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Introduction

Basically, rotary geothermic or oil drilling has a 3D curved well trajectory, carried out by using a very long drillstring made of slender pipes and a tool bit, running in a 60-120 rpm speed of rotation range. The lowest component of the drillstring so-called the bottom hole assembly (BHA) consists of heavyweight drill pipes whose weight on the bit makes possible the rate of penetration (ROP). The mud plays the role of a drilling fluid: rock-cutting evacuation, 5 cooling and lubrication. It is pumped downward inside the drillpipe and upward in the annular space between the drillpipe and the well. During the drilling, the unbalance masses distributed along the drillstring, the mud pumping, and the excitation generated by the drill bit induce drillstring vibrations combining lateral, torsional and longitudinal motions, triggering non expected phenomena such as forward and backward whirlings, stick-slip, bit-bouncing [START_REF] Khulief | Vibration analysis of drillstrings with self-excited stick-slip oscillations[END_REF][START_REF] Melakhessou | A nonlinear well-drillstring interaction model[END_REF][START_REF] Piovan | Nonlinear model for coupled vibrations of drill-strings[END_REF][START_REF] Yigit | Coupled torsional and bending vibrations of actively controlled drillstrings[END_REF]. This set of phenomena is detrimental to the proper drilling operation and can lead to: equipment failures, reduction 10 of the mean time between failures and of the ROP.

In order to avoid such adverse dynamic phenomena, it is required to understand, to predict and to control the drilling dynamics which is a complex rotordynamics problem. For this purpose, a proper model has to take into account several drilling-related specific features such as the preloaded slender rotating string immersed in a 3D well, the eccentricity of the drillstring in the well, the numerous drillpipe -borehole contacts, the fluid-structure interaction, 15 the motion couplings, the parametric excitation due to the weight on bit (WOB) and torque on bit (TOB).

Fluid-structure interactions have been investigated since a few decades in the literature. Chen et al. [START_REF] Chen | Added mass and damping of a vibrating rod in confined viscous fluids[END_REF], studied the vibration of a rod confined in Newtonian fluid, the fluid effects being considered by the hydrodynamic forces which contain the added mass and damping coefficients. The similar formulations for fluid-related coefficients proposed in [START_REF] Chen | Added mass and damping of a vibrating rod in confined viscous fluids[END_REF] are utilized in the thesis of Shyu [START_REF] Shuy | Bending vibration of rotating drill strings[END_REF] for different types of fluid. Heisig [START_REF] Heisig | Lateral drillstring vibrations in extended-reach wells[END_REF] computed the eigenfrequencies by analytical formulas dedicated to a drillstring confined in a horizontal extended well and taking into account the inertial effect through added mass coefficients provided in [START_REF] Sinyavskii | Oscillation of a cylinder in a viscous liquid[END_REF], but not the damping effect. Numerical and experimental investigations about the effect of fluid on rotor in bending were carried out by Axisa and Antunes [START_REF] Axisa | Flexural vibrations of rotors immerged in dense fluid-Part II: Experiments[END_REF][START_REF] Axisa | Flexural vibrations of rotors immerged in dense fluid-Part I: Theory[END_REF]. The fluid force was interpreted by three effects which depend on the fluid characteristics: inertia, friction, and viscosity. Except the added mass matrix derived from inertial effect, the stiffness and damping matrices related to fluid were expressed as function of the speed of rotation. In their extended research, Antunes et al. [START_REF] Antunes | Dynamics of rotors immersed in eccentric annular flow. Part 1: Theory[END_REF] expressed the hydrodynamic force in terms of annular space eccentricity. Khulief et al. [12] studied the fluid elastic effects on the drillstring vibrations based on the model presented in [START_REF] Antunes | Dynamics of rotors immersed in eccentric annular flow. Part 1: Theory[END_REF] with a fluid friction coefficient adjusted experimentally. However these works did not consider the upward and downward mud flows.

Paidoussis et al. [START_REF] Paidoussis | Dynamics of a long tubular cantilever conveying fluid downwards, which the flows upwards around the cantilever as a confined annular flow[END_REF] investigated the dynamic behavior of a cantilever pipe by considering the inside and outside fluid flows. This model was used to simulate the vibration of a drillstring immersed in drilling mud in subsequent works [START_REF] Jafari | The effects of drilling mud and weight bit on stability and vibration of a drill string[END_REF][START_REF] Pei | Dynamics of rotation conveying mud drill string subjected to torque and longitudinal thrust[END_REF][START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF][START_REF] Wilson | A new damping model for nonlinear drillstring dynamics[END_REF]. Zhang et al. [START_REF] Zhang | Critical flow rate for the buckling of nonrotating drillpipe conveying fluid in vertical holes[END_REF] used the same model to determine the critical flow rate for the buckling of a nonrotating drillpipe conveying fluid. However in these aforementioned studies, the drillstring dynamics is analyzed only for straight wells, either vertical or horizontal. In practice, the drilling is directional leading to a deviated well trajectory. Feng et al. [START_REF] Feng | Dynamic modeling of directional drillstring: A linearized model considering well profile[END_REF] considered the profile of the well in their dynamic analysis of a directional drillstring but neglected the mud. Recently, in [START_REF] Feng | A finite element modeling framework for planar curved beam dynamics considering nonlinearities and contacts[END_REF] Feng et al. continued this investigation by using a planar curved finite element (FE) beam.

The model presented hereafter focuses on the dynamic behavior of the drillstring taking into account the muddrillstring interaction and the drillstring -borehole contacts. The FE model including contact forces, mass unbalance and fluid -drillstring interactions is presented in Section 2. Section 3 is dedicated to the dynamic computation procedure. In Section 4, the influence of the fluid on the drillstring vibration is discussed. Finally, conclusions are drawn in Section 5 

Nomenclature

ω R 1 R 1 /R
             - → I - → J - → K              =          
cos θ cos φ cos θ sin φ sin θ sin ψ sin θ cos φ + cos ψ sin φsin ψ sin θ sin φ + cos ψ cos φsin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ cos ψ sin θ sin φ + sin ψ cos φ cos ψ cos θ

                       - → i - → j - → k              (1) 
where (

- → I , - → J , - → K) and ( - → i , - → j , - → k )
are the unit vectors of the global and local coordinate systems, respectively. In the undeformed state, the drillstring is located at the center line of the well (R)Axyz. The frame (R 1 )Ax 1 y 1 z 1 is linked to the drillstring center line during its vibration. The transformation from the undeformed state to the deformed state of the drillstring is carried out using a set of three rotation angles θ x , θ y , Φ about x, y and z 1 axis, respectively, see Fig. 2. The instantaneous angular velocity vector of the R 1 frame is:

ω R 1 R 1 /R =           ω x ω y ω z           =           θx cos θ y cos Φ + θy sin Φ -θx cos θ y sin Φ + θy cos Φ Φ + θx sin θ y           (2) 
with Φ = Ωt + θ z , Ω the speed of rotation imposed to the drillstring, θ z the twist angle.

FE drillstring modeling

The drillstring is modeled with 3D Timoshenko beam elements with two nodes (Fig. 3), each node containing six degrees of freedom (dof): three translations and three rotations. The beam elements are uniform and homogenous. The elementary displacements δ e = u, v, w, θ x , θ y , θ z T are expressed with 12 dofs, the nodal displacements, see Fig. 3:

δ e = Nδ n (3) 
with

δ n = u 1 , v 1 , w 1 , θ x1 , θ y1 , θ z1 , u 2 , v 2 , w 2 , θ x2 , θ y2 , θ z2 T
, N the shape functions matrix. The drillstring equations 135 of motion are established with an energy approach. The application of Lagrange's equation yields the elementary matrices associated with the pipe beam. The calculation of kinematic, strain energies and virtual work of external forces for each element are presented hereafter.

Elementary kinetic energy

Using the instantaneous angular velocity vector in Eq.2, neglecting the higher order terms, and assuming small lateral angles of rotation (sin x ≈ x, cos x ≈ 1), the classical elementary kinetic energy of drillstring expressed in the frame of reference (R 1 ) is: 

T = 1 2 ρ e S e
In the expression of T , the first three integrals contribute to the mass matrix due to translation motions, cross-section 

Elementary strain energy

The elementary strain energy U is composed of the energies associated with the longitudinal, torsional and bending motions, respectively: 

U = 1 2 E e S e
       ∂ 2 u ∂z 2 2 + ∂ 2 v ∂z 2 2        dz (5) 
The stiffness matrix is built by using Eq.5. The shear effect is added into the bending stiffness matrix with the quantity [START_REF] Lalanne | Rotordynamics Prediction In Engineering[END_REF]:

a = 12E e I e G e S e r l 2 e (6)
where S e r is the reduced area of the cross-section.

Elementary axial -bending coupling 145

The axial force F e 0 induces stress stiffening. This effect has a primordial role in the case of a slender beam. It is obtained by taking into account the nonlinear quadratic terms of the strain:

nl zz = 1 2 ∂u ∂z 2 + 1 2 ∂v ∂z 2 (7)
The contribution of the axial force F e 0 is expressed as a strain energy:

U F e 0 = F e 0 2 l e 0        ∂u ∂z 2 + ∂v ∂z 2        dz (8) 

Elementary torsional -bending coupling

The axial torque T e 0 induces also stress stiffening for any direction of application [START_REF] Berlioz | Dynamic behavior of a drill-string: Experimental investigation of lateral instabilities[END_REF][START_REF] Dufour | Parametric instability of a beam due to axial excitations and to boundary conditions[END_REF]. As the axial torque is non-conservative, a strain energy can not be established. Its virtual work has to be calculated with its projections in the two bending planes and with the virtual curvatures:

δW = T e 0 l e 0 ∂v ∂z δ ∂ 2 u ∂z 2 - ∂u ∂z δ ∂ 2 v ∂z 2 dz (9)

External dynamic forces 2.3.1. Contact forces

Under the effects of gravity, external forces and mass unbalance, numerous drillstring borehole contacts occur.

150 Thus, the contact is modelled by three components: normal and tangential contact forces and a friction torque as shown in Fig. 4.

The expression of the normal force component is given for example in [START_REF] Duran | Effect of rotor-stator contact on the mass unbalance response[END_REF][START_REF] Duran | An analysis of rotor-stator interaction[END_REF]] the local frame of reference. The contact stiffness and damping are smoothed by using the arctan function as in [START_REF] Duran | Effect of rotor-stator contact on the mass unbalance response[END_REF]:

F cn =        -K c (P) P + C c (P) Ṗ - → n if P > 0 - → 0 if P ≤ 0 ( 10 
) with P = r -j 0 , r = √ u 2 + v 2 , j 0 the drillstring -borehole clearance, - → n = [u/r, v/r, 0] T the unit normal vector in Ω Bore-hole

Drill-string

K c (P) = k c 2 2 π arctan (πλ k P) + 1 ; C c (P) = c c 2 2 π arctan (πλ c P) + 1 ( 11 
)
with k c and c c the maximum contact stiffness and damping parameters, λ k and λ c the regularized parameters. The frictional contact force and torque are calculated by using the Coulomb law:

F ct = -µ v g |F cn | - → t (12) 
T f = -µ v g |F cn |R e - → z (13) 
with -→ t = [-v/r, u/r, 0] T the unit tangent vector in the local frame of reference, R e the outer radius of drillstring. The friction coefficient µ v g is regularized as a function of the sliding speed v g of the drillstring on the borehole [START_REF] Duran | Effect of rotor-stator contact on the mass unbalance response[END_REF][START_REF] Duran | An analysis of rotor-stator interaction[END_REF]:

µ v g = v g 2v re f                   1 -ξ 1 + (1 -ξ) 2v re f µ d |v g | + 1 + ξ 1 + (1 -ξ) 2v re f µ d |v g | 2                   (14) 
with

v g = uv -uv r + Ω + θz R e , ξ = 1 - µ d µ s
, v re f the reference velocity allowing to adjust the slope at zero-speed.

Force due to mass unbalance

The presence of straightness defaults due to the drillstring fabrication and assembly as well as wear or measurementwhile-drilling tools [START_REF] Spanos | Oil and gas well drilling: A vibrations perspective[END_REF] possibly makes the drillstring unbalanced. The unbalance is modelled with discrete mass unbalances. Let m u and d be the eccentric mass and gyration radius respectively of one of them [START_REF] Lalanne | Rotordynamics Prediction In Engineering[END_REF]. The mass is always in the xy plane and its initial angular position relative to the x axis is α u , as shown in Fig. 5. Neglecting the angular fluctuation regarding the speed of rotation, the kinetic energy of a discrete mass unbalance at one node in steady state regime is:

T u = 1 2 m u d dΩ 2 -2uΩ sin (Ωt + α u ) + 2vΩ cos (Ωt + α u ) (15) 
which provides through the application of Lagrange's equations the centrifugal force vector F u (t) = F u u , F v u , 0, 0, 0, 0 T , where:

       F u u = m u dΩ 2 cos (Ωt + α u ) F v u = m u dΩ 2 sin (Ωt + α u ) (16) 

Fluid -drillstring interactions 155

The effects of the fluid flows are modeled by the forces acting on the pipe in the three local directions. The model developed in [START_REF] Paidoussis | Dynamics of a long tubular cantilever conveying fluid downwards, which the flows upwards around the cantilever as a confined annular flow[END_REF][START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF] is adjusted in order to take into account the curved trajectory of the borehole, the eccentricity of annular space due to the deflection of drillstring inside the borehole, and the speed of rotation of the pipe. The detail of the fluid -structure interaction model is presented hereafter.

During the drilling, the filtered fluid is injected downward into the drillpipe with a constant axial speed U i and then goes back upward into the annular space drillpipe -borehole with a speed U o conveying rock debris, calories. The pressures inside and outside the drillstring are respectively p i , p o and varry linearly along the drillstring. In the undeformed state, the axis of beam element coincides with the center line of borehole. Let dz the length of an element of the drillstring having M t as mass per unit of length and subject to structural, fluid forces and moments shown in Fig. 6. The element is deformed in the plane rz where r is the radial displacement direction. The forces balance in the z and r directions for one element yield:

                       0 = ∂F axial ∂z + F it -F et -(F in + F en ) γ - ∂Qγ ∂z + M t g cos ψ cos θ 0 = ∂Q ∂z + (F it -F et ) γ + F in + F en - ∂F axial γ ∂z -M t a t -M t g (-cos ψ sin θ cos φ + sin ψ sin φ) 2 + (cos ψ sin θ sin φ + sin ψ cos φ) 2 (17) 
with F axial the axial force, Q the tranversal shear force. F it , F et are respectively the tangential forces due to inside and outside fluid flows. F in , F en are respectively the normal forces due to inside and outside fluid flows. a t is the lateral acceleration of the beam element. γ is the angle between the tangential vectors of the beam center lines in the deformed and undeformed states. Let the internal fluid element be considered and sketched in Fig. 7. The force equilibrium respectively in z and r directions gives:

                       F it -F in γ = -A i ∂p i ∂z + M f g cos ψ cos θ F it γ + F in = -A i ∂ (p i γ) ∂z -M f a f -M f g (-cos ψ sin θ cos φ + sin ψ sin φ) 2 + (cos ψ sin θ sin φ + sin ψ cos φ) 2 (18) 
The accelerations in x, y, z directions of fluid are calculated in [START_REF] Ni | In-plane and out-of-plane dynamics of a curved pipe conveying pulsating fluid[END_REF][START_REF] Paidoussis | Fluid-structure interactions -slender structures and axial flow[END_REF] assuming that the drillstring is inextensible and the curvature radius of borehole is very important compared to the cross-section radius of the well: 

                     a f x = ∂ 2 u ∂z 2 + 2U i ∂ 2 u ∂t∂z + U 2 i ∂ 2 u ∂z a f y = ∂ 2 v ∂z 2 + 2U i ∂ 2 v ∂t∂z + U 2 i ∂ 2 v ∂z a f z = 0 (19)

Fluid forces due to annular flow

As showed in Fig. 8, the beam element is subjected to the forces due to the flow in the annular region. The forces balance in z and r directions gives: [START_REF] Feng | A finite element modeling framework for planar curved beam dynamics considering nonlinearities and contacts[END_REF] where fluid forces due to gravity and hydrostatic pressure F pz and F pr are given by:

       -F et -F en γ = -F L + F pz -F et γ + F en = -F L γ -(F A + F N ) + F pr
F pz = F pX sin θ -F pY sin ψ cos θ -F pZ cos ψ cos θ (21) 
F pr = F pX cos θ cos φ + F pY (sin ψ sin θ cos φ + cos ψ sin φ) -F pZ (cos ψ sin θ cos φ + sin ψ sin ψ) 2 + -F pX cos θ sin φ + F pY (sin ψ sin θ sin φ + cos ψ cos φ) -F pZ (cos ψ sin θ sin φ + sin ψ cos φ)

2 ( 22 
)
F A is the lateral hydrodynamic invicible force. F N , F L are the friction forces due to the annular flow in the normal and axial directions, respectively. As the forces F A and F N are applied on a drillstring element in the radial direction, their projections along x and y local axes respectively give:

F L = 1 2 C f ρ f D o U 2 o (23) Y Z X z O O r x y ( + )
F x A = χ ∂ ∂t -U o ∂ ∂z ρ f A o ∂u ∂t -U o ∂u ∂z (24) 
F y A = χ ∂ ∂t -U o ∂ ∂z ρ f A o ∂v ∂t -U o ∂v ∂z (25) 
F x N = 1 2 C N ρ f D o U o ∂u ∂t -U o ∂u ∂z + k ∂u ∂t (26) 
F y N = 1 2 C N ρ f D o U o ∂v ∂t -U o ∂v ∂z + k ∂v ∂t (27) 
with A o the beam cross-section, D o the external diameter of the beam, ρ f the fluid density. C f , C N , k are the viscous damping coefficients. The first two coefficients are used to take into account the friction fluid -structure in axial and radial directions while the last one, the fluid damping also in lateral direction is related to the rotation of drillstring. In this work, the values of C f and C N are extracted from [START_REF] Paidoussis | Dynamics of a long tubular cantilever conveying fluid downwards, which the flows upwards around the cantilever as a confined annular flow[END_REF]. χ is the added mass coefficient of fluid in the annular space:

χ = D 2 ch + D 2 o D 2 ch -D 2 o ( 28 
)
with D ch , the borehole internal diameter. The viscous damping coefficient k is a function of drillstring-borehole geometry, fluid properties and drillstring speed of rotation:

k = 2 √ 2 √ S               1 + D o D ch 3 1 -D o D ch 2 2               ρ f A o Ω (29) 
with S = ΩD 2 o /4ν f the Stokes number. In order to take into account the non Newtonian behavior of the drilling fluid, the viscous damping coefficient C f is based on [START_REF] Erge | The effects of drillstring eccentricity, rotation, and buckling configurations on annular frictional pressure losses while circulating Yield Power Law fluids[END_REF]. The friction pressure loss of annular fluid flow is estimated considering the eccentricity, the rotation of drillstring inside the borehole and the fluid flow regime by circulating the Yield-Power-Law fluid in the drilling system. The viscosity in Eq.( 29) is estimated by combining the shear rates of axial and tangential fluid flows [START_REF] Ahmed | Experimental study and modelling of Yield Power Law fluid flow in annuli with drillpipe rotation[END_REF].

The forces related to the gravity and the hydrostatic pressure are calculated based on [START_REF] Paidoussis | Dynamics of cylindrical structures subjected to axial flow[END_REF]. applied on the beam element is equal to the buoyancy force in the direction of vector --→ K, see Fig. 9.

Σ - → F i + -→ F r = -A o ∂p o ∂z - → K (30) 
where :

-→ F i , -→ F r are respectively resultant forces in the longitudinal and radial directions of drillstring element. The resolution of Eq.30 gives:

F pz = A o ∂p o ∂z (1 -cos ψ cos θ) (31) 
F pr = A o ∂ (p o γ) ∂z -A o ∂p o ∂z (-cos ψ sin θ cos φ + sin ψ sin φ) 2 + (cos ψ sin θ sin φ + sin ψ cos φ) 2 (32) 

Equations of fluid forces discretized by 3D FE beam

Introducing Eqs.18 and 20 into Eq.17 by considering only the terms associated with the fluid, gives the fluid forces acting on the drillstring:

             F f z = -A i ∂p i ∂z + M f g cos ψ cos θ -F L + F pz F f r = A i ∂ (p i γ) ∂z + M f a f + F L γ + (F A + F N ) -F pr (33) 
The substitutions of Eqs.19, 23-27, 31, 32 into Eq.33 with the projection of radial fluid force along x and y directions give the equations of fluid forces acting on a 3D FE beam in local frame:

                                                                     F f x = M f + χρ f A o ∂ 2 u ∂t 2 + 1 2 C f ρ f D o U o + k ∂u ∂t + 2M f U i -2χρ f A o U o ∂ 2 u ∂t∂z + M f U 2 i + χρ f A o U 2 o + A i p i -A o p o ∂ 2 u ∂z 2 + A i ∂p i ∂z -A o ∂p o ∂z ∂u ∂z -M f g (-cos ψ sin θ cos φ + sinψ sin φ) + A o ∂p o ∂z (-cosψ sin θ cos φ + sin ψ sin φ) F f y = M f + χρ f A o ∂ 2 v ∂t 2 + 1 2 C f ρ f D o U o + k ∂v ∂t + 2M f U i -2χρ f A o U o ∂ 2 v ∂t∂z + M f U 2 i + χρ f A o U 2 o + A i p i -A o p o ∂ 2 v ∂z 2 + A i ∂p i ∂z -A o ∂p o ∂z ∂v ∂z -M f g (cos ψ sin θ sin φ + sinψ cos φ) + A o ∂p o ∂z (cosψ sin θ sin φ + sin ψ cos φ) F f z = -A i ∂p i ∂z + M f g cos ψ cos θ - 1 2 C f ρ f D o U 2 o -A o ∂p o ∂z (1 -cos ψ cos θ) (34) 
The FE discretization of Eq.( 34) gives the mass, stiffness and damping matrices associated with the drilling fluid. The expressions of these matrices are presented in Appendix.

Numerical methods for computing the nonlinear response

This section presents the nonlinear responses computation of the drillstring taking the drilling fluid effects into account. The assembly yields the FE model and therefore a set of n equations of the fluid -drillstring system described by n dofs inside the borehole. Firstly, the quasi-static equilibrium position of the drillstring is calculated. Then, its transient dynamics inside the borehole is studied.

Quasi-static equilibrium position

The calculated quasi-static position considers the drillstring contact forces as well as the WOB and TOB developed by the drill bit during the drilling operation. The equilibrium equation is written as:

K + K f δ = F s + F qs c (δ) (35) 
with K the drillstring stiffness matrix including in particular the WOB and TOB stress stiffening effects, K f the mud stiffness matrix. The force vector F s contains the body forces (gravity and buoyancy), the fluid forces expressed by Eqs. A.4-A.6, the WOB and TOB forces. The quasi-static contact load vector F qs c consists of three components: the normal force F qs cn , the tangential force F qs ct , and the frictional torque T qs f defined by:

                 F qs cn = -K c (P) P - → n F qs ct = -µ s |F qs cn | - → t T qs f = -µ s |F qs cn |R e - → z (36) 
where µ s is the static friction coefficient. Eq.35 is solved using a Newton-Raphson method as explained in [START_REF] Nguyen | A rotordynamics model for rotary drillstring with nonlinear interactions in a 3D well[END_REF]. It provides the quasi-static position of the drillstring inside the borehole.

Transient dynamics computation

The nonlinear dynamic behavior of the fluid -drillstring system inside a 3D borehole is governed by the set of n differential equations:

M + M f δ + C + C f δ + K + K g + K f δ = F s + F c δ, δ, t + F u (t) (37) 
with M, K the classical mass and stiffness matrices, K g the geometric stiffness matrix due to the initial displacement of the drillstring given by the quasi-static equilibrium calculation. The matrix C = C cor + C damp is composed of the Coriolis and structural damping matrices. The structural damping is given by C damp = αM + β K + K g , with α and β the Rayleigh coefficients. The presence of fluid induces M f , C f and K f , the added mass, damping, stiffness matrices, 190 respectively. The contact force F c δ, δ, t and the mass unbalance force F u (t) are obtained from section 2.3. Eq.37 is solved by means of a fourth order Runge-Kutta scheme with an adaptative time step [START_REF] Nguyen | Un schéma d'intégration temporelle pour la réponse transitoire de systemes mécaniques avec butées de contact (A time integration scheme for transient dynamic response of mechanical oscillator with stop-ends)[END_REF].

Simulation in time domain

Test case

In order to simulate a realistic drilling dynamic behavior in operation, a 200 m drillstring confined in a 3D well is 195 considered. Figure 10 shows the curved borehole trajectory in global coordinates. at the drillcollars. In some cases, contacts can occur at the drillpipe body. Therefore, in this study, the authors used a FE model with element lengths of 30 cm for the tool-joint, 178 cm for the drillpipe body and 25 cm for the drillcollar.

With regards to the simulations carried out with different element sizes (not presented in this article), these retained element sizes permit reaching a satisfactory level of accuracy for the static computation and for the dynamic results in the target frequency range. The complete FE drillstring model contains 296 beam elements, and 297 nodes i.e. 1782 dofs. It should be mentioned that the first node at the top of the drillstring is located at the middle of the drillpipe i.e. at its body. Since the drill bit, the stabilizers and the borehole have the same diameter, three gauges reduce the radial clearance to 10 -4 m at the lowest node (drill bit) and at the center of stabilizers in the FE model. The speed of rotation Ω is imposed at the top of drillstring. By assumption, the elementary gyroscopic matrix is considered constant all along the drillstring. The fluid is pumped downward inside the pipe and upward in the annular space with the mean axial velocities U i and -U o respectively and is modelled with the Yield-Power-Law as in [START_REF] Ahmed | Experimental study and modelling of Yield Power Law fluid flow in annuli with drillpipe rotation[END_REF][START_REF] Erge | The effects of drillstring eccentricity, rotation, and buckling configurations on annular frictional pressure losses while circulating Yield Power Law fluids[END_REF][START_REF] Erge | Effect of drillstring deflection and rotary speed on annular frictional pressure losses[END_REF][START_REF] Erge | CFD analysis and model comparison of annular frictional pressure losses while circulating Yield Power Law fluids[END_REF][START_REF] Erge | Frictional pressure loss of drilling fluids in a fully eccentric annulus[END_REF]. During the rotation, a constant force WOB=-10 5 N and a constant torque TOB=-5000 Nm are applied to the drill bit. The drillstring material and fluid properties are given in Table 4, and pipe -borehole contacts and structural damping parameters in Table 5.

Quasi-static position

Figure13 shows the quasi-static equilibrium position of the drillstring. Under the effects of gravity, of fluid and contact forces, the drillstring is bent out of plane. The lateral displacements u and v are not nil for almost all the nodes along the drillstring as shown in Fig. 13(a). The radial displacement of each node r = √ u 2 + v 2 is plotted in Fig. 13(b). It shows that the pipe -borehole contacts are located at tooljoints and at almost all the drillcollars.

As shown in Fig. 13(b), the drillstring deflects inside the borehole. The pipe -borehole annular space is no longer concentric. This modifies the annular frictional pressure loss characterized by the viscous damping coefficient C f and generates variable frictional coefficients along the drillstring length. The coefficient C f , based on the procedure described in [START_REF] Erge | The effects of drillstring eccentricity, rotation, and buckling configurations on annular frictional pressure losses while circulating Yield Power Law fluids[END_REF], is plotted in Fig. 14(a). Based on [START_REF] Ahmed | Experimental study and modelling of Yield Power Law fluid flow in annuli with drillpipe rotation[END_REF], an apparent drilling fluid kinematic viscosity ν f that combines the fluid flows in the longitudinal and circumferential directions is applied. Thus, the fluid viscosity has a non-constant value, see Fig. 14(b). In this section, the dynamic responses of the drillstring under mass unbalance excitation is studied. In [START_REF] Jafari | The effects of drilling mud and weight bit on stability and vibration of a drill string[END_REF][START_REF] Qiu | Investigation on random vibration of a drillstring[END_REF][START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF] as well as in a previous work of the authors [START_REF] Tran | Nonlinear dynamics of a rotary drill-string immersed in a 3D geometry well[END_REF], the viscous damping coefficient C f was considered constant. This means that the pipe -borehole annular space is assumed to be concentric. This is not true in practice since most of the drillstring is in contact with the borehole as shown in Fig. 13. Therefore, the computation has to be carried out with the variable viscous damping coefficient and fluid viscosity obtained in the previous quasi-static position calculation, see Fig. 14. The mass unbalance related data is calculated based on the 1995 edition of the American Petroleum Institute standards as mentioned in [START_REF] Lalanne | Rotordynamics Prediction In Engineering[END_REF]:

M u = 2 × 6350 × M d Ω (38) 
with M u the total mass unbalance (g.mm), M d the drillstring total mass (kg). The drillstring speed of rotation is assumed to be constant in the mass unbalance forces. The mass unbalance is divided into 17 quantities located along the length of the drillstring and all of them are in phase. The unbalance masses of the drillpipes and the drillcollars are distributed according to their contributions to the drillstring total mass, see Table 6.

After the static equilibrium position calculation, almost all the lower part of drillstring is in contact with the borehole wall due to the gravity effect except the nodes near the drill bit and stabilizers gauges. The response of the nodes of this drillstring part could not be destabilized too much as the unbalanced masses are too small compared with The fluid effect on the drillstring dynamics is also observed through the reduction of the most important frequency in full spectrum analysis from -3.532 Hz to -2.781 Hz. This reduction of vibration frequency is a well-known phenomenon in drillstring modal analysis due to the added mass of drilling fluid [START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF]. Figure 17 shows that Node 49 has a similar behavior related to the previous time interval in both orbital motion and full spectrum analysis with no drilling fluid.

However, the number of contacts decreases resulting in a lift-off motion decrease. In Fig. 17 (b,d), the fluid damping reduces the drillstring vibration level. Node 49 has a tight orbit vibrating close to the wellbore without contact. No significant peak is noticed in the full spectrum plot except that one at 0 Hz frequency. 

Parametric analysis

This section is devoted to the influence of some fluid parameters on the mass unbalance response of the drillstring.

In the fluid-structure interaction model mentioned in section 2.4, the drilling fluid is assumed to be Yield-Power-Law fluid characterized by consistent index K, yield stress τ y , and flow behavior index n. Apart from theses parameters related to fluid rheology which are fixed for a given fluid, the two other parameters affecting the dynamic behavior are the flow rate Q f and fluid density ρ f .

Influence of flow rate

For this study, the fluid rheology properties are fixed at the values given in Table 4. The flow rate varies from 0.01 m 3 /s to 0.06 m 3 /s which are representative flow rates in drilling. Figure 19 (a) compares the Node 49 orbits for several flow rates in [40 s, 60 s] time interval in which a steady state of vibration is established, see Fig. 15. The effect of the flow rate is observed. Increasing the flow rate generates more vibrations in terms of orbital motion, this is due to an increase of Reynold's number. In the proposed fluid-structure interaction model, the viscous damping factor is calculated in terms of the Reynold's number which is used to determine the flow regime in the drillstring-borehole annular space. In the [0.01 m 3 /s, 0.06 m 3 /s] range, the flow is considered as laminar i.e. the Reynold's number is proportional to the fluid density and to the axial fluid flow speed. Moreover, increasing Reynold's number decreases 

Conclusion and remark

The original model presented in this paper is a contribution to the prediction of the dynamic behavior of a rotary drillstring in a 3D curved well subject to fluid-structure interactions, nonlinear forces due to pipe -borehole contact and mass unbalance. The rotation and deflection of the drillstring inside the borehole are considered for the calculation of the viscous damping coefficient and the apparent kinematic viscosity related to drilling fluid. The application concerns an existing 3D-borehole well. The predicted results show the role of the drilling fluid on the drillstring behavior. The drilling fluid reduces the number and the duration of the drillstring borehole contacts, the rebound amplitudes. The carried out parametric analysis highlights that an increase flow rate leads to reduce the fluid damping effect on the drillstring vibration. The same phenomenon is observed when increasing the fluid density. However, this one has a bigger effect on drillstring dynamics than the flow rate effect.

In this work, the drillstring dynamics is simulated under constant values of WOB and TOB. The fluid forces are also assumed to be constant during the dynamic simulation. All of these assumptions help to establish the current model and its computation. In future works, a bit-rock interaction model as well as the fluid forces updated during the dynamic response calculation have to be implemented for making the simulated results more realistic.

Appendix. Matrices and force vectors of the fluid

The discretization of Eq.34 by using FE method and beam shape functions in Eq.3 gives the added mass, damping, stiffness elementary matrices and vectors of fluid forces associated to the drilling fluid : where l e is the beam element length, ξ = z/l e .
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  A i , A o drillstring inner and outer cross-sections [m 2 ] C c , c c contact damping and its maximum value [Ns/m] hydrodynamic inviscible force per unit length [N/m] F L , F N drilling fluid frictional forces due to the annular flow in longitudinal and normal directions per unit length [N/m] F axial axial force [N] F en , F et fluid forces due to external flow in normal and tangent directions [N/m] F f x , F f y , F f z fluid forces per unit length acting on drillstring element in local frame [N/m] F in , F it fluid forces due to internal flow in normal and tangent directions [N/m] F pz , F pr longitudinal and radial pressure forces per unit length [N/m] G e shear modulus [N/m 2 ] I e , I e p beam element flexural and polar moments [m 4 ] K c , k c contact stiffness and its maximum value [N/m] M d drillstring total mass [kg] M t , M f drillstring and drilling fluid masses per unit length [kg/m] reduced area [m 2 ] T elementary kinetic energies of the drillstring [J] T OB torque-on-bit [N] T e 0 elementary axial torque [Nm] T u kinetic energy of a discrete unbalance mass [J] U elementary strain energy [J] U i , U o downward and upward mean velocities of the drilling fluid inside and outside the drillstring [m/s] U F e 0 strain energy due to the axial force [J] WOB weight-on-bit [N] Ω speed of rotation imposed to the drillstring [rad/s] α, β Rayleigh damping coefficients [s -1 ], [s] α u initial angular position of the mass unbalance [rad] C f damping matrix of the drilling fluid [Ns/m] C damping and Coriolis matrices of drillstring [Ns/m, Ns/rad] static normal and tangential contact forces vectors [N] F cn , F ct normal and frictional contact forces vectors [N] K g drillstring geometric stiffness matrix [N/m, N/rad] K, K f drillstring and drilling fluid stiffness matrices [N/m, N/rad] M, M f drillstring and drilling fluid mass matrices [kg, kgm 2 /rad] contact torque vector [Nm] δ e , δ n , δ elementary, nodal and total dof vectors [m, rad]
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 11 Figure 1: Transformation from global to local coordinates
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 6 Figure 6: Forces and moments acting on an infinetesimal element of the drillstring
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 7 Figure 7: Forces acting on an internal fluid element
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 8 Figure 8: Forces due to annular flow
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 1011 Figure 10: 3D well trajectory

  1 and Fig.11. A drillpipe is described in details by Fig.12and Table.

2 .

 2 The borehole is made of only one open-hole described in Table.[START_REF] Piovan | Nonlinear model for coupled vibrations of drill-strings[END_REF] In practice, the drillstring-borehole contacts are often located at the tool-joints and

Figure 13 :Figure 14 :

 1314 Figure 13: Quasi-static position of drillstring: (a) longitudinal and lateral displacements, (b) radial displacement

Table 6 :Figure 15 :

 615 Figure 15: Radial displacement at the Nodes 10 (first row subfigures), 49 (second row subfigures, 282 (third row subfigures): without fluid (a), with fluid (b). The red dashed lines represent the drillstring-borehole clearances. The abscissa is the simulated time [s] while the coordinate is the displacement amplitude [m].

Figure 15

 15 Figure 15 shows the time history radial displacements of Nodes 10, 49, 282. Without fluid, Node 10 located near the drilling surface (s=11.72 m) has no contact with the borehole during the 60 s of simulation. Intermittent contacts are observed at Node 49 located on a drillpipe body (s=57.36 m) with large bouncing amplitude. Much more number of contacts can be found at Node 282 with important penetration of the drillpipe due to the heavy weight of drillcollar. A quasi-periodic behavior is noticed. The presence of drilling fluid with its damping effect reduces the vibration amplitudes of all considered nodes. A steady state is established roughly after 40 s of simulation. A full spectrum analysis proves the nodes whirl. As shown in Fig.15, the drillstring orbit combines forward and backward whirls in the case without fluid. When the drillstring rotates in drilling fluid, the same observations are noticed at Nodes 10 and 282. However, two different states of vibration occur at Node 49. In the [0 s, 40 s] transient state, Node 49 shows a backward whirl while in the steady state, up to 40 s, it adopts the similar behavior of the other nodes. In order to clarify the fluid effect on the drillstring dynamics, the analysis focuses on the dynamic response at Node 49 in the transient zone [15 s, 25 s], see Fig.16, and in the steady state zone [50 s, 60 s], see Fig.17. The grey circles represent the drillstring-borehole clearance. With no fluid, the lift-off motion from the wellbore which leads to intermittent
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Figure 16 :

 16 Figure 16: The Node 49 orbits (a, b) and the associated full spectrum analyses (c, d) at the [15 s, 25 s] range: without fluid (a, c), with fluid (b, d).

Figure 17 :

 17 Figure 17: The Node 49 orbits (a, b) and the associated full spectrum analyses (c, d) at the [50 s, 60 s] range: without fluid (a, c), with fluid (b, d).

Figure 18 :

 18 Figure 18: Drillstring-borehole contacts force at Node 49 in the [14.5 s,-26 s] time interval corresponding to 23 simulated revolutions

Figure 19 : 3 4. 4 . 2 .Figure 20 :

 1934220 Figure 19: The Node 49 orbits under: (a) flow rate effect -(1)Q f =0.01 m 3 /s , (2) Q f =0.04 m 3 /s, (3) Q f =0.06 m 3 /s; (b) fluid density effect -(1) ρ f =1200 kg/m 3 , (2) ρ f =1500 kg/m 3 , (3) ρ f =1800 kg/m 3 , (4) ρ f =2100 kg/m 3
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  The FE formulation of the drillstring dynamic model is carried out in a curved borehole. Let the frame of reference OXYZ be Galilean, and Axyz be the local frame of reference linked to the drillstring, see

		l e		beam element length [m]
	125	m u		unbalance mass [kg]
		p i , p o drilling fluid pressures inside and outside the drillstring [Pa]
		r		radial displacement [m]
		t		instantaneous angular velocity vector of R 1 frame [rad/s] time [s]
		f x f , f y f , f z f elementary forces vectors of the drilling fluid in local frame [N] v g sliding speed velocity of drillstring on the borehole wall [m/s]
	130	χ v re f	added mass coefficient reference velocity [m/s]
		δW	virtual work associated with the axial torque [J]
		ẋ 2. 3D Beam Finite Element model time derivation of x
		nl zz 2.1. Coordinate system definition nonlinear terms of deformation field
		γ		angle between tangential vectors of the drillstring center line in undeformed and deformed states [rad]
		λ k , λ c regularized parameters [m -1 ]
		[C e ] f elementary Coriolis matrix of the drilling fluid [Ns/m]
		[K e ] f elementary stiffness matrix of the drilling fluid [N/m]
		[M e ] f elementary mass matrix of the drilling fluid [kg]
		µ		friction coefficient
		µ s , µ d static and dynamic friction coefficients
		ν f		apparent kinematic viscosity of drilling fluid [m 2 /s]
		-→ I ,	-→ J ,	-→ K unit vectors of the global frame
		-→ i ,	-→ j ,	-→ k unit vectors of the local frame
		-→ n ,	-→ t unit normal and tangent vectors
		ψ, θ, φ rotational angles of the rotation matrix of the global-local frames transformation [rad]
		ρ e , ρ f beam element and drilling fluid density [kg/m 3 ]
		θ x , θ y , Φ rotational angles of the rotation matrix of the undeformed-deformed frames transformation [rad]
		θ z		twist angle [rad]
		a		shear effect coefficient
		a t		drillstring lateral acceleration in the local frame [m/s 2 ]
		a f x , a f y , a f z drilling fluid accelerations in the local frame [m/s 2 ]
		d		gyration radius [m]
		j 0		drillstring borehole clearance [m]
		k		damping coefficient of drilling fluid [Ns/m]

Table 1 :

 1 Drillstring composition

	Figure 12: Drillpipe

Table 2 :

 2 Drillpipe dimensions

Table 3 :

 3 Borehole description

Table 4 :

 4 Solid and fluid properties

	Young modulus	E (N/m 2 ) 2.03E11
	Drillstring density ρ (kg/m 3 )	7900
	Poisson's coefficient	ν	0.3
	Fluid density ρ f (kg/m 3 )	1200
	Yield stress	τ y (Pa)	0.29
	Consistent index	K (Pa.s n )	0.07
	Flow behavior index	n	0.55
	Flow rate	Q (m 3 /s)	1E-2

Table 5 :

 5 Contact modeling parameters

	Stiffness	k c (N/m)	1E7
	Damping	c c (Ns/m)	1E4
	Regularized parameters λ k , λ c (m -1 ) 7E7, 7E4
	Static frictional coefficient	µ s	0.3
	Dynamic frictional coefficient	µ d	0.2
	Regularized frictional	v re f (m/s)	0.033
	Rayleigh damping coefficient	α (s -1 )	0.03
	Rayleigh damping coefficient	β (s)	0
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Equations of motion