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ABSTRACT 12 

Mangrove sediments can store high amount of pollutants that can be more or less bioavailable 13 

depending on environmental conditions. When in available forms, these elements can be subject 14 

to an uptake by mangrove biota, and can thus become a problem for human health. The main 15 

objective of this study was to assess the distribution of some trace elements (Fe, Mn, Co, Ni, Cr, 16 

As, and Cu) in tissues of different plants and snails in a tropical mangrove (Can Gio mangrove 17 

Biosphere Reserve) developing downstream a megacity (Ho Chi Minh City, Vietnam). In addition, 18 

we were interested in the relationships between mangrove habitats, sediment quality and 19 

bioaccumulation in the different tissues studied. Roots and leaves of main mangrove trees 20 

(Avicennia alba and Rhizophora apiculate) were collected, as well as different snail species: 21 

Chicoreus capucinus, Littoraria melanostoma, Cerithidea obtusa, Nerita articulata. Trace 22 

elements concentrations in the different tissues were determined by ICP-MS after digestion with 23 

concentrated HNO3 and H2O2. Concentrations differed between stands and tissues, showing the 24 

influence of sediment geochemistry, species specific requirements, and eventually adaptation 25 

abilities. Regarding plants tissues, the formation of iron plaque on roots may play a key role in 26 

preventing Fe and As translocation to the aerial parts of the mangrove trees. Mn presented higher 27 

concentrations in the leaves than in the roots, possibly because of physiological requirements. Non-28 

essential elements (Ni, Cr and Co) showed low bioconcentration factors (BCF) in both roots and 29 

leaves, probably resulting from their low bioavailability in sediments. Regarding snails, essential 30 

elements (Fe, Mn, and Cu) were the dominant ones in their tissues. Most of snails were 31 

“macroconcentrators” for Cu, with BCF values reaching up to 42.8 for Cerithidea. We suggest 32 

that high quantity of As in all snails may result from its high bioavailability and from their ability 33 

to metabolize As.   34 

Keywords: Bioavailability; Bioconcentration factor, Translocation; macroconcentrator.  35 
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1. Introduction 36 

Mangroves, complex intertidal forests, are considered as sinks for contaminants including trace 37 

metals (Tam and Wong 2000). It was previously suggested that mangrove plants can play key roles 38 

in metals removal from mangrove sediments (Alongi et al. 2004, Yang et al. 2008). On the one 39 

hand, depending on the metals properties and the mangrove species, they can provide 40 

“phytostabilization”, meaning that metals are immobilized and stored in the sediment or in the 41 

below-ground biomass (MacFarlane et al. 2007). On the other hand, they can provide 42 

“phytoextraction”, and mangrove trees can be considered as accumulators, providing that they can 43 

transfer metals from the sediment and concentrate them in above-ground tissues (Kříbek et al. 44 

2011). Because of different rates in metals uptake and the specific influence of mangrove roots on 45 

sediment geochemistry, metals dynamic in mangrove sediments may be affected by the 46 

composition of plant communities (Verkleij and Schat 1990). In fact, some mangrove trees can 47 

oxidize the sediments via the movement of oxygen from their rhizosphere downwards to 48 

aerenchyma tissues (Moorhead and Reddy 1988). This oxidation process can remobilize the stable 49 

forms of metals, e.g. the ones bound to sulphides (Marchand et al. 2006, Noël et al. 2015), thus 50 

increasing metals’ bioavailability. The bioaccumulation and/or fixation of trace metals in 51 

mangrove plant tissues, especially roots which can then redistribute metals proportion into 52 

aboveground tissues (i.e. especially leaves, see review of (Weis and Weis 2004)), may limit metals 53 

concentrations in the water column and restrict the transfer of these contaminants into mangrove 54 

biota. However, the excess of essential and non-essential trace elements could affect the growth, 55 

metabolism activities and cell structure of plants (Cox and Hutchinson 1981, Wang et al. 2003).  56 

Bioaccumulations of trace elements by snail species have been addressed in many research 57 

projects in the past two decades (Berandah et al. 2010, Dias and Nayak 2016, Reed-Judkins et al. 58 
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1997). The variations of trace metals concentrations in snails depend on their feeding regime, their 59 

digging activities, and metals bioavailability within their habitat. Snails can accumulate higher 60 

metals concentrations than any other groups of mollusks (Zhou et al. 2008) and can offer the 61 

possibility to assess metals contaminations (De Wolf and Rashid 2008, Samsi et al. 2017, Yap and 62 

Cheng 2013). It was demonstrated that elevated trace metals concentrations in sediments can 63 

influence negatively the number of snail species in an ecosystem as well as the community 64 

structure (Amin et al. 2009).         65 

In Vietnam, an emerging country, the fast economic development (i.e. urbanization, 66 

industrialization, etc.) and the population growth induce high pressure on rivers and estuaries 67 

(Babut et al. 2019, Costa-Boddeker et al. 2017, Strady et al. 2017). Can Gio estuary is located at 68 

the edge of the biggest industrial city in Vietnam-Ho Chi Minh City (i.e. a megacity of almost 10 69 

million inhabitants), and half of the Can Gio area is covered by mangrove forests. This estuary is 70 

also a unique gate for drainages of sewages from the land to the ocean. Recently, Thanh-Nho et 71 

al. (2018) highlighted that metals can be transferred over long distance from watersheds to the 72 

mangrove forest, and that elevated inputs of metals in the estuary were the result of enhanced 73 

runoff and soil leaching during the monsoon season. It was proved that the enrichment of 74 

mangrove-derived organic matter played a key role in controlling partitioning and availability of 75 

trace elements in the sediment beneath different mangrove species (Thanh-Nho et al. 2019). 76 

Consequently, taking into account mangrove specific geochemical characteristics, the lack of 77 

wastewater treatment plants in emerging countries as Vietnam and the important local ecosystem 78 

services provided by the Can Gio Mangrove (Cormier-Salem et al. 2017, Kuenzer and Tuan 2013), 79 

more attention should be paid on metals bioaccumulation and transfer in mangrove ecosystems. 80 

Because of their persistence, trace metals may present a major threat to the mangrove diversity 81 
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and also to human health via food chain. Notably, the Can Gio mangrove is home to high 82 

biodiversity with 20 species of flora, in which two mangrove species are dominant: Avicennia alba 83 

and Rhizophora apiculata (Luong et al. 2015), and with more than 200 species of fauna (e.g. 84 

benthic organisms, fish, mollusks, planktonic, etc.). Thus, the knowledge of trace elements’ 85 

contents accumulated by different mangrove organisms would be useful to get a better 86 

understanding on the behaviors of these contaminants in the mangrove, and to contribute to an 87 

important information on the protected species of tropical mangroves in Vietnam and their 88 

potential element poisoning. 89 

The main objective of this study was to assess the distribution of some trace elements (Fe, Mn, 90 

Co, Ni, Cr, As, and Cu) in the tissues of different mangrove plants and snails receiving elevated 91 

amounts of contaminants from watersheds, i.e. lateritic soils and Ho Chi Minh City. In addition, 92 

we were interested in the relationships between the bioaccumulation in the different tissues 93 

studied, mangrove stands, and sediments quality, bioconcentration factors were calculated using 94 

data published in a previous paper and concerning trace metals dynamics in the sediment of the 95 

studied mangrove stands (Thanh-Nho et al. 2019). To reach our goals, we collected and analyzed 96 

different parts (i.e. roots and leaves) of the main mangrove trees (i.e. Avicennia alba and 97 

Rhizophora paticulata) in the Can Gio Biosphere Reserve, and different snail species within 98 

mangrove stands: Chicoreus capucinus (C.capucinus), Littoraria melanostoma (L.melanostoma), 99 

Cerithidea obtuse (C.obtusa) and Nerita articulata (N.articulata). The field sampling was 100 

conducted at the end of the monsoon season in 2015, since we showed previously that elements 101 

inputs and sediment reactivity were highest at this period, and since our main objective was to 102 

compare the two main mangrove stands.  103 

2. Materials and methods 104 
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2.1. Study area 105 

The present study was conducted in the Can Gio mangrove Biosphere Reserve, Vietnam 106 

(10o22’-10o44’N and 106o46’-107o01’E, Fig. 1). This mangrove covers approximately 35,000 ha 107 

(Tuan and Kuenzer 2012), being usually classified as a “Mangrove afforestation and re-forestation 108 

area” (Blasco et al. 2001). It is also a district of the densely populated megacity of Ho Chi Minh 109 

City (HCMC), with almost 10 million of inhabitants. The Can Gio mangrove is situated 35 km 110 

downstream of the city urban center and industrial zones (mainly plastic and rubber production, 111 

mechanical engineering, electrical engineering, packaging, textile and dyes industry, oil activities 112 

and cement production) (Strady et al. 2017, Vo 2007). The main economic activities of the local 113 

people in Can Gio are aquacultures, salt production, fishing, and forest management. The 114 

topography of Can Gio mangrove is generally low-lying. This coastal area is subject to an 115 

asymmetric semi-diurnal tidal regime and to the typical tropical monsoon climate, with two 116 

distinct seasons. The dry season extends from November to April and the wet season lasts from 117 

May to October. The climatic conditions were not much different during consecutive years, from 118 

2014 to 2016, prior and after sampling campaign (data from HCMC statistical Years Book, 2016). 119 

The highest precipitation can reach up to 500 mm in September or October, while it is usually less 120 

than 80 mm per month during the dry season. The annual mean precipitation ranged from 1,800 to 121 

2,000 mm, with almost 90 % of the precipitation falling during the rainy season. The annual mean 122 

temperature varied from 28.4 ºC to 30 ºC while the annual humidity ranged from 72 to 74 %. The 123 

two dominant mangrove species are Avicennia alba and Rhizophora apiculata. Because of high 124 

commercial values, Rhizophora apiculata was widely replanted, being often found on elevated 125 

ground. Avicennia alba is a pioneering species with high salinity tolerance and ability to grow on 126 

weak, unconsolidated sediment. Consequently, there is a zonation of the ecosystem (Fig. 1) with 127 
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Rhizophora trees growing at higher elevation that the Avicennia ones, and being thus less 128 

immerged by tides. Many marine organisms live within and around the mangroves, e.g. shrimp, 129 

fish, snail, or crab, etc. Therefore, the mangrove ecosystem provides not only various goods and 130 

services to local people such as timber, seedlings, medicines, but also foods (Kuenzer and Tuan 131 

2013).  132 

2.2. Field sampling 133 

The sampling campaign was carried out at the end of the wet season (October 2015) in the 134 

center area of the Can Gio mangrove (Fig. 1).  135 

Leaf and root samples were collected from different types of trees (saplings and mature trees 136 

of the Rhizophora apiculata and Avicennia alba species). For both species, each leaf sample 137 

consisted of 30 leaves collected from 15 trees, and we analyzed 3 samples per each type of tree. 138 

Root samples were collected in the upper 50 cm from sediment cores collected using an 139 

Eijkelkamp gouge auger (inner diameter: 80 mm) at low tide (n = 3 per each type of tree). All 140 

samples were rinsed with deionized water and were then dried at 50 oC for > 48 h to constant mass 141 

in an oven. Dried samples were then ground and sieved using 100 µm pore size for trace elements 142 

analysis.  143 

Four species of snails were collected in the mangrove stands: C.capucinus, L.melanostoma, 144 

C.obtusa and N.articulata. Notably for L.melanostoma, they were collected on mangrove trees. In 145 

the Rhizophora stand, due to their excessive height (> 15 m), L.melanostoma were collected on 146 

young trees. In the Avicennia stand, due to low density of saplings, L.melanostoma were collected 147 

on mature trees. For each species, we analyzed 3 samples per mangrove stand, and each sample 148 

comprised 15 to 20 snails. Their shell sizes (length and width) were measured prior to taking out 149 

their tissues by pegging out (using a clean pestle) the shell carefully. Due to the fragile 150 
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characteristic of the shell, a mild force was sufficient to break the shell (strong force might destroy 151 

the internal organ of the snail). Snails were chosen in the same range of size throughout the work 152 

to reduce possible variations in trace elements concentrations due to size (age). The whole bodies 153 

were preserved at -18 oC until performing processes of freezer-drying. Dried samples were ground 154 

and sieved through 100 µm pore size for analysis of trace elements. Snails’ soft tissues are food 155 

sources for local people, and thus their trace elements contents may be a risk to human health. 156 

Therefore, only the soft tissues of snails were analyzed in the present study. 157 

Specific features of selected snail’s species 158 

C.capucinus has elaborately textured shell with uniformly dark brown and six convex whorls. 159 

These shells are heavy and solid and can reach a size of 40 to 120 mm. They are sculptured with 160 

prominent spiral cords, axial ribs and striae. The aperture is rounded or oviform, brown tinged and 161 

the inner labial edge show 14 to17 denticles. The siphonal canal is quite long. The operculum is 162 

dark brown. 163 

L.melanostoma can reach 2 to 3 cm length. Shell has a narrower tip, smooth, yellowish to moss 164 

green or dark brown with fine spiral pattern of brown dots. Sometimes the shell is bleached white. 165 

"Melanostoma" means "black mouth". There is short fat tentacles on soft head. 166 

C.obtusa has Obtuse Horn Shell (large, solid, broad, periphery rounded; aperture strongly 167 

thickened and flared; 14 to 37 rounded axial ribs on penultimate whorl; 5 spiral cords on spire, 5 168 

to 9 above periphery on last whorl). Shell is also known as Mud Creeper. It is a relatively common 169 

snail found in muddy coastal areas, growing to around 5 to 6 cm (Suwanjarat and Klepal 2001). 170 

N.articulata is also known as Nerita lineata or N. balteata, with 2 to 3 cm length. Shell is 171 

sturdy oval, spire does not stick out characterized by beige, greyish or pinkish with fine, spiralling 172 

and black ribs. The flat underside is smooth, white, sometimes with yellow patches. Small notched 173 
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'teeth', usually three, on the straight edge at the shell opening. Operculum thick, evenly covered in 174 

tiny bumps, pinkish with black portions. Body pale with fine black bands on the foot and long thin 175 

black tentacles (data from wildsingapore). 176 

 177 

Fig. 1. Map of the study area showing the location of the Can Gio mangrove in Vietnam and the location of the 178 

collected biological samples in the mangrove. 179 
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2.3. Analytical methods and calculations 180 

2.3.1. Samples digestion and analysis 181 

The plant and snail samples were digested in triplicate with concentrated nitric acid and 182 

hydrogen peroxide (MacFarlane et al. 2003). The samples (250 mg to 500 mg of dried weight) 183 

were put into PTFE vessels, in which 10 mL of concentrated HNO3 was added. These samples 184 

were homogenized in an ultrasonic bath for 15 min and were then digested at 110 °C for 12h on 185 

an electrical oven. After cooling, 2 mL of H2O2 was added into these samples, which were again 186 

digested at 110 °C for 30 min. The residual HNO3 was eliminated at 160 °C. The samples were 187 

centrifuged to reject any residues and then diluted to 25 mL using deionized water and stored at 4 188 

°C until analysis. The trace elements were determined by ICP – MS (Agilent 7700x at Institute of 189 

Public Health, Ho Chi Minh City, Vietnam), using spiked 103Rh and 197Au as internal standards. 190 

The precision and accuracy of analytical method were controlled using certified reference material 191 

muscle tissues (SRM-2976: certified by National Institute of Standard and Technology/NIST, 192 

USA). The recoveries of trace elements were 94 % to 106.5 % with relative standard deviation 193 

from 4.2 % to 9.8 % (Table SD1). All chemicals were analytical grade (Merck). HNO3 was purified 194 

using a sub-boiling quartz distillation equipment. 195 

2.3.2. Data calculations 196 

Bioconcentration factor (BCF) was proposed by Babukutty and Chacko (1995) to assess the 197 

bioaccumulation of pollutants into an aquatic and terrestrial organisms via any route i.e., by active 198 

or/and passive accumulations. It is defined as BCF = Ctissues/Csediment, where Ctissues and Csediment are 199 

total concentration of trace element in organism tissues and total concentration of trace element in 200 

the sediment, respectively. To do this calculation, we used the trace elements concentrations in the 201 
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sediment that we published in a previous paper (Thanh-Nho et al. 2019); sediment samples were 202 

collected at the same sites and at the same period of the present study.   203 

BCF of trace elements in roots and leaves  204 

BCF was calculated from a mean concentration of trace element in sediment down to 50 cm 205 

depth (Table SD2). This depth was chosen because in mangrove environment, the highest root 206 

density is in the upper sediment, between 20 and 50 cm depth (Ha et al. 2018, Komiyama et al. 207 

2000, Tamooh et al. 2012). 208 

Translocation factors (TF) was calculated, which are used to assess the transfer of trace 209 

elements from roots to aboveground components and to evaluate the potential phytoextraction of 210 

plants (Marchiol et al. 2004). In the present study, it is defined as TF = Cleaves/Croot, where Cleaves 211 

and Croot are total concentration of trace element in leaves and total concentration of trace element 212 

in roots, respectively.    213 

BCF of trace elements in snails 214 

Depending on feeding regimes of individual snail species and their habitat, the BCF was 215 

calculated from a mean concentration of trace element corresponding to a mean concentration of 216 

trace element in each type of feeding source. L.melanostoma feeds on mangrove trees, mainly 217 

fresh leaves and materials on the plant surfaces as phylloplane and fungi (Lee et al. 2001). BCF of 218 

trace element was estimated based on the mean concentration of trace element measured in 219 

Avicennia and Rhizophora leaves. C.obtusa is known as sediment eater (Tue et al. 2012), BCF of 220 

trace element was calculated based on a mean concentration corresponding to a mean 221 

concentration of trace element in available fractions at the upper 5 cm of the sediment (Table SD2). 222 

N.articulata eats microalgae (Eichhorst 2016), and C.capucinus is a versatile predator, feeding on 223 

the barnacles growing on mangroves and on mussels, snails and worms in their habitat (Tan and 224 
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Oh 2003, Tan 2008). We were not able to sample their feeding sources, consequently, we did not 225 

calculate any BCF for two snails’ species. 226 

3. Results 227 

3.1. Trace elements in roots and leaves of mangrove plants 228 

Mean concentrations of Fe, Mn, Co, Ni, Cr, As, and Cu (µg g-1) in the roots and leaves of the 229 

Avicennia alba and the Rhizophora apiculata are presented in Table 1. Trace elements in roots of 230 

the Avicennia saplings and mature trees presented a similar distribution: Fe > Mn > Cu > Cr > As 231 

> Ni > Co. For the roots of the Rhizophora trees, the concentrations of trace elements were Fe > 232 

Mn > As > Cr > Cu ~ Ni > Co in the saplings, and were Fe > Mn > Cr > Ni ~ Cu > As ~ Co in the 233 

mature trees. Most trace elements were characterized by low values of BCF in the roots, i.e. less 234 

than 1, except for Cu and As for the roots of Avicennia saplings (i.e. BCF: 1.02 for As and 2.95 235 

for Cu) (Fig. 2). Leaves of the Avicennia saplings were characterized by the following trace 236 

elements concentrations: Fe > Mn > Cu > Cr > Ni > Co ~ As, while in the mature trees, the 237 

distribution was Mn > Fe > Cu > Cr > Ni > Co ~ As. Mn presented higher concentrations in the 238 

leaves of mature trees than in the saplings. For leaves of the Rhizophora, the concentration of trace 239 

elements were Fe > Mn > Cr ~ Cu > Ni > Co ~ As in the saplings, and were Fe > Mn > Cu > Cr > 240 

Ni > As ~ Co in the mature trees. Mn and Cu concentrations were higher in the leaves of the mature 241 

trees than in the saplings. The bioconcentration factors were lower than 1 for most trace elements 242 

in both mangrove species, with the exception of Mn in saplings and mature trees (Fig. 2). The 243 

translocation factors (TF) were higher than 1 for Mn, Cu in the Rhizophora saplings and mature 244 

trees, for Cr in the Rhizophora saplings, while it was lower than 1 for the other trace elements 245 

studied (Fig. 3). 246 

 247 
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Table 1. Mean concentrations of trace elements (n = 3) in the roots and leaves of the Avicennia alba and the 248 

Rhizophora apiculata, expressed in µg g-1 (mean, SD). The roots of trees were collected in the upper part of 50 cm 249 

depth in the sediments. 250 

Roots          

  Depth (cm) Type of trees Fe Mn Co Ni Cr As Cu 

Avicennia 
< 50 Saplings 14,948 ± 239 376 ± 4 2.8 ± 0.06 5.1 ± 0.16 17.8 ± 0.11 11.9 ± 0.12 54.7 ± 1.8 

< 50 Mature trees 7,433 ± 308 217 ± 1.7 5.0 ± 0.13 5.8 ± 0.09 8.9 ± 0.42 7.5 ± 0.19 10.2 ± 0.29 

          

Rhizophora 
< 50 Saplings 19,897 ± 1,265 60 ± 1.2 2.4 ± 0.05 5.0 ± 0.11 8.8 ± 0.25 12.7 ± 0.15 6.3 ± 0.12 

< 50 Mature trees 5,458 ± 145 57 ± 1.1 2.0 ± 0.01  5.4 ± 0.08 11.9 ± 0.33 2.0 ± 0.05 4.7 ± 0.13 

          

Leaves                   

  Height of tree Type of trees Fe Mn Co Ni Cr As Cu 

Avicennia 
< 80 cm Saplings  2,287 ± 39 583 ± 5 1.43 ± 0.01 3.18 ± 0.28 7.31 ± 0.22 0.61 ± 0.02 22.14 ± 0.30 

> 7 m Mature trees 359 ± 21 908 ± 20  0.29 ± 0.10 1.09 ± 0.14 2.13 ± 0.29 0.30 ± 0.03 8.93 ± 0.30 

          

Rhizophora 
< 80 cm  Saplings 1,416 ± 50 267 ± 3 0.48 ± 0.02 1.60 ± 0.02 13.19 ± 0.79 0.40 ± 0.01 10.63 ± 0.55 

> 15 m Mature trees 498 ± 21 405 ± 38 0.07 ± 0.03 0.70 ± 0.25 3.72 ± 0.30 0.14 ± 0.03 15.92 ± 0.80 

 251 

Fig. 2. Bioconcentration factors (BCF = concentration of trace element in tissues/ concentration of trace 252 

element in sediment) of the Avicennia alba (gray column) and the Rhizophora apiculata (black column). 253 
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 254 

Fig. 3. Translocation factors (TF = concentration of trace element in leaves/ concentration of trace element in 255 

roots) of the Avicennia alba (gray column) and the Rhizophora apiculata (black column). 256 

3.2. Trace elements in snails 257 

Mean concentrations of Fe, Mn, Co, Ni, Cr, As, and Cu (µg g-1) in snails’ soft tissues are given 258 

in Table 2. The C.capucinus and N.articulata presented similar trace elements concentrations 259 

beneath two mangrove stands: Fe > Cu > Mn > As > Ni ~ Cr ~ Co for C.capucinus and Fe > Mn 260 

> Cu > As ~ Ni ~ Cr > Co for N.articulata. L.melanostoma and C.obtusa exhibited higher 261 

concentrations in Fe, Mn and Cu than As, Ni, Cr, and Co, and concentrations differed between 262 

mangrove stands (Avicennia alba and Rhizophora apiculata). Bioconcentration factors of all trace 263 

elements are presented in Fig. 4. The BCF of each trace element varied between snail species, 264 

ranging from 0.02 to 1.58; 0.6 to 1.13; 0.1 to 5.09; 0.56 to 2.9; 0.04 to 0.3; 0.85 to 20.1 and 7.7 to 265 

42.8 for Fe, Mn, Co, Ni, Cr, As, and Cu respectively. 266 

Table 2. Concentrations of trace elements in soft tissues of various snails (expressed in µg g-1): C.capucinus 267 

(predator), L.melanostoma (leaves eater), C.obtusa (sediment eater) and N.articulata (algae eater). 268 

Mangrove 
stand 

Species 
Length 
 (cm) 

Width  
(cm) 

Fe Mn   Co   Ni   Cr   As   Cu   

Avicennia 

C.capucinus 2.5 - 4 1 - 1.5 536 ± 40 139 ± 10 0.88 ± 0.11 1.52 ± 0.16 1.11 ± 0.17 10.9 ± 1.1 481 ± 38 

L.melanostoma 1.5 - 2.5 1 - 2 714 ± 95 766 ± 29 1.04 ± 0.03 2.14 ± 0.08 0.61 ± 0.12 3.64 ± 0.17 120.6 ± 9.1 

C.obtusa 2 -4 1 - 1.5 360 ± 44 780 ± 81 2.64 ± 0.26 5.93 ± 0.44 0.70 ± 0.11 4.32 ± 0.88 113.9 ± 5.7 

N.articulata 2 - 2.6 1.5 - 2 271 ± 26 42.5 ± 2.6 0.20 ± 0.13 1.16 ± 0.15 0.90 ± 0.25 2.83 ± 0.22 7.84 ± 0.65 
           

Rhizophora 

C.capucinus 3 - 4 1.5 - 2.5 885 ± 80 119 ± 11 1.14 ± 0.03 2.07 ± 0.12 1.27 ± 0.31 14.3 ± 2.2 389 ± 13 

L.melanostoma 1.5 - 3 1 - 2 1,517 ± 120 201 ± 20 1.41 ± 0.02 3.34 ± 0.30 2.5 ± 1.3 5.39 ± 0.25 163 ± 17 

C.obtusa 3 - 4 1 - 1.2 338 ± 29 158 ± 16 0.99 ± 0.09 6.15 ± 0.74 1.58 ± 0.41 6.95 ± 1.15 120 ± 20 

N.articulata 1.8 - 2.5 1.2 - 1.5  795 ± 82 96 ± 14 0.88 ± 0.27 3.58 ± 1.74 5.99 ± 1.43 6.45 ± 1.69 16.6 ± 0.9 
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 269 

Fig. 4.  Bioconcentration factors (BCF = concentration of trace element in soft tissues/ concentration of trace 270 

element correspond to its concentration in feeding of individual species) of various snails living in the Avicennia 271 

alba (gray collum) and the Rhizophora apiculata (black column). 272 

4. Discussions  273 

4.1. Bioaccumulation of trace elements in roots and leaves of Avicennia alba and 274 

Rhizophora apiculata 275 

4.1.1.  Essential elements: Fe, Mn, Cu 276 

Iron is an important component of chlorophyll, being useful for protein synthesis and root 277 

growth (Jones Jr et al. 1991). In the present study, despite low bioconcentration factors (BCF), Fe 278 

was the most abundant element in the roots whatever the mangrove species, reaching up to 19,897 279 

µg g-1 (Table 1). These mean concentrations of Fe in the plants’ roots of the Can Gio mangrove 280 

were substantially higher than in most mangroves, like for instance in Indian mangroves 281 

(Kathiresan et al. 2014). We suggest that the high concentrations of measured Fe in the roots 282 

resulted from the high iron concentrations in the sediments (Table SD2) and in pore-waters 283 

(Thanh-Nho et al. 2019) (e.g. where it can be highly bioavailable (Abohassan 2013)), as observed 284 

for Avicennia marina and Rhizophora stylosa in New Caledonian mangroves, where the mangrove 285 

sediments are rich in iron because these ecosystems develop downstream lateritic soils (Marchand 286 
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et al. 2016). However, if the Fe concentrations were high in the roots, the translocation factors to 287 

the leaves were low for this element (Fig. 3), suggesting that the root acted as a barrier preventing 288 

iron translocation to aerial parts. Machado et al. (2005) suggested that the seedlings of mangrove 289 

species can exclude some trace elements through iron plaque formation on the roots. The oxygen 290 

released by the roots of some mangrove species may promote oxidizing conditions within the 291 

rhizosphere, which results in trace elements precipitation at the root surface, creating iron-rich root 292 

coatings, generally called iron plaques (Chaudhuri et al. 2014, Koch and Mendelssohn 1989, Zhou 293 

et al. 2011). Machado et al. (2005) also demonstrated that the washing of the roots prior to analysis 294 

influences the fixation of the iron plaque on the roots: in contrary to distilled water, the dithionite–295 

citrate–bicarbonate (DCB) solution is able to extract the iron plaque from the roots. Considering 296 

that we only washed the roots with deionized water, the presence of iron plaques at the root surface 297 

may be a possible explanation for the elevated iron concentrations in the plants’ roots in the Can 298 

Gio mangrove. For the mature trees, iron concentrations were higher in the Avicennia roots than 299 

the Rhizophora ones, which may be the results of the higher iron concentrations both in the solid 300 

and the dissolved phases (Table SD2) in the sediment of the Avicennia stand (Thanh-Nho et al. 301 

2019). Also, the Avicennia root system is known to release oxygen (Marchand et al. 2004, 302 

Scholander et al. 1955), which may increase iron plaque precipitation. Notably, whatever the 303 

mangrove species, iron concentrations in saplings leaves presented higher values than the mature 304 

ones as a result of higher iron concentrations in saplings roots (Table 1). We suggest that iron 305 

plaque may be a source of Fe for plants uptake by bacterial reductive dissolution of plaque during 306 

organic matter decay processes on dead roots surface. Additionally, the root system of the saplings 307 

may develop in the upper layer, and not as deep as the one of the mature trees. This upper layer is 308 

more subject to variations in the redox conditions, and possibly to enhanced alternation of 309 
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precipitations/dissolution processes. Consequently, elements, specifically iron, may be more 310 

available at the depth of the saplings’ roots. Eventually, it is possible that the adaptation strategy 311 

of the mangrove trees was not fully developed at the sapling stage, as a result, the role in barrier 312 

of the root system may be limited.   313 

Manganese is a major contributor to various biological processes, including photosynthesis 314 

(Millaleo et al. 2010). In Can Gio mangrove, whatever the mangrove species, Mn was the second 315 

abundant element in their tissues, with average concentrations in the range of those measured 316 

worldwide in mangroves (see review of Lewis et al. (2011) and Bayen (2012)). Conversely to Fe, 317 

Mn accumulated more in the leaves than in the roots (Table 1), as previously observed in New 318 

Caledonia by Marchand et al. (2016). TF values (i.e. maximum TF: 4.08) and Mn concentrations 319 

in roots and leaves of mangrove plants measured in New Caledonia were lower than in the present 320 

study (e.g. TF reached up to 7.07). We suggest that the high dissolved Mn concentrations measured 321 

in the pore-waters and the difference of Mn partitioning in the mangrove sediments may be 322 

responsible for the elevated values measured in the present study. Within the top 50 cm of the 323 

sediments in the Can Gio mangrove, approximately 60 % of Mn was associated with the 324 

bioavailable fractions (Table SD2) whereas in New Caledonia, 90 % of Mn was bound to the 325 

refractory fraction, preventing its transfer to mangrove plants (Marchand et al. 2016). In the Can 326 

Gio mangrove, Mn was only the element to potentially present an ecological risk due to its high 327 

bioavailability (ratio in concentrations of trace element in the bioavailable fractions 328 

(exchangeable/carbonate bound) to the total concentrations of trace element) (Thanh-Nho et al. 329 

2019). Since high TF of Mn was already reported for Rhizophora species, we suggest that it may 330 

be related to metabolic requirements, this element playing an important role in enzymes reactions 331 
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is also needed for water splitting at photosystemII (McEvoy and Brudvig 2006). Consequently, 332 

Rhizophora trees have a high potential for Mn phytoextraction.  333 

Regarding copper, it is known as an essential element for plants growth, being required in 334 

enzyme system related to photosystemII electron transport, mitochondria and chloroplast reaction, 335 

carbohydrate metabolism, cell wall lignification, and protein synthesis (Yruela 2009). Cu 336 

concentrations in the roots and leaves of mangrove plants measured in the present study were in 337 

the range of those in other mangroves (Bayen 2012) such as in China (He et al. 2014), in southern 338 

Brazil (Madi et al. 2015), or in Indonesia (Martuti et al. 2016). It was reported that the Cu 339 

partitioning in sediments of the Can Gio mangrove was mainly related to sulphide precipitation 340 

and to its complexes with organic compounds (Thanh-Nho et al. 2019). Thus, we suggest that the 341 

low Cu concentrations measured in the mangrove roots may be related to Cu association with 342 

sulphide, which limit its bioavailability. However, this element presented the second highest values 343 

of TF, beside Mn, with TF reaching 1.69 for Avicennia mature trees and 3.37 for Rhizophora 344 

mature ones. MacFarlane and Burchett (2002) showed that Cu can be toxic to plants growth if its 345 

concentration in the sediments exceeds 400 µg g-1, which is almost 20 fold higher than the 346 

concentrations measured in the Can Gio mangrove sediments. Consequently, we suggest that the 347 

high values in TF of Cu resulted from specific metabolic requirements (Baker 1981, Dudani et al. 348 

2017) as Cu has a direct impact on photosynthesis I, being a constituent of plastocyanin, which is 349 

involved in the photosynthetic electron transport chain (Maksymiec 1998). 350 

4.1.2. Non-essential elements: Co, Ni, Cr, As    351 

Non-essential elements such as Co, Ni, Cr, and As mainly accumulated in the roots (Table 1), 352 

with low translocation to the leaves (Fig. 3). This phenomenon may result from different 353 

mechanisms developed by mangrove plants to prevent the uptake of toxic elements and to limit 354 
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their transport within the components of plants (Almeida et al. 2006), notably through cell wall 355 

immobilization and/or sequestration in the epidermal layers (MacFarlane et al. 2007). They, thus, 356 

accumulate in the perennial tissues, especially the roots (Carbonell et al. 1998, Zhou et al. 2011).  357 

Concerning Arsenic, some forms can be subject to plant uptakes, involving arsenites-As(III) 358 

and arsenates-As(V) (Asher and Reay 1979). However, arsenites can be toxic for radicular 359 

membranes because of As reaction with sulfhydryl groups in proteins, causing disruption of roots 360 

functions and cellular death (Speer 1973, Wu et al. 2015). In the present study, arsenic 361 

concentrations in the roots and leaves of mangrove plants were higher than those of other 362 

mangroves like in the Indian Sundarban (Chowdhury et al. 2015), or in the Chinese Futian (He et 363 

al. 2014). Arsenic was also characterized by higher BCF in the roots, specifically for the Avicennia. 364 

These results may be related to the high As concentrations in bioavailable fractions in the Can Gio 365 

mangrove sediments (Table SD2). In Vietnam, soils are naturally rich in As (Gustafsson and Tin 366 

1994, Nguyen et al. 2016), which may explain its accumulation in mangrove sediments and then 367 

its transfer to mangrove roots. We suggest that As may be incorporated into iron plaque at the roots 368 

surface, which restricted As transfer to aerial parts. This hypothesis may be supported by a positive 369 

correlation between the concentrations of Fe and As in the roots (i.e. r = 0.92, Pearson correlation). 370 

Like iron, As was more bioavailable beneath the Rhizophora stand, where the sediment was more 371 

enrich in organic matter and the oxidizable fraction represented up to 36 % of total As 372 

concentrations. However, BCF of As was higher for the Avicennia than Rhizophora roots, which 373 

comforts our hypothesis in enhanced plaque formation beneath the Avicennia rhizosphere due to 374 

specific redox conditions resulting from oxygen release via the roots system. Similar to Fe, As 375 

concentrations in sapling’s leaves of both Avicennia and Rhizophora species were higher than 376 

mature ones. We suggest that the As incorporated in iron plaque could be a As source for plant 377 
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uptake from plaque reductive dissolution by bacteria during organic matter decay processes of 378 

death roots tissues. Arsenic uptake by mangrove leaves may concomitantly occur to Fe (i.e. a 379 

positive correlation was observed between concentration of As and Fe in the leaves, r = 0.91, 380 

Pearson correlation). Again, the extension of the root system in the upper layer, and possibly the 381 

less developed adaptation strategy of saplings may also be responsible for the As transfer to 382 

saplings’ leaves. 383 

Regarding Ni and Cr, their concentrations in the roots and leaves of Avicennia and Rhizophora 384 

in the Can Gio mangrove were in the range of those presented in the review of Lewis et al. (2011) 385 

but lower than those measured in the Indian Sundarban mangroves (Chowdhury et al. 2017) or in 386 

New Caledonia (Marchand et al. 2016). In the later environments, the authors reported higher Ni 387 

concentrations in plants tissues, with values up to 700 µg g-1 due to high Ni concentrations in 388 

mangrove sediments resulting from the proximity of lateritic soils enriched in Ni. Thus, we suggest 389 

that the moderate Ni and Cr concentrations in the Can Gio mangrove plants may result from their 390 

association to the refractory fraction (i.e. more than 80 %, Table SD2). For plants, Ni is a 391 

micronutrient that is required at very low concentrations (Gajewska and Skłodowska 2007), and 392 

which can inhibit plant growth at high concentrations (Rao and Sresty 2000). The effect of Ni on 393 

plants varies according to plant species as well as the Ni concentration in sediment; one example 394 

of its toxic symptom is chlorosis or yellowing of the leaves (Mishra and Kar 1974). Cr is also toxic 395 

for plant growth (Shanker et al. 2005). When mangrove seedlings are exposed to excessive Cr 396 

concentrations, their roots would be shortened, and their height and biomass would be limited 397 

(Fang et al. 2008). However, considering the low BCF and the low concentrations of those trace 398 

elements in the Can Gio mangrove plants, their impacts on plant growth are probably limited. Cr 399 

concentrations in the roots of Rhizophora trees were lower although its concentrations in 400 
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bioavailable forms were higher than in the Avicennia (Table SD2). This phenomenon, supported 401 

by higher TF values in the Rhizophora trees, may be related to a more intense phytoextraction of 402 

Rhizophora species. In addition, translocation factor of Cr in the saplings of both Avicennia and 403 

Rhizophora trees were higher than in the mature ones, which may be due to higher allocation of 404 

this element to leaf (Weis and Weis 2004) in the saplings. Similar result was also observed for Ni 405 

(Fig. 3).  406 

Co is a micronutrient, which can be used in redox processes to stabilize molecules through 407 

electrostatic interactions as components of various plant enzymes. However in excess, it can be 408 

toxic, inducing enzyme modification, disturbing cellular function (Palit et al. 1994). In the present 409 

study, Co concentrations in the roots and leaves of the different mangrove species were higher 410 

than in Australian mangroves (Nath et al. 2014), in French Guianan mangroves (Marchand et al. 411 

2006), or New Caledonian mangroves (Marchand et al. 2016). We suggest that high Co 412 

concentrations in the Can Gio mangrove plants may result from its high concentrations in the 413 

bioavailable fractions in the sediments, reaching up to 44 % (Table SD2). However, if Co 414 

concentrations in the roots were relatively high, TF were lower than 0.5 (Fig. 3), which suggest its 415 

limited physiological role and/or the fact that the roots acted as a physical barrier. As a 416 

consequence, the present study showed a narrow range of Co level in the leaves (i.e. 0.07 to 1.43 417 

µg g-1). The BCF values of Co in the tissues of Avicennia were much higher than in the Rhizophora, 418 

which may reflect the specific physiological requirements of the trees, considering that its 419 

bioavailability was higher beneath Rhizophora stand (Table SD2).        420 

4.2. Bioaccumulation of trace elements in snails 421 

In the Can Gio mangrove, whatever the snails’ species and their habitat, the concentrations of 422 

Fe, Mn and Cu were the most abundant in their soft tissues (Table 2). Previous studies showed that 423 
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soft tissues of mollusks accumulated higher concentrations of Cu and Fe than in the shells because 424 

of specific physiological requirements (Szefer et al. 1999, Vukašinović-Pešić et al. 2017, Yap and 425 

Cheng 2009). In fact, Fe, Mn, and Cu play important roles in metabolic biomolecules like enzymes 426 

or metalloenzymes (Langston et al. 1998, Rainbow 1997). Snails also need elevated amount of Cu, 427 

being a constituent of hemocyanin (Dallinger et al. 2005). Conversely, the other elements studied 428 

can be toxic, inducing growth retardation, edema and thinning of the shell (Factor and de Chavez 429 

2012). Similar results were reported concerning snails and different mollusks in mangroves in 430 

Malaysia (Yap and Cheng 2013), in India (Palpandi and Kesavan 2012), in Costa Rica (Vargas et 431 

al. 2015), or in Senegal (Sidoumou et al. 2006).  432 

We also suggest that the different amounts of trace elements in the food sources and feeding 433 

habits of individual snail affect the degree and extent accumulation of trace elemental in their 434 

tissues. The snail C.obtusa, a sediment eater, exhibited higher trace elements concentrations in the 435 

Rhizophora stand than in the Avicennia one, except for Mn and Co. This could result from higher 436 

concentrations of trace elements in the available fractions in sediments beneath the Rhizophora 437 

stand (Table SD2). We evidenced that because of the enhanced organic enriched-sediment beneath 438 

the Rhizophora stand, reductive dissolution of Fe-Mn oxihydroxides by bacteria during organic 439 

matter decay processes is a source of dissolved trace elements in pore-waters, these elements being 440 

more bioavailable (Thanh-Nho et al. 2019). As a consequence, concentrations of trace elements in 441 

C.obtusa tissues in the present study were far higher than those measured in other mangroves 442 

(Joseph and Ramesh 2016) or estuary with strong anthropogenic pressure (Kesavan et al. 2013). 443 

Concerning L.melanostoma, a leaf eater, we suggest that the higher concentrations of trace 444 

elements (except Mn), combined to higher BCF (Fig. 4), in snails tissues living beneath the 445 

Rhizophora stand compared with the Avicennia one (Table 2) is likely related to the higher trace 446 
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elements concentrations in the Rhizophora leaves than the Avicennia ones (Table 1). In addition, 447 

L,melanostoma presented the highest concentrations of Fe and Mn in the tissues compare to other 448 

snail species in the Can Gio mangrove. This result suggest that leaf eater is more sensitive to 449 

accumulation of trace elements or that trace elements in leaves are more bioavailable. Furthermore, 450 

L.melanostoma in the present study showed higher Fe and Mn concentrations than those in 451 

L.scabra collected from a polluted mangrove (De Wolf and Rashid 2008). C.capucinus, a predator 452 

of barnacles, bivalves and other mollusks (Berandah et al. 2010), presented the highest Cu 453 

concentrations, which may result from copper biomagnification via their food chains because Cu 454 

is known to be very compatible with protein binding in organisms (Jiang and Qiu 2009). Cu 455 

biomagnification in snails body is usually observed, and they are considered as 456 

“macroconcentrators” species for Cu (Nica et al. 2012). However, concerning N.articulata, the 457 

microalgae eater, Mn and Cu concentration in their tissues were lower than those in other species 458 

whatever the  mangrove stands, and were lower than those measured in N.articulata living in other 459 

mangroves like in Malaysia (Yap and Cheng 2013) or Southeast coast of India (Palpandi and 460 

Kesavan 2012). This result may be related to low Mn and Cu accumulation in microalgae in the 461 

Can Gio mangrove. Unfortunately, in the present study, we were not able to measure 462 

concentrations of trace elements in microalgae. Considering the key role of microphytobenthos in 463 

mangrove trophic food chain (Lee 2008, Raw et al. 2017), we suggest that further investigation 464 

should be carried out on accumulation of trace elements in these microalgae.  465 

Eventually, among non-essential elements, all snails contained high quantity of As, which can 466 

result from its availability in their diet, and snails’ ability to metabolize As and retain it (Kirby et 467 

al. 2002, Zhang et al. 2013). Arsenic also presented the highest BCF whatever the snail species 468 

(Fig. 4). In the Can Gio mangrove, dissolved As concentrations in pore-waters reached up to almost 469 



24 
 

20 µg L-1. In addition at the Rhizophora stand, characterized by higher organic content, the organic 470 

fraction, being bioavailable, represented up to 36 % of total As concentrations (Table SD2). 471 

Khokiattiwong et al. (2009) studied on two mollusks species (C.capucinus and Telescopium 472 

telescopium), and they showed that C.capucinus, as a predator, contained more As than the detritus 473 

and algae eater species, T.telescopium. We also observed that C.capucinus contained the highest 474 

As concentrations in their body (2 to 4 fold higher level tissues than other snail species) in the Can 475 

Gio mangrove, which could be related to their predator diet and magnification along food chain 476 

(Goessler et al. 1997).       477 

According to Dallinger (1993), snail tissues can be classified in macroconcentrators (BCF > 478 

2), microconcentrators (1< BCF < 2) or deconcentrators (BCF < 1). Thus, in the present study, the 479 

L.melanostoma and C.obtusa can be classified as macroconcentrators for Cu. The L.melanostoma 480 

was macroconcentrators for As, Co and Ni. Conversely, all snails were deconcentrators to 481 

microconcentrators for Mn and Fe. Due to negative effects of toxic trace elements on community 482 

structure, gender, size of snails (Amin et al. 2009, Yap and Cheng 2013), the obtained results in 483 

the present study provided a further claim that these snails can be used as good biomonitors for 484 

environmental quality (Samsi et al. 2017).  485 

5. Conclusions  486 

Trace elements accumulation in the tissues of mangrove plants and snails studied in the Can 487 

Gio mangrove reflected their concentrations in the sediment, their bioavailability, and specific 488 

adaptation strategies or physiological processes of the biota. Clear differences between the two 489 

stands were evidenced, notably because of different sediment geochemistry. The main conclusions 490 

concerning mangrove trees can be summarized as follow: 491 



25 
 

- Fe and As were characterized by low translocation to the leaves of the Avicennia and 492 

Rhizophora trees. We suggest that the formation of iron plaque on roots by oxygen release 493 

in the rhizosphere may be a key factor preventing this translocation. Consequently, 494 

mangroves roots can be considered as “phytostabilizators”, immobilizing trace elements 495 

and limiting their transfer in the environment.  496 

- Co exhibited higher concentrations in roots and leaves of the Can Gio mangrove trees than 497 

the world average. However, this element was characterized by low BCF and TF, which 498 

may be related to its high concentrations in available forms in the sediment 499 

-  High translocation factors for Mn and Cu may possibly result from physiological 500 

requirements, both elements being useful in photosynthetic processes, but also from 501 

elevated bioavailability in the sediment. We also suggest that the Rhizophora trees have a 502 

high potential for Mn “phytoextraction”.  503 

- Ni and Cr were characterized by low BCF and TF whatever the mangrove plants, which 504 

may result from their low bioavailability in the sediment and from the limited physiological 505 

roles of those elements.  506 

- Consequently, we suggest that the mangrove trees species studied can act as sinks when 507 

elements are stored in their root systems, or sources for the trophic chain when they 508 

accumulate in the leaves. Therefore, studies regarding the turnover of trace elements from 509 

decomposing of leaf litter should be developed to get a better understanding of the cycling 510 

of trace elements in mangroves ecosystem.  511 

The main conclusions concerning mangrove snails can be summarized as follow: 512 

- The great variability in concentrations of studied trace elements in the various snails 513 

indicated that bioaccumulation of trace elements depended not only on characteristics of 514 
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trace elements (i.e. physiological properties and biological functions), and metabolic 515 

requirements of each species but also on available concentrations of these trace elements 516 

in their feeding sources.  517 

- Fe, Mn and Cu, which are essential elements, presented higher concentrations in all snails 518 

tissues than As, Ni, Cr and Co, which can be toxic.  519 

- Most of the snails living in the Rhizophora stand presented higher levels of trace elements 520 

concentrations (except Mn and Co) than those living in the Avicennia stand, specifically 521 

for L.melanostoma and C.obtusa, due to higher concentrations of trace elements in the 522 

leaves or in the bioavailable fractions in the sediment.  523 

- Concerning the predators, C.capucinus, possible biomagnification of Cu via the food chain 524 

induced elevated Cu concentrations in their tissues.  525 

- In this study, we also measured that all snails contained high amount of As, most probably 526 

because it is highly bioavailable in mangrove sediments.  527 

- Eventually, most snails can be classified as “maroconcentrators” of some trace elements 528 

such as Cu, As, Co and Ni. Because of their potential toxic effects, a further study should 529 

be performed to assess the possibility of using snails as bioindicators of environmental 530 

quality. In addition, it would be relevant to compare trace elements dynamics between 531 

seasons. We suggest that during the dry season, lower elements inputs and lower sediment 532 

reactivity may induce lower accumulation in mangrove plants and snails tissues. 533 
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