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Abstract

In rotary drilling, a drillstring is an assembly of slender pipes. It is used to transmit the driving torque of a motor at the
drilling surface to the drill bit at the bottom hole of a 3D well. Numerous vibratory phenomena are induced during the
drilling: whirling, stick-slip, bit-bouncing, lateral instability, inducing in particular reduction of the rate of penetration
and mean time between failures. For the rotordynamics prediction of such a structure, the drillpipes are modelled with
Timoshenko beam elements, containing 12 degrees of freedom, equipped with distributed radial stop-ends. The rotary
motion is assumed to have a constant speed of rotation imposed at the top of the drillstring. The drilling mud is taken
into account by using a fluid-structure interaction model. The numerical simulations concern a real 3D-borehole and
a parametric analysis is carried out for determining the role of the mud density and of the flows rate on the drillstring
dynamics. It is shown that increasing the flow rate and densifying the drilling fluid reduce the fluid damping effect
that increases drillstring lateral vibrations.

Keywords: rotary drilling, fluid-structure interaction, drillstring dynamics, drillstring-borehole contact, stick-slip,
rotordynamics

1. Introduction

Basically, rotary geothermic or oil drilling has a 3D curved well trajectory, carried out by using a very long
drillstring made of slender pipes and a tool bit, running in a 60-120 rpm speed of rotation range. The lowest component
of the drillstring so-called the bottom hole assembly (BHA) consists of heavyweight drill pipes whose weight on the
bit makes possible the rate of penetration (ROP). The mud plays the role of a drilling fluid: rock-cutting evacuation,5

cooling and lubrication. It is pumped downward inside the drillpipe and upward in the annular space between the
drillpipe and the well. During the drilling, the unbalance masses distributed along the drillstring, the mud pumping,
and the excitation generated by the drill bit induce drillstring vibrations combining lateral, torsional and longitudinal
motions, triggering non expected phenomena such as forward and backward whirlings, stick-slip, bit-bouncing[1, 2, 3,
4]. This set of phenomena is detrimental to the proper drilling operation and can lead to: equipment failures, reduction10

of the mean time between failures and of the ROP.
In order to avoid such adverse dynamic phenomena, it is required to understand, to predict and to control the

drilling dynamics which is a complex rotordynamics problem. For this purpose, a proper model has to take into
account several drilling-related specific features such as the preloaded slender rotating string immersed in a 3D well,
the eccentricity of the drillstring in the well, the numerous drillpipe - borehole contacts, the fluid-structure interaction,15

the motion couplings, the parametric excitation due to the weight on bit (WOB) and torque on bit (TOB).
Fluid-structure interactions have been investigated since a few decades in the literature. Chen et al. [5], studied the

vibration of a rod confined in Newtonian fluid, the fluid effects being considered by the hydrodynamic forces which
contain the added mass and damping coefficients. The similar formulations for fluid-related coefficients proposed
in [5] are utilized in the thesis of Shyu [6] for different types of fluid. Heisig [7] computed the eigenfrequencies20
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by analytical formulas dedicated to a drillstring confined in a horizontal extended well and taking into account the
inertial effect through added mass coefficients provided in [8], but not the damping effect. Numerical and experimental
investigations about the effect of fluid on rotor in bending were carried out by Axisa and Antunes [9, 10]. The fluid
force was interpreted by three effects which depend on the fluid characteristics: inertia, friction, and viscosity. Except
the added mass matrix derived from inertial effect, the stiffness and damping matrices related to fluid were expressed25

as function of the speed of rotation. In their extended research, Antunes et al. [11] expressed the hydrodynamic force
in terms of annular space eccentricity. Khulief et al. [12] studied the fluid elastic effects on the drillstring vibrations
based on the model presented in [11] with a fluid friction coefficient adjusted experimentally. However these works
did not consider the upward and downward mud flows.

Paidoussis et al. [13] investigated the dynamic behavior of a cantilever pipe by considering the inside and outside30

fluid flows. This model was used to simulate the vibration of a drillstring immersed in drilling mud in subsequent
works [14, 15, 16, 17]. Zhang et al. [18] used the same model to determine the critical flow rate for the buckling of a
nonrotating drillpipe conveying fluid. However in these aforementioned studies, the drillstring dynamics is analyzed
only for straight wells, either vertical or horizontal. In practice, the drilling is directional leading to a deviated well
trajectory. Feng et al. [19] considered the profile of the well in their dynamic analysis of a directional drillstring but35

neglected the mud. Recently, in [20] Feng et al. continued this investigation by using a planar curved finite element
(FE) beam.

The model presented hereafter focuses on the dynamic behavior of the drillstring taking into account the mud -
drillstring interaction and the drillstring - borehole contacts. The FE model including contact forces, mass unbalance
and fluid - drillstring interactions is presented in Section 2. Section 3 is dedicated to the dynamic computation40

procedure. In Section 4, the influence of the fluid on the drillstring vibration is discussed. Finally, conclusions are
drawn in Section 5

Nomenclature

Ai, Ao drillstring inner and outer cross-sections [m2]

Cc, cc contact damping and its maximum value [Ns/m]45

C f viscous damping coefficient

Do drillstring outer diameter [m]

Dch borehole inner diameter [m]

Fe
0 elementary axial force [N]

FA lateral hydrodynamic inviscible force per unit length [N/m]50

FL, FN drilling fluid frictional forces due to the annular flow in longitudinal and normal directions per unit length
[N/m]

Faxial axial force [N]

Fen, Fet fluid forces due to external flow in normal and tangent directions [N/m]

F f x, F f y, F f z fluid forces per unit length acting on drillstring element in local frame [N/m]55

Fin, Fit fluid forces due to internal flow in normal and tangent directions [N/m]

Fpz, Fpr longitudinal and radial pressure forces per unit length [N/m]

Ge shear modulus [N/m2]

Ie, Ie
p beam element flexural and polar moments [m4]

Kc, kc contact stiffness and its maximum value [N/m]60
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Md drillstring total mass [kg]

Mt, M f drillstring and drilling fluid masses per unit length [kg/m]

Mu total mass unbalance [g.mm]

P penetration [m]

Q transversal shear force [N]65

Q f drilling fluid flow rate [m3/s]

Re drillstring outer radius [m]

S Stokes number

S e beam element cross-section [m2]

S e
r cross-section reduced area [m2]70

T elementary kinetic energies of the drillstring [J]

TOB torque-on-bit [N]

T e
0 elementary axial torque [Nm]

Tu kinetic energy of a discrete unbalance mass [J]

U elementary strain energy [J]75

Ui, Uo downward and upward mean velocities of the drilling fluid inside and outside the drillstring [m/s]

UFe
0

strain energy due to the axial force [J]

WOB weight-on-bit [N]

Ω speed of rotation imposed to the drillstring [rad/s]

α, β Rayleigh damping coefficients [s−1], [s]80

αu initial angular position of the mass unbalance [rad]

C f damping matrix of the drilling fluid [Ns/m]

C damping and Coriolis matrices of drillstring [Ns/m, Ns/rad]

Fqs
c quasi-static contact force vector [N]

Fc contact force vector [N]85

Fs static force vector [N]

Fu centrifugal force vector [N]

Fqs
cn, Fqs

ct quasi-static normal and tangential contact forces vectors [N]

Fcn, Fct normal and frictional contact forces vectors [N]

Kg drillstring geometric stiffness matrix [N/m, N/rad]90

K, K f drillstring and drilling fluid stiffness matrices [N/m, N/rad]

M, M f drillstring and drilling fluid mass matrices [kg, kgm2/rad]
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N shape functions matrix

T f frictional contact torque vector [Nm]

Tqs
f

quasi-static contact torque vector [Nm]95

δe, δn, δ elementary, nodal and total dof vectors [m, rad]

ωR1
R1/R

instantaneous angular velocity vector of R1 frame [rad/s]

f x
f , f y

f , f z
f elementary forces vectors of the drilling fluid in local frame [N]

χ added mass coefficient

δW virtual work associated with the axial torque [J]100

ẋ time derivation of x

εnl
zz nonlinear terms of deformation field

γ angle between tangential vectors of the drillstring center line in undeformed and deformed states [rad]

λk, λc regularized parameters [m−1]

[Ce] f elementary Coriolis matrix of the drilling fluid [Ns/m]105

[Ke] f elementary stiffness matrix of the drilling fluid [N/m]

[Me] f elementary mass matrix of the drilling fluid [kg]

µ friction coefficient

µs, µd static and dynamic friction coefficients

ν f apparent kinematic viscosity of drilling fluid [m2/s]110

−→
I ,
−→
J ,
−→
K unit vectors of the global frame

−→
i ,
−→
j ,
−→
k unit vectors of the local frame

−→n , −→t unit normal and tangent vectors

ψ, θ, φ rotational angles of the rotation matrix of the global-local frames transformation [rad]

ρe, ρ f beam element and drilling fluid density [kg/m3]115

θx, θy,Φ rotational angles of the rotation matrix of the undeformed-deformed frames transformation [rad]

θz twist angle [rad]

a shear effect coefficient

at drillstring lateral acceleration in the local frame [m/s2]

a f x, a f y, a f z drilling fluid accelerations in the local frame [m/s2]120

d gyration radius [m]

j0 drillstring borehole clearance [m]

k damping coefficient of drilling fluid [Ns/m]

4



le beam element length [m]

mu unbalance mass [kg]125

pi, po drilling fluid pressures inside and outside the drillstring [Pa]

r radial displacement [m]

t time [s]

vg sliding speed velocity of drillstring on the borehole wall [m/s]

vre f reference velocity [m/s]130

2. 3D Beam Finite Element model

2.1. Coordinate system definition
The FE formulation of the drillstring dynamic model is carried out in a curved borehole. Let the frame of reference

OXYZ be Galilean, and Axyz be the local frame of reference linked to the drillstring, see Fig.1. The rotation matrix
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Figure 1: Transformation from global to local coordinates

from global to local coordinates is established with the three rotations ψ around X, θ around Y1 and φ around Z2.
−→
I
−→
J
−→
K

 =

 cos θ cos φ − cos θ sin φ sin θ
sinψ sin θ cos φ + cosψ sin φ − sinψ sin θ sin φ + cosψ cos φ − sinψ cos φ
− cosψ sin θ cos φ + sinψ sin φ cosψ sin θ sin φ + sinψ cos φ cosψ cos θ



−→
i
−→
j
−→
k

 (1)

where (
−→
I ,
−→
J ,
−→
K) and (

−→
i ,
−→
j ,
−→
k ) are the unit vectors of the global and local coordinate systems, respectively. In the

undeformed state, the drillstring is located at the center line of the well (R)Axyz. The frame (R1)Ax1y1z1 is linked to
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Figure 2: Transformation from undeformed to deformed states

the drillstring center line during its vibration. The transformation from the undeformed state to the deformed state of
the drillstring is carried out using a set of three rotation angles θx, θy,Φ about x, y′ and z1 axis, respectively, see Fig.2.
The instantaneous angular velocity vector of the R1 frame is:

ωR1
R1/R

=

 ωx

ωy

ωz

 =

 θ̇x cos θy cos Φ + θ̇y sin Φ

−θ̇x cos θy sin Φ + θ̇y cos Φ

Φ̇ + θ̇x sin θy

 (2)

with Φ = Ωt + θz, Ω the speed of rotation imposed to the drillstring, θz the twist angle.

2.2. FE drillstring modeling

The drillstring is modeled with 3D Timoshenko beam elements with two nodes (Fig.3), each node containing six
degrees of freedom (dof): three translations and three rotations. The beam elements are uniform and homogenous.
The elementary displacements δe =

[
u, v,w, θx, θy, θz

]T
are expressed with 12 dofs, the nodal displacements, see Fig.3:

δe = Nδn (3)

with δn =
[
u1, v1,w1, θx1, θy1, θz1, u2, v2,w2, θx2, θy2, θz2

]T
, N the shape functions matrix. The drillstring equations135

of motion are established with an energy approach. The application of Lagrange’s equation yields the elementary
matrices associated with the pipe beam. The calculation of kinematic, strain energies and virtual work of external
forces for each element are presented hereafter.

2.2.1. Elementary kinetic energy
Using the instantaneous angular velocity vector in Eq.2, neglecting the higher order terms, and assuming small

lateral angles of rotation (sin x ≈ x, cos x ≈ 1), the classical elementary kinetic energy of drillstring expressed in the
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frame of reference (R1) is:

T =
1
2
ρeS e

∫ le
0

(
u̇2 + v̇2 + ẇ2

)
dz +

ρeIe

2

∫ le
0

(
ω2

x + ω2
y

)
dz +

ρeIe
p

2

∫ le
0 ω2

z dz

=
1
2
ρeS e

∫ le
0

(
u̇2 + v̇2 + ẇ2

)
dz +

ρeIe

2

∫ le
0

(
θ̇2

x + θ̇2
y

)
dz +

ρeIe
p

2

∫ le
0 θ̇2

z dz + ρeIe
pΩ

∫ le
0 θ̇xθydz

+ρeIe
p

∫ le
0 Ωθ̇zdz + ρeIe

pleΩ2

(4)

In the expression of T , the first three integrals contribute to the mass matrix due to translation motions, cross-section

Figure 3: The 6 dofs per node of the beam element

140

inertia, and torsional motion, respectively. The fourth integral represents the gyroscopic effect [21] while the last two
terms are eliminated when deriving the Lagrange’s equation, due to the drillstring constant speed of rotation Ω.

2.2.2. Elementary strain energy
The elementary strain energy U is composed of the energies associated with the longitudinal, torsional and bending

motions, respectively:

U =
1
2

EeS e

∫ le

0

(
∂w
∂z

)2

dz +
1
2

GeIe
p

∫ le

0

(
∂θz

∂z

)2

dz +
1
2

EeIe

∫ le

0

(∂2u
∂z2

)2

+

(
∂2v
∂z2

)2 dz (5)

The stiffness matrix is built by using Eq.5. The shear effect is added into the bending stiffness matrix with the
quantity [21]:

a =
12EeIe

GeS e
r l2e

(6)

where S e
r is the reduced area of the cross-section.

2.2.3. Elementary axial - bending coupling145

The axial force Fe
0 induces stress stiffening. This effect has a primordial role in the case of a slender beam. It is

obtained by taking into account the nonlinear quadratic terms of the strain:

εnl
zz =

1
2

(
∂u
∂z

)2

+
1
2

(
∂v
∂z

)2

(7)

The contribution of the axial force Fe
0 is expressed as a strain energy:

UFe
0

=
Fe

0

2

∫ le

0

(∂u
∂z

)2

+

(
∂v
∂z

)2 dz (8)
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2.2.4. Elementary torsional - bending coupling
The axial torque T e

0 induces also stress stiffening for any direction of application [22, 23]. As the axial torque is
non-conservative, a strain energy can not be established. Its virtual work has to be calculated with its projections in
the two bending planes and with the virtual curvatures:

δW = T e
0

∫ le

0

[
∂v
∂z
δ

(
∂2u
∂z2

)
−
∂u
∂z
δ

(
∂2v
∂z2

)]
dz (9)

2.3. External dynamic forces
2.3.1. Contact forces

Under the effects of gravity, external forces and mass unbalance, numerous drillstring borehole contacts occur.150

Thus, the contact is modelled by three components: normal and tangential contact forces and a friction torque as
shown in Fig.4.

The expression of the normal force component is given for example in [24, 25]

Fcn =

−
(
Kc (P) P + Cc (P) Ṗ

)
−→n if P > 0

−→
0 if P ≤ 0

(10)

with P = r − j0, r =
√

u2 + v2, j0 the drillstring - borehole clearance, −→n = [u/r, v/r, 0]T the unit normal vector in

�

� 

���

�

�

�	


�


�

Ω

���

Bore-hole

Drill-string

��

� 

Figure 4: Drillstring borehole interaction

the local frame of reference. The contact stiffness and damping are smoothed by using the arctan function as in [24]:

Kc (P) =
kc

2

[
2
π

arctan (πλkP) + 1
]

; Cc (P) =
cc

2

[
2
π

arctan (πλcP) + 1
]

(11)

with kc and cc the maximum contact stiffness and damping parameters, λk and λc the regularized parameters. The
frictional contact force and torque are calculated by using the Coulomb law:

Fct = −µ
(
vg

)
|Fcn|
−→t (12)
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T f = −µ
(
vg

)
|Fcn|Re

−→z (13)

with −→t = [−v/r, u/r, 0]T the unit tangent vector in the local frame of reference, Re the outer radius of drillstring. The
friction coefficient µ

(
vg

)
is regularized as a function of the sliding speed vg of the drillstring on the borehole [24, 25]:

µ
(
vg

)
=

vg

2vre f


1 − ξ

1 +
(1 − ξ)
2vre fµd

|vg|

+
1 + ξ(

1 +
(1 − ξ)
2vre fµd

|vg|

)2

 (14)

with vg =
uv̇ − u̇v

r
+

(
Ω + θ̇z

)
Re, ξ =

√
1 −

µd

µs
, vre f the reference velocity allowing to adjust the slope at zero-speed.

2.3.2. Force due to mass unbalance
The presence of straightness defaults due to the drillstring fabrication and assembly as well as wear or measurement-

while-drilling tools [26] possibly makes the drillstring unbalanced. The unbalance is modelled with discrete mass

�

�

�

��

��

��

+Ω�

�
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�

Figure 5: Mass unbalance sketch

unbalances. Let mu and d be the eccentric mass and gyration radius respectively of one of them [21]. The mass is
always in the x − y plane and its initial angular position relative to the x axis is αu, as shown in Fig.5. Neglecting
the angular fluctuation regarding the speed of rotation, the kinetic energy of a discrete mass unbalance at one node in
steady state regime is:

Tu =
1
2

mud
[
dΩ2 − 2u̇Ω sin (Ωt + αu) + 2v̇Ω cos (Ωt + αu)

]
(15)

which provides through the application of Lagrange’s equations the centrifugal force vector Fu (t) =
[
Fu

u , F
v
u, 0, 0, 0, 0

]T ,
where:  Fu

u = mudΩ2 cos (Ωt + αu)

Fv
u = mudΩ2 sin (Ωt + αu)

(16)

2.4. Fluid - drillstring interactions155

The effects of the fluid flows are modeled by the forces acting on the pipe in the three local directions. The model
developed in [13, 16] is adjusted in order to take into account the curved trajectory of the borehole, the eccentricity of
annular space due to the deflection of drillstring inside the borehole, and the speed of rotation of the pipe. The detail
of the fluid - structure interaction model is presented hereafter.
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2.4.1. Equations of motion160

During the drilling, the filtered fluid is injected downward into the drillpipe with a constant axial speed Ui and
then goes back upward into the annular space drillpipe - borehole with a speed Uo conveying rock debris, calories.
The pressures inside and outside the drillstring are respectively pi, po and varry linearly along the drillstring. In the
undeformed state, the axis of beam element coincides with the center line of borehole. Let dz the length of an element
of the drillstring having Mt as mass per unit of length and subject to structural, fluid forces and moments shown in
Fig.6. The element is deformed in the plane r − z where r is the radial displacement direction. The forces balance in
the z and r directions for one element yield:

0 =
∂Faxial

∂z
+ Fit − Fet − (Fin + Fen) γ −

∂Qγ
∂z

+ Mtg cosψ cos θ

0 =
∂Q
∂z

+ (Fit − Fet) γ + Fin + Fen −
∂Faxialγ

∂z
− Mtat

−Mtg
√

(− cosψ sin θ cos φ + sinψ sin φ)2 + (cosψ sin θ sin φ + sinψ cos φ)2

(17)

with Faxial the axial force, Q the tranversal shear force. Fit, Fet are respectively the tangential forces due to inside
and outside fluid flows. Fin, Fen are respectively the normal forces due to inside and outside fluid flows. at is the
lateral acceleration of the beam element. γ is the angle between the tangential vectors of the beam center lines in the
deformed and undeformed states.

Y
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�����

�	
�	�
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��

��
��

�
�+

��

��
��

������ �����

O

r
x

y
�	
�	� +

��	
�	�

��

Figure 6: Forces and moments acting on an infinetesimal element of the drillstring

2.4.2. Fluid forces due to internal flow165

Let the internal fluid element be considered and sketched in Fig.7. The force equilibrium respectively in z and r
directions gives:

Fit − Finγ = −Ai
∂pi

∂z
+ M f g cosψ cos θ

Fitγ + Fin = −Ai
∂ (piγ)
∂z

− M f a f

−M f g
√

(− cosψ sin θ cos φ + sinψ sin φ)2 + (cosψ sin θ sin φ + sinψ cos φ)2

(18)
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The accelerations in x, y, z directions of fluid are calculated in [27, 28] assuming that the drillstring is inextensible and
the curvature radius of borehole is very important compared to the cross-section radius of the well:

a f x =
∂2u
∂z2 + 2Ui

∂2u
∂t∂z

+ U2
i
∂2u
∂z

a f y =
∂2v
∂z2 + 2Ui

∂2v
∂t∂z

+ U2
i
∂2v
∂z

a f z = 0

(19)

Y
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z

O �

�����

�����
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	�� �	���

O

r
x

y �� � +
��

��
�����

Figure 7: Forces acting on an internal fluid element

2.4.3. Fluid forces due to annular flow
As showed in Fig.8, the beam element is subjected to the forces due to the flow in the annular region. The forces

balance in z and r directions gives:  −Fet − Fenγ = −FL + Fpz

−Fetγ + Fen = −FLγ − (FA + FN) + Fpr

(20)

where fluid forces due to gravity and hydrostatic pressure Fpz and Fpr are given by:

Fpz = FpX sin θ − FpY sinψ cos θ − FpZ cosψ cos θ (21)

Fpr =

√√√√ (
FpX cos θ cos φ + FpY (sinψ sin θ cos φ + cosψ sin φ) − FpZ (− cosψ sin θ cos φ + sinψ sinψ)

)2

+
(
−FpX cos θ sin φ + FpY (− sinψ sin θ sin φ + cosψ cos φ) − FpZ (cosψ sin θ sin φ + sinψ cos φ)

)2 (22)

FA is the lateral hydrodynamic invicible force. FN , FL are the friction forces due to the annular flow in the normal
and axial directions, respectively.

FL =
1
2

C fρ f DoU2
o (23)
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Figure 8: Forces due to annular flow

As the forces FA and FN are applied on a drillstring element in the radial direction, their projections along x and y
local axes respectively give:

F x
A = χ

(
∂

∂t
− Uo

∂

∂z

) [
ρ f Ao

(
∂u
∂t
− Uo

∂u
∂z

)]
(24)

Fy
A = χ

(
∂

∂t
− Uo

∂

∂z

) [
ρ f Ao

(
∂v
∂t
− Uo

∂v
∂z

)]
(25)

F x
N =

1
2

CNρ f DoUo

(
∂u
∂t
− Uo

∂u
∂z

)
+ k

∂u
∂t

(26)

Fy
N =

1
2

CNρ f DoUo

(
∂v
∂t
− Uo

∂v
∂z

)
+ k

∂v
∂t

(27)

with Ao the beam cross-section, Do the external diameter of the beam, ρ f the fluid density. C f , CN , k are the viscous
damping coefficients. The first two coefficients are used to take into account the friction fluid - structure in axial and
radial directions while the last one, the fluid damping also in lateral direction is related to the rotation of drillstring.
In this work, the values of C f and CN are extracted from [13]. χ is the added mass coefficient of fluid in the annular
space:

χ =
D2

ch + D2
o

D2
ch − D2

o
(28)

with Dch, the borehole internal diameter. The viscous damping coefficient k is a function of drillstring-borehole
geometry, fluid properties and drillstring speed of rotation:

k =
2
√

2
√

S


1 +

(
Do
Dch

)3(
1 −

(
Do
Dch

)2
)2

 ρ f AoΩ (29)

with S = ΩD2
o/4ν f the Stokes number. In order to take into account the non Newtonian behavior of the drilling fluid,

the viscous damping coefficient C f is based on [29]. The friction pressure loss of annular fluid flow is estimated
considering the eccentricity, the rotation of drillstring inside the borehole and the fluid flow regime by circulating the170
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Yield-Power-Law fluid in the drilling system. The viscosity in Eq.(29) is estimated by combining the shear rates of
axial and tangential fluid flows [30].

The forces related to the gravity and the hydrostatic pressure are calculated based on [31]. The resultant force
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Figure 9: Sketch for calculating forces due to gravity and hydrostatic pressure

applied on the beam element is equal to the buoyancy force in the direction of vector −
−→
K , see Fig.9.

Σ

(
−→
Fi +

−→
Fr

)
= −Ao

∂po

∂z
−→
K (30)

where :
−→
Fi,
−→
Fr are respectively resultant forces in the longitudinal and radial directions of drillstring element. The

resolution of Eq.30 gives:

Fpz = Ao
∂po

∂z
(1 − cosψ cos θ) (31)

Fpr = Ao
∂ (poγ)
∂z

− Ao
∂po

∂z

√
(− cosψ sin θ cos φ + sinψ sin φ)2

+ (cosψ sin θ sin φ + sinψ cos φ)2 (32)

2.4.4. Equations of fluid forces discretized by 3D FE beam
Introducing Eqs.18 and 20 into Eq.17 by considering only the terms associated with the fluid, gives the fluid forces

acting on the drillstring: 
F f z = −Ai

∂pi

∂z
+ M f g cosψ cos θ − FL + Fpz

F f r = Ai
∂ (piγ)
∂z

+ M f a f + FLγ + (FA + FN) − Fpr

(33)

The substitutions of Eqs.19, 23-27, 31, 32 into Eq.33 with the projection of radial fluid force along x and y
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directions give the equations of fluid forces acting on a 3D FE beam in local frame:175 

F f x =
(
M f + χρ f Ao

) ∂2u
∂t2 +

(
1
2

C fρ f DoUo + k
)
∂u
∂t

+
(
2M f Ui − 2χρ f AoUo

) ∂2u
∂t∂z

+
(
M f U2

i + χρ f AoU2
o + Ai pi − Ao po

) ∂2u
∂z2 +

(
Ai
∂pi

∂z
− Ao

∂po

∂z

)
∂u
∂z

−M f g (− cosψ sin θ cos φ + sinψ sin φ) + Ao
∂po

∂z
(−cosψ sin θ cos φ + sinψ sin φ)

F f y =
(
M f + χρ f Ao

) ∂2v
∂t2 +

(
1
2

C fρ f DoUo + k
)
∂v
∂t

+
(
2M f Ui − 2χρ f AoUo

) ∂2v
∂t∂z

+
(
M f U2

i + χρ f AoU2
o + Ai pi − Ao po

) ∂2v
∂z2 +

(
Ai
∂pi

∂z
− Ao

∂po

∂z

)
∂v
∂z

−M f g (cosψ sin θ sin φ + sinψ cos φ) + Ao
∂po

∂z
(cosψ sin θ sin φ + sinψ cos φ)

F f z = −Ai
∂pi

∂z
+ M f g cosψ cos θ −

1
2

C fρ f DoU2
o − Ao

∂po

∂z
(1 − cosψ cos θ)

(34)

The FE discretization of Eq.(34) gives the mass, stiffness and damping matrices associated with the drilling fluid.
The expressions of these matrices are presented in Appendix.

3. Numerical methods for computing the nonlinear response

This section presents the nonlinear responses computation of the drillstring taking the drilling fluid effects into
account. The assembly yields the FE model and therefore a set of n equations of the fluid - drillstring system described180

by n dofs inside the borehole. Firstly, the quasi-static equilibrium position of the drillstring is calculated. Then, its
transient dynamics inside the borehole is studied.

3.1. Quasi-static equilibrium position

The calculated quasi-static position considers the drillstring contact forces as well as the WOB and TOB developed
by the drill bit during the drilling operation. The equilibrium equation is written as:(

K + K f
)
δ = Fs + Fqs

c (δ) (35)

with K the drillstring stiffness matrix including in particular the WOB and TOB stress stiffening effects, K f the mud
stiffness matrix. The force vector Fs contains the body forces (gravity and buoyancy), the fluid forces expressed by
Eqs. A.4-A.6, the WOB and TOB forces. The quasi-static contact load vector Fqs

c consists of three components: the
normal force Fqs

cn, the tangential force Fqs
ct , and the frictional torque Tqs

f
defined by:


Fqs

cn = −Kc (P) P−→n

Fqs
ct = −µs|F

qs
cn|
−→t

Tqs
f

= −µs|F
qs
cn|Re
−→z

(36)

where µs is the static friction coefficient. Eq.35 is solved using a Newton-Raphson method as explained in [32]. It
provides the quasi-static position of the drillstring inside the borehole.185

3.2. Transient dynamics computation

The nonlinear dynamic behavior of the fluid - drillstring system inside a 3D borehole is governed by the set of n
differential equations:(

M + M f
)
δ̈ +

(
C + C f

)
δ̇ +

(
K + Kg + K f

)
δ = Fs + Fc

(
δ̇, δ, t

)
+ Fu (t) (37)
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with M, K the classical mass and stiffness matrices, Kg the geometric stiffness matrix due to the initial displacement
of the drillstring given by the quasi-static equilibrium calculation. The matrix C = Ccor + Cdamp is composed of the
Coriolis and structural damping matrices. The structural damping is given by Cdamp = αM +β

(
K + Kg

)
, with α and β

the Rayleigh coefficients. The presence of fluid induces M f , C f and K f , the added mass, damping, stiffness matrices,190

respectively. The contact force Fc
(
δ̇, δ, t

)
and the mass unbalance force Fu (t) are obtained from section 2.3. Eq.37

is solved by means of a fourth order Runge-Kutta scheme with an adaptative time step [33].

4. Simulation in time domain

4.1. Test case

In order to simulate a realistic drilling dynamic behavior in operation, a 200 m drillstring confined in a 3D well is195

considered. Figure 10 shows the curved borehole trajectory in global coordinates.

Figure 10: 3D well trajectory

Stabilizers
Drillpipes

DrillcollarsDrill bit

gauges

Figure 11: Drillstring assembly

The drillstring is an assembly of pipes with different diameters. It consists of drillpipes, drillcollar, stabilizers, drill
bit, see Table.1 and Fig.11. A drillpipe is described in details by Fig.12 and Table.2. The borehole is made of only
one open-hole described in Table.3 In practice, the drillstring-borehole contacts are often located at the tool-joints and
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Table 1: Drillstring composition

Figure 12: Drillpipe

Table 2: Drillpipe dimensions

Table 3: Borehole description
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Table 4: Solid and fluid properties

Young modulus E (N/m2) 2.03E11
Drillstring density ρ (kg/m3) 7900

Poisson’s coefficient ν 0.3
Fluid density ρ f (kg/m3) 1200

Yield stress τy (Pa) 0.29
Consistent index K (Pa.sn) 0.07

Flow behavior index n 0.55
Flow rate Q (m3/s) 1E-2

Table 5: Contact modeling parameters

Stiffness kc (N/m) 1E7
Damping cc (Ns/m) 1E4

Regularized parameters λk, λc (m−1) 7E7, 7E4
Static frictional coefficient µs 0.3

Dynamic frictional coefficient µd 0.2
Regularized frictional vre f (m/s) 0.033

Rayleigh damping coefficient α (s−1) 0.03
Rayleigh damping coefficient β (s) 0

at the drillcollars. In some cases, contacts can occur at the drillpipe body. Therefore, in this study, the authors used a200

FE model with element lengths of 30 cm for the tool-joint, 178 cm for the drillpipe body and 25 cm for the drillcollar.
With regards to the simulations carried out with different element sizes (not presented in this article), these retained
element sizes permit reaching a satisfactory level of accuracy for the static computation and for the dynamic results in
the target frequency range. The complete FE drillstring model contains 296 beam elements, and 297 nodes i.e. 1782
dofs. It should be mentioned that the first node at the top of the drillstring is located at the middle of the drillpipe i.e.205

at its body. Since the drill bit, the stabilizers and the borehole have the same diameter, three gauges reduce the radial
clearance to 10−4 m at the lowest node (drill bit) and at the center of stabilizers in the FE model.

The speed of rotation Ω is imposed at the top of drillstring. By assumption, the elementary gyroscopic matrix
is considered constant all along the drillstring. The fluid is pumped downward inside the pipe and upward in the
annular space with the mean axial velocities Ui and −Uo respectively and is modelled with the Yield-Power-Law as210

in [30, 29, 34, 35, 36]. During the rotation, a constant force WOB=−105 N and a constant torque TOB=-5000 Nm are
applied to the drill bit. The drillstring material and fluid properties are given in Table 4, and pipe - borehole contacts
and structural damping parameters in Table 5.

4.2. Quasi-static position

Figure13 shows the quasi-static equilibrium position of the drillstring. Under the effects of gravity, of fluid and215

contact forces, the drillstring is bent out of plane. The lateral displacements u and v are not nil for almost all the nodes
along the drillstring as shown in Fig.13(a). The radial displacement of each node r =

√
u2 + v2 is plotted in Fig.13(b).

It shows that the pipe - borehole contacts are located at tooljoints and at almost all the drillcollars.
As shown in Fig.13(b), the drillstring deflects inside the borehole. The pipe - borehole annular space is no longer

concentric. This modifies the annular frictional pressure loss characterized by the viscous damping coefficient C f220

and generates variable frictional coefficients along the drillstring length. The coefficient C f , based on the procedure
described in [29], is plotted in Fig.14(a). Based on [30], an apparent drilling fluid kinematic viscosity ν f that combines
the fluid flows in the longitudinal and circumferential directions is applied. Thus, the fluid viscosity has a non-constant
value, see Fig.14(b).
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(a) (b)

Figure 13: Quasi-static position of drillstring: (a) longitudinal and lateral displacements, (b) radial displacement

(a) (b)

Figure 14: Drilling fluid parameters calculation at each finite element: (a) viscous damping coefficient C f , (b) apparent kinematic viscosity ν f

4.3. Mass unbalance responses225

In this section, the dynamic responses of the drillstring under mass unbalance excitation is studied. In [14, 37, 16]
as well as in a previous work of the authors [38], the viscous damping coefficient C f was considered constant. This
means that the pipe - borehole annular space is assumed to be concentric. This is not true in practice since most of the
drillstring is in contact with the borehole as shown in Fig.13. Therefore, the computation has to be carried out with the
variable viscous damping coefficient and fluid viscosity obtained in the previous quasi-static position calculation, see
Fig.14. The mass unbalance related data is calculated based on the 1995 edition of the American Petroleum Institute
standards as mentioned in [21]:

Mu =
2 × 6350 × Md

Ω
(38)

with Mu the total mass unbalance (g.mm), Md the drillstring total mass (kg). The drillstring speed of rotation is
assumed to be constant in the mass unbalance forces. The mass unbalance is divided into 17 quantities located along
the length of the drillstring and all of them are in phase. The unbalance masses of the drillpipes and the drillcollars
are distributed according to their contributions to the drillstring total mass, see Table 6.

After the static equilibrium position calculation, almost all the lower part of drillstring is in contact with the230

borehole wall due to the gravity effect except the nodes near the drill bit and stabilizers gauges. The response of the
nodes of this drillstring part could not be destabilized too much as the unbalanced masses are too small compared with
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Table 6: Mass unbalance

Location mu (kg) d (m) αu (deg)

tooljoints 1.6 0.064 0
drillcollars 1.8 0.058 0

the drillcollar mass. Contrary, the drillpipe has only tooljoints contacts. There are some nodes located at the drillpipe
body which might have contacts during the dynamic computation because of their important static deflections and
to the slenderness of drillpipe i.e. Node 49. In order to have a general observation about the dynamic behavior at235

several locations along the drillstring, the unbalanced mass response of Nodes 10, 49, and 282 have been considered,
as shown in Fig.15.

(a) (b)

Figure 15: Radial displacement at the Nodes 10 (first row subfigures), 49 (second row subfigures, 282 (third row subfigures): without fluid (a),
with fluid (b). The red dashed lines represent the drillstring-borehole clearances. The abscissa is the simulated time [s] while the coordinate is the
displacement amplitude [m].

Figure 15 shows the time history radial displacements of Nodes 10, 49, 282. Without fluid, Node 10 located near
the drilling surface (s=11.72 m) has no contact with the borehole during the 60 s of simulation. Intermittent contacts
are observed at Node 49 located on a drillpipe body (s=57.36 m) with large bouncing amplitude. Much more number240

of contacts can be found at Node 282 with important penetration of the drillpipe due to the heavy weight of drillcollar.
A quasi-periodic behavior is noticed. The presence of drilling fluid with its damping effect reduces the vibration
amplitudes of all considered nodes. A steady state is established roughly after 40 s of simulation. A full spectrum
analysis proves the nodes whirl. As shown in Fig.15, the drillstring orbit combines forward and backward whirls in
the case without fluid. When the drillstring rotates in drilling fluid, the same observations are noticed at Nodes 10 and245

282. However, two different states of vibration occur at Node 49. In the [0 s, 40 s] transient state, Node 49 shows
a backward whirl while in the steady state, up to 40 s, it adopts the similar behavior of the other nodes. In order to
clarify the fluid effect on the drillstring dynamics, the analysis focuses on the dynamic response at Node 49 in the
transient zone [15 s, 25 s], see Fig.16, and in the steady state zone [50 s, 60 s], see Fig.17. The grey circles represent
the drillstring-borehole clearance. With no fluid, the lift-off motion from the wellbore which leads to intermittent250

contacts is noticed, see Fig.16 (a). The full spectrum permits determining the combination of forward or backward
whirls in relation to the drillstring rotation [39]. In the field of drilling, the spectral analysis in the [-20 Hz, 20 Hz]
ensures the coverage of the operating speed of rotation i.e [60 rpm, 200 rpm]. With no fluid the ±3.532Hz peaks are
noticable: the slight difference of their amplitudes can be observed showing that there is no predominant whirling
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(a) (b)

(c) (d)

Figure 16: The Node 49 orbits (a, b) and the associated full spectrum analyses (c, d) at the [15 s, 25 s] range: without fluid (a, c), with fluid (b, d).

either forward or backward, see Fig.16(c). The fluid forces change the drillstring dynamics as shown in Fig.16 (b, d).255

Whirling-motions are well noticed. The average offset of orbital center related to the borehole center is about 0.038
m corresponding to half peak amplitude at 0 Hz i.e. 0.07521 m. The -2.781 Hz peak is the most important in the
full spectrum plot: the Node 49 orbit has mainly a backward whirl in the [15 s, 25 s] interval. In practice, -2.781
Hz≈32/23Ω peak means that there are 32 main contacts during 23 revolutions of drillstring. As the drillstring runs at
120 rpm, 23 revolutions are done in the last 11.5 seconds of simulation. Figure 18 represents the contact force at Node260

49 in the [14.5 s, 26 s] time interval. The main 32 peaks correspond to the main 32 drillstring-borehole contacts. The
fluid effect on the drillstring dynamics is also observed through the reduction of the most important frequency in full
spectrum analysis from -3.532 Hz to -2.781 Hz. This reduction of vibration frequency is a well-known phenomenon
in drillstring modal analysis due to the added mass of drilling fluid [16]. Figure 17 shows that Node 49 has a similar
behavior related to the previous time interval in both orbital motion and full spectrum analysis with no drilling fluid.265

However, the number of contacts decreases resulting in a lift-off motion decrease. In Fig.17 (b, d), the fluid damping
reduces the drillstring vibration level. Node 49 has a tight orbit vibrating close to the wellbore without contact. No
significant peak is noticed in the full spectrum plot except that one at 0 Hz frequency.
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(a) (b)

(c) (d)

Figure 17: The Node 49 orbits (a, b) and the associated full spectrum analyses (c, d) at the [50 s, 60 s] range: without fluid (a, c), with fluid (b, d).

4.4. Parametric analysis
This section is devoted to the influence of some fluid parameters on the mass unbalance response of the drillstring.270

In the fluid-structure interaction model mentioned in section 2.4, the drilling fluid is assumed to be Yield-Power-Law
fluid characterized by consistent index K, yield stress τy, and flow behavior index n. Apart from theses parameters
related to fluid rheology which are fixed for a given fluid, the two other parameters affecting the dynamic behavior are
the flow rate Q f and fluid density ρ f .

4.4.1. Influence of flow rate275

For this study, the fluid rheology properties are fixed at the values given in Table 4. The flow rate varies from
0.01 m3/s to 0.06 m3/s which are representative flow rates in drilling. Figure 19 (a) compares the Node 49 orbits for
several flow rates in [40 s, 60 s] time interval in which a steady state of vibration is established, see Fig.15. The effect
of the flow rate is observed. Increasing the flow rate generates more vibrations in terms of orbital motion, this is due
to an increase of Reynold’s number. In the proposed fluid-structure interaction model, the viscous damping factor is280

calculated in terms of the Reynold’s number which is used to determine the flow regime in the drillstring-borehole
annular space. In the [0.01 m3/s, 0.06 m3/s] range, the flow is considered as laminar i.e. the Reynold’s number is
proportional to the fluid density and to the axial fluid flow speed. Moreover, increasing Reynold’s number decreases

21



Figure 18: Drillstring-borehole contacts force at Node 49 in the [14.5 s,-26 s] time interval corresponding to 23 simulated revolutions

the fluid viscous damping factor C f [29], and Fig.20 (a). Therefore, the reduction of fluid damping effect increases
the amplitudes of the drillstring vibrations.

(a) (b)

Figure 19: The Node 49 orbits under: (a) flow rate effect - (1) Q f =0.01 m3/s , (2) Q f =0.04 m3/s, (3) Q f =0.06 m3/s; (b) fluid density effect - (1)
ρ f =1200 kg/m3, (2) ρ f =1500 kg/m3, (3) ρ f =1800 kg/m3, (4) ρ f =2100 kg/m3

285

4.4.2. Influences of fluid density
For the parametric study of the fluid density, the other parameters related to drilling fluid are presented in Table

4. In Fig.19 (b), the orbits of Node 49 are plotted for a range of fluid density from 1200 kg/m3 to 2100 kg/m3 in the
[40 s, 60 s] time interval. As discussed previously, increasing the fluid density leads to increase the Reynold’s number
which reduces the viscous damping factor C f and then the damping fluid force acting on the drillstring, see Fig.20 (b).290

However, the fluid densification does not reduce the values of C f as much as the increase of the flow rate. Furthermore,
increasing fluid density provides more inertial force to the drillstring as shown in Eq.34. The apparent influence of
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(a) (b)

Figure 20: Viscous damping coefficient C f under: (a) flow rate effect, (b) fluid density effect

fluid density is noticed by analysing the Node 49 orbits under the fluid density effect. A similar behavior is observed
when the fluid density increases from 1200 kg/m3 to 1500 kg/m3. Node 49 vibrates always without contact during the
time interval considered. But the intermittent contact with higher lift-off motions are noticed when increasing the fluid295

density to 1800 kg/m3. For the most important value of fluid density i.e. 2100 kg/m3, Node 49 has a larger orbital
motion compared with the other values of fluid density. With the full spectrum analysis (not plotted here), a backward
whirl motion is identified for Node 49 when rotating in fluid having a density of 2100 kg/m3.

5. Conclusion and remark

The original model presented in this paper is a contribution to the prediction of the dynamic behavior of a rotary300

drillstring in a 3D curved well subject to fluid-structure interactions, nonlinear forces due to pipe - borehole contact and
mass unbalance. The rotation and deflection of the drillstring inside the borehole are considered for the calculation of
the viscous damping coefficient and the apparent kinematic viscosity related to drilling fluid. The application concerns
an existing 3D-borehole well. The predicted results show the role of the drilling fluid on the drillstring behavior. The
drilling fluid reduces the number and the duration of the drillstring borehole contacts, the rebound amplitudes. The305

carried out parametric analysis highlights that an increase flow rate leads to reduce the fluid damping effect on the
drillstring vibration. The same phenomenon is observed when increasing the fluid density. However, this one has a
bigger effect on drillstring dynamics than the flow rate effect.

In this work, the drillstring dynamics is simulated under constant values of WOB and TOB. The fluid forces are
also assumed to be constant during the dynamic simulation. All of these assumptions help to establish the current310

model and its computation. In future works, a bit-rock interaction model as well as the fluid forces updated during the
dynamic response calculation have to be implemented for making the simulated results more realistic.
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Appendix. Matrices and force vectors of the fluid

The discretization of Eq.34 by using FE method and beam shape functions in Eq.3 gives the added mass, damping,
stiffness elementary matrices and vectors of fluid forces associated to the drilling fluid :

[Me] f =
∫ 1

0

(
M f + χρ f Ao

) (
NT

u (ξ) Nu (ξ) + NT
v (ξ) Nv (ξ)

)
ledξ (A.1)

[Ce] f =
∫ 1

0

((
1
2

C fρ f DoUo + k
) (

NT
u (ξ) Nu (ξ) + NT

v (ξ) Nv (ξ)
)

le

)
dξ

+
∫ 1

0

(
2M f Ui − 2χρ f AoUo

) [∂Nu (ξ)
∂ξ

]T

Nu (ξ) +

[
∂Nv (ξ)
∂ξ

]T

Nv (ξ)
 dξ

(A.2)

[Ke] f =

∫ 1

0



(
M f U2

i + χρ f AoU2
o + Ai pi − Ao po

)
[∂2Nu (ξ)

∂ξ2

]T

Nu (ξ) +

[
∂2Nv (ξ)
∂ξ2

]T

Nv (ξ)

 1
le

+

(
Ai
∂pi

∂z
− Ao

∂po

∂z

) [∂Nu (ξ)
∂ξ

]T

Nu (ξ) +

[
∂Nv (ξ)
∂ξ

]T

Nv (ξ)



dξ (A.3)

f x
f =

∫ 1

0


M f g (− cosψ sin θ cos φ + sinψ sin φ)

−Ao
∂po

∂z
(− cosψ sin θ cos φ + sinψ sin φ)

 NT
u (ξ) ledξ (A.4)

f y
f =

∫ 1

0


M f g (cosψ sin θ sin φ + sinψ cos φ)

−Ao
∂po

∂z
(cosψ sin θ sin φ + sinψ cos φ)

 NT
v (ξ) ledξ (A.5)

f z
f =

∫ 1

0


M f g cosψ cos θ − Ai

∂pi

∂z
− 1

2C fρ f DoU2
o

+Ao
∂po

∂z
(1 − cosψ cos θ)

 NT
w (ξ) ledξ (A.6)

where le is the beam element length, ξ = z/le.
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[34] O. Erge, M. E. Ozbayoglu, S. Miska, M. Yu, N. Takach, A. Saasen, R. May, Effect of drillstring deflection and rotary speed on annular380

frictional pressure losses, Journal of Energy Ressources Technology 136 (2014) 10.
[35] O. Erge, M. E. Ozbayoglu, S. Miska, M. Yu, N. Takach, A. Saasen, R. May, CFD analysis and model comparison of annular frictional pressure

losses while circulating Yield Power Law fluids, in: (SPE Paper 173840) SPE Bergen One Day Seminar, 22 April, Bergen, Norway, Society
of Petroleum Engineers, 2015.

[36] O. Erge, A. K. Vajargah, M. E. Ozbayoglu, E. V. Oort, Frictional pressure loss of drilling fluids in a fully eccentric annulus, Journal of Natural385

Gas Science and Engineering 26 (2015) 1119–1129.
[37] H. Qiu, J. Yang, S. Butt, J. Zhong, Investigation on random vibration of a drillstring, Journal of Sound and Vibration 406 (2017) 74–88.
[38] Q.-T. Tran, K.-L. Nguyen, L. Manin, M.-A. Andianoely, S. Baguet, S. Menand, R. Dufour, Nonlinear dynamics of a rotary drill-string

immersed in a 3D geometry well, in: Mechanisms and Machine Science, Vol. 63, Springer Netherlands, 2019, pp. 265–279.
[39] P. Goldman, A. Muszynska, Application of full spectrum to rotating machinery diagnostics, Orbit 20 (1) (1999) 17–21.390

25




