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Abstract. We introduce a dynamical spatio-temporal model formalized as a recur-
rent neural network for modeling time series of spatial processes, i.e. series of observa-
tions sharing temporal and spatial dependencies. The model learns these dependencies 
through a structured latent dynamical component, while a decoder predicts the ob-
servations from the latent representations. We consider several variants of this model, 
corresponding to different prior hypothesis about the spatial relations between the se-
ries. The model is used for the tasks of forecasting and data imputation. It is evaluated
and compared to state-of-the-art baselines, on a variety of forecasting and imputation 
problems representative of different application areas: epidemiology, geo-spatial statis-
tics and car-traffic prediction. The experiments also show that this approach is able to 
learn relevant spatial relations without prior information.

Keywords: time-series, spatio-temporal, forecasting, data imputation, deep learning, 
neural networks

1. Introduction

Time series exhibiting spatial dependencies are present in many domains including 
ecology, meteorology, biology, medicine, economics, traffic, and vision. The obser-
vations can come from multiple sources e.g. GPS, satellite imagery, video cameras,
etc. Several difficulties arise when modeling spatio-temporal data, among them: 1) 
their size: sensors can cover very large space and temporal lags; 2) the complexity
of the underlying generation process, which might be highly non linear; and 3)
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the inherent uncertainty of the measurements: sensors are not perfect, and data
points are frequently missing or noisy. Answering these challenges, i.e. reducing
the spatial dimensionality, uncovering the underlying data generation process,
and modeling data uncertainty naturally leads to consider latent dynamic models.
This has been exploited both in statistics (Cressie & Wikle 2011) and in machine
learning (ML) (Bahadori et al. 2014, Koppula & Saxena 2013).

Deep learning has also developed a whole range of dynamic latent models for
capturing relevant information in sequences. Recurrent neural networks (RNN)
and their many variants have been used in different contexts for sequence classi-
fication, sequence to sequence prediction, sequence generation and many other
tasks (Bengio 2008, Chung et al. 2015a, Li et al. 2015). These models are able to
capture meaningful features of the sequential data generation processes, but the
spatial structure, essential in many applications, has been seldom considered in
Deep Learning. Very recently, convolutional RNNs (SHI et al. 2015, Srivastava
et al. 2015) and video pixel networks (Kalchbrenner et al. 2017) have been used
to handle both spatiality and temporality, but they have mainly been designed
for the restrictive case of video applications.

We introduce a general class of deep spatio-temporal models for time series of
spatial processes. They allow us to explicitly model both spatial and temporal
dependencies. In the paper we focus on two tasks: forecasting and imputation (i.e.
inferring missing values). The model, denoted Spatio-Temporal Neural Network
(STNN), is designed to capture the dynamics and correlations in multiple series
at the spatial and temporal levels. This is a dynamical system model with two
components: one for capturing the spatio-temporal dynamics of the process into
latent states, and one for decoding these latent states into actual series observa-
tions. The model is tested and compared to state of the art alternatives, including
recent RNN approaches, on several datasets for imputation and forecasting tasks.
Tests were performed on time series coming from various domain: health, traffic,
meteorology and oceanography. Besides a quantitative evaluation on forecasting
and imputation tasks, the ability of the model to discover relevant spatial relations
between series is also analyzed.

The paper is organized as follows: in section 2 we introduce the related work
in machine learning and spatio-temporal statistics. The model is presented for
the forecasting task in sections 3 and 4 with its different variants, and for the
imputation task in section 5. The experiments are described in section 6 for
forecasting 6.2, relations discovery 6.3 and imputation 6.4.

2. Related Work

The classical topic of time series modeling and forecasting has given rise to an
extensive literature, both in statistics and machine learning. In statistics, classical
linear models are based on auto-regressive and moving average components.
Most assume linear and stationary time dependencies with a noise component
(De Gooijer & Hyndman 2006). In machine learning, non linear extensions of
these models based on neural networks were proposed as early as the nineties,
opening the way to many other non linear models developed both in statistics
and ML, like kernel methods (Muller et al. 1999) for instance.

For the imputation task, the canonical approaches in statistics and machine
learning are based on the Expectation Maximization (EM) algorithm and on
Matrix Factorization (MF) methods. Bańbura & Modugno (2014) proposed an
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adaptation of the EM algorithm for time series with missing data, claiming good
results for long consecutive missing values. Recently, several adaptations of MF
have been proposed for data completion in time series (Shang et al. 2014, Shi
et al. 2016, Song et al. 2012).

Dynamical state space models, such as recurrent neural networks, have been
used for time series modeling in different contexts since the early nineties (Connor
et al. 1994). Recently, these models have witnessed important successes for several
sequence modeling problems, leading to breakthrough in domains like speech
(Graves et al. 2013), language generation (Sutskever et al. 2011), translation
(Cho et al. 2014) and many others. Most of these applications are formalized
as classification problems either at the level of discrete sequence events (e.g.
words for translation) or at the level of subsequences in continuous signal (e.g.
for speech decoding). Forecasting of complex multivariate sequences has been
recently considered for the task of next frame prediction for video data (Oord et al.
2016, Denton & Birodkar 2017). Here again, spatial dependency is not explicitly
modeled even if it can be implicitly captured by the models. Explicit spatio-
temporal modeling with deep learning approaches has only been very recently
considered (de Bezenac et al. 2017). Compared to forecasting, imputation has
seldom been addressed in the deep learning literature. Mirowski & LeCun (2009)
proposed a dynamic factor graph model designed for multiple series modeling
where the evaluation is mainly performed on imputation tasks. This model is
close to ours: it is a generative model with a latent component that captures
the temporal dynamics and a decoder for predicting the series. However, spatial
dependencies are not considered, and the learning and inference algorithms are
different. Che et al. (2016) proposed a modified GRU unit to take into account
missing input values for health-care related tasks.

Recently, the development of non parametric generative models has become
a very popular research direction in Deep Learning, leading to different fami-
lies of innovative and promising models. For example, the Stochastic Gradient
Variational Bayes algorithm (SGVB) (Kingma & Welling 2013) provides a frame-
work for learning stochastic latent variables with deep neural networks, and has
recently been used by some authors to model time series (Bayer & Osendorfer
2014, Chung et al. 2015b, Krishnan et al. 2015). In our context, which requires
to model explicitly both spatial and temporal dependencies between multiple
time series, variational inference as proposed by such models is still intractable,
especially when the number of series grows, which is the case in our experiments.

Spatio-temporal statistics already have a long history (Cressie & Wikle 2011,
Wikle & Hooten 2010). The traditional methods rely on a descriptive approach
using the first and second-order moments of the process for modeling the spatio-
temporal dependencies. More recently, dynamical state space models, where the
current state is conditioned on the past have been explored (Wikle 2015). For
these models, time and space can be either continuous or discrete. The usual
way is to consider discrete time, leading to the modeling of time series of spatial
processes. When space is continuous, models are generally expressed by linear
integro-difference equations, which is out of the scope of our work. With discrete
time and space, models come down to general vectorial autoregressive formulations.
These models face a curse of dimensionality in the case of a large number of
sources. Different strategies have been adopted to solve this problem, such as
parameter reduction or latent space modeling. This leads to model families that
are close to the ones used in machine learning for modeling dynamical phenomena
while incorporating spatial components. An interesting feature of these approaches
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is the incorporation of prior knowledge inspired from physical models of space-
time processes. This consists in taking inspiration from prior background of
physical phenomena, e.g. diffusion laws in physics, and using this knowledge
as guidelines for designing dependencies in statistical models (de Bezenac et al.
2017). In climatology, models taking into account both temporal and geographical
components have also been used such as Gaussian Markov Random Fields (Rue
& Held 2005).

In the machine learning domain, spatio-temporal modeling has been seldom
considered, even though some spatio-temporal models have been proposed (Ceci
et al. 2017). Bahadori et al. (2014) introduce a tensor model for kriging and
forecasting. Koppula & Saxena (2013) use conditional random fields for detecting
activity in video, where time is discretized at the frame level and one of the tasks
is the prediction of future activity. Brain Computer Interface (BCI) is another
domain for spatio-temporal data analysis with some work focused on learning
spatio-temporal filters (Dornhege et al. 2005, Ren & Wu 2014), but this is a very
specific and different topic.

3. The STNN Model

3.1. Notations and Task

Let us consider a set of n temporal series, m is the dimensionality of each series
and T their length 1. m = 1 means that we consider n univariate series, while
m > 1 correspond to n multivariate series each with m components. We will
denote X the values of all the series between time 1 and time T . X is then a
tensor in RT×n×m, such that Xi

t ∈ Rm is a m-dimensional vector containing
values of series i at time t. Xt will denote the slice of X at time t, such that
Xt ∈ Rn×m denotes the values of all the series at time t.

We consider two tasks: forecasting and imputation. The model is first presented
for forecasting in this section and in section 4. The imputation version of the
model is introduced in section 5. For simplicity, we first present our forecasting
model in a mono-relational setting. An extension to multi-relational series where
different relations between series are observed is described in section 3.4. We
consider that the spatial organization of the sources is captured through a matrix
W ∈ Rn×n. Ideally, W would indicate the mutual influence between sources. In
practice, it might be a proximity or similarity matrix between the sources: for
geo-spatial problems, this might correspond to the inverse of a physical distance -
e.g. geodesic - between sources. For other applications, this might be provided
through local connections between sources using a graph structure (e.g. adjacency
matrix for connected roads in a traffic prediction application or graph kernel on
the web). In a first step, we make the hypothesis that W is provided as a prior
on the spatial relations between the series. An extension where these relations
are learned is presented in section 4.

We then consider in the remainder of this section the problem of spatial time
series forecasting i.e predicting the future of the series, knowing their past. We
want to learn a model f : RT×n×m ×Rn×n → Rτ×n×m able to predict the future
at τ time-steps of the series based on X and on their spatial dependency.

1 We assume that all the series have the same dimensionality and length. This is often the case
for spatio-temporal problems otherwise this restriction can be easily removed.
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3.2. Modeling Time Series with Continuous Latent Factors

Let us first introduce the model in the simpler case of multiple time series
prediction, without considering spatial relations. The model has two components.

The first one captures the dynamic of the process and is expressed in a latent
space. Let Zt be the latent representation, or latent factors, of the series at time
t. The dynamical component writes Zt+1 = g(Zt). The second component is a
decoder which maps latent factors Zt onto a prediction of the actual series values
at t: X̃t = d(Zt), X̃t being the prediction computed at time t. In this model,
both the representations Zt and the parameters of the dynamical and decoder
components are learned. Note that this model is different from the classical RNN
formulations (Hochreiter & Schmidhuber 1997, Cho et al. 2014). The state space
component of a RNN with self loops on the hidden cells writes Zt+1 = g(Zt, X

′
t),

where X ′t is the ground truth Xt during training, and the predicted value X̃t

during inference. In our approach, latent factors Zt are learned during training
and are not an explicit function of past inputs as in RNNs: the dynamics of the
series are then captured entirely in the latent space.

This formal definition makes the model more flexible than RNNs since not
only the dynamic transition function g(.), but also the state representations Zt
are learned from data. A similar argument is developed in Mirowski & LeCun
(2009). It is similar in spirit to Hidden Markov models or Kalman filters.

Learning problem Our objective is to learn the two mapping functions d and g
together with the latent factors Zt, directly from the observed series. We formalize
this learning problem with a bi-objective loss function that captures the dynamics
of the series in the latent space and the mapping from this latent space to the
observations. Let L(g, d, Z) be this objective function:

L(d, g, Z) =
1

T

∑
t

∆(d(Zt), Xt) + λ
1

T

T−1∑
t=1

||Zt+1 − g(Zt)||2 (1)

The first term of the right hand side of (1) measures the ability of the model
to reconstruct the observed values Xt from the latent factor Zt. It is based on
loss function ∆ which measures the discrepancy between predictions d(Zt) and
ground truth Xt. The second term aims at capturing the dynamics of the series
in the latent space. This term forces the system to learn latent factors Zt+1 that
are as close as possible to g(Zt). Note that in the ideal case, the model converges
to a solution where Zt+1 = g(Zt), which is the classical assumption made when
using RNNs. The hyper-parameter λ is used here to balance this constraint and
is fixed by cross-validation. The solution d∗, g∗, Z∗ to this problem is computed
by minimizing L(d, g, Z):

d∗, g∗, Z∗ = arg min
d,g,Z

L(d, g, Z) (2)

Learning algorithm In our setting, functions d and g, described in the next
section, are differentiable parametric functions. Hence, the learning problem can
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be solved end-to-end with Stochastic Gradient Descent (SGD) techniques2 directly
from (2). At each iteration, a pair (Zt, Zt+1) is sampled, and Zt, Zt+1, g and d
are updated according to the gradient of (1). Training can also be performed via
mini-batch, meaning that for each iteration several pairs (Zt, Zt+1) are sampled,
instead of a single pair. This results in a high learning speed-up when using GPUs
which are the classical configuration for running such methods.

Inference Once the model is learned, it can be used to predict future values
of the series. The inference method is the following: the latent factors of any
future state of the series is computed using the g function, and the corresponding
observations is predicted by using d on these factors. Formally, let us denote Z̃τ
the predicted latent factors at time T + τ . The forecasting process computes Z̃τ
by successively applying the g function τ times on the learned vector ZT :

Z̃τ = g ◦ g ◦ ... ◦ g(ZT ) = g(τ)(ZT ) (3)

and then computes the predicted outputs : X̃τ = d(Z̃τ )

3.3. Modeling Spatio-Temporal Series

Let us now introduce a spatial component in the model. We consider that each
series has its own latent representation at each time step. Zt is thus a n × N
matrix such that Zt,i ∈ RN is the latent factor of series i at time t, N being the
dimension of the latent space. This is different from approaches like Mirowski
& LeCun (2009) or RNNs for multiple series prediction, where Zt is a single
vector common to all the series. The decoding and dynamic functions d and g
are respectively mapping Rn×N to Rn×m and Rn×N to Rn×N .

The spatial information is integrated in the dynamic component of our model
through a matrix W ∈ Rn×n+ with n the number of sources. In a first step, we
consider that W is provided as prior information on the series’ mutual influences.
In 4, we remove this restriction, and show how it is possible to learn the weights of
the relations, and even the spatial relations themselves, directly from the observed
data. The latent representation of any series at time t+1 depends on its own latent
representation at time t (intra-dependency) and on the latent representations
of the other series at t (inter-dependency). Intra-dependency will be captured
through a linear mapping denoted Θ(0) ∈ RN×N and inter-dependency will be
captured by averaging the latent vector representations of the neighboring series
using matrix W , and computing a linear combination denoted Θ(1) ∈ RN×N of
this average. Formally, the dynamic model g(Zt) is designed as follow:

Zt+1 = h(ZtΘ
(0) +WZtΘ

(1)) (4)

Here, h is a non-linear function. In the experiments we set h = tanh but h
could also be a more complex parametrized function like a multi-layer perceptron

2 In the experiments, we used the Nesterov’s Accelerated Gradient (NAG) method (Sutskever
et al. 2013).
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(MLPs) for example - see section 6. The resulting optimization problem over d,
Z, Θ(0) and Θ(1) writes:

d∗, Z∗,Θ(0)∗,Θ(1)∗ = arg min
d,Z,Θ(0),Θ(1)

1

T

∑
t

∆(d(Zt), Xt)

+ λ
1

T

T−1∑
t=1

||Zt+1 − h(ZtΘ
(0) +WZtΘ

(1))||2
(5)

3.4. Modeling different types of relations

The model in section 3.3 considers that all the spatial relations are of the same
type (e.g. based on sources proximity). For many problems, we will have to
consider different types of relations. For instance, when sensors correspond to
physical locations and the target is some meteorological variable, the relative
orientation or position of two sources may imply a different type of dependency
between the sources. In the experimental section, we consider problems with
relations based on the relative position of sources: north, south, west, east, ....
The multi-relational framework generalizes the previous formulation of the model,
and allows us to incorporate more abstract relations, like different measures of
proximity or similarity between sources. For instance, when sources are spatiality
organized in a graph, it is possible to define graph kernels, each one of them
modeling a specific similarity. The following multi-relational formulation is based
on adjacency matrices, and can directly incorporate such graph kernels.

Each possible relation type is denoted r and is associated to a matrix W (r) ∈
Rn×n+ . For now, and as before, we consider that the W (r) are provided as prior
knowledge. Each type of relation r is associated to a transition matrix Θ(r). This
learned matrix captures the spatio-temporal relationship between the series for
this particular type of relation. The model dynamics writes:

Zt+1 = h(ZtΘ
(0) +

∑
r∈R

W (r)ZtΘ
(r)) (6)

where R is the set of all possible types of relations. The learning problem is
similar to equation (5) with the argument of h replaced by the expression in (6).
The corresponding model is illustrated in figure 1. This dynamic model aggregates
the latent representations of the series for each type of relation, and then applies
Θ(r) on this aggregate. Each Θ(r) is able to capture the dynamics specific to
relation (r).

4. Capturing spatio-temporal correlations

In the previous sections, we made the hypothesis that the spatial relational
structure and the strength of influence between series were provided as prior to
the model as priors through the W (r) matrices. We introduce below an extension
of the model where weights on these relations are learned. This model is denoted
STNN-R(efining). We further show that this model can be easily extended to
learn both the relations and their weights directly from the data, without any
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Fig. 1. Architecture of the STNN model as described in Section 3.4
.

prior on the existence and on the weights of the relations. This extension is
denoted STNN-D(iscovering).

We will first introduce the STNN-R extension. Let Γ(r) ∈ Rn×n be a matrix
of weights such that Γ

(r)
i,j is the strength of the relation between series i and j in

the relation r. Let us extend the formulation in Equation (6) as follows:

Zt+1 = h(ZtΘ
(0) +

∑
r∈R

(W (r) � Γ(r))ZtΘ
(r)) (7)

where Γ(r) is a matrix to be learned, W (r) is a prior i.e a set of observed relations,
and � is the element-wise multiplication between two matrices. The learning
problem can be now be written as:

d∗, Z∗,Θ∗,Γ∗ = arg min
d,Z,Γ

1

T

∑
t

∆(d(Zt), Xt) + γ|Γ|

+ λ
1

T

T−1∑
t=1

||Zt+1 − h(
∑
r∈(R)

(W (r) � Γ(r))ZtΘ
(r))||2

(8)

where |Γ(r)| is a l1 regularizing term that aims at sparsifying Γ(r). We thus
add an hyper-parameter γ to tune this regularization factor.

If no prior is available, then simply removing the W (r)s from equation (7)
leads to the following model:

Zt+1 = h(ZtΘ
(0) +

∑
r∈R

Γ(r)ZtΘ
(r)) (9)

where Γ(r) is no more constrained by the prior W (r) so that it will represent both
the relational structure and the relation weights. Both models are learned with
SGD, in the same way as described in 3.2. The only difference is that a gradient
step on the Γ(r)s is added.

5. STNN for Data Imputation

We investigate here how the STNN model can be adapted for the data imputation
problem. Data imputation, or missing values completion, is a classical problem
in statistics and can come in different instances. We focus on the case where the
information for some or all of the series is missing at different time steps, and
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can be inferred from information available at other time steps and/or at different
locations.

This setting covers several situations. Spatio-temporal data are often acquired
by networks of physical sensors. These sensors are not always reliable. They can
stop recording or transmitting data, or data can be too noisy to provide useful
information. Observations can also be blurred or occulted by external factors. For
instance, satellite imaging in the visible domain is sensible to clouds that occult
parts of the earth surface. When needed, this information should be reconstructed
using available data recorded at different time and locations, or data coming from
other types of sensors. Another example that often occurs in traffic applications
is when no signal is recorded at some places because of the absence of vehicles
equipped with sensors at these places. This does not mean, of course, that traffic
is absent. Hence, the values should be inferred from data available at other places.

For all these examples, having a reliable model for imputing missing data
is essential. In this section, we propose an adaptation of the Spatio-Temporal
Neural Network model in order to address this data imputation problem.

In the formulation of the data imputation task, in addition to the series values
X ∈ RT×n×m (with T the number of time-steps, n the number of series and m the
dimensionality of the series), we also consider a missing data maskM ∈ {0, 1}T×n.
M i
t is the binary mask on the series i at time-step t, and is equal to 1 when

vector Xi
t ∈ Rm (observed values of series i at time-step t) is missing, and 0

if it is present. The goal is to minimize the prediction error of missing data points.

As apposed to the forecasting task, we suppose that observations from every
time-step (past and future) are present, and missing data may appear at any
time-step. If Xi

t is a missing value for series i at time t, the prediction X̂i
t will be

computed based on all the available Xj
t′ for j ∈ {1, n} and t′ ∈ {1, T}.

The objective function for imputation is the following:

L(d, g, Z) =
1∑

t

∑
i

(1−M i
t )

∑
t

∑
i

(1−M i
t )∆(d(Zit), X

i
t)+

T−1∑
t=1

||Zt+1−g(Zt)||2

(10)

In this expression, supervision comes from the available Xi
t , so that the Zit

value inferred for a missing Xi
t will depend on all available observations X ′jt . The

second term
T−1∑
t=1
||Zt+1− g(Zt)||2 acts as a regularizer for the Zit value associated

to a missing Xi
t . Intuitively, the Zit value for a missing observation should be

coherent with the neighboring latent states Z associated to observations X. For
example if one suppose that Xt is missing while Xt−1 and Xt+1 are observed,
the term Zt will be directly constrained by the two loss terms ||g(Zt)− Zt−1||2
and ||Zt − g(Zt−1)||. Since our model learns one latent state for each series and
each time-step, it will learn these latent states over missing values that could
then be retrieved using the decoding function. Indeed, inference in this model is
straightforward: once learned, a missing value of series i at time-step t can be
computed as Xi

t = d(Zit).
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(a) Heat diffusion experiment
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(b) Modulated heat diffusion experiment

Fig. 2. Forecasting performances (RMSE) for the synthetic heat diffusion ex-
periments. Left: standard heat diffusion. Right: heat diffusion with modulated
diffusion constant. Datasets are simulated for 200 timesteps. Models are learned
on the first 100 timesteps, and forecast the next 100 timesteps.

6. Experiments

The following section contains experiments and results on different tasks and
settings 3. First, we present experiments on a synthetic dataset in order to
demonstrate some properties of the STNN model and its variants. Then we
present results on real world datasets for the forecasting task, followed by a
qualitative analysis of the relation discovery capabilities of our model. Finally,
we present results on the data imputation task.

6.1. Synthetic experiments on heat diffusion

We begin by evaluating and analyzing the STNN model and its variants on a
heat diffusion simulation dataset. It is a simple problem whose characteristics,
in particular the spatio-temporal dependencies, are perfectly known. Hence, its
complexity can be controlled. We consider a 1-D segment where a heat source is
applied on its center. The diffusion of the heat is then governed by the following
differential equation:

∂u

∂t
= a

(
∂2u

∂x2

)
where u is the heat value, a a diffusion constant, and x and t are respectively

the space and time variables. This equation can be discretized in space and time
by the explicit Euler method as follows:

uit+1 = uit + a∆t

(
ui−1
t − 2uit + ui+1

t

∆x2

)
∀i ∈ 1, ..., n

We construct a dataset by simulating heat diffusion on a segment with n = 41
points through 200 time-steps. We use the first 100 time-steps for training and

3 Code available at https://github.com/edouardelasalles/stnn
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Fig. 3. One hundred time step forecasting of heat diffusion by our three different
models.

the remaining 100 for the forecasting evaluation. The adjacency matrix W we use
for STNN and STNN-R is the one connecting direct neighbors in the diffusion
segment. Figure 2a show the RMSE scores for prediction at t + 1 to t + 100,
and figure 3 shows the predicted values and the ground truth. As expected, the
STNN-R model performs best. It has both a strong relational prior (i.e only
adjacent points interact with each other) and enough flexibility to adjust the
relation weights and well capture the spatio-temporal correlations. STNN-D has
no spatial prior, and fails to learn the dynamics of the process.

On the top right image of Figure 3, we can see that the errors made by the
STNN model are concentrated on the borders: the model over-estimates the heat
diffusion at these points. Indeed, the two border points have only one neighbor
each, whereas all other points have two. STNN-R, on the other hand, is able to
adapt relation weights in order to cope with this effect. This is illustrated on the
right image, second row of Figure 3 where the absolute error on the borders is
clearly lower for STNN-D than for the other variants.

The relations weights learned by STNN-R (denoted by Γ on eq. (7)) are shown
on Figure 4a. A pixel at position (i, j) on this image corresponds to the weight
that STNN-R puts on series j at time t when updating the latent representation
of series i at time t+ 1. High values mean stronger influence of series j in the
update of series i. One can see that STNN-R learns asymmetrical and low value
weights between points close to the borders (upper left and bottom right pixels
on Figure 4a), allowing it to cope with the border effect described in the previous
paragraph. We also show on Figure 4b the relation weights discovered by STNN-D.
Similarly to STNN-R, it learns low relation weights between points near the edges.
The horizontal and vertical axial symmetries in figure 4b reflect the symmetry of
the data itself (figure 3 top left image).

To further explore the adaptivity of STNN, we make the diffusion process
more complex. The diffusion constant a is replaced by an RBF kernel positioned
on the center of the diffusion segment:
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Fig. 4. Relation weights learned by STNN-R (left) and STNN-D (right). The
images represent adjacency matrix weights (denoted by Γ on eq. (7) and (9))
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Fig. 5. One hundred time step forecasting of modulated heat diffusion by our
three different models.

uit+1 = uit + ai∆t

(
ui−1
t − 2uit + ui+1

t

∆x2

)
s.t. ai = a′K(|i− n− 1

2
|, n− 1

2
)

where K is a RBF kernel. This modification results in heat propagating itself
faster in the center, and slower as it reaches the borders.

Results are shown in figure 2b. In this setting, both STNN-R and STNN-D
perform significantly better than STNN. While the latter learns a dynamics which
is the same for all positions, both STNN-R and STNN-D learn position dependent
spatial weights. Figure 5 shows the predicted values. It is easy to see that, once
again, STNN over-estimates heat propagation speed. Figure 6 shows the learned
relations: both STNN-R and STNN-D put very low values on relations between
points at the extremities of the segment.

6.2. Spatio-Temporal Series Forecasting

For this first task, experiments are performed on a series of spatio-temporal
forecasting problems representative of different domains. We consider predictions
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Fig. 6. Relation weights learned by STNN-R (left) and STNN-D (right) on
modulated heat diffusion.

Table 1. Datasets statistics. n is the number of series, m is the dimension of
each series, time− step corresponds to the duration of one time-step and #folds
corresponds to the number of temporal folds used for validation. For each fold,
evaluation has been made on the next 5 values at T + 1, T + 2, ..., T + 5. The
relation columns specifies the number of different relation types used in the
experiments i.e the number of W (r) matrices used in each dataset. 1 to 3 means
that the best among 1 to 3 relations was selected using cross validation

Dataset n m nb relations time-step total length training length #folds

Google Flu 29 1 1 to 3 weeks ≈ 10 years 2 years 50
GHO (25 datasets) 91 1 1 to 3 years 45 years 35 years 5

Wind 500 2 1 to 3 hours 30 days 10 days 20
PST 2520 1 8 months ≈ 33 years 10 years 15

Bejing 5000 1 1 to 3 15 min 1 week 2 days 20

within a +5 horizon i.e. given a training series of size T , the evaluation of the
quality of the model will be made over T + 1 to T + 5 time steps. The different
model hyper-parameters are selected using a time-series cross-validation procedure
called rolling origin as in Ben Taieb & Hyndman (2014), Ganeshapillai et al.
(2013). This protocol makes use of a sliding window of size T ′: on a series of
length T , a window of size T ′ is shifted several times in order to create a set of
train/test folds. The beginning of the T ′ window is used for training and the
remaining for test. The value of T ′ is fixed so that it is large enough to capture
the main dynamics of the different series. Each series was re-scaled between 0
and 1.

We performed experiments with the following models:
(i) Mean: a simple heuristic which predicts future values of a series with the mean
of its observed past values computed on the T ′ training steps of each training
fold.
(ii) AR: a classical univariate Auto-Regressive model. For each series and each
variable of the series, the prediction is a linear function of R past lags of the
variable, R being a hyper-parameter tuned on a validation set.
(iii) VAR-MLP: a vectorial auto-regressive model where the predicted values of
the series at time t+ 1 depend on the past values of all the series for a lag of size
R. The predictive model is a multi-layer perceptron with one hidden layer. Its
performance were uniformly better than a linear VAR. Here again the hidden
layer size and the lag R were set by validation
(iv) RNN-tanh: a vanilla recurrent neural network with one hidden layer of
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recurrent units and tanh non-linearities. As for the VAR-MLP, one considers
all the series simultaneously, i.e. at time t the RNN receives as input Xt−1 the
values of all the series at t−1 and predicts Xt. A RNN is a dynamical state-space
model but its latent state Zt explicitly depends through a functional dependency
both on the preceding values of the series Xt−1 and on the preceding state Zt−1.
Note that this model has the potential to capture the spatial dependencies since
all the series are considered simultaneously, but does not model them explicitly.
(v) RNN-GRU: same as the RNN-tanh, but recurrent units is replaced with
gated recurrent units (GRU) units, which are considered state of the art for
many sequence prediction problems today 4. We have experimented with several
architectures, but using more than one layer of GRU units did not improve the
performance, so we used 1 layer in all the experiments.
(vi)Dynamic Factor Graph (DFG): the model proposed in Mirowski & LeCun
(2009) is the closest to ours but uses a joint vectorial latent representation for
all the series as in the RNNs, and does not explicitly model the spatial relations
between series.
(vii) STNN: our model where g is the function described in equation (6), h is
the tanh function, and d is a linear function. Note that other architectures for
d and g have been tested (e.g. multi-layer perceptrons) without improving the
quality of the prediction. The λ value has been set by cross validation.
(viii and ix) STNN-R and STNN-D: for the forecasting experiments the γ value
of the L1 penalty (see equation (8)) were set to 0 since higher value decreased the
performance, a phenomena often observed in other models such as L1-regularized
SVMs. The influence of γ on the discovered spatial structure is further discussed
and illustrated in figure 10.

We detail the set of hyper-parameters used in our grid-searches in section
6.2.2.

6.2.1. Datasets

The different forecasting problems and the corresponding datasets are described
below. The dataset characteristics are provided in table 1.

– Disease spread forecasting: The Google Flu dataset contains for 29 coun-
tries, about ten years of weekly estimates of influenza activity computed by
aggregating Google search queries (see http://www.google.org/flutrends).
We extract binary relations between the countries, depending on whether or
not they share a border, as a prior W .

– Global Health Observatory (GHO): This dataset made available by the
Global Health Observatory, (http://www.who.int/en/) provides the number
of deaths for several diseases. We picked 25 diseases corresponding to 25
different datasets, each one composed of 91 time series corresponding to 91
countries (see table 1). Results are averages over all the datasets. As for Google
Flu, we extract binary relations W based on borders between the countries.

– Geo-Spatial datasets: The goal is to predict the evolution of geophysical
phenomena measured on the surface of the Earth.
The Wind dataset (www.ncdc.noaa.gov/) consists of hourly summaries of
meteorological data. We predict wind speed and orientation for approximately

4 We also performed tests with LSTM and obtained similar results as with GRU.

http://www.google.org/flutrends
http://www.who.int/en/
www.ncdc.noaa.gov/
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Table 2. Average RMSE for the different datasets computed for T+1, T+2,...,T+5.
Standard deviation was computed by re-training the models on different seeds.

Models Google Flu GHO5 Beijing Speed Direction PST

MEAN .175 .335 .201 0.191 0.225 .258

AR .101±.004 .299± .008 .075± .003 .082± .005 0.098±.016 .15± .002

VAR-MLP .095± .004 .291± .004 .07± .002 .071± .005 0.111±0.14 .132± .003

DFG .095± .008 .288± .002 .068± .005 .07± .004 .092± .006 .99± .019

RNN-tanh .082± .008 .287± .011 .075± .006 .064± .003 .09± .005 .141± .01

RNN-GRU .074± .007 .268± .07 .074± .002 .059± .009 .083± .005 .104± .008

STNN .066± .006 .261± .009 .056± .003 .047± .008 .061± .008 .095± .008

STNN-R .061± .008 .261± .01 .055± .004 .047± .008 .061± .008 .08± .014

STNN-D .073± .007 .288± .09 .069± .01 .059± .008 .073± .008 .109± .015

Table 3. RMSE of STNN-R over the 25 datasets in GHO for T+1, T+2,...,T+5
Disease \ Model AR VAR-MLP RNN-GRU Mean DFG STNN-R

All causes 0.237 0.228 0.199 0.35 0.291 0.197

Tuberculosis 0.407 0.418 0.37 0.395 0.421 0.377

Congenital syphilis 0.432 0.443 0.417 0.459 0.422 0.409

Diphtheria 0.406 0.396 0.387 0.404 0.419 0.385

Malignant neoplasm of esophagus 0.355 0.341 0.341 0.363 0.372 0.345

Malignant neoplasm of stomach 0.44 0.434 0.431 0.455 0.452 0.43

0.267 0.254 0.282 0.303 0.301 0.253

Malignant neoplasm of intestine 0.281 0.29 0.278 0.314 0.305 0.275

Malignant neoplasm of rectum 0.501 0.499 0.481 0.504 0.509 0.498

Malignant neoplasm of larynx 0.321 0.313 0.32 0.314 0.329 0.310

Malignant neoplasm of breast 0.375 0.375 0.382 0.394 0.38 0.36

Malignant neoplasm of prostate 0.111 0.113 0.109 0.184 0.138 0.109

Malignant neoplasm of skin 0.253 0.243 0.227 0.264 0.256 0.221

Malignant neoplasm of bones 0.103 0.099 0.097 0.204 0.173 0.08

Malignant neoplasm of all other
and unspecified sites

0.145 0.157 0.147 0.164 0.169 0.156

Lymphosarcoma 0.15 0.132 0.13 0.231 0.135 0.122

Benign neoplasms 0.366 0.362 0.332 0.398 0.331 0.331

Avitaminonsis 0.492 0.474 0.449 0.571 0.58 0.414

Allergic disorders 0.208 0.217 0.221 0.342 0.24 0.202

Multiple sclerosis 0.061 0.057 0.061 0.242 0.152 0.056

Rheumatic fever 0.325 0.31 0.287 0.345 0.313 0.256

Diseases of arteries 0.302 0.301 0.269 0.345 0.328 0.238

Influenza 0.141 0.141 0.155 0.23 0.217 0.125

Pneumonia 0.119 0.128 0.1 0.187 0.187 0.1

Pleurisy 0.246 0.246 0.247 0.29 0.272 0.245

Gastro-enteritis 0.386 0.369 0.291 0.394 0.398 0.295

Disease of teeth 0.344 0.312 0.305 0.413 0.361 0.302
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500 land stations on U.S. locations. In this dataset, the relations correspond to
a thresholded spatial proximity between the series. Given a selected threshold
value d, two sources are connected (wi,j = 1) if their distance is below d and
not connected (wi,j = 0) otherwise.
The Pacific Sea Temperature (PST) dataset represents gridded (at a 2
by 2 degrees resolution, corresponding to 2520 spatial locations) monthly Sea
Surface Temperature (SST) on the Pacific for 399 consecutive months from
January 1970 through March 2003. The goal is to predict future temperatures
at the different spatial locations. Data were obtained from the Climate Data
Library at Columbia University (http://iridl.ldeo.columbia.edu/). Since
the series are organized on a 2D grid, we extract 8 different relations : one
for each cardinal direction (north, north-west, west, etc...). For instance, the
relation north, is associated to a binary adjacency matrix W (north) such that
W

(north)
i,j is set to 1 if and only if source j is located 2 degree at the north of

source i (the pixel just above on the satellite image).
– Car Traffic Forecasting: The goal is to predict car traffic on a network of
streets or roads. We use the Beijing dataset provided in Yuan et al. (2011,
2010) which consists of GPS trajectories for ∼ 10500 taxis during a week, for a
total of 17 millions of points corresponding to road segments in Beijing. From
this dataset, we extracted the traffic-volume aggregated on a 15 min window
for 5,000 road segments. The objective is to predict the traffic at each segment.
We connect two sources if they correspond to road segments with a shared
crossroad.

For all the datasets but PST (i.e. Google Flu, GHO, Wind and Bejing), we
defined the relational structure using a simple adjacency matrix W . Based on
this matrix, we defined K different relations by introducing the powers of this
matrix: W (1) = W , W (2) = W ×W , etc. In our setting K took values from 1 to
3 and the optimal value for each dataset has been selected during the validation
process.

6.2.2. Hyper-parameters selection

In order to achieve the best possible results on our model, and also on our
baselines, we grid-searched hyper-parameters on each models, for each datasets.
Hence, the results presented in the rest of this section come from models optimized
and fine-tuned independently across all datasets. Each hyper-parameter is selected
by cross-validation on a large grid of hyper-parameters values. We detailed below
that values tested for each hyper-parameters:

– AR:

· Number of lags R ∈ {1, 2, 5, 10, 15, 25}
– VAR-MLP:

· Number of lags R ∈ {1, 2, 5, 10, 15, 25}
· Size of the hidden state ∈ {20, 50, 80, 150, 300, 500}

– RNN-models:

· Size of the hidden state = (20, 50, 80, 150, 300, 500)

– DFG:

http://iridl.ldeo.columbia.edu/
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Ground Truth RNN-GRU STNN-R

Fig. 7. Prediction of wind speed over around 500 stations on the US territory.
prediction is shown at time-step T + 1 for RNN-GRU (center) and STNN-R
(right).

Ground Truth RNN-GRU STNN-R

Fig. 8. Example of a 3 months prediction of Pacific temperature. Left column is
the ground truth, central and right columns correspond respectively to RNN-GRU
and STNN-R predictions at horizon T + 1, T + 2 and T + 3 (top to bottom).

· Size of the hidden states ∈ {10, 20, 50, 100, 300, 500}
– STNN:

· Dimension of the latent space N ∈ {5, 10, 20, 50, 80, 10}
· Soft-constraint parameter λ ∈ {0.001, 0.01, 0.1, 1, 10}
· Sparsity regulation γ ∈ {0.001, 0.01, 0.1, 1}
· K value ∈ {1, 2, 3} (for datasets composed of 1 unique relation)

6.2.3. Results

A quantitative evaluation of the different models and the baselines, on the different
datasets is provided in table 2. All the results are average prediction error for
T + 1 to T + 5 predictions. The score function used is the Root Mean Squared
Error (RMSE). A first observation is that STNN and STNN-R models which
make use of prior spatial information significantly outperform all the other models
on all the datasets. For example, on the challenging PST dataset, our models
increase by 23% the performance of the GRU-RNN baseline. The increase is more
important when the number of series is high (geo-spatial and traffic datasets)
than when it is small (disease datasets). In these experiments, STNN-D is on
par with RNN-GRU. The two models do not use prior information on spatial



18 E. Delasalles et al

(a) RMSE on the Google Flu dataset at
horizon T + 1 to T + 13
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Fig. 9. Quantitative study on the Google Flu dataset.

proximity. STNN makes use of a more compact formulation than RNN-GRU for
expressing the series mutual dependency but the results are comparable. Vectorial
AR logically improves on mono-variable AR (not shown here) and non linear
MLP-VAR improves on linear VAR.

We also provide in table 3 the score for each of the 25 diseases of the GHO
dataset. STNN-R obtained the best performance compared to STNN and STNN-
D. It outperforms state-of-the-art methods in 20 out of 25 datasets, and is very
close to the RNN-GRU model on the 5 remaining diseases where RNN-GRU
performs best. It thus shows that our model is able to benefit from the neighbour
information in the proximity graph.

Figures 7 and 8 illustrate respectively the prediction of STNN-R and RNN-
GRU on the meteorology and on the oceanography datasets along with the
ground truth. Clearly on these datasets, STNN qualitatively performs much
better than RNNs by using explicit spatial information. STNN is able to predict
fine details corresponding to local interactions when RNNs produce a much more
noisy prediction. These illustrations are representative of the general behavior of
the two models.

We also provide the performance of the models at different prediction horizons
T + 1, T + 2, ..., T + 13 on Figure 9a for the Google Flu dataset. Results show that
STNN performs better than the other approaches for all the prediction horizons
and is thus able to better capture longer-term dependencies.

Figure 9b illustrates the RMSE of the STNN-R model when predicting at
T + 1 on the Google Flu dataset for different values of λ. One can see that the
best performance is obtained for an average value of λ: low values corresponding
to weak temporal constraints do not allow the model to learn the dynamicity of
the series while high values degrade the performance of STNN.

6.3. Discovering the Spatial Correlations

In this subsection, we illustrate the ability of STNN to discover relevant spatial
correlations on different datasets. Figures 10 and 11 illustrate the values of Γ
obtained by STNN-D where no structure (e.g. adjacency matrix W ) is provided
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Fig. 10. Illustrations of correlations Γ discovered by the STNN-D model, with γ
in {0.01, 0.1, 1} ( from top to bottom).

Fig. 11. Spatial correlation discovery with STNN-D on the Wind dataset

to the model on the PST and Wind dataset respectively. Each pixel corresponds
to a particular time series and the figure shows the correlation Γi,j discovered
between each series j with a series i. The series i is roughly located at the center
of the picture in Figure 10, and is represented by a blue circle in Figure 11. The
darker a pixel is, the higher the absolute value of Γi,j is (note that black pixels
correspond to countries and not sea). Different levels of sparsity are illustrated
from low (up) to high (down). Even if the model does not have any knowledge
about the spatial organization of the series (no W matrix provided), it is able
to re-discover this spatial organization by detecting strong correlations between
close series, and low ones for distant series.

Figure 12 illustrates the correlations discovered on the PST dataset. We
used as priors 8 types of relations corresponding to the 8 cardinal directions
(South, South-West, etc...). In this case, STNN-R learns weights (i.e Γ(r)) for each
relation based on the prior structure. For each series, we plot the direction with
the highest learned weight. The strongest direction for each series is illustrated
by a specific color in the figure. For instance, a dark blue pixel indicates that the
stronger spatial correlation learned for the corresponding series is the North-West
direction. The model extracts automatically relations corresponding to tempera-
ture propagation directions in the pacific, providing relevant information about
the spatio-temporal dynamics of the system.

Fig. 12. Spatial correlations extracted by the STNN-R model on the PST dataset.
The color of each pixel correspond to the principal relation extracted by the
model.
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Fig. 13. Dynamic spatio-temporal relations extracted from the PST dataset on
the training set on 3 consecutive time-steps. The color represents the actual sea
surface temperature. The arrows represent the extracted spatial relations that
evolve through time.

The model can be adapted to different situations. Figure 13 represents captured
temporal evolution of the spatial relations on the PST dataset. For this experiment,
we have slightly changed the STNN-R model by making the Γ(r) time dependent
according to:

Γ
(r)
t,j,i = fr(Z

i
t) (11)

This means that with this modified model, the spatial relation weights depend
on the current latent state of the corresponding series and may evolve with
time. In the experiment, fr is a logistic function. On figure 13, the different
plots correspond to successive time steps. The color represent the actual sea
surface temperatures, and the arrows represent the direction of the stronger
relation weights Γ

(r)
t among the eight possible directions (N, NE, etc). One

can see that the model captures coherent dynamic spatial correlations such as
global currents directions or rotating motions that gradually evolve with time.

6.4. Data Imputation

This section presents the experiments concerning data imputation. We first
introduce the experimental protocol, we briefly describe the baselines and then
detail and comment our quantitative and qualitative results.
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Fig. 14. The figure represents 10 time-series over 50 time-steps, white squares
corresponding to observed values and black squares corresponding to missing
ones. This missing values have been generated from a fully observed set of time
series using a corruption schema where pm = 20 and lm = 5 (see Section 6.4.1).

6.4.1. Experimental protocol

As mentioned in section 5, we focus on the case where the information for some
or all of the series is missing at different time steps. This setting is quite general
and covers different situations. For instance, missing values may affect only some
of the series at a given time step, or all the series may be affected at the same
time steps. In addition, the number of time steps with missing values may be
extremely different from a problem to the other. For evaluating the models, one
needs a generic protocol. In order to provide a quantitative evaluation of the
quality of our model, we defined a protocol common to all the datasets. For a
given dataset, we remove a random subset of the data as detailed below and the
resulting dataset with missing values will then be used for training and testing.
Missing values are generated at random as follows.

We choose a missing percentage pm - different values are used in the experi-
ments - which indicates the proportion of the series values that is going to be
considered as missing. For instance pm = 20 means that 20% of the dataset values
we be considered as missing. We also choose a missing value length lm, which
determines the size of the missing chunks. For instance, if lm = 5, a missing data
chunk is composed of 5 consecutive time-steps in a given series. Figure 14 shows a
sample of a missing data mask M for 50 time-steps with 10 series, where pm = 20
and lm = 5.

The training set denotes all available observations (non missing values - aka
white squares in Figure 14) while test set denotes the missing values (black squares
in Figure 14). In order to select hyper-parameters, we held out a validation set
from the training set. More specifically, during the validation phase, we take out
a proportion pm of the training set that we keep for evaluating hyper-parameters,
and train on the remaining (1 − pm)% of the training set. Once the hyper-
parameters are selected, we train the model from scratch on the entire training
set, and evaluate on the test set.

We evaluate our model on the following datasets GFlu, Wind, Beijing car
traffic, and PST. For the Wind dataset, we jointly consider the speed characteristic
and the direction characteristic in order to evaluate our model on a multi-variate
setting.

6.4.2. Baselines

We compared our model to the following baselines:

– Mean: missing data are imputed with corresponding series’ average value.
– Last: missing data are imputed with the series’ last observed value.
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Models Google Flu Beijing Wind PST

MEAN 1.08e−1 8.37e−2 2.28e−1 6.14e−2

LAST 6.96e−2 6.94e−2 1.51e−1 9.86e−2

Amelia II 7.98e−2 6.99e−2 1.87e−1 X

GRU 3.77e−2 5.25e−2 1.32e−1 1.04e−2

DFG 4.04e−2 5.26e−2 1.37e−1 7.77e−3

STNN 3.65e−2 4.85e−2 1.17e−1 2.59e−3

STNN-R 3.20e−2 4.52e−2 1.21e−1 2.76e−3

STNN-D 3.31e−2 4.60e−2 1.15e−1 3.78e−3

Table 4. RMSE for the imputation task on the different datasets. These results
where obtained for pm = 10 and lm = 5. (X means that the dataset is to large
for the available implementation)

(a) Corruption length variation (b) Corruption proportion variation

Fig. 15. Evolution of our model and baselines score when the missing value
proportion change. On figure 15a, the length of the occulted chunks varies, while
the corruption proportion stays at 10%. On figure 15b, the missing proportion
changes, while the corruption length stays at 5 times-steps

– Amelia II (Honaker et al. 2011) : a statistical model for missing data
imputation based on a bootstrapped version of the EM algorithm. For our
experiments, we sample m times for each missing value, given the observed
variables, and take the mean of these samples.

– GRU: we used the "GRU-simple" baseline proposed by Che et al. (2016). This
simple baseline for imputation using GRU works as follow: for a time series
X, each missing value is replaced with the average value of the series, giving
a new series X̃. At each time-step t, the GRU is fed with the concatenation
of X̃t and Mt, the missing value mask at time step t. The loss is a standard
MSE, where the gradient for missing values is not backpropagated.

– DFG: the DFG model (Mirowski & LeCun 2009) is another latent dynamical
model, which has been developed for imputation.

Note that "Mean" and "Last" are frequently used heuristics for handling
missing values, "GRU-simple" and "DFG" are state of the art latent dynamical
models designed for imputation in time series or sequences.
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Fig. 16. Complete time-step imputation visualization. August and September
2002, shown with a pink border, are observed and used for training. April to
august 2002 included, shown with a green border, are not observed during training
and are used as test set for imputation.

6.4.3. Quantitative Results

Table 4 presents quantitative test results. The scores are the RMSE on the missing
test values. These results were obtained with following parameters: missing value
proportion rate pm = 10 and missing value length of 5 time-steps, lm = 5. As for
the forecasting results, the STNN models and its variants perform consistently
better than the baselines. For the Google Flu dataset, STNN-R is 18% better
than the strongest baseline (GRU). On the Wind dataset, STNN-D achieves the
best results, performing 15% better than DFG. It is on the PST dataset that we
obtain the strongest results: STNN performs 3 times better than DFG. Amelia
II baseline, fails to reach the performance of deep models (STNN, DFG, GRU)
by a large margin. This is due to its over-simplistic normal prior and the lack of
spatial prior. This illustrates the difficulty of the imputation task on large real
world datasets.

We also performed a quantitative study of the model robustness for different
levels of missing values by comparing "STNN-R", "DFG" and "GRU-simple".
Results are shown on Figure 15a where lm is varying with a fixed pm = 10, and
in Figure 15b where pm is varying with a fixed lm = 5. On Figure 15a one can
see that STNN-R performs better than the two baselines for all missing value
proportions. Concerning the missing values length, for lengths higher than 10
time-steps, DFG gets better results than STNN-R. Our model learns one explicit
latent factor per time-series, and when too many consecutive values are missing
for one time-series, the predicted latent factors tend to collapse. The DFG model
only learns one factor common to all the series and is then more robust to this
type of corruption: since in our setting, the missing values only consider a subset
of the series, DFG benefits from the other observed values at a given time-step
to better infer a correct latent factor.
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Table 5. Test results (RMSE) on the PST dataset where all values from chunks
of 5 consecutive time-steps are missing, with overall 10% values missing. Theses
results comes from the same experiment that yields the images on Figure 16

STNN-R DFG RNN

PST 2.21e−2 2.83e−2 3.25e−2

Fig. 17. Absolute error visualization for imputed data of figure 16 i.e absolute
difference between reconstructed values and ground truth values. The RMSE
line corresponds to the RMSE computed only on the 5 test time-steps (green
background) indicated in the figure.

6.4.4. Complete time-step reconstruction

We also experiment a configuration where, at a given time-step, the values of
all the series are missing simultaneously. This is an extreme scenario, but it can
happen for instance on earth observation problems. For these experiments, we
keep a missing value ratio at 10% and a missing sequence length of 5 time-steps,
with all the values in any chunks of 5 time-steps completely occulted during
training.

Figure 16 shows a sample of the data reconstructed by our models and baselines
on the Pacific surface temperature dataset from March to September 2002. March
and September 2002 where observed (pink border on the Figure) and used for
training, while observations from April to August 2002 where occulted (green
border on the Figure) and used in test as missing values. Figure 16 shows that
the GRU baseline performs worse than both STNN-R and DFG: the predictions
are not locally smooth. The predictions from STNN-R and DFG look very similar
on this figure. In order to analyze better the differences, we also plot the absolute
error performed by the three models on Figure 17. The larger error of GRU is
again clearly visible on this Figure, and it also appears clearly that STNN-R
imputations are of better quality than those of DFG which does not model
explicitly the spatial dependencies.

The RMSE printed above each column on Figure 17 is the RMSE of the 5
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reconstructed time-steps for each model. This confirms the visual results: STNN-R
actually achieves a better performance on these 5 time-steps. We show on the
table 5 the RMSE for all the dataset. We can see that STNN-R performs better
on average for all the missing chunks.

6.5. Discussion

By using prior information on the existence of spatial dependencies, the model is
able to learn both the strength of these relations and the temporal dynamics of the
underlying process. The proposed model compares well with classical forecasting
methods on a series of benchmarks. It then offers an interesting solution for
both the forecasting and the imputation problems. The model still has some
restrictions:

– It is designed for short prediction horizons only (5 time steps ahead) and is
not adapted for longer term forecast.

– The model should be retrained when the testing conditions are different from
the training ones. This is the case for climate applications for example, for
data from different locations

– The learned dynamics is stationary in time, but we propose a method to learn
a dynamic transition function at then end of Section 6.3.

7. Conclusion

We have proposed a new latent model for addressing multivariate spatio-temporal
time series modeling problems with applications to forecasting and imputation. For
this model the dynamics are captured in a latent space and the prediction makes
use of a decoder mechanism. Extensive experiments on datasets representative of
different domains show that this model is able to capture spatial and temporal
dynamics, and performs better than state of the art competing models for both
the forecasting and th imputation tasks. This model is amenable to different
variants concerning the formulation of spatial and temporal dependencies between
the sources.
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