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Abstract

We consider the homogenized boundary and transmission conditions governing the mean-field approxi-
mations of 1D waves in finite periodic media within the framework of two-scale analysis. We establish
the homogenization ansatz (up to the second order of approximation), for both types of problems, by
obtaining the relevant boundary correctors and exposing the enriched boundary and transmission con-
ditions as those of Robin type. Rigorous asymptotic analysis is performed for boundary conditions,
while the applicability to transmission conditions is demonstrated via numerical simulations. Within
this framework, we also propose an optimized second-order model of the homogenized wave equation
for 1D periodic media, that follows more accurately the exact dispersion relationship and generally en-
hances the performance of second-order approximation. The proposed analysis is applied toward the
long-wavelength approximation of waves in finite periodic bilaminates, subject to both boundary and
transmission conditions. A set of numerical simulations is included to support the mathematical analysis
and illustrate the effectiveness of the homogenization scheme.

Keywords: Homogenization; wave equation; effective boundary conditions; effective transmission
conditions; boundary correctors

1. Introduction

To help the fundamental understanding of wave motion in periodic media, many asymptotic models
cater for a homogenized description of the wave equation, usually valid over a specific range of frequencies.
In particular, in the low-frequency limit (i.e. for small periodicity-lengthscale-to-wavelength ratio ε), the
two-scale homogenization framework Bensoussan et al. (1978); Cioranescu and Donato (1999) is well
established and enables asymptotic description of the incipient wave dispersion when pursued up to the
second order Santosa and Symes (1991); Fish et al. (2002); Andrianov et al. (2008); Lamacz (2011);
Wautier and Guzina (2015); Allaire et al. (2016). To understand the wave motion in bounded periodic
domains (e.g. microstructured obstacles), however, it is necessary to complement the homogenized wave
equation with commensurate boundary or transmission conditions, such that the homogenized solution
of a relevant boundary value problem converges toward its limit (as ε → 0) at the same rate as the
homogenized field equation Cioranescu and Donato (1999); Vinoles (2016); Cakoni et al. (2016).

When tackling two- or three-dimensional wave problems, finding such boundary and transmission
conditions is highly challenging due to the presence of rapidly oscillating boundary layers near lines or
surfaces where the periodic structure terminates. Many existing works are dedicated to describing these
layers in terms of the boundary correctors that must be included in the asymptotic analysis of boundary
value problems Dumontet (1986); Moskow and Vogelius (1997); Allaire and Amar (1999); Gérard-Varet
and Masmoudi (2012); Armstrong et al. (2017) and transmission problems Cakoni et al. (2016); Lin
and Meng (2019); Cakoni et al. (2019). Recently, equivalent boundary and transmission conditions were
developed for a wide variety of microstructured surfaces and interfaces Claeys and Delourme (2013);
Marigo et al. (2017); Semin et al. (2018), but their applications in the context of multi-dimensional
periodic composites are extremely limited to planar boundaries and interfaces, aligned with one of the
principal directions of the lattice Vinoles (2016); Marigo and Maurel (2017); Maurel and Marigo (2018).
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For one-dimensional (1D) problems, on the other hand, the domain boundaries and interfaces reduce
to points and some key difficulties of the multi-dimensional analysis can be avoided. In this vein, we
consider (both theoretically and numerically) 1D homogenized boundary and transmission conditions
featuring the boundary correctors up to the second order of approximation, i.e. O(ε2). Beyond providing
a reference solution for more involved 2D or 3D homogenized models, such simplified configurations
are directly relevant to a number of engineering problems such as the low-frequency axial vibrations of
periodic beams, acoustic propagation in waveguides, and wave motion in periodically-layered materials
under the condition of normal incidence.

We begin by summarizing in Section 2 the key results of higher-order (two-scale) homogenization
of the 1D wave equation in periodic media. In Section 3 we propose a set of enhanced, Robin-type
homogenized boundary conditions – up to the second order of asymptotic approximation, we establish
the underpinning convergence estimates, and we discuss the application of these results to transmission
conditions. With the (second-order) homogenized field equation and boundary conditions at hand, in
Section 4 we pursue the two-scale approximation of waves in a finite periodic bilaminate featuring both
Dirichlet and Neumann boundary conditions. To maximize the fidelity of the asymptotic model, we fur-
ther propose an optimized version of the second-order effective wave equation that makes use of the exact
dispersion relationship. We next compute the exact and homogenized solutions for both (i) boundary
value problem, and (ii) transmission problem featuring a periodic bilaminate. The results of numerical
simulations that include dispersion diagrams, mean-field approximations, “full”-field approximations,
and convergence studies are found to consistently support the mathematical analysis. For completeness,
specifics of the homogenization ansatz for periodic bilaminate are provided in the appendices.

2. Second-order homogenization of the 1D wave equation

In what follows, we provide the relevant background on the two-scale homogenization of wave motion
in periodic media. Our focus is on the 1D time-harmonic problem; we refer to Bensoussan et al. (1978);
Cioranescu and Donato (1999) for general asymptotic analysis of periodic structures, and to Wautier
and Guzina (2015) for analysis of the corresponding time-domain problem.

Consider the time-harmonic, longitudinal wave motion in a micro-structured elastic rod whose Young’s
modulus Er and mass density ρr are `-periodic. To cater for physical applications, we assume that

Emin 6 Er 6 Emax and ρmin 6 ρr 6 ρmax, (1)

where Emin, Emax, ρmin and ρmax are positive constants. We further assume that the wave motion occurs
in a neighborhood of some reference frequency ω◦, e.g. the central frequency of a narrow-band excitation
signal in the time domain.

Remark 1. Hereon, we render all quantities dimensionless by making reference to the dimensional basis

E◦, ρ◦, λ◦ :=
2π
√
E◦/ρ◦
ω◦

.

Unless stated otherwise, we select E◦ = Emin and ρ◦ = ρmax. In this setting, the unit cell of periodicity
becomes

Yε = {x ∈ R : 0 < x < ε},

where ε signifies the unit cell size-to-wavelength ratio

ε :=
`

λ◦
,

while the material properties are described in terms of ε-periodic functions

E(x) = E−1◦ Er(λ◦x), ρ(x) = ρ−1◦ ρr(λ◦x).

In the time-harmonic regime with (dimensionless) frequency ω, the longitudinal displacement u(x)
in the rod accordingly satisfies the field equation

(E(x)u,x),x + ρ(x)ω2u = 0, (2)

where f,x = ∂f/∂x.
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In pursuing the effective description of (2), we assume the separation of scales in that ` � λ◦; ac-
cordingly we conduct the asymptotic analysis as ε→ 0. By the adopted normalization scheme, this limit
corresponds to either: (i) the wave motion at fixed “center” frequency, ω◦, in microstructures of decreas-
ing characteristic lengthscale `, or (ii) wave propagation through a fixed microstructure at diminishing
“center” frequencies. For further reference, we note the implied lower bound on the (dimensionless)
wavelength in the rod as

ω = O(1) =⇒ λ >
2π

ω
min
x∈Yε

√
E

ρ
=

2π

ω
= O(1). (3)

2.1. Two-scale expansion

In the remainder of this work, we exploit the separation in order between the periodicity length-
scale, |Yε| = ε, and the O(1) wavelengths (3) present in the problem. In the context of the two-scale
analysis Bensoussan et al. (1978), this motivates the introduction of a “fast” spatial variable

y =
x

ε
. (4)

On letting
Y = {y ∈ R : 0 < y < 1},

the periodic coefficients in (2) can be conveniently described in terms of Y -periodic functions Ê and ρ̂,
while the axial displacement is sought as a function of both variables x and y, i.e.

E(x) = Ê(y), ρ(x) = ρ̂(y) and u(x) = û(x, y),

where û is Y -periodic in the second argument. In this setting, we also introduce the germane differential
and averaging operators

d

dx
=

∂

∂x
+ ε−1

∂

∂y
and 〈f〉 =

∫ 1

0

f(y)dy. (5)

On substituting (4)–(5) into the time-harmonic wave equation (2), we obtain

ε−2(Êû,y),y + ε−1
[
(Êû,x),y + (Êû,y),x

]
+ Êû,xx + ρ̂ ω2û = 0. (6)

The displacement field û is then sought as a formal series in ε, and we denote by û(p) the restriction of
this series to the first p+ 1 terms; in other words, we write

û(x, y) =
∑
j>0

εjuj(x, y) and û(p)(x) =

p∑
j=0

εjuj(x, y). (7)

Inserting (7) into (6) leads to a cascade of partial differential equations for uj (j = 0, 1, 2, . . .). As
examined in Fish et al. (2002); Andrianov et al. (2008); Lamacz (2011); Wautier and Guzina (2015),
solving these equations yields a sequence of separated-variable solutions

u0(x, y) = U0(x),

u1(x, y) = U1(x) + U0,x(x)P1(y),

u2(x, y) = U2(x) + U1,x(x)P1(y) + U0,xx(x)P2(y),

u3(x, y) = U3(x) + U2,x(x)P1(y) + U1,xx(x)P2(y) + U0,xxx(x)P3(y),

(8)

expressed in terms of the mean fields
Uj(x) = 〈uj(x, ·)〉,

and the so-called cell functions Pj(y) which are described next.
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2.2. Cell functions and homogenized coefficients

As shown in the two-scale studies (e.g. Wautier and Guzina, 2015) of the 1D wave equation, the cell
functions in (8) satisfy the respective unit cell problems

[Ê(1 + P1,y)],y = 0 in Y

P1 and Ê(1 + P1,y) are Y -periodic

〈P1〉 = 0

 , (9)

[Ê(P1 + P2,y)],y = E0 ρ̂
%0
− Ê(1 + P1,y) in Y

P2 and Ê(P1 + P2,y) are Y -periodic

〈P2〉 = 0

 , (10)

and
[Ê(P2 + P3,y)],y = E0 ρ̂

%0
P1 − Ê(P1 + P2,y) in Y

P3 and Ê(P2 + P3,y) are Y -periodic

〈P3〉 = 0

 . (11)

On letting P0 := 1, the effective Young’s modulus E0 and effective mass density %0 appearing in (10)–(11),
together with their higher-order counterparts Ej and %j , j > 1 (to appear later), are given by

Ej =
〈
Ê
(
Pj + Pj+1,y

)〉
and %j = 〈ρ̂Pj〉, j = 0, 1, 2 . . . (12)

From (12) we observe that: (i) the leading-order effective density %0 is given by the mean of ρ̂ (this
holds for any dimension of the problem), and (ii) E0 recovers the classical homogenization result for
one-dimensional problems, namely

E0 =
〈
Ê−1

〉−1
.

We next assert a useful property, which also holds without any further assumptions on Ê and ρ̂.

Lemma 1. The effective coefficients E0, %0, E1 and %1 satisfy the identity

E1 = E0
%1
%0
. (13)

Proof. Although the claim of this lemma has been established in Moskow and Vogelius (1997) for the
multi-dimensional case, we provide a notation-specific proof for completeness. Consider the weak form
of the first two cell problems, (9) and (10), given by

Find Pj ∈ V s.th.

∫ 1

0

ÊPj,y w,y dy = Fj(w) ∀w ∈ V, j = 1, 2 (14)

where
V =

{
w ∈ H1(Y ) : w is Y -periodic and 〈w〉 = 0

}
,

and

F1(w) = −
∫ 1

0

Êw,y dy, F2(w) = −
∫ 1

0

(
ÊP1w,y + E0

ρ̂

%0
w − Ê

(
1 + P1,y

)
w
)

dy.

On setting w = P2 (resp. w = P1) in (14) for j = 1 (resp. j = 2) and noting the equality of thus created
left-hand sides, one obtains F1(P2) = F2(P1) and consequently∫ 1

0

Ê
(
P1 + P2,y

)
dy = E0

∫ 1

0

ρ̂

%0
P1 dy. (15)

Thanks to the definition (12) of E1 and %1, (15) immediately recovers (13).
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2.3. Mean fields and homogenized equations

Once the foregoing cell functions are computed, the evaluation of uj (j = 0, 2) in (8) requires knowl-
edge of the mean fields Uj . Once again, inserting expansion (7) into (6) and averaging with respect to y
Wautier and Guzina (2015) leads to a cascade of “macroscopic” field equations

O(1) : E0U0,xx + %0ω
2U0 = 0,

O(ε) : E0U1,xx + %0ω
2U1 + E1U0,xxx + %1ω

2U0,x = 0,

O(ε2) : E0U2,xx + %0ω
2U2 + E1U1,xxx + %1ω

2U1,x + E2U0,xxxx + %2ω
2U0,xx = 0.

(16)

Thanks to Lemma 1, however, one has

E1U0,xxx + %1ω
2U0,x =

%1
%0

(E0U0,xx + %0ω
2U0),x = 0.

On letting

k0 =
ω

c0
, c0 =

√
E0
%0
,

we accordingly obtain

O(1) : U0,xx + k20 U0 = 0,

O(ε) : U1,xx + k20 U1 = 0,

O(ε2) : U2,xx + k20 U2 +
E2
E0
U0,xxxx +

%2
%0
k20 U0,xx = 0.

(17)

By analogy to (7), we define the successive mean-field approximations U (p) as finite sums
∑p
j=0 ε

jUj . In
particular, we write

U (1)(x) = U0(x) + εU1(x), U (2)(x) = U0(x) + εU1(x) + ε2U2(x).

From the weighted sum of (17) one finds that U (2) solves

U (2)
,xx + k20 U

(2) + ε2
[
E2
E0
U (2)
,xxxx +

%2
%0
k20 U

(2)
,xx

]
= 0, (18)

up to an O(ε3) residual. By utilizing the O(1) equation in (16) to further approximate the O(ε2) term
in (18) as in Wautier and Guzina (2015), we obtain a family of the mean field equations

U (2)
,xx + k20 U

(2) + ε2
(
βxU

(2)
,xxxx + βmk

2
0 U

(2)
,xx − βtk40 U (2)

)
= 0, (19)

where βx, βm and βt are subject to the constraint

βx − βm − βt =
E2
E0
− %2
%0
.

For future reference, (19) can be conveniently rearranged as

ε2βxU
(2)
,xxxx +

(
1 + ε2βmk

2
0

)
U (2)
,xx + k20

(
1− ε2βtk20

)
U (2) = 0. (20)

The elemental members of family (20) are obtained by setting any two entries of the triplet (βx, βm, βt)
identically to zero. Such models with βx 6= 0, βm 6= 0, and βt 6= 0 will be referred to respectively as
the “space” (x), “mixed” (m), and “time” (t) models. In particular, the (m) model has been proposed
and studied in previous works (e.g. Fish et al., 2002; Lamacz, 2011) and will be used as the reference
elemental model hereafter.

Similarly, models obtained by discarding a single entry of the triplet (βx, βm, βt) will be denoted as
(mt), (xt) and (xm). In what follows, we focus our attention on the (mt) model

U (2)
,xx + k20

1− ε2βtk20
1 + ε2βmk20

U (2) = 0, βm + βt =
%2
%0
− E2
E0
, (21)

that excludes the fourth-order spatial derivative. Finally, notation (xmt) will be used to designate the
general model (20) featuring all three β coefficients. Some of these models and their utility in describing
the dispersive behavior of periodic structures will be addressed in Section 4 for an example periodic
structure.
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2.4. Cell stresses and stress expansion

Inspired by the structure of (9)–(11), we consider the cell stresses Σj(y) (j = 0, 2) given by

Σj =
Ê

E0
(
Pj + Pj+1,y

)
, j = 0, 2, (22)

recalling that P0 = 1. By virtue of (9)–(12), one finds that Σ0(y) = 1 and further

Σ0,y = 0, Σ1,y =
ρ̂

%0
− Σ0, Σ2,y =

ρ̂

%0
P1 − Σ1, 〈Σj〉 =

Ej
E0
. (23)

For clarity of presentation, however, we will keep the symbol Σ0 wherever it formally appears. The key
utility of (22) is that the axial stress stemming from û(x, y), see (5) and (7), can be expanded as

σ̂(x, y) = Ê(y)
d

dx
û(x, y) = E0

[
U (2)
,x (x)Σ0(y) + εU (1)

,xx(x)Σ1(y) + ε2U0,xxx(x)Σ2(y) +O(ε3)
]
. (24)

3. Homogenized boundary and transmission conditions

To introduce the effective boundary conditions completing the mean-field equations (20) and (21),
we next investigate the solutions of a model, single-scale boundary value problem (BVP) describing a
rod that is clamped at x = 0 and subjected to time-harmonic traction σL at x = L. An extension of the
featured results to transmission conditions is discussed at the end of this section.

With reference to the original field equation (2), the model BVP reads

(E(x)u,x),x + ρ(x)ω2u = 0 for x ∈ YL,
u = 0 at x = 0,

σ = E(x)u,x = σL at x = L,

(25)

where
YL = {x ∈ R : 0 < x < L}.

For future reference, we first investigate the well-posedness of this problem. The solution u satisfies
the variational equation

a(u, v) = F (v) ∀v ∈ V (26)

with
V = {v ∈ H1(YL) : v(0) = 0},

and

a(u, v) =

∫ L

0

E u,xv,x dx − ω2

∫ L

0

ρ uv dx, F (v) = σLv(L).

It is known (see for instance (McLean, 2000, Thm. 4.2) or adapt (Brezis, 2011, Thm. 8.22) to the present
case) that the homogeneous counterpart of (25) (with σL = 0) has a countable set of positive real
eigenvalues, λj = ω2

j > 0, such that λj → +∞ as j → +∞. Assuming that ω 6= ωj , (25) consequently
admits at most one solution. Further, thanks to the bounds in (1) on the material properties and the
normalization scheme adopted in Remark 1, operator a(·, ·) satisfies the G̊arding inequality∣∣a(u, u) + 2ω2‖u‖0

∣∣ > min(1, ω2)‖u‖1 (27)

where
‖ · ‖p = ‖ · ‖Hp(YL),

and in particular ‖ · ‖0 = ‖ · ‖L2(YL).
By (27), the classical Fredholm theory ensures that (26) is uniquely solvable, i.e. that the inverse

map A−1 : σL 7→ u exists. Moreover, since the forward operator a(·, ·) is bounded, so is A−1. As a result,
we have the stability result

‖u‖1 6 C |σL| (28)

for some constant C > 0 that depends on frequency ω, but not on the cell size ε of periodic microstructure.
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3.1. Leading-order homogenization

We first recall the system satisfied by the leading-order approximation U (0) = U0 = u0 of the exact
solution u:

U (0)
,xx + k20 U

(0) = 0 for x ∈ YL,

U (0) = 0 at x = 0,

E0U (0)
,x = σL at x = L.

(29)

This system is obtained by (i) using the bulk equation (17) satisfied by U (0) and (ii) applying the

displacement and stress boundary conditions to the leading-order approximations U (0) and σ(0) = E0U (0)
,x .

It is well-known (e.g. Cioranescu and Donato (1999)) that u converges to U (0) as ε → 0 in L2-norm;
more precisely, one has the estimate:

∃C > 0 s.th. ‖u− U (0)‖0 6 Cε‖U (0)‖0.

It should be noted, however, that there is no convergence in H1-norm (i.e. the derivatives of the fields
U (0) and u do not match as ε→ 0), due to the absence of correctors accounting for the fast oscillations
of the microstructure and therefore of the exact solution u. In unbounded domains, the convergence
result is obtained (and the convergence rate is increased in terms of both norms) by adding the bulk
correctors and correcting the wave equation as discussed in the previous section, see e.g. Lamacz (2011).
In bounded domains, however, the convergence is constrained by boundary layer effects and appropriate
boundary correctors must accompany the bulk corrections, as discussed now.

3.2. Background on boundary correctors and hypotheses made in the present setting

In a general multi-dimensional setting, deriving appropriate boundary conditions for higher-order
homogenized models in domain Ω ⊂ Rd, d > 2 is a complex problem that is still an active research
topic (e.g. Gérard-Varet and Masmoudi, 2012). Indeed, while accounting for higher-order terms (say
u1(x, y)) in the two-scale expansion, one must consider a rapidly oscillating behavior of the trace of
these terms on ∂Ω and study the boundary layer in the vicinity of this boundary. Rigorous convergence
analysis is therefore possible by introducing additional functions in the expansion: the so-called boundary
correctors θεj , which were studied in Dumontet (1986); Santosa and Vogelius (1993); Moskow and Vogelius
(1997); Allaire and Amar (1999); Gérard-Varet and Masmoudi (2012); Armstrong et al. (2017) among
many others, and extended recently to transmission problems (Cakoni et al. (2016); Lin and Meng (2019);
Cakoni et al. (2019)).

However, these correctors are solutions of boundary value problems posed for the periodic (as opposed
to homogenized) medium, and a separate asymptotic procedure is required to provide the effective
boundary conditions for BVPs governing the mean fields. In particular, in Santosa and Vogelius (1993)
it is shown that for polygonal domains with rational slopes, including one-dimensional problems as a
particular case, the limit θ∗j of θεj as ε→ 0 may not be unique and depends on the sequence of εj ’s chosen
to establish such a limit, see also the recent analyses Cakoni et al. (2016, 2019) of transmission problems.

In the case of one-dimensional problems, however, some of these difficulties can be avoided. First,
the boundary data at x = 0 and x = L are numbers. In this work, we make an additional simplifying
assumption that the domain YL is composed of an integer number N of unit cells, i.e. that

ε =
L

N
, N ∈ N+. (30)

Accordingly, the numerical convergence results presented later on reflect (30) in that ε → 0 stands for
N → +∞, with ω being fixed. Consequently, the boundary values of the displacement and stress expan-
sions, (7) and (24), are obtained by evaluating the mean fields U (j) and their derivatives at x ∈ {0, L},
the cell functions Pj and the cell stresses Σj at y = 0. The values Pj(0) and Σj(0) thus act as fixed
coefficients that define enriched boundary conditions for the mean fields.

Remark 2. Note that choosing “microscopically” different points as domain boundaries could be easily
handled. For instance, if x = L corresponds to y = yL inside the last cell, one has to replace the
coefficients Pj(0) and Σj(0) respectively by Pj(yL) and Σj(yL) in the enhanced boundary conditions, see
also Maurel and Marigo (2018) for a related study.
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For completeness, we also note that when βx 6= 0, the field equations (20) feature the fourth-order

derivative U
(2)
,xxxx; as a result, this class of field equations necessitates additional boundary conditions

(BCs) compared to the original problem (25). In Askes et al. (2008), such conditions are derived from
the variational formulation in terms of U (2) so that the boundary contributions cancel in the bilinear form
associated with (20) and the resulting problem is well-posed. The coefficients featured by the germane
boundary conditions are thus notably affected by the choice of the field equation. Leaning on a more
physical argument, the study in Kaplunov and Pichugin (2009) focuses on the presence of extraneous
(non-physical) solutions to (20) and the necessity to take them into account while formulating the relevant
boundary conditions (typically, by introducing BCs that cancel the extraneous waves). However, no error
analysis is provided with such boundary conditions, and it is not clear at this point how to make a rigorous
link between them and the convergence results underlying the homogenization theory.

Remark 3. In what follows, we focus on the second-order effective analysis of the (mt) model, i.e. we set

βx = 0 which eliminates the U
(2)
,xxxx term and synthesizes the germane dispersion effects in terms of k20U

(2)
,xx

and k40U
(2) instead. As shown below, such hypothesis allows us to establish the convergence results similar

to those in Moskow and Vogelius (1997) for suitably chosen first- and second-order approximations of the
displacement field u(x) and stress field σ(x). To clarify the nomenclature, we refer to U (0), û(1) and û(2)

in (7) as the zeroth-, first-, and second-order approximations of û(x, y), respectively.

3.3. First-order model

Motivated by the two-scale expansions (7) and (24), we introduce the first-order approximations of
the (single-scale) displacement field u(x) and stress field σ(x) solving (25) respectively as

ũ(1)(x) = U (1)(x) + εP1(x/ε)U (1)
,x (x),

σ̃(1)(x) = E0
[
Σ0U

(1)
,x (x) + εΣ1(x/ε)U (1)

,xx(x)
]
,

(31)

where Σ0 = 1 as examined earlier. The mean field U (1), which includes an O(ε) correction, is then
defined as the solution of the BVP obtained by: (i) considering the zeroth-order effective field equation
over YL (note that the O(ε) correction in (21) is zero), and (ii) requiring ũ(1) and σ̃(1) to satisfy the
exact boundary conditions in (25), namely

U (1)
,xx + k20 U

(1) = 0 for x ∈ YL,

U (1) + εP1(0)U (1)
,x = 0 at x = 0,

Σ0U
(1)
,x − εk20 Σ1(0)U (1) = σL/E0 at x = L.

(32)

Note that we used the field equation U
(1)
,xx = −k20 U (1) in the stress boundary condition, thus obtaining

Robin-like boundary conditions at both ends – which simplifies the numerical treatment. In what follows,
the O(ε) contributions to the boundary conditions will be referred to as boundary correctors. Their
specific role in the asymptotic approximation will be highlighted later. Concerning the exact BVP (25),
we assume from the onset that k0 is not an eigenvalue of (32); as a result, U (1) is uniquely defined and
depends continuously on σL. Further since the problem is free of body forces, we have that U (1) ∈ C∞(YL)
whereby ũ(1), σ̃(1), and their derivatives are well-defined. A first estimate of the quality of approximation
given by (31) and (32) is given by the following lemma.

Lemma 2. The first-order approximation ũ(1) := U (1) + εP1(·/ε)U (1)
,x of u, defined in terms of the

first-order mean field U (1) solving (32) satisfies:

∃C > 0 s.th. ‖u− ũ(1)‖1 6 Cε‖U (1)‖1. (33)

Proof. The proof of this lemma closely follows that of a similar result in (Moskow and Vogelius, 1997,
Proposition 2.1). We first introduce the displacement and stress approximation errors as

vε = u− ũ(1) = u− U (1) − εP1(·/ε)U (1)
,x ,

sε = σ − σ̃(1) = σ − E0
[
Σ0U

(1)
,x + εΣ1(·/ε)U (1)

,xx

]
.

Differentiating these fields and making use of (23) yields the relations

Evε,x = sε + εs(1), s(1) = −k20 EP2,y(·/ε)U (1),

sε,x = −ω2(ρvε + ε%0v
(1)), v(1) = Σ2,y(·/ε)U (1)

,x ,
(34)
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noting from the boundary conditions in (25) and (32) that

vε(0) = 0 and sε(L) = 0. (35)

To establish estimate (33), we next aim to evaluate the duality product (vε, φ) (identified with the
L2 inner product) for φ ∈ H−1(YL). To this end, we introduce function w as the solution of a BVP for
the periodic medium with source term φ in the weak sense. Slightly abusing the notation, we write

(E(x)w,x),x + ρ(x)ω2w = φ for x ∈ YL,
w = 0 at x = 0,

E(x)w,x = 0 at x = L.

(36)

This problem is nearly identical to the model problem (25), except for the non-trivial source term φ and
homogeneous boundary condition at x = L. Using the same arguments as in the stability analysis of (25)
resulting in (28), we obtain

∃C > 0 s.th. ‖w‖1 < C‖φ‖−1. (37)

With the aid of (34), we then compute

(vε, φ) =

∫ L

0

vε
(
(Ew,x),x + ρω2w

)
dx

= [Ew,xv
ε]
L
0 −

∫ L

0

(
(sε + εs(1))w,x − ρω2vεw

)
dx

= [Ew,xv
ε]
L
0 − [sεw]

L
0 − ε

∫ L

0

(s(1)w,x + %0ω
2v(1)w) dx.

(38)

Thanks to the homogeneous boundary conditions (35) and those in (36), the boundary terms in (38)
vanish; using the expressions in (34) for s(1) and v(1), we consequently obtain

(vε, φ) = εk20

∫ L

0

(
EP2,y(·/ε)U (1)w,x − E0Σ2,y(·/ε)U (1)

,x w
)

dx.

Since the functions E(x), x 7→ P2,y(x/ε), and x 7→ Σ2,y(x/ε) are bounded (independent of ε), we find
that

∃C1, C2 > 0 s.th. |(vε, φ)| 6 C1ε‖U (1)‖1‖w‖1 6 C2ε‖U (1)‖1‖φ‖−1, (39)

where we used (37) for the second inequality. Then, since (39) holds for any φ ∈ H−1(YL), we use the
result

‖zε‖1 = max
φ∈H−1(YL)
‖φ‖−1=1

|(vε, φ)|

established in (Brezis, 2011, Corollary 1.4) to conclude the proof.

Remark 4. Result (33) is classical for 1D homogenization problems, and in fact it does not require
the use of boundary correctors. Indeed, without such correctors, the contribution of the boundary terms
in (38) does not vanish but becomes O(ε). In higher dimensions, however, oscillating behavior of the
like boundary terms results in an O(ε1/2) error in terms of the germane H1(Ω)-norm – unless the
boundary correctors are deployed, see (Cioranescu and Donato, 1999, Theorem 6.3). Notwithstanding
such 1D result, the role of the boundary correctors in (32) becomes clear when considering the L2-error,
‖u− ũ(1)‖0, featured by the second-order approximation that is pursued next.

3.4. Second-order model

We next proceed with the second-order homogenization by following the steps outlined in Section 3.3.
Specifically, we seek the second-order approximations of u(x) and σ(x) as

ũ(2)(x) = U (2)(x) + εP1(x/ε)U (2)
,x (x) + ε2P2(x/ε)U (2)

,xx(x),

σ̃(2)(x) = E0
[
Σ0U

(2)
,x + εΣ1(x/ε)U (2)

,xx(x) + ε2Σ2(x/ε)U (2)
,xxx(x)

]
,

(40)
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where the second-order mean field U (2), defined using the “mixed” (mt) model for the bulk equation,
solves the BVP

U (2)
,xx + k2mtU

(2) = 0 for x ∈ YL,[
1− ε2k2mtP2(0)

]
U (2) + εP1(0)U (2)

,x = 0 at x = 0,[
Σ0 − ε2k2mtΣ2(0)

]
U (2)
,x − εk2mtΣ1(0)U (2) = σL/E0 at x = L,

(41)

with

k2mt = k2mt(ε) = k20
1− ε2βtk20
1 + ε2βmk20

. (42)

We first note that (41) features Robin-like boundary condtions, similar to its first-order companion (32).
As expected, by (40)–(42) we improve the approximation in the following sense.

Lemma 3. The second-order approximation ũ(2) = U (2) + εP1(·/ε)U (2)
,x + ε2P2(·/ε)U (2)

,xx of u, given in
terms of the second-order mean field U (2) solving (41), is such that

∃C > 0 s.th. ‖u− ũ(2)‖1 6 Cε2‖U (2)‖1. (43)

Proof. As before, we define the respective displacement and stress approximation errors as

vε = u− ũ(2),
sε = σ − σ̃(2),

noting from the boundary conditions in (25) and (41) that

vε(0) = 0 and sε(L) = 0.

On differentiating these errors and making use of (23), we obtain

Evε,x = sε + ε2s(2), s(2) = −k2mtEP3,y (·/ε)U (2)
,x ,

sε,x = −ω2
(
ρvε + ε2%0v

(2) + ρvmt
)
, v(2) = k2mt

[
k−20 k2mtΣ2(·/ε)− %−10 ρP2(·/ε)

]
U (2),

vmt = (1− k−20 k2mt)
[
U (2) + εP1(·/ε)U (2)

,x

]
.

In the above decomposition of sε,x, it is clear that v(2) = O(1) and vmt = O(1 − k2mt/k20) = O(ε2) as
ε→ 0 by the Taylor expansion of (42). The remainder of the proof follows that of Lemma 2, except that
the remainders due to errors vε and sε are O(ε2), yielding the estimate (43).

Recalling Remark 4, we are now in position to establish the main result of this section.

Theorem 4. The first-order approximation ũ(1) = U (1) + εP1(·/ε)U (1)
,x of u, where U (1) solves the

homogenized problem (32), satisfies both the H1-norm estimate from Lemma 2 and the L2-norm estimate

∃C > 0 s.th. ‖u− ũ(1)‖0 6 Cε2‖U (2)‖2, (44)

where U (2) solves the second-order homogenized problem (41).

Proof. The idea is to show that ‖ũ(1) − ũ(2)‖0 6 Cε2‖U (2)‖2, which then yields (44) by Lemma 3 and
triangle inequality. To this end, we let

ṽ(x) = ũ(2)(x)− ũ(1)(x) = Ṽ (x) + εP1(x/ε)Ṽ,x(x) + ε2P2(x/ε)U (2)(x) (45)

where Ṽ = U (2) − U (1) satisfies the difference between problems (41) and (32), namely

Ṽ,xx + k20 Ṽ = k20
(
1− k2mt/k20

)
U (2) for x ∈ YL,

Ṽ + εP1(0)Ṽ,x = ε2k2mtP2(0)U (2) at x = 0,

Σ0Ṽ,x − εk20 Σ1(0)Ṽ = ε2k2mtΣ2(0)U (2)
,x − εk20

(
1− k2mt/k20

)
Σ1(0)U (2) at x = L,

which features U (2) as the “source” term. Equipped with (i) the premise that k0 is not an eigenvalue
of this problem; (ii) estimate 1 − k2mt/k20 = O(ε2), and (iii) the fact that the boundary data feature

10



the derivative term U
(2)
,x (hence the H2-norm bound in inequality (44) and below), a stability analysis

similar to that of (25) yields
∃C > 0 s.th. ‖Ṽ ‖1 6 Cε2‖U (2)‖2.

Then from definition (45),
∃C > 0 s.th. ‖ṽ‖0 6 Cε2‖U (2)‖2,

and finally, by Lemma 3

∃C > 0 s.th. ‖u− ũ(1)‖0 6 ‖u− ũ(2)‖0 + ‖ṽ‖0 6 Cε2‖U (2)‖2.

Remark 5. Following the observation made in Remark 4, one can show that the second-order boundary
correctors in (41) governing U (2) are not necessary to establish Lemma 3 and Theorem 4. However, these
very correctors are necessary to establish the next-order estimate

∃C > 0 s.th. ‖u− ũ(2)‖0 6 Cε3‖U (3)‖2.

While we do not prove this result, we expect the same arguments to apply; indeed, as shown in the next
section, we numerically observe the O(ε3) behavior of the misfit ‖u− ũ(2)‖0.

3.5. Extension to transmission conditions

We next briefly discuss an extension of the above ideas to transmission conditions. As in the case
of Dirichlet or Neumann boundary conditions, the transmission conditions can be imposed on the total
homogenized displacements and stresses. For instance, assuming a perfect contact at x = 0 between the
homogeneous medium (x < 0) and a periodic medium (x > 0), we have

u(0−) = ũ(j)(0+) and σ(0−) = σ̃(j)(0+),

where u and σ signify the displacement and stress in the homogeneous “background”, while ũ(j) and σ̃(j)

are their j-th order homogenized counterparts in the periodic medium. On replacing ũ(j) and σ̃(j) by
their expansions, involving the mean field U (j) and germane cell solutions, we obtain two “effective”
transmission conditions on the mean field, that complete the BVP featuring the homogenized wave
equation in x > 0. An example of such exercise is provided in Appendix B.2.

For brevity, we do not provide the proofs of convergence for the transmission problem. We however
expect the same arguments to hold, and indeed via numerical simulations (described next) we observe
the convergence rates that are identical to those derived for the model BVP.

4. Application to periodic bilaminate

In this section, we apply the homogenization procedure to a two-phase periodic medium whose unit
cell Y is characterized by the geometric parameter α, material parameters (E1 and ρ1) of the first phase,
and two material contrasts, γE and γρ. Specifically, we take the periodic Young’s modulus Ê and mass
density ρ̂ to be piecewise-constant according to

Ê(y) =

{
E1, y ∈ (0, α)

γEE1, y ∈ (α, 1)
, ρ̂(y) =

{
ρ1, y ∈ (0, α)

γρρ1, y ∈ (α, 1)
. (46)

For this class of materials, the effective Young’s moduli and mass densities (12) can be obtained (e.g.
Wautier and Guzina, 2015) as given below. On letting

nE =
γE

(1− α) + αγE
, nρ = α+ (1− α)γρ, (47)

one has

E0 = nEE1 E1 = 0, E2 = E0
n2E
nρ

α2(1− α)2(1− γE)(1− γEγρ)
12γ2E

,

%0 = nρρ1 %1 = 0, %2 = −%0
nE
n2ρ

α2(1− α)2(1− γρ)(1− γEγρ)
12γE

.

(48)
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With such definitions, the germane family of effective field equations governing U (2) can be written as

βxε
2U (2)

,xxxx +
(
1 + βmk

2
0 ε

2
)
U (2)
,xx + k20

(
1− βtk20 ε2

)
U (2) = 0, βx − βm − βt = β, (49)

where

k20 =
ω2

c20
= n0

ω2

c21
, β =

E2
E0
− %2
%0

=
1

12

[
α(1− α)(1− γEγρ)

n0γE

]2
, (50)

and

c1 =

√
E1

ρ1
, n0 =

c21
c20

=
E1%0
ρ1E0

=
nρ
nE

.

For completeness, the relevant cell functions and cell stresses for the bilaminate structure are provided
in Appendix A.

In the sequel, we first focus on the dispersive behavior of (49), and we consider optimal (mt) and (xmt)
models whose coefficients βx, βm and βt (subject to the constraint βx−βm−βt = β) are chosen to “best”
approximate the exact dispersion relationship within the first Brillouin zone. Then, we deploy an optimal
(mt) model and the effective boundary conditions established in Section 3 to simulate time-harmonic
waves in a bounded periodic bilaminate. As the last example, we extend the foregoing homogenization
strategy to approximate the transmission conditions featured by a finite domain containing a periodic
inclusion.

4.1. Homogenized dispersive behavior

Let κ denote the effective wavenumber of elastic disturbances propagating at frequency ω through
the microstructured medium (48). Then the exact dispersion relationship Wautier and Guzina (2015),
obtained by the Bloch-Floquet theory, can be written as

cos(κε) = (1 + χ) cos
[ωε
c1

(
α+

1− α√
γE/γρ

)]
− χ cos

[ωε
c1

(
α− 1− α√

γE/γρ

)]
, (51)

where

χ =
1

4

(√
γEγρ +

1
√
γEγρ

− 2
)
.

On letting U (2)(x) = eiκx, it is easy to show Wautier and Guzina (2015) that the second-order (xmt)
homogenized models (49) yield

ωε

c0
=

√
1− βm(κε)2 −

√
1− 2(βm + 2βt)(κε)2 + (β2

m + 4βxβt)(κε)4

2βt
, (52)

which provides an asymptotic description of (51) as κε → 0 up to an O((κε)5) residual Wautier and
Guzina (2015). In this vein, one can take advantage of the flexibility offered by the (xmt) class of models
– in terms of the choice of parameters βx, βt and βm – to achieve “best” overall agreement within the
first Brillouin zone.

4.1.1. Optimal two-parameter model (mt)

When βx = 0, (52) reduces to

ωε

c0
=

√
1− βm(κε)2 −

√
1− 2(βm + 2βt)(κε)2 + β2

m(κε)4

2βt
. (53)

Under the constraint βm + βt + β = 0, the (mt) model offers one degree of freedom when selecting βm
and βt. To identify the optimal pair, we select to improve upon the agreement between (51) and (52) for
small κε; an idea that originated in the context of 1D spring-mass lattices Pichugin et al. (2008). With
such goal in mind, we first compute the Taylor expansion of the exact dispersion relationship (51) up to
the fifth order as

ωε

c0
= κε − β

2
(κε)3 −

β
(
2− 27β − 8β

)
40

(κε)5 + O((κε)7), (54)
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where

β =
1

12

[α2γE − (1− α)2γρ
n0γE

]2
(55)

which vanishes for α = 1/2 and γE = γρ Dontsov et al. (2013); Cornaggia (2016). Similarly, the
homogenized (mt) relationship (53) is expanded as:

ωε

c0
= κε +

βm + βt
2

(κε)3 +
(βm + βt)(3βm + 7βt)

8
(κε)5 + O((κε)7). (56)

Equating the coefficients in (54) and (56) yields the existing constraint βm +βt = −β, together with the
additional equation

15βm + 35βt = 2− 27β − 8β.

The latter two equations are solved by the optimal pair

βm =
−1− 4β + 4β

10
, βt =

1− 6β − 4β

10
. (57)

4.1.2. Optimal three-parameter model (xmt)

Rather than focusing on the low-frequency accuracy (κε→ 0), it may be appealing to instead pursue
an approximation that provides better global fit within the first Brillouin zone – by incorporating the
onset of the first band gap into the optimality criterion Dontsov et al. (2013); Wautier and Guzina
(2015). An obvious idea would be to match the onset of the first band gap, ωBG, via the requirement
ω(κε = π) = ωBG Dontsov et al. (2013). Overall, this option was found in Wautier and Guzina (2015)
to under-perform at low frequencies. Another possibility, explored in Wautier and Guzina (2015), is to
impose the physical requirement of zero group velocity at the end of the Brillouin zone, namely

∂ω

∂(κε)

∣∣∣∣
κε=π

= 0. (58)

This choice leads to a good compromise between the low-frequency accuracy and band-gap prediction;
however (58) cannot be realized by the (mt) model (53), for which the group velocity vanishes only at
κε→∞. Instead, the latter optimality criterion can be satisfied by the (xmt) model Wautier and Guzina
(2015), which provides a motivation for extensions of the present work to problems with a non-trivial
singular perturbation βxU,xxxx in the effective field equation (49).

4.1.3. Application to an example bilaminate

From now on, we focus on a specific bilaminate, assuming

(E1, ρ1) =

(
1,

2

3

)
, γE = 6, γρ =

3

2
, α =

1

4
. (59)

These parameters are selected to obtain the wave speed contrast
√
γE/γρ = 2 and impedance contrast√

γEγρ = 3 between lamina, for which the maximum dispersion is reached at α ≈ 0.25 Santosa and
Symes (1991). For clarity, the values of the corresponding coefficients in the homogenized models are
gathered in Table 1, along with references to their analytical expressions.

To illustrate the dispersive properties of the homogenized model, Fig. 1 compares the performance
of the (non-dispersive) leading-order model, the reference (m) model, the optimal (mt) model from
Section 4.1.1, and its (xmt) companion from Section 4.1.2. From the display, we note that the optimal
(xmt) model is the only one capable of accurately representing the dispersion curve up the band gap (as
expected); however the optimal (mt) model (57), which targets the low-frequency behavior, nonetheless
provides a reasonable approximation over a majority of the first Brillouin zone.

4.2. Homogenized boundary value problem

Consider the model BVP (25) for a bilaminate rod consisting of 10 unit cells, whose parameters are
listed in Table 2. In this example, we have ωε = 3 as indicated by the top grey square in Fig. 1. The
exact solution u of this problem is obtained via the transfer matrix approach in terms of trigonometric
functions within each lamina (e.g. Cornaggia, 2016, Ch. 4), see also Appendix B concerning the related
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Parameters Expressions for bilaminates Specific values

nE , nρ (47) 8
3 , 11

8

E0, %0 (48) 8
3 , 11

12

β, β (50), (55) 64
3267 , 25

13068

Optimal βm, βt (57) − 53
495 , 1429

16335

P1(0), P2(0) (A.1), (A.3) − 5
24 , 113

6336

Σ1(0), Σ2(0) (A.5), (A.7) 3
88 , − 109

19008

Table 1: Parameters of the homogenized models: expressions and values for the example bilaminate characterized by
(E1, ρ1) = (1, 2/3), γE = 6, γρ = 3/2 and α = 1/4.
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Figure 1: Dispersion relationship, up to the first band gap, for the periodic bilaminate (59): exact solution versus homog-
enized models. Left: ωε versus κε. The grey squares indicate frequencies ωε ∈ {2, 2.5, 3} used in the ensuing simulations.
Right: Relative error on the wavenumber, (κ− κexact)/κexact, versus ωε within the first Brillouin zone.

transmission problem. To illustrate the performance of the homogenized solution, Fig. 2 first compares
the mean fields U (0), U (1) and U (2), solving respectively (29), (32) and (41), with the exact solution u. As
can be seen from the display, there is a marked improvement in the veracity of the “mean” description with
increasing order of approximation. With such mean fields at hand, the “full” asymptotic approximations
according to (31) and (40), namely

ũ(1)(x) = U (1)(x) + εP1(x/ε)U (1)
,x (x),

ũ(2)(x) =
[
1− ε2k2mtP2(x/ε)

]
U (2)(x) + εP1(x/ε)U (2)

,x (x),
(60)

are plotted in Fig. 3 using the cell functions P1 and P2 given in Appendix A. As a point of reference,
included in the diagram is also the zeroth-order approximation, ũ(0)(x) = U (0)(x). From the graph, we
observe a very good qualitative agreement between ũ(2) and the exact solution u, while the lower-order
approximations are seemingly unable to capture the fine features of the solution. A similar conclusion
can be drawn from Fig. 4 which compares the exact axial stress in the rod, σ, with the asymptotic
approximations σ̃(0) = E0U0,x, σ̃(1) and σ̃(2), computed according to (31) and (40) using the same mean
fields and the cell stresses Σ1 and Σ2 given in Appendix A. A common observation from Figs. 2–4 is
that the error due to approximation of the field equation (resp. boundary conditions) affects primarily
the wavelenghth (resp. amplitude and phase) of the asymptotic wavefield.

For further insight into the performance of the homogenized solution, Fig. 5 plots the relative errors

‖u− ũ(j)‖n
‖u‖n

, j = 0, 1, 2, n = 0, 1

as ε→ 0 on a log-log scale (we keep the frequency fixed at ω = 2π while letting N → +∞ so that ε→ 0).
14



ω L ε α γE γρ (E1, ρ1) σL
2π 30/(2π) 3/(2π) 1/4 6 3/2 (1, 2/3) 2π

Table 2: Parameters of the model BVP (25) used in numerical simulations: ωε = 3.
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Figure 2: Exact wave motion u versus homogenized mean fields U(0), U(1) and U(2) for the model BVP (25) given in Table
2: excitation frequency ωε = 3. The shaded regions indicate lamina within the rod where E = γEE1 and ρ = γρρ1.
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Figure 3: Exact wave motion u versus homogenized approximations ũ(0), ũ(1) and ũ(2) for the model BVP (25) given in
Table 2: excitation frequency ωε = 3.

From the display, one clearly verifies (i) the L2 and H1-norm behaviors of the misfit normalized by the
zeroth-order approximation U (0) discussed in Section 3.1; (ii) the first- and second-order H1 estimates
on ũ(1) and ũ(2) given by Lemma 2 and Lemma 3; (iii) the L2 estimate on ũ(1) established in Theorem 4;
and (iv) the L2 estimate on ũ(2) predicted in Remark 5. As expected, the improvement brought about
by the optimized (mt) model over the reference (m) model is visible only at larger values of ε. For
completeness, Fig. 6 provides an analogous graph of the relative L2 error in terms of the homogenized
stress approximation, σ̃(j).

To highlight the role of boundary effects in the asymptotic approximation, we next consider a lower
excitation frequency, ωε = 2, according to Table 3. In this case – indicated by the bottom grey square
in Fig. 1, the dispersion effects are negligible and the approximation error is dominated by the boundary
effects. Fig. 7 and Fig. 8 compare respectively the exact solution at ωε = 2 versus (i) homogenized mean
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Figure 4: Exact normalized stress field σ versus homogenized approximations σ̃(0), σ̃(1) and σ̃(2) for the model BVP (25)
given in Table 2: excitation frequency ωε = 3.
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Figure 5: Relative L2 and H1 errors of the homogenized approximations ũ(j) (j = 0, 1, 2) versus ε for the model BVP (25)
given in Table 2.

fields U (0), U (1) and U (2), and (ii) homogenized approximations ũ(0), ũ(1) and ũ(2). As can be seen from
the display, the errors generated by the zeroth- and first-order approximations are significant, while U (2)

and especially ũ(2) provide a close approximation of the exact wavefield.

ω L ε α γE γρ (E1, ρ1) σL
2π 10/π 1/π 1/4 6 3/2 (1, 2/3) 2π

Table 3: Parameters of the model BVP (25) used in numerical simulations: ωε = 2.
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Figure 6: Relative L2 error of the homogenized stress approximation σ̃(j) (j = 0, 1, 2) versus ε for the model BVP (25)
given in Table 2.
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Figure 7: Exact wave motion u versus homogenized mean fields U(0), U(1) and U(2) for the model BVP (25) given in
Table 3: excitation frequency ωε = 2.
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Figure 8: Exact wave motion u versus homogenized approximations ũ(0), ũ(1) and ũ(2) for the model BVP (25) given in
Table 3: excitation frequency ωε = 2.
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4.3. Homogenized transmission problem

This section investigates the homogenized approximation of a transmission problem for bilaminate
rod YL = (0, L) that is bonded, at its terminal sections, to homogeneous pieces Y − = (−L, 0) and Y + =
(L, 2L) endowed with respective material properties (E−, ρ−) and (E+, ρ+). The Dirichlet boundary
conditions are applied at x = −L and x = 2L. In this case, the displacement field u satisfies the BVP

E±u,xx + ρ±ω
2u = 0 for x ∈ Y ±,

(Eu,x),x + ρω2u = 0 for x ∈ YL,
u = 0 at x = −L,
u = uL at x = 2L,

(61)

that includes the continuity conditions

x = 0 :

{
u(0−) = u(0+)

(E−u,x)(0−) = (Eu,x)(0+)
, x = L :

{
u(L−) = u(L+)

(Eu,x)(L−) = (E+u,x)(L+)
. (62)

The exact solution of this problem is provided in Appendix B. Following the study of the model BVP
in Section 4.2, we consider the approximations U (0), ũ(1) and ũ(2) according to (60) over the full domain

Y − ∪ YL ∪ Y +. (63)

The problems satisfied by the mean fields U (0), U (1) and U (2) (supported in the full domain) are con-
structed following the discussion in Section 3.5, as specified in Appendix B (see problems (B.6-B.7),
(B.9-B.10) and (B.12-B.13), respectively). The expressions for the cell functions P1 and P2 (supported
in YL only) are provided in Appendix A.

The sought approximations are compared in Fig. 9 with the exact field u, at ωε = 2.5 (the middle
grey square in Fig. 1), for the problem parameters listed in Table 4. As can be seen from the display, a
good agreement is obtained only by the second-order approximation ũ(2), especially when using the (mt)
variant of the governing field equation. We further note that the lack of fit inside the periodic inclusion
(however small or large) is in fact amplified in the right homogeneous piece, Y +.

The behavior as ε→ 0 of the affiliated approximation errors

‖u− ũ(j)‖n
‖u‖n

, j = 0, 1, 2, n = 0, 1,

this time computed over the full domain (63), is plotted in Fig. 10 (we keep ω = 2π and let N → +∞).
As predicted, we observe the same respective orders of convergence as for the model BVP in Fig. 5. In
this case, however, the optimal (mt) model is seen to improve the approximation over the reference (m)
model more significantly than before.

ω L ε α γE γρ (E1, ρ1) (E−, ρ−) (E+, ρ+) uL
2π 50/(4π) 5/(4π) 1/4 6 3/2 (1, 2/3) (γEE1, γρρ1) (E1, ρ1) 1

Table 4: Parameters of the transmission problem (61)–(62) used in numerical simulations: ωε = 2.5.
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Figure 9: Exact wave motion u versus homogenized approximations ũ(0), ũ(1) and ũ(2) for the transmission problem (61)
given in Table 4: excitation frequency ωε = 2.5. The shaded regions indicate lamina within the rod where E = γEE1

and ρ = γρρ1.
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Figure 10: Relative L2 and H1 errors of the homogenized approximations ũ(j) (j = 0, 1, 2) versus ε for the transmission
problem (61) given in Table 4.

5. Summary and outlook

The main contribution of this paper resides in the development and asymptotic analysis of effective
boundary and transmission conditions governing the first- and second-order mean field approximations
of 1D waves in periodic media. The homogenization ansatz is established, up to the second order of
expansion, for both types of problems, exposing the effective boundary (and transmission) conditions
as those of Robin type. Rigorous asymptotic analysis is performed for boundary conditions, while the
applicability to transmission conditions is demonstrated via numerical experiments. As a side result,
an optimized second-order model of the homogenized field equation is proposed for 1D periodic me-
dia, that approximates more accurately the germane dispersion relationship and generally enhances the
performance of second-order approximation. The proposed homogenization framework is applied to-
ward the long-wavelength approximation of wave motion in finite periodic bilaminates, subject to both
boundary and transmission conditions. The results of numerical simulations that include dispersion di-
agrams, mean-field approximations, “full”-field approximations, and convergence studies are found to
consistently support the mathematical analysis. The developments in this study lay the groundwork
for several future studies, including (i) analysis of the effective boundary and transmission conditions
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for the (xmt) homogenized field equation that features an O(ε2) singular perturbation; (ii) homogeniza-
tion of the corresponding time-domain problems; (iii) extensions to finite-frequency, finite-wavenumber
problems motivated by the recent homogenization analyses of the wave equation Craster et al. (2010);
Guzina et al. (2019); and (iv) effective boundary and transmission conditions for 1D eigenvalue problems
Moskow and Vogelius (1997); Cornaggia (2016).

Appendix A. Cell functions and cell stresses for periodic bilaminate

This section provides closed-form expressions, in our notation, for the first two cell functions (P1, P2)
and first two cell stresses (Σ1,Σ2) assuming periodic bilaminate (46) with the unit cell Y = (0, 1). Similar
cell functions can be found in Andrianov et al. (2008) with the unit cell taken as (−1/2, 1/2) instead.

First cell problem:. The first cell function P1 solving (9) is given by

P1(y) =


(nE − 1)

(
y − α

2

)
, y ∈ [0, α],

−(nE − 1)
α

1− α

(
y − 1 + α

2

)
, y ∈ [α, 1].

(A.1)

The affiliated cell stress is constant, namely Σ0(y) = (Ê(y)/E0)(1 + P1,y)(y) = 1.

Second cell problem:. The second cell function P2 solving (10) can be computed as

P2(y) =

{
P2(0) +A1y(y − α), y ∈ [0, α],

P2(0) +A2 [y(y − (1 + α)) + α] , y ∈ [α, 1],
, (A.2)

where

P2(0) =
α2

12

[nE
nρ

+
1− 3α

α
nE −

1− α
αnρ

+ 1
]

(A.3)

and

A1 =
1

2

[nE
nρ
− 2nE + 1

]
, A2 =

1

2

( α

1− α

)2[nE
nρ

+
1− 2α

α
nE −

1

αnρ
+ 1
]
. (A.4)

On the basis of (22) and (A.2)–(A.4), we further find that

Σ1(y) =


−
(

1− 1

nρ

)(
y − α

2

)
, y ∈ [0, α],(

1− 1

nρ

)( α

1− α

)(
y − 1 + α

2

)
, y ∈ [α, 1].

(A.5)

Third cell problem:. By virtue of (11) and (22), second cell stress Σ2 satisfies

Σ2,y =
ρ̂

%0
P1 − Σ1 and E0Σ2 = Ê(P2 + P3,y) for x ∈ Y, (A.6)

along with continuity requirements at the interfaces. Integrating the first of (A.6), one finds

Σ2(y) =

{
Σ2(0) +B1y(y − α), y ∈ [0, α],

Σ2(0) +B2 [y(y − (1 + α)) + α] , y ∈ [α, 1],

where

B1 =
1

2

[nE
nρ
− 2

nρ
+ 1
]
, B2 =

1

2

( α

1− α

)2[nE
nρ

+
1− 2α

αnρ
− nE

α
+ 1
]
.

Using the second of (A.6) and identity 0 = 〈P3,y〉 = 〈E0Σ2/Ê − P2〉 = 〈E0Σ2/Ê〉, we find

Σ2(0) =
nE
6

[
α3B1 +

(1− α)3

γE
B2

]
. (A.7)

As an illustration, the first two cell functions (P1, P2) and cell stresses (Σ1,Σ2) corresponding to
bilaminate (59) are plotted in Fig. A.11.
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Figure A.11: Cell functions (P1, P2) and cell stresses (Σ1,Σ2) for α = 0.25, γE = 6 and γρ = 1.5.

Appendix B. Exact solution and homogenized models of the transmission problem for pe-
riodic bilaminate

This section provides: (i) exact solution of the transmission problem (61); (ii) the zeroth-, first- and
second-order homogenized problems governing the mean fields, and (iii) their respective solutions.

Appendix B.1. Exact solution

In the homogeneous pieces Y ± surrounding the inclusion, the displacement field u can be written as

u(x) =

{
U−(x+ L), x ∈ [−L, 0],

U+(x− L), x ∈ [L, 2L],
(B.1)

where
U±(x) = A± cos(k±x) + B± sin(k±x)

and

k± =
ω

c±
, and c± =

√
E±
ρ±

.

As a result, the boundary conditions u(−L) = 0 and u(2L) = uL reduce to

A− = 0 and A+ cos(k+L) +B+ sin(k+L) = uL. (B.2)

In the periodic inclusion, E and ρ in (61) are piecewise-constant according to (46). With N = L/ε
being the number of cells comprising the inclusion, we denote by xn = nε (n = 0, N) the positions of
cell boundaries, and we let

k1 =
ω

c1
, k2 = k1

√
γρ
γE

be the wavenumbers in the two lamina. Then, for x ∈ (xn, xn+1), n = 0, N−1, u(x) can be written in

terms of the coefficients a
(1)
n , b

(1)
n , a

(2)
n and b

(2)
n as

u(x) =

{
a(1)n cos (k1(x− xn)) + b(1)n sin (k1(x− xn)) , x ∈ [xn, xn + αε],

a(2)n cos (k2(x− xn − αε)) + b(2)n sin (k2(x− xn − αε)) , x ∈ [xn + αε, xn+1].
(B.3)

Letting

M(x) =

[
cos(x) sin(x)
− sin(x) cos(x)

]
, T (η) =

[
1 0
0 η

]
,
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we next write (i) the transmission conditions at x = 0 and at x = L, and (ii) the transmission conditions
for each interface within the microstructure as

x = 0 :

[
a
(1)
0

b
(1)
0

]
= T

(√E−ρ−√
E1ρ1

)
·M(k−L) ·

[
A−

B−

]
,

x = xn + αε :

[
a
(2)
n

b
(2)
n

]
= T

( 1
√
γEγρ

)
·M(k1αε)

[
a
(1)
n

b
(1)
n

]
,

x = xn+1 :

[
a
(1)
n+1

b
(1)
n+1

]
= T

(√
γEγρ

)
·M(k2(1− α)ε) ·

[
a
(2)
n

b
(2)
n

]
,

x = L :

[
A+

B+

]
= T

( √E1ρ1√
E+ρ+

)
·

[
a
(1)
N

b
(1)
N

]
,

(B.4)

where we used two auxiliary coefficients, a
(1)
N and b

(1)
N (corresponding to a “virtual” half-cell [L,L+αε]),

to simplify the expressions. On defining the cell transfer matrix, M ε, as

M ε = T
(√
γEγρ

)
·M(k2(1− α)ε) · T

( 1
√
γEγρ

)
·M(k1αε)

and combining equations (B.4), the second boundary condition in (B.2) becomes(
M tot ·

[
0
B−

])
·
[

1
0

]
= uL, (B.5)

where the “total” transfer matrix is given by

M tot = M(k+L) · T
( √E1ρ1√

E+ρ+

)
·
[
M ε

]N · T(√E−ρ−√
E1ρ1

)
·M(k−L).

Note that the eigenvalues of transmission problem (61) correspond to frequencies ω for which (B.5) with
uL = 0 admits a non-trivial solution. On writing the characteristic function as

ftot(ω) =

[
1
0

]T
·M tot ·

[
0
1

]
and assuming ftot(ω) 6= 0, we consequently find from (B.5) that

B− =
uL

ftot(ω)
.

The coefficients a
(1)
n , b

(1)
n , a

(2)
n and b

(2)
n (n = 0, N−1), together with A+ and B+, are then computed from

the transmission conditions (B.4), thus yielding the complete solution by way of (B.1) and (B.3).

Remark B.1. For simplicity, we assumed the displacement boundary conditions at both ends of the
composite rod in transmission problem (61). Nonetheless, considering other boundary conditions would
result in a similar expression for the characteristic function ftot and solution u. For instance assuming
prescribed traction, E+u,x(2L) = σL, at the “right” end, we obtain the characteristic function

f trtot(ω) :=

[
0
1

]T
·M tot ·

[
0
1

]
so that, for f trtot(ω) 6= 0, we have

B−tr =
σL

E+ k+ f trtot(ω)
.

Appendix B.2. Homogenized models

We now apply the homogenization procedure to transmission problem (61). We pursue this goal by
first writing the transmission conditions in terms of the total fields, and then applying these interfacial
requirements to the mean fields so that the microscopic information is retained.
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Zeroth-order model.. The leading-order homogenized field U (0) = U0 satisfies the field equations

U (0)
,xx + k2±U

(0) = 0 for x ∈ Y ±,

U (0)
,xx + k20 U

(0) = 0 for x ∈ YL,
(B.6)

together with the boundary and transmission conditions

U (0)(−L) = 0,

{
U (0)(0−) = U (0)(0+),

E−U
(0)
,x (0−) = E0U (0)

,x (0+),

{
U (0)(L−) = U (0)(L+),

E0U (0)
,x (L−) = E+U

(0)
,x (L+),

U (0)(2L) = uL. (B.7)

We next let

U (0)(x) =


U−(x+ L), x ∈ [−L, 0],

a0 cos(k0x) + b0 sin(k0x), x ∈ [0, L],

U+(x− L), x ∈ [L, 2L],

(B.8)

where U− and U+ are given by (B.1). On writing the boundary and transmission conditions (B.7) in
terms of A±, B±, a0 and b0, we obtain the characteristic function

f0(ω) :=

[
1
0

]T
·M+ · T+

0 ·M0 · (T−0 )−1 ·M− ·
[

0
1

]
,

where

M± = M(k±L), M0 = M(k0L), T±0 = T
( √E0%0√

E±ρ±

)
.

When f0(ω) 6= 0, the transmission problem (B.6)–(B.7) is well-posed, and its solution is given by

B− =
uL
f0(ω)

.

First-order model.. The first-order total mean field U (1) satisfies the field equations

U (1)
,xx + k2±U

(1) = 0 for x ∈ Y ±,

U (1)
,xx + k20 U

(1) = 0 for x ∈ YL,
(B.9)

along with the usual boundary conditions (U (1)(−L) = 0 and U (1)(2L) = uL) and the enhanced trans-
mission conditions

U (1)(0−) =
[
U (1) + εP1(0)U (1)

,x

]
(0+),

U (1)
,x (0−) =

E0
E−

[
Σ0U

(1)
,x − k20 εΣ1(0)U (1)

]
(0+),


[
U (1) + εP1(0)U (1)

,x

]
(L−) = U (1)(L+),

E0
E+

[
Σ0U

(1)
,x − k20 εΣ1(0)U (1)

]
(L−) = U (1)

,x (L+),

(B.10)
featuring the O(ε) boundary correctors stemming from the first-order approximations (31). With refer-
ence to (B.8), we next decompose U (1) into U−, U+ and the “interior” solution a1 cos(k0x)+ b1 sin(k0x),
which transforms (B.10) into

x = 0 : M− ·
[
A−

B−

]
= T−0 ·M

(1)(0) ·
[
a1
b1

]
,

x = L :

[
A+

B+

]
= T+

0 ·M
(1)(k0L) ·

[
a1
b1

]
,

with
M (1)(x) = M(x) + k0εP 1(0) ·N(x)

and

P 1(y) =

[
P1(y) 0

0 Σ1(y)

]
, N(x) =

[
− sin(x) cos(x)
− cos(x) − sin(x)

]
. (B.11)
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The characteristic function is then given by

f1(ω) =

[
1
0

]T
·M+ · T+

0 ·M
(1)(k0L) ·

(
M (1)(0)

)−1 · (T−0 )−1 ·M− ·
[

0
1

]
,

so that ω is an eigenfrequency of the first-order problem if and only if f1(ω) = 0. When this is not the
case, the solution of the transmission problem (B.9)–(B.10) is uniquely given by

B− =
uL
f1(ω)

.

Second-order model.. Assuming the (mt) model of the field equation examined in Section 3, the second-
order mean field U (2) satisfies

U (2)
,xx + k2±U

(2) = 0 for x ∈ Y ±,

U (2)
,xx + k2mtU

(2) = 0 for x ∈ YL,
(B.12)

where kmt = kmt(ε) is given by (42). In this case the boundary conditions are U (2)(−L) = 0 and
U (2)(2L) = uL as before, while the enhanced transmission conditions read

x = 0 :


U (2)(0−) =

[ (
1− k2mtε2P2(0)

)
U (2) + εP1(0)U (2)

,x

]
(0+),

U (2)
,x (0−) =

E0
E−

[ (
Σ0 − k2mtε2Σ2(0)

)
U (2)
,x − k2mtεΣ1(0)U (2)

]
(0+),

x = L :


[ (

1− k2mtε2P2(0)
)
U (2) + εP1(0)U (2)

,x

]
(L−) = U (2)(L+),

E0
E+

[ (
Σ0 − k2mtε2Σ2(0)

)
U (2)
,x − k2mtεΣ1(0)U (2)

]
(L−) = U (2)

,x (L+),

(B.13)

as driven by the second-order approximations (40). On decomposing U (2) into U−, U+ and the “interior”
solution a2 cos(kmtx) + b2 sin(kmtx), (B.13) become

x = 0 : M− ·
[
A−

B−

]
= T−mt ·M

(2) (0) ·
[
a2
b2

]
,

x = L :

[
A+

B+

]
= T+

mt ·M
(2) (kmtL) ·

[
a2
b2

]
,

where

T±mt = T
(E0kmt
E±k±

)
, M (2)(x) =

(
I − k2mtε2P 2(0)

)
·M(x) + kmtεP 1(0) ·N(x);

P 1 and N are given by (B.11), and similarly P 2(y) = diag(P2(y),Σ2(y)). In this case, the characteristic
function reads

f2(ω) =

[
1
0

]T
·M+ · T+

mt ·M
(2)(kmtL) ·

(
M (2)(0)

)−1 · (T−mt)−1 ·M− ·
[

0
1

]
,

so that ω is an eigenfrequency of the second-order homogenized problem if and only if f2(ω) = 0.
Assuming this is not the case, the solution of (B.12)–(B.13) is given by

B− =
uL
f2(ω)

.
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