
HAL Id: hal-02297501
https://hal.science/hal-02297501v1

Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards platform specific energy estimation for
executable domain-specific modeling languages

Thibault Béziers La Fosse, Massimo Tisi, Erwan Bousse, Jean-Marie Mottu,
Gerson Sunyé

To cite this version:
Thibault Béziers La Fosse, Massimo Tisi, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé. Towards
platform specific energy estimation for executable domain-specific modeling languages. MODELS-
C 2019: ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and
Systems Companion, Sep 2019, Munich, Germany. �10.1109/MODELS-C.2019.00048�. �hal-02297501�

https://hal.science/hal-02297501v1
https://hal.archives-ouvertes.fr

Towards platform specific energy estimation for
executable domain-specific modeling languages

Thibault Béziers la Fosse∗, Massimo Tisi∗, Erwan Bousse†, Jean-Marie Mottu†∗, Gerson Sunyé†
LS2N, UMR CNRS 6004, ∗IMT Atlantique, †Université de Nantes {firstname.lastname}@ls2n.fr

Abstract—Energy consumption is becoming a major subject
when designing, developing and running programs. Most devel-
opers code and run their applications in an energy oblivious
manner, mostly because of a lack of energy-related knowledge
about their system. This problem also exists in the realm of
executable domain-specific modeling languages, where end-users
create models conforming to a given meta-model and execute
them with little knowledge about their operational semantic and
related energy consumption. In this work, we propose a domain-
specific language for decorating meta-models of executable lan-
guages with platform-specific energy estimation formulas. We
also extend the GEMOC execution engine to dynamically perform
energy estimations on any executable model conforming to the
decorated meta-model. The energy estimation model defined can
then be easily adapted to other models and platforms, without
requiring any measurement tooling or knowledge from the end-
user.

Index Terms—Model-Driven Engineering, xDSMLs, Energy
Estimation

I. INTRODUCTION

In 2007, Jed Scaramella stated that in the realm of data-
centers, for each $1.00 spent on new hardware, an additional
$0.50 is spent on power and cooling [23]. This same year, the
estimated greenhouse emissions from the IT sector represented
about 2% of the total human activity [25]. Several studies show
that this amount keeps on growing, and is expected to grow
even more in the future: up to 23% of the global greenhouse
emissions of human activities, and as much as 51% of the
global electricity in the worst-case scenarios [1].

Even if several hardware optimizations successfully man-
age to reduce the energy consumption of computers [20],
[13], [26], a considerable amount of this energy is due to
the software executed on it [6], [22]. Implementing energy-
efficient applications should be the main focus for developers.
Nevertheless, studies show that the majority of them do
not consider energy efficiency when developing or do not
know enough about the energy consumption of their programs
for doing more efficient design choices [18], [19]. Having
feedbacks about the energy consumption of their programs
would help towards that purpose. However, deploying energy
measurement tools is complex, and often requires knowledge
about systems, software analysis, or hardware properties [17],
[10].

This is especially true in the realm of executable domain-
specific modeling languages (xDSMLs), where end-users do
not necessarily know, or consider, the implementation of the
operational semantics of their language. To help end-users
improve the energy efficiency of the executable models they

design, we propose in this paper a generic approach for
estimating the energy consumption of their execution. This
approach does not require any measurement tooling from
the end-user, nor any knowledge about energy consumption,
and can provide estimations about the energy consumption of
any executed model, on the platform for which it has been
designed.

Our contributions towards that purpose are the following:
(1) A domain-specific language (DSL) for specifying energy-
estimation formulas. This DSL can be attached to any xDSML
in the GEMOC language workbench and can be used for
estimating the energy consumption of all the executable
models conforming to this meta-model, and for a specific
platform. This DSL is meant to be used by qualified DSL
engineers, or energy measurement specialists with knowledge
of the xDMSL. (2) An extension of the GEMOC modeling
workbench to estimate the energy consumption of running
models using the modeled energy-estimation formulas. This
work is the first step towards a fully generic, automated, and
validated approach for estimating the energy consumption of
any interpreted DSL.

This paper is organized as follow: Section II presents related
work about energy estimation and measurement, Section III
presents our approach for modeling and evaluating energy
estimation formulas, Section IV discusses the approach, and
Section V concludes the paper and proposes some future work.

II. RELATED WORK

In this section, we present some related work on energy
estimation and measurements. We group this work according
to the measurement level to which the approach is applied.
Power meters. Power-meters are external devices, usually
plugged to the power supply of the computers they moni-
tor [27], [15], [14]. Their main benefit is that they do not
require any modification of the hardware, nor the software,
to measure the power consumed by the system. Nonetheless,
the metrics obtained are coarse-grained: they include the entire
system’s power consumption and require heavier analysis than
the remaining of the approaches. They measure power at a
fixed frequency: from 1Hz1 to 500 kHz, on an external device.
This implies cumbersome and error-prone analysis, to correlate
running programs with the measured power consumptions.
Specialized systems for energy monitoring. Specialized
systems are designed and deployed to enable fine-grained

11Hz corresponds to one cycle per second

energy measurements. The most popular ones are Atom
LEAP [24] and Spartan FPGA [21]. Such systems embed mul-
tiple sensors, plugged to several parts of the system (e.g., CPU,
disks, RAM), and can perform fine-grained measurements at
high frequencies. The main drawback of such systems is that
they require extremely specific tooling and operating system,
and hence are not easily accessible to most developers and
xDSMLs end-users.
Application level monitoring tools. Several software and
middleware applications or libraries can be queried at the
software level to measure or estimate the energy consumption
of a given application. Their main benefits are that they do
not require any hardware tweaking, can be used on popular
exploitation systems, and are accurate as they can measure
the energy consumption of a given running process. The most
used ones are RAPL, an Intel feature easily accessible on
Unix-based system [8]; JRAPL, a Java library enabling high-
level access to RAPL [16]; and POWERAPI, a middleware
solution providing process-level power estimations at custom
frequencies [3]. The main drawback of this approach is that
using these applications during the software development
lifecycle requires knowledge about dynamic analysis, and
applying it in the realm of xDSMLs requires tweaking the
operational semantics of the language, or the execution engine.
Furthermore, the values measured might be inaccurate and
influenced by the state of the system, making the approach
complicated to use for developers and xDSMLs end-users.
Model-level monitoring. Little work has been done in
the realm of xDSMLs for enabling energy-aware design and
modeling. Luca Berardinelli et. al., propose an extension of
the Agilla Modeling Language (AML) with an instruction
triggering energy measurements of nodes in Wireless Sensors
Network (WSN) [2]. The energy measured is then used for
predicting and optimizing the design of the WSN, towards a
better energy-awareness. This approach is platform-specific as
it requires a WSN running a specialized exploitation system
and only focuses on AML.

Compared to the related work, our approach is meant to
be used regardless of the operating system, does not require
any hardware device, does not require any knowledge about
dynamic analysis from the end-user, and can be used on any
xDSMLs designed with the GEMOC language workbench.

III. APPROACH

This section presents our approach for specifying generic
energy estimations and dynamically evaluating them. An im-
plementation is available on GitHub2. Figure 1 proposes an
overview of the approach and its three actors implied in it: the
DSL Engineer, who knows the meta-programming approach
and can design an executable meta-model with its operational
semantic, the end-user who knows the executable meta-model
(or a DSL), creates executable models conforming to it and
runs them using the execution engine, and finally the Energy
Estimation (EE) Specialist, who knows the EE meta-model,

2https://github.com/atlanmod/energy-estimation-language

xDSML

Execution
metamodel

Operational
semantics

Execution
engine

Executable
model

EE
model

EE
metamodel

Energy
Estimation

Uses
Modifies
Conforms to
Produces a

b

DSL Engineer
End-user

EE Specialist

models

designs
models

runs

Fig. 1. Overview of the approach.

the operational semantics of the execution meta-model, and
the platform on which the models are executed.

Whereas the DSL engineer and end-user actors are rather
common in the realm of xDSMLs [5], the (EE) specialist is a
novelty. She has enough knowledge about energy estimation
and measurement to specify generic estimations and associate
them with the xDSML.

Platform

 + name: String

Estimation

 + formula: OCL

Variable

+ name: String
+ value: Object

<<Abstract>>
Target

Operation

 + target: EOperation

MetaClass

 + target: EClass

*
1

*
1

*

1

*

*

1

*

<<Enumeration>>
Visibility

GLOBAL
LOCAL

1

Fig. 2. Energy estimation meta-model.

Energy estimation meta-model. Figure 2 depicts the meta-
model we propose for specifying energy calculations. The
Platform entity is the root element of the meta-model and
refers to a specific system. It contains Variables and Estima-
tions. The former defines valued entities that are either defined
once for the platform (i.e., Global) or once for each instance
conforming to the targeted entity (i.e., Local). Variables can
be used for defining local counters, or system attributes,
according to the needs of the EE Specialist. The latter defines
the formulas used for estimating the energy consumed by the
executable model. These formulas are defined as OCL queries
and return Double values. Each estimation refers to a Target
entity, which is either a MetaClass in the execution meta-
model, or an Operation in its operational semantic.

https://github.com/atlanmod/energy-estimation-language

:Platform

name = HPG4_i5-7200U

:Variable

name = tdp
value = 15
visibility = GLOBAL

:Estimation

formula = "self.in->size()*$tdp*7.5
+ self.out->size()*$tdp*6.0"

targets

EE Model

Net

Place

+ initialtokens: int

Transition
in

out

Meta-model

TransitionAspect

+fire(): void

PlaceAspect

+ tokens: int

Operational
Semantic

Fig. 3. Petri net xDSML with an EE model.

Dynamic estimation. To perform dynamic energy estima-
tion for executable models, we extended the existing GEMOC
modeling workbench [4], to accept EE models as additional
input for the model execution. Furthermore, an execution
listener is added to the execution engine. This execution
listener is called every time a Step annotated operation [5] is
executed in the operational semantics of the xDSML. There, a
simple check is performed, verifying if any estimation in the
EE model targets either the running operation, or a meta-class
the running object is an instance of.

If an estimation targeting the running entity exists, its con-
tained OCL Query is executed on that entity. Our current ap-
proach returns a double value, corresponding to an estimation
of the energy consumed by the execution of that entity. This
value can be then used for providing a graphical representation
of the energy consumption of the model or stored for any
future usage. Existing work on quantity specifications could be
applied here, to return other types of energy estimations, such
as probability distributions or measurement uncertainty [7].
Example of an energy estimation. To illustrate our ap-
proach, we propose a simple use-case, where a DSL Engineer
designs a Petri Net meta-model and an EE Specialist defines an
EE model for a specific platform (a laptop running on Ubuntu
18.04, with an Intel Core i5-7200U), as shown in Figure 3.

This EE model associates an EE formula to the fire()
operation defined in the operational semantics of the Petri
Net meta-model. This formula, defined in OCL, estimates the
energy consumption of fire() according to the number of
inputs and outputs of the Transition. A variable is defined in
the EE model and used in this estimation. This variable is the
Thermal Design Power (tdp) of the CPU, a system attribute
used for estimating the power consumption [12], [3]. The
execution engine replaces this variable by its value in the OCL

Executable Model

Energy Estimation

292.5 mJ 315 mJ

Fig. 4. Petri net model conforming to the execution meta-model.

formula before evaluating it, hence returning an estimation of
the energy consumed by the execution of fire().

Finally, a Petri Net is modeled by an end-user, as repre-
sented in Figure 4. The EE model and this Petri Net are given
as inputs to the execution engine. The engine thus runs the
model and estimates the energy consumption of the fire()
operation for each Transition executed. The OCL formula
in the EE model would evaluate the first transition energy
consumption to 292.5mJ and the second transition energy
consumption to 315mJ.

IV. DISCUSSION

In this section, we discuss the accuracy of our approach for
defining energy estimation formulas, how EE specialists can
define them, and the interest of dynamic analysis.
Estimation accuracy. First of all, the accuracy of the
estimation calculated depends on the formula specified by the
EE specialist. To evaluate the accuracy of such formula, mea-
surements with specialized tools should be performed on the
running model and compared with the estimation. We consider
a formula to be accurate if, with enough model executions, the
energy estimation calculated converges towards the average
energy consumptions measured. This can be defined as:

E(p) ≈ 1

n

n−1∑
x=0

mx(p)

where E(p) is the estimated energy consumption of entity
p, mi(p) is the i-nth measure of the energy consumption of p,
and n the number of measurements to perform until the values
obtained are stable.
Defining energy estimation formulas. The EE specialists
have to define accurate energy estimation formulas to attach
to the meta-elements of an execution meta-model. To define
such formulas, the specialist needs several executable models
conforming to the execution meta-model, to cover the ma-
jority of the execution scenarios. Multiple measured model
executions have to be performed to obtain accurate energy
measurements. EE formulas can then be defined by performing
a thorough study of the operational semantics of the xDSML,
and analyzing the energy measurements obtained.

This approach is similar to eCalc, where the energy con-
sumption of each byte-code instructions (execution meta-
elements) in the language is measured, to estimate the energy

consumption of all programs (executable models) compiling
to bytecode [11].
Static vs. Dynamic energy estimation. Our current ap-
proach focuses on a dynamic analysis: the estimations are
performed at runtime, and directly on the running entities.
However, considering the Petri Net used as an example in
Figure 4, the same energy estimation could have been per-
formed statically. Performing a dynamic analysis ensures that
the estimated entities are really executed. A static analysis
would be either less precise (e.g., providing EE of non-
executed entities) or slower (e.g., considering all the possible
execution scenarios) [9]. Nonetheless, statically estimating the
energy consumption of the executable models at design time
could effectively help end-user taking more energy-efficient
decisions when designing the executable models. We will
consider this in future work.

Finally, our current EE meta-model cannot estimate some
specific xDSMLs accurately. This includes model executions
depending on external inputs or events and non-deterministic
operational semantics. In a nutshell, all the executable models
where the execution duration (and, de facto, energy consump-
tion), cannot be estimated at the xDSML level. Future work
will also focus on those cases.

V. CONCLUSION AND FUTURE WORK

This paper is the first step towards a generic approach for
estimating the energy consumption of any executable model.
We propose a meta-model for specifying energy estimation,
along with an extension of the GEMOC modeling workbench
enabling the dynamic energy estimation of executable models.
Our future work will empirically evaluate our approach by
comparing the energy estimations of several executable mod-
els, on multiple platforms, to energy measurements obtained
with specialized tooling. Furthermore, a dedicated language
will be proposed to specify the measurements. Finally, more
research will be performed to automatize the generation of EE
formulas.

REFERENCES

[1] Anders Andrae and Tomas Edler. On global electricity usage of
communication technology: trends to 2030. Challenges, 2015.

[2] Luca Berardinelli, Antinisca Di Marco, Stefano Pace, Luigi Pomante,
and Walter Tiberti. Energy consumption analysis and design of energy-
aware wsn agents in fuml. In European Conference on Modelling
Foundations and Applications, pages 1–17. Springer, 2015.

[3] Aurélien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Sein-
turier. Powerapi: A software library to monitor the energy consumed at
the process-level. ERCIM News, 2013(92), 2013.

[4] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer,
Julien Deantoni, and Benoit Combemale. Execution framework of the
gemoc studio (tool demo). In Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering, 2016.

[5] Erwan Bousse, Dorian Leroy, Benoit Combemale, Manuel Wimmer, and
Benoit Baudry. Omniscient debugging for executable dsls. Journal of
Systems and Software, 137:261–288, 2018.

[6] David J. Brown and Charles Reams. Toward energy-efficient computing.
Queue, 8(2):30:30–30:43, February 2010.

[7] Loli Burgueño, Tanja Mayerhofer, Manuel Wimmer, and Antonio Val-
lecillo. Specifying quantities in software models. Information and
Software Technology, 113:82–97, 2019.

[8] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and
Christian Le. Rapl: memory power estimation and capping. In 2010
ACM/IEEE International Symposium on Low-Power Electronics and
Design (ISLPED), pages 189–194. IEEE, 2010.

[9] Michael D Ernst. Static and dynamic analysis: Synergy and duality. In
WODA 2003: ICSE Workshop on Dynamic Analysis, pages 24–27. New
Mexico State University Portland, OR, 2003.

[10] Taher Ahmed Ghaleb. Software energy measurement at different levels
of granularity. In 2019 International Conference on Computer and
Information Sciences (ICCIS), pages 1–6. IEEE, 2019.

[11] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan.
Estimating android applications’ cpu energy usage via bytecode pro-
filing. In Proceedings of the First International Workshop on Green
and Sustainable Software, pages 1–7. IEEE Press, 2012.

[12] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2011.

[13] Sebastian Herbert and Diana Marculescu. Analysis of dynamic volt-
age/frequency scaling in chip-multiprocessors. In Proceedings of the
2007 international symposium on Low power electronics and design
(ISLPED’07), pages 38–43. IEEE, 2007.

[14] Abram Hindle, Alex Wilson, Kent Rasmussen, E Jed Barlow,
Joshua Charles Campbell, and Stephen Romansky. Greenminer: A hard-
ware based mining software repositories software energy consumption
framework. In Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 12–21. ACM, 2014.

[15] Jason M Hirst, Jonathan R Miller, Brent A Kaplan, and Derek D Reed.
Watts up? pro ac power meter for automated energy recording, 2013.

[16] Kenan Liu, Gustavo Pinto, and Yu David Liu. Data-oriented char-
acterization of application-level energy optimization. In International
Conference on Fundamental Approaches to Software Engineering, pages
316–331. Springer, 2015.

[17] Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A review
of energy measurement approaches. ACM SIGOPS Operating Systems
Review, 47(3):42–49, 2013.

[18] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E Hassan. What
do programmers know about software energy consumption? IEEE
Software, 33(3):83–89, 2015.

[19] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions
about software energy consumption. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 22–31. ACM, 2014.

[20] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weiss-
mann, and Doron Rajwan. Power-management architecture of the intel
microarchitecture code-named sandy bridge. Ieee micro, 2012.

[21] Cagri Sahin, Furkan Cayci, Irene Lizeth Manotas Gutiérrez, James
Clause, Fouad Kiamilev, Lori Pollock, and Kristina Winbladh. Initial
explorations on design pattern energy usage. In 2012 First International
Workshop on Green and Sustainable Software (GREENS). IEEE, 2012.

[22] Eric Saxe. Power-efficient software. Queue, 8(1):10:10–10:17, 2010.
[23] Jed Scaramella and Matthew Eastwood. Solutions for the datacenter’s

thermal challenges. IDC, January, 2007.
[24] Digvijay Singh and William J Kaiser. The atom leap platform for energy-

efficient embedded computing. 2010.
[25] Molly Webb et al. Smart 2020: Enabling the low carbon economy in

the information age. The Climate Group. London, 1(1):1–1, 2008.
[26] Qing Wu, Massound Pedram, and Xunwei Wu. Clock-gating and its

application to low power design of sequential circuits. IEEE Transac-
tions on Circuits and Systems I: Fundamental Theory and Applications,
47(3):415–420, 2000.

[27] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P
Dick, Zhuoqing Morley Mao, and Lei Yang. Accurate online power esti-
mation and automatic battery behavior based power model generation for
smartphones. In Proceedings of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, 2010.

	Introduction
	Related Work
	Approach
	Discussion
	Conclusion and Future work
	References

