent >> initialize
super initialize.
self report: (TBPostsReport from: self blog)

Let us modify the admin part rendering to display the report.

[TBAdminComponent >> renderContentOn: html
super renderContentOn: html.
html tbsContainer: [
html heading: 'Blog Admin'.
html horizontalRule.
html render: self report]

You can test this change by refreshing your web browser.

79

Administration Web Interface and Automatic Form Generation

008 < am} e @ localhost [v]

TinyBlog =+

=l

=2

TinyBlog ® Public View = Disconnect G+

Blog Admin

‘Welcome in TinyBlog 13 August 2018 TinyBlog
Report Pharo Sprint 13 August 2018 Pharo

Brick on top of Bloc - Preview 13 August 2018 Pharo

The sad story of unclassified blog posts 13 August 2018 Unclassified
Working with Pharo on the Raspberry Pi 13 August 2018 Pharo

New Session Configure Halos Profile Memory XHTML 3/4 ms

Figure 9-3 Magritte report with posts.

9.6 Filter Columns

By default, a report displays the full data of each post. However, some columns
are not useful We should filter the columns. Here we only keep the title, cat-
egory and publication date.

We add a class method for the column selection and modifier the method
from: to use this.

[TBPostsReport class >> filteredDescriptionsFrom: aBlogPost
"Filter only some descriptions for the report columns."
~ aBlogPost magritteDescription

select: [:each | #(title category date) includes: each accessor

selector]

ETBPostsReport class >> from: aBlog
| allBlogs |
allBlogs := aBlog allBlogPosts.
* self rows: allBlogs description: (self
filteredDescriptionsFrom: allBlogs anyOne)

Figure 9-3 shows the situation that you should get.

80

9.7 Report Enhancements

Report Enhancements

The previous report is pretty raw. There is no title on columns and the dis-
play column order is not fixed. This can change from one instance to the
other. To handle this, we modify the description for each instance variable.
We specify a priority and a title (message label:) as follows:

[TBPost >> descriptionTitle

<magritteDescription>

~ MAStringDescription new
label: 'Title';
priority: 100;
accessor: #ttitle;
beRequired;
yourself

[TBPost >> descriptionText

<magritteDescription>

~ MAMemoDescription new
label: 'Text';
priority: 200;
accessor: #text;
beRequired;
yourself

[TBPOst >> descriptionCategory
<magritteDescription>
~ MAStringDescription new
label: 'Category';
priority: 300;
accessor: #category;
yourself

[TBPost >> descriptionDate

<magritteDescription>

" MADateDescription new
label: 'Date’;
priority: 400;
accessor: #date;
beRequired;
yourself

[TBPOst >> descriptionVisible

<magritteDescription>

~ MABooleanDescription new
label: 'Visible';
priority: 500;
accessor: ttvisible;
beRequired;
yourself

You should obtain the situation such as represented by Figure 9-4.

Administration Web Interface and Automatic Form Generation

< localhost

TinyBlog &® Public View = Disconnect G
Blog Admin

Title Category Date

Welcome in TinyBlog TinyBlog 13 August 2018

Report Pharo Sprint Pharo 13 August 2018

Brick on top of Bloc - Preview Pharo 13 August 2018

The sad story of unclassified blog posts Unclassified 13 August 2018

Working with Pharo on the Raspberry Pi Pharo 13 August 2018

New Session Configure Halos Profile Memory XHTML 2/0 ms

Figure 9-4 Administration Report.

Post Administration

We can now put in place a CRUD (Create Read Update Delete) allowing to
generate posts. For this, we will add a new column (instance of MACommand-
Column) to the report. This column will group the different operations using
the addCommandOn: message. This method allows one to define a link that
will execute a method of the current object. We give access to the blog the
report is build for.

ETBSMagritteReport subclass: #TBPostsReport
instanceVariableNames: 'blog'
classVariableNames: "'
package: 'TinyBlog-Components'

[TBSMagritteReport >> blog
* blog

[TBSMagritteReport >> blog: aTBBlog
blog := aTBBlog

The method from: adds a new column to the report. It groups the different
operations.

>TBPostsReport class >> from: aBlog
| report blogPosts |
blogPosts := aBlog allBlogPosts.
report := self rows: blogPosts description: (self
filteredDescriptionsFrom: blogPosts anyOne).
report blog: aBlog.
report addColumn: (MACommandColumn new

82

9.9

9.10

9.11

9.9 Post Addition

addCommandOn: report selector: #viewPost: text: 'View';
yourself;

addCommandOn: report selector: #editPost: text: 'Edit';
yourself;

addCommandOn: report selector: #deletePost: text: 'Delete’;
yourself).
~ report

We will have to define the methods linked to each operation in the following
section.

In addition this method is a bit lengthly and it does not separate the report
definition from the operation definition. A possible solution is to create an
instance method named addCommands and to call it explicitly. Try to do it to
practice.

Post Addition

Addition a post is not associated with a post and we place just before the
main report. Since this behavior is then part of the component TBPostsRe-
port, we should redefine the method renderContentOn: of the component
TBPostsReport to insert a link add.

TBPostsReport >> renderContentOn: html
html tbsGlyphIcon iconPencil.
html anchor
callback: [self addPost 1;
with: 'Add post'.
super renderContentOn: html

Login another time and you should get the situation as it is represented in
Figure 9-5.
CRUD Action Implementation

Each action (Create/Read/Update/Delete) should invoke methods of the in-
stance of TBPostsReport. We implement them now. A personalized form
is built based on the requested operation (it is not necessary to have a save
butten when the user is just viewing a post).

Post Addition

Let us begin with post addition. The following method renderAddPostForm:
iillustres the power of Magritte to generate forms:

83

Administration Web Interface and Automatic Form Generation

J

1800 TinyBlog ¥
[al> |[D] 2] (@] | + |6 locaihost:8080 ¢ | Reader || ©
11 #£ epibud arxiv FogBugz casa trip baremes twitter MSaca Gdocs ESUG: 2015 mlarchives weekly » r+
TinyBlog
#'Add post
Title Category Date
‘Youpi Unclassified 23 December 2015 View Edit Delete
Tiny Blog Tutorial Tiny Blog 13 December 2015 View Edit Delete
Cours & Lome Cours 13 December 2015 View Edit Delete

New Session Configure Halos Profile Memory XHTML 2/3 ms

Figure 9-5 Post report with links.

TBPostsReport >> renderAddPostForm: aPost
* aPost asComponent
addDecoration: (TBSMagritteFormDecoration buttons: { #save
-> 'Add post' . #cancel -> 'Cancel'});
yourself

Here the message asComponent, sent to the object of class TBPost, creates
directly a component. We add a decoration to this component to manage
ok/cancel.

The method addPost displays the component returned by the method ren-
derAddPostForm: and when a new post is created, it is added for the blog.
The method writeBlogPost: saves the changes the user may do.

TBPostsReport >> addPost
| post |
post := self call: (self renderAddPostForm: TBPost new).
post ifNotNil: [blog writeBlogPost: post]

In this method we see another use of the message call: to give the control
to a component. The link to add a post allows one to display a creation form
that we will make better looking later (See Figure 9-6).

84

9.11 Post Addition

TinyBlog ® Public View = Disconnect G+

Blog Admin

Title: Soon new TB version|

Text:

Category: Unclassified
Date: 20 August 2018 Choose
Visible: Visible

Add post Cancel

Figure 9-6 Basic rendering of a post.

Post Display

To display a post in read-only mode, we define two methods similar to the
previous. Note that we use the readonly: true to indicate that the form is
not editable.

ETBPostsReport >> renderViewPostForm: aPost
~ aPost asComponent
addDecoration: (TBSMagritteFormDecoration buttons: { #cancel
-> 'Back' 1);
readonly: true;
yourself

Looking at a post does not require any extra action other than rendering it.

ETBPostsReport >> viewPost: aPost
self call: (self renderViewPostForm: aPost)

Post Edition

To edit a post, we use the same approach.

TBPostsReport >> renderEditPostForm: aPost
~ aPost asComponent addDecoration: (
TBSMagritteFormDecoration buttons: {
#save -> 'Save post'.
#cancel -> 'Cancel'});
yourself

Now the method editPost: gets the value of the call: message and saves
the changes made.

85

9.12

Administration Web Interface and Automatic Form Generation

TBPostsReport >> editPost: aPost
| post |
post := self call: (self renderEditPostForm: aPost).
post ifNotNil: [blog save]

Removing a post
We must now adding the method removeBlogPost: to the class TBBlog:

TBBlog >> removeBlogPost: aPost
posts remove: aPost ifAbsent: [].
self save.

Let us add a unit test:

TBBlogTest >> testRemoveBlogPost
self assert: blog size equals: 1.
blog removeBlogPost: blog allBlogPosts anyOne.
self assert: blog size equals: 0

To avoid an unwanted operation, we use a modal dialog so that the user con-
firms the deletion of the post. One the post is displayed, the list of managed
posts by TBPostsReport is changed and should be refresh.

TBPostsReport >> deletePost: aPost
(self confirm: 'Do you want remove this post ?')
ifTrue: [blog removeBlogPost: aPost]

Refreshing Posts

The methods addPost: and deletePost: are working well but the display
is not refreshed. We need to refresh the post lists using the expression self
refresh.

TBPostsReport >> refreshReport
self rows: blog allBlogPosts.
self refresh.

TBPostsReport >> addPost
| post |
post := self call: (self renderAddPostForm: TBPost new).
post
ifNotNil: [blog writeBlogPost: post.
self refreshReport]

TBPostsReport >> deletePost: aPost
(self confirm: 'Do you want remove this post ?')
ifTrue: [blog removeBlogPost: aPost.
self refreshReport]

86

9.13

9.13 Better Form Look

The report is not working and it even manage input constraints: for exam-
ple, mandatory fields should be filled up.

Better Form Look

To take advantage of Bootstrap, we will modify Magritte definitions. First we

specify that the report rendering based on Bootstrap.

A container in Magritte is the element that will contain the other compo-
nents created from descriptions.

TBPost >> descriptionContainer
<magritteContainer>
* super descriptionContainer
componentRenderer: TBSMagritteFormRenderer;
yourself

We want can now pay attention of the different input fields and improve
their appearance.

[TBPost >> descriptionTitle

<magritteDescription>

~ MAStringDescription new
label: 'Title';
priority: 100;
accessor: #title;
requiredErrorMessage: 'A blog post must have a title.';
comment: 'Please enter a title';
componentClass: TBSMagritteTextInputComponent;
beRequired;
yourself

[TBPost >> descriptionText

<magritteDescription>

~ MAMemoDescription new
label: 'Text';
priority: 200;
accessor: #text;
beRequired;
requiredErrorMessage: 'A blog post must contain a text.';
comment: 'Please enter a text';
componentClass: TBSMagritteTextAreaComponent;
yourself

[TBPost >> descriptionCategory
<magritteDescription>
~ MAStringDescription new
label: 'Category';
priority: 300;
accessor: f#category;
comment: 'Unclassified if empty';

87

9.14

Administration Web Interface and Automatic Form Generation

TinyBlog
4 > | (2] @] + O localhost:8080 ¢

TinyBlog

Blog Admin

Title

Welcome in TinyBlog
Please enter a title
Text

TinyBlog is a small blog engine made with Pharo.

Please enter a text
Category

TinyBlog
Unclassified if empty

Date
25 March 2016 | choose

¥ Visible

New Session Configure Halos Profile Memory XHTML 2/3 ms

Figure 9-7 Post form addition with Bootstrap.

componentClass: TBSMagritteTextInputComponent;
yourself

[TBPost >> descriptionVisible
<magritteDescription>
~ MABooleanDescription new
checkboxLabel: 'Visible';
priority: 500;
accessor: #tvisible;
componentClass: TBSMagritteCheckboxComponent;
beRequired;
yourself

Based on new Magritte descriptions, forms generated now use Bootstrap. For
example, the post form edition should not looks like Figure 9-7.

Conclusion
In this chapter we defined the administration of TinyBlog based on report
built out of the posts contained in the current blog. We added links to man-

age CRUD for each post. What we show is that adding descriptions on post let
us generate Seaside components automatically.

88

10.1

10.2

CHAPTER I 0

Deploying TinyBlog

In this chapter we will show you how to deploy your Pharo application. In
particular we will show how to deploy on the cloud.

Deploying in the cloud

Now that TinyBlog is ready we will see how we can deploy your applica-
tion on a server on the web. If you want to deploy your application on a
server that you administrate, we suggest reading the last chapter of "Enter-
prise Pharo: a Web Perspective” (http://books.pharo.org). In the following we
present a simpler solution offered by PharoCloud.

Login on PharoCloud

PharoCloud is hosting Pharo applications and it offers the possibility to freely
tests its services (ephemeric cloud subscription).

Prepare your PharoCloud account:
* Create an account on http://pharocloud.com
¢ Activate your account
+ Connect to this account

» Activate "Ephemeric Cloud” to get an id (API User ID) and password
(API Auth Token)

+ Click on "Open Cloud Client” and login with the previous ids

89

http://books.pharo.org
http://pharocloud.com

Deploying TinyBlog

» Once connected, you should get a web page that allows you to upload a
zip archive containing a Pharo image and its companion Pharo changes

file.

10.3 Preparing your Pharo image Pharo for PharoCloud

Get a fresh new image
You should

+ First downaload a fresh PharoWeb image from http://files.pharo.org/
mooc/image/PharoWeb-60.zip.

+ Launch this image and now we will configure it.

Seaside configuration

We remove the Seaside demo applications and the development tools

["Seaside Deployment configuration"
WAAdmin clearAll.
WAAdmin applicationDefaults removeParent: WADevelopmentConfiguration
instance.
WAFileHandler default: WAFileHandler new.
WAFileHandler default
preferenceAt: #fileHandlerListingClass
put: WAHtmlFileHandlerListing.
WAAdmin defaultDispatcher
register: WAFileHandler default
at: 'files'.

Loading TinyBlog

We load the latest version of the TinyBlog application. To load the version
we propose you can use :

["Load TinyBlog"

Gofer new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadFinalApp.

"Create Demo posts if needed"
#TBBlog asClass createDemoPosts.

You can also load your TinyBlog code from your Smalltalkhub repository.
For example doing:

90

http://files.pharo.org/mooc/image/PharoWeb-60.zip
http://files.pharo.org/mooc/image/PharoWeb-60.zip

10.4 Manually deploying on PharoCloud’s Ephemeric Cloud

["Load TinyBlog"

Gofer new
smalltalkhubUser: 'XXXX' project: 'TinyBlog';
package: 'TinyBlog';
load.

"Create Demo posts if needed"
| #TBBlog asClass createDemoPosts.

TinyBlog as Default Seaside Application

We now set Tinyblog as the default Seaside application and we run the HTTP
webserver:

["Tell Seaside to use TinyBlog as default app"
WADispatcher default defaultName: 'TinyBlog'.

"Register TinyBlog on Seaside"
| #TBApplicationRootComponent asClass initialize.

Lancer Seaside :

"Start HTTP server"
ZnZincServerAdaptor startOn: 8080.

Save the Image

Save your image (Menu World > save) and locally test it in your web browser
at: http://localhost:8080.

10.4 Manually deploying on PharoCloud’s Ephemeric Cloud

« Create a zip archive that contains the previously saved images and
changes files: PharoWeb. image et PharoWeb.changes.

* Drag and drop this zip file on the Ephemeric Cloud and activate the
image using the play button as shown in Figure 10-1.

By clicking on the public URL given by PharoCloud you will be able to display
your TinyBlog application as shown by Figure 10-2.

10.5 Automatic Deployment on PharoCloud’s Ephemeric
Cloud

Instead of creating a zip archive and using your web browser, the documen-
tation of PharoCloud (http://docs.swarm.pharocloud.com/) shows how to de-
ploy automatically by executing the following code (it takes some time):

91

http://localhost:8080
http://docs.swarm.pharocloud.com/

https://www.pharocloud.com/ephemeric-client/ %
= @ 27 6 https & www.pharocloud.com/ephemeric-client/ (& o

TinyBlog l Ephemeric... l https:/ /ww... l https://ww... J: Pharo bot;ks I-l- [l!l

Active Ephemerics: 1/1
]

© Refresh

eph-f188d5ee.swarm.pharocloud.com

Drop new Pharo Image Archive (.zip) to create an Ephemeric instance

Figure 10-1 Ephemeric Cloud administration Pharo image.

806 TinyBlog "

TinyBlog
Categories .
Report Pharo Sprint
Al 25 March 2016
Friday, June 12 there was a Pharo sprint / Moose dojo. It was a nice event with more than 15
motivated sprinters. With the help of candies, cakes and chocolate, huge work has been done
TinyBlog . .
Brick on top of Bloc - Preview
Unclassified
25 March 2016
We are happy to announce the first preview version of Brick, a new widget set created from
LPrivate area

scratch on top of Bloc. Brick is being developed primarily by Alex Syrel (together with Alain
Plantec, Andrei Chis and myself), and the work is sponsored by ESUG. Brick is part of the
Glamorous Toolkit effort and will provide the basis for the new versions of the development
tools.

Working with Pharo on the Raspberry Pi

Hardware is getting cheaper and many new small devices like the famous Raspberry Pi provide
new computation power that was one once only available on regular desktop computers.

Figure 10-2 Your TinyBlog Application on PharoCloud.

10.6

10.6 About Dependencies

[Iclient EPHUSER EPHTOKEN|

Metacello new
smalltalkhubUser: 'mikefilonov' project: 'EphemericCloudAPI';
configuration: 'EphemericCloudAPI';
load.

ephUser :='<REST API UserID>"'.
ephToken :='<REST API Token>'.
client := EphemericCloudClient userID: EPHUSER authToken: EPHTOKEN.
(client publishSelfAs: 'glimpse')
ifTrue:[ZnZincServerAdaptor startOn: 8080]
ifFalse: [client lastPublishedInstance hostname]

About Dependencies

Good development practice in Pharo are to specific explicitly the dependen-
cies on the used packages. This ensures the fact that we can reproduce a soft-

ware artefact. Such reproducibility supports then the use of an integration

server such as Travis or Jenkins. For this a configuration (a special class) de-
fines the architecture of a project (dependencies to other projects as well as

structure of your projects) and the associated version. This is this way that
we build automatically the Pharoweb image

In this book we do not cover this point. A full chapter is dedicated to the ex-

pression of configurations in the book named "Deep Into Pharo” (cf. http:
//books.pharo.org).

93

http://books.pharo.org
http://books.pharo.org

Part Il

Optional Elements

1.2

CHAPTER I I

Loading Chapter Code

This chapter contains the expressions to load the code described in each of
the chapters. Such expressions can be executed in the PharoWeb 5 image
(http://files.pharo.org/mooc/image/PharoWeb-5.0.zip) or in PharoWeb 6.1 (http:
//files.pharo.org/mooc/image/PharoWeb-61.zip).

When you start for example the chapter 4, you can load all the code of the
previous chapters (1, 2, and 3) by following the process described in the fol-
lowing section 'Chapter 4’.

Obviously, we believe that this is better that you use you own code but hav-
ing our code at hand can help you in case you would be stuck.

Chapter 3: Extending and Testing the Model

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter2solution;
configuration: 'TinyBlog';
load.

Run the tests! To do so, you can use the TestRunner (World menu > Test Run-
ner), look for the package TinyBlog-Tests and click on "Run Selected”. All
tests should be green.

Chapter 4: Data Persitency using Voyage and Mongo

You can load the correction of the previous chapter as follow:

97

http://files.pharo.org/mooc/image/PharoWeb-5.0.zip
http://files.pharo.org/mooc/image/PharoWeb-61.zip
http://files.pharo.org/mooc/image/PharoWeb-61.zip

Loading Chapter Code

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter3solution;
configuration: 'TinyBlog';
load.

Once loaded execute the tests.

1.3 Chapter 5: First Steps with Seaside

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter4solution;
configuration: 'TinyBlog';
load.
Execute the tests.
To test the application, start the HTTP server:

[ZnZincServerAdaptor startOn: 8080.

Open your web browser at http://localhost:8080/TinyBlog
You may need to recreate some posts as follows:

[TBBlog reset ; createDemoPosts

1.4 Chapitre 6: Web Components for TinyBlog

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #tchapter5solution;
configuration: 'TinyBlog';
load

Same process as above.

1.5 Chapitre 7: Managing Categories

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapterésolution;
configuration: 'TinyBlog';

98

1.6 Chapitre 8: Authentication and Session
L load
To test the application, start the HTTP server:

[ZnZincServerAdaptor startOn: 8080.

Open your web browser at http://localhost:8080/TinyBlog
You may need to recreate some posts as follows:

[TBBlog reset ; createDemoPosts

1.6 Chapitre 8: Authentication and Session

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter7solution;
configuration: 'TinyBlog';
load

To test the application, start the HTTP server:

[ZnzincServerAdaptor startOn: 8080.

1.7 Chapitre 9: Administration Web Interface and Auto-
matic Form Generation

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter8solution;
configuration: 'TinyBlog';
load

1.8 Chapitre 10: Deploying TinyBlog

You can load the correction of the previous chapter as follow:

Metacello new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
version: #chapter9solution;
configuration: 'TinyBlog';
load

You should create an account on PharoCloud and use your IDs in the follow-
ing code:

29

Loading Chapter Code

ephUser :='<your PharoCloud Ephemeric login>"'.
ephToken :='<your PharoCloud Ephemeric passwod>'.

"Seaside Deployment configuration"
WAAdmin clearAll.
WAAdmin applicationDefaults removeParent: WADevelopmentConfiguration
instance.
WAFileHandler default: WAFileHandler new.
WAFileHandler default
preferenceAt: #fileHandlerListingClass
put: WAHtmlFileHandlerListing.
WAAdmin defaultDispatcher
register: WAFileHandler default
at: 'files'.

"Load TinyBlog"

Gofer new
smalltalkhubUser: 'PharoMooc' project: 'TinyBlog';
package: 'ConfigurationOfTinyBlog';
load.

#ConfigurationOfTinyBlog asClass loadFinalApp.

"Create Demo posts if needed"
#TBBlog asClass createDemoPosts.

"Tell Seaside to use TinyBlog as default app"
WADispatcher default defaultName: 'TinyBlog'.

"Register TinyBlog on Seaside"
TBApplicationRootComponent initialize.

Metacello new
smalltalkhubUser: 'mikefilonov' project: 'EphemericCloudAPI';
configuration: 'EphemericCloudAPI';
load.

"deployment on PharoCloud"
client := #EphemericCloudClient asClass userID: ephUser authToken:
ephToken.
(client publishSelfAs: 'TinyBlog')
ifTrue:[ZnZincServerAdaptor startOn: 8080]
ifFalse: [client lastPublishedInstance hostname]

When you execute the following code (it will take some time), your Pharo
image will be automatically be deployed on PharoCloud.

100

12.1

CHAPTER I 2

Save your code

When you save the Pharo image (left click on the Pharo background to ac-
cess the World menu and select "save’ menuentry), it contains all objects
of the system as well as all classes. This solution is useful but fragile. We
will show you how Pharoers save their code as packages and send them on
aremote dedicated server. Until Pharo 6.0, Pharo offers the possibility to
save packages using Monticello: the package versioning tool of Pharo on
http://smalltalkhub.com or http://ss3.gemstone.com. From Pharo 70 Pharo
still support Monticello but offers a much better way to store your code on
github, bitbucket, or gitlab using git with a new dedicated tool.

Up to Pharo 6.0

The Pharo Mooc (http://mooc.pharo.org) contains video that describes the
procedure to save code such as the video of the Week 1 that shows haw to
develop a counter application and save the code: http://rmod-pharo-mooc.lille.
inria.fr/MOOC/Videos/W1/C019-W1S-Videos-Redo-Counter-Traditional-FR-V3-HD_
720p_4Mbs.m4v.

Create a code repository

There are multiple online servers to freely host your code repositories such
as Smalltalkhub http://smalltalkhub.com or SS3 http://ss3.gemstone.com.

* Create an account on http://smalltalkhub.com/.

* Connect on http://smalltalkhub.com/.

101

http://smalltalkhub.com
http://ss3.gemstone.com
http://mooc.pharo.org
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019-W1S-Videos-Redo-Counter-Traditional-FR-V3-HD_720p_4Mbs.m4v
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019-W1S-Videos-Redo-Counter-Traditional-FR-V3-HD_720p_4Mbs.m4v
http://rmod-pharo-mooc.lille.inria.fr/MOOC/Videos/W1/C019-W1S-Videos-Redo-Counter-Traditional-FR-V3-HD_720p_4Mbs.m4v
http://smalltalkhub.com
http://ss3.gemstone.com
http://smalltalkhub.com/
http://smalltalkhub.com/

Save your code

+ Create a project named "TinyBlog” (if you encounter connection prob-
lems because this web site is still in beta version, try with another web
browser or use http://ss3.gemstone.com).

Save your packages

+ In Pharo, open Monticello Browser using the world menu (left click on
the Pharo background).

+ Add a new repository of type SmalltalkHub or HTTP for http://ss3.gemstone.
com.

» Select this repository and select the Add to package...” in its contextual
menu (right click) to add this repository to the TinyBlog package.

* You can now select you 'TinyBlog’ package and click on the ’Save’ but-
ton.

* Write a description for your commit and save. Your code has been sent
to the server.

The code of your TinyBlog application is now saved in your 'TinyBlog’ repos-
itory on remote server (e.g. Smalltalkhub). You can now load this code in a
new Pharo image. In this tutorial, we recommend you to always use a Pharo
image with all Web packages already loaded (Pharo Web image) as men-
tioned in the first chapter. This way, you can always load your code without
dealing with dependencies with third-party packages.

12.2 With Pharo 70

We suggest you read the chapter in the book "Managing Your Code with Ice-
berg” (available at http://books.pharo.org).

We list the key points here:
» Create a project on http://www.github.com or similar.

» Use Iceberg pour add a un projet, choose to clone from github by ex-
ample.

Create a folder 'src' with the filelist or using the command line in the
folder that you just cloned.

+ Open your project and add your packages (Define a baseline to be able
to reload your code - check https://github.com/pharo-open-documentation/
pharo-wiki/blob/master/General/Baselines.md)

+ Commit your code.

+ Push your code on github.

102

http://ss3.gemstone.com
http://ss3.gemstone.com
http://ss3.gemstone.com
http://books.pharo.org
http://www.github.com
https://github.com/pharo-open-documentation/pharo-wiki/blob/master/General/Baselines.md
https://github.com/pharo-open-documentation/pharo-wiki/blob/master/General/Baselines.md

	Illustrations
	About this book
	Structure
	Pharo Installation
	Naming Rules
	Resources

	Core Tutorial
	TinyBlog Application: Core model
	TBPost Class
	Post Visibility
	Initialization
	Posts Creation Methods
	Creating a Post
	Adding Some Unit Tests
	Post Queries
	Conclusion

	TinyBlog: Extending and Testing the Model
	TBBlog class
	Only One Blog Object
	Testing the Model
	A First Test
	Increasing Test Coverage
	Other Functionalities
	All Posts
	Visible Posts
	All Posts of a Category
	All visible Posts of a Category
	Check unclassified posts
	Retrieve all categories

	Testing data
	Possible Extensions
	Conclusion

	Data Persitency using Voyage and Mongo
	Configure Voyage to Save TBBlog Objects
	Saving a Blog
	Revising Unit Tests
	Querying the Database
	If we would Save Posts [Discussion]
	Post as Root = Uniqueness

	Configure an External Mongo Database [Optional]
	Installing Mongo
	Connecting a Local Mongo Server
	In Case of Trouble
	Points of Attention: Changing TBBlog Definition

	Conclusion

	First Steps with Seaside
	Starting Seaside
	Bootstrap for Seaside
	Define our Application Entry Point
	First Simple Rendering
	Architecture
	Overview of TinyBlog
	Description of the Main Components

	Conclusion

	Web Components for TinyBlog
	Visual Components
	The TBScreenComponent component

	Using the TBScreenComponent component
	Pattern of Component Definition
	Populating the Blog
	Definition of TBHeaderComponent
	Usage of TBHeaderComponent
	Composite-Component Relationship
	Render an header
	Possible Enhancements

	List of Posts
	The PostComponent
	About HTML Forms

	Display Posts
	Debugging Errors
	Displaying the List of Posts with Bootstrap
	Instantiating Components in renderContentOn:
	Conclusion

	Managing Categories
	Displaying Posts by Category
	Displaying Categories
	Component Definition
	From the Post List
	The method selectCategory:

	Category Rendering
	Updating Post List
	Possible Enhancements

	Look and Layout
	Modular Code with Small Methods
	Another Pass

	Conclusion
	Possible Enhancements

	Authentication and Session
	A Simple Admin Component (v1)
	Adding 'admin' Button
	Header Revision
	Admin Button Activation
	'disconnect' Button Addition
	call:/answer: Notion

	Modal Window for Authentication
	Authentication Component Definition

	Authentication Component Rendering
	Authentication Component Integration
	Naively Managing Logins
	Managing Errors
	Modeling the Admin
	Blog admin
	Setting a New Admin
	Possible Enhancements

	Integrating the Admin Information
	Storing the Admin in the Current Session
	Definition and use of specific session
	Storing the Current Admin
	Simplified navigation
	Managing Deconnection
	Simplified Navigation to the Public Part
	Conclusion
	Possible Enhancements

	Administration Web Interface and Automatic Form Generation
	Describing Domain Data
	Post Description
	Automatic Component Creation
	Building a post report
	The PostsReport Component

	AdminComponent Integration with PostsReport
	Filter Columns
	Report Enhancements
	Post Administration
	Post Addition
	CRUD Action Implementation
	Post Addition
	Post Display
	Post Edition
	Removing a post

	Refreshing Posts
	Better Form Look
	Conclusion

	Deploying TinyBlog
	Deploying in the cloud
	Login on PharoCloud
	Preparing your Pharo image Pharo for PharoCloud
	Get a fresh new image
	Seaside configuration
	Loading TinyBlog
	TinyBlog as Default Seaside Application
	Save the Image

	Manually deploying on PharoCloud's Ephemeric Cloud
	Automatic Deployment on PharoCloud's Ephemeric Cloud
	About Dependencies

	Optional Elements
	Loading Chapter Code
	Chapter 3: Extending and Testing the Model
	Chapter 4: Data Persitency using Voyage and Mongo
	Chapter 5: First Steps with Seaside
	Chapitre 6: Web Components for TinyBlog
	Chapitre 7: Managing Categories
	Chapitre 8: Authentication and Session
	Chapitre 9: Administration Web Interface and Automatic Form Generation
	Chapitre 10: Deploying TinyBlog

	Save your code
	Up to Pharo 6.0
	Create a code repository
	Save your packages

	With Pharo 70

