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Abstract

In order to simulate the Ondes Martenot, a classic electronic musical instrument,
we aim to model its circuit using Port-Hamiltonian Systems (PHS). PHS have
proven to be a powerful formalism to provide models of analog electronic circuits
for audio applications, as they guarantee the stability of simulations, even in the
case of non-linear systems. However, some systems cannot be converted directly
into PHS because their architecture cause what are called realizability conflicts.
The Ondes Martenot circuit is one of those systems. In this paper, a method
is introduced to resolve such conflicts automatically: problematic components
are replaced by equivalent components without altering the overall structure nor
the content of the modeled physical system.

1 Introduction

The Ondes Martenot, invented by Maurice Martenot in 1928, are one of the first
electronic musical instruments [1]. Though the instrument was widely popular
during the last century and still has an important repertoire and community,
its production stopped in 1988. Due to the obsolescence of its components,
an accurate simulation would be highly relevant for musicians, composers and
musicologists. Port-Hamiltonians systems (PHS) have proven to be a powerful
approach to simulate analog electronic circuits for audio applications [2], as they
guarantee passivity of systems and the stability of simulations. Introduced in
the 1990’s [3], PHS describe open dynamical systems and their inherent interac-
tions as a network of energy storage components, dissipative components, and
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connection ports. It is multi-physical (a system can be electrical, mechanical,
thermal or a mix as well), modular (a system made of several PHS is still a
PHS) and passive (no energy is spontaneously created). However, this formalism
is sensitive to realizability conflicts and thus not every circuit can be directly
modeled via this approach. Those conflicts appear for instance (but not only) in
presence of parallel capacitors; the Ondes Martenot circuit happens to be subject
to such conflicts as it contains several parallel capacitors. As the laws of those
capacitors are not well known yet, we choose not to impose linear behaviors and
as a consequence, a common impedance analysis approach cannot apply. We
thus present a method resolving realizability issues by automatically replacing
components causing conflicts with equivalent components, provided that the
laws of the replaced components can be represented by piecewise linear scalar
functions.

This paper is structured as follows: in section 2 we briefly present the PHS
formalism and a corresponding numerical scheme for simulations. In section
3, we give the description of a realizability conflict, and introduce a method
to resolve it without losing information about the physical behavior of the
system for mono-variate components. We then suggest a way of implementing
this method within the open-source library PyPHS. Finally, after introducing
the Ondes Martenot circuit in section 4, we present the results of our method
implementation in section 5.

2 Port-Hamiltonian Systems: formalism and ex-
ample

2.1 Formalism

Consider a physical system as a network of storage components with their state
variable x and their stored energy given by a constitutive law H(x), dissipative
components with their variable w and dissipative law z(w), control inputs u
and their associated outputs y. The variables are generally time-dependent and
can be multivariate. If such a system is realizable, the energy transfers i.e. flow
and effort exchanges between the system components can be expressed into an
algebro-differential form using a skew-symmetric matrix S : dx

dt
w
−y


︸ ︷︷ ︸
F(flows)

= S×

∇H(x)
z(w)
u


︸ ︷︷ ︸
E(efforts)

(1)

The skew-symmetry of S guarantees that the system remains passive. Indeed,
the power balance requires that
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dE

dt︸︷︷︸
∇H(x)ᵀ dx

dt

= Pext︸︷︷︸
uᵀy

− Pdiss︸ ︷︷ ︸
z(w)ᵀw ≥ 0

(2)

where dE
dt is the total energy variation of the system, Pext the incoming

power from external sources and Pdiss the total dissipated power which must be
positive. Indeed,

dE

dt
+ Pdiss − Pext = EᵀF

= EᵀSE
= (EᵀSE)ᵀ

= EᵀSᵀE

(3)

Thus if and only if S is skew-symmetric,

EᵀSE = −EᵀSᵀE = −EᵀSE = 0 (4)

and the power balance is preserved.

2.2 Example

Consider a parallel RLC circuit (fig.1). The capacitor C and the inductor L

Figure 1: Parallel RLC

are storage components whose states are given by the variables q (charge) and φ
(magnetic flow) respectively ; the resistor R is a dissipative component described
by Ohm’s law. The system is current (flow) controlled, its associated output is a
voltage (effort). Table 1 recaps the variables and the associated laws of the three
components. Using the PHS formalism, the energy transfers (Kirchoff’s law)
in a parallel RLC circuit take a very simple form involving a skew-symmetric
matrix S : 

iC
uL
uR
−U

 =


0 −1 −1 1
1 0 0 0
1 0 0 0
−1 0 0 0

×

uC
iL
iR
I
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x dx
dt H(x) ∇H(x)

C q q̇ = iC
q2

2C
q
C = uC

L φ φ̇ = uL
φ2

2L
φ
L = iL

w z(w)

R uR
uR

R = iR

Table 1: State variables and constitutive laws for a parallel RLC circuit

Currents are flows, voltages are efforts and their products therefore are powers,
thus equation (2) is naturally retrieved. Note that in this simple example, the
matrix S is sparse with constant coefficients, but the properties of the PHS
formalism hold for non-linear, coupled or multivariate systems which yield more
complex matrices.

2.3 Numerical scheme

The PHS formalism guarantees the passivity of the system in continuous time.
Introducing discrete gradient [4] in a well chosen numerical scheme allows to
preserve this passivity property in discrete time, therefore granting the stability
of the simulation as well. A numerical scheme computes the current sample
xn+1 from the previous samples xn−i, i ∈ [0, n] and the given parameters of the
problem. Here we use a one-step numerical scheme (i = 0) which yields

xn+1 = xn + δxn(ts) (5)

where ts is the sampling period. The discrete gradient ∇̄H(xn, δxn) is defined
by

∇̄H(xn, δxn) =
H(xn+1)−H(xn)

xn+1 − xn

=
H(xn + δxn)−H(xn)

δxn

(6)

so that the discrete variation of energy is retrieved by chain derivation:

σn(En, ts) = ∇̄H(xn, δxn)ᵀ · δxn(ts)

ts
(7)

where σn(En, ts) = En+1−En

ts
. Therefore the numerical scheme composed of (5)

and (6) guarantees the power balance in discrete time. Here the given data are
the matrix S, the laws H and z and the sequence of discrete inputs un. The

simulation is computed by replacing dx
dt by δxn(ts)

ts
and ∇H(x) by ∇̄H(xn, δxn)

in equation (1) which yields a dynamic equation of the form

δxn = tsfn(xn + αδxn), α ∈ [0, 1] (8)
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where fn is a function derived from the matrix S coefficients, ∇̄H, z(w) and un.
This is an implicit Euler scheme which can be solved using a Newton-Raphson
algorithm [5]. Once δxn is computed, xn+1 and yn can be computed as well.

3 Realizability issues in circuit modeling and
resolution

3.1 Problem description

Consider a system composed of at least two connected components, each subject
to the same flow if connected in series, or the same effort if connected in
parallel. If both components are effort-controlled and connected in series, or
flow-controlled and connected in parallel, then the system cannot be described
using the PHS formalism. This is the case of two capacitors connected in parallel,
a configuration frequently found in analog circuits to refine the value of the
equivalent capacity (fig.2). Both capacitors are flow-controlled (dxdt = q̇ = i).

Figure 2: Capacitors connected in parallel

When connected in parallel, their corresponding efforts are equal and no matrix
can represent the energy transfers in the PHS formalism : iA

iB
−U

 = ?×

uAuB
I


Such a conflict would appear with two inductors connected in series as well.

A criterion for realizability analysis is provided by Falaize [6], involving the graph
representation of the circuit. In such a representation, a node is a connection
between two components and an edge is the component itself. As a convention,
the orientation of an edge is given by the current going through it. The criterion
derives from the incidence matrix Γ defined as follows:

Γn,e =


−1 if edge e is outgoing node n

1 if edge e is ingoing node n

0 otherwise

(9)
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The edges are supposed to be sorted between flow-controlled components and
effort-controlled components. Then from this incidence matrix Γ, we can extract
the matrix γ of the flow-controlled components only. The criterion establishes
that if γ is invertible, the system is realizable as a PHS structure. Indeed, for
the parallel capacitors example, the γ matrix would yield

γ =

CA CB( )
−1 −1 N1

1 1 N2

(10)

As its determinant equals 0, γ is not invertible and the realizability issue is
confirmed.

3.2 Formal resolution for mono-variate components

Such a criterion is convenient to predict if a given system will be realizable
or not. But it does not provide a solution in the event of a realizability issue.
The idea we propose is to replace non-realizable subsystems with equivalent
components without altering the power balance of the system. In the case of
linear components, such conflicts pose no difficulty: the association of the two
components A and B can be replaced by an equivalent component C whose value
is the sum of the previous two, either manually or automatically by graph analysis.
Indeed for the parallel capacitors example, if we denote Z each component’s
impedance, ZC = ZAZB

ZA+ZB
leads to CC = CA + CB. This is also immediate

for two inductors in series with ZC = ZA + ZB. The method we present here
compute equivalent components for non-linear components as well, provided that
their constitutive laws satisfy the right hypotheses. We denote C the equivalent
component, qC its state variable and HC its constitutive law. HA and HB are
the constitutive laws of components A and B and we denote their gradients H ′A
and H ′B . Our hypotheses are:
(i) HA et HB are positive definite and C1
(ii) H ′A and H ′B are increasing
(iii) H ′A(0) = H ′B(0) = 0
H ′A and H ′B are thus bijective which grants H ′−1A and H ′−1B existence.
By definition,

uA = H ′A(qA) (11)

and
uB = H ′B(qB) (12)

which leads to
qA = H ′−1A (uA) (13)

and
qB = H ′−1B (uB) (14)

The components A and B are extensive thus

qC = qA + qB (15)
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and the configuration of the circuit gives

uC = uA = uB (16)

(or iC = iA = iB for components in series).
We denote

H̃A(uA) = (HA ◦H ′−1A )(uA) = (HA ◦H ′−1A )(uC) (17)

and
H̃B(uB) = (HB ◦H ′−1B )(uB) = (HB ◦H ′−1B )(uC) (18)

The energy of the equivalent component is the sum of the energies of the
components A and B and we define H̃C(uC) as:

H̃C(uC) = H̃A(uC) + H̃B(uC)

= (H̃A + H̃B)(uC)
(19)

Equations (15) and (16) yield

qC = H ′−1A (uA) +H ′−1B (uB)

= H ′−1A (uC) +H ′−1B (uC)

= (H ′−1A +H ′−1B )(uC)

(20)

H ′−1A and H ′−1B are bijective so their sum is also bijective. Equations (20) and
(19) thus yield

H̃C(uC) = (HA ◦H ′−1A +HB ◦H ′−1B )(uC)

= (HA ◦H ′−1A +HB ◦H ′−1B ) ◦ (H ′−1A +H ′−1B )−1(qC)
(21)

We thus define HC(qC) = (HA ◦H ′−1A +HB ◦H ′−1B ) ◦ (H ′−1A +H ′−1B )−1(qC) and
this can be generalized for N connected components:

HC(qC) = [

N∑
i=1

Hi ◦H ′−1i ] ◦ [

N∑
i=1

H ′−1i ]−1(qC) (22)

Additionally, we are able to compute the state variable of the original components
at any time:

qi = H ′−1i (uC)

= (H ′−1i ◦H ′−1C )(qC)
(23)

3.3 Implementation in the PyPHS library for mono-variate
piecewise linear components

3.3.1 PyPHS library

PyPHS is a Python open-source library dedicated to PHS modeling and simula-
tion [7]. The user defines a system either manually or with a netlist of components
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belonging to a dictionary. Each dictionary lists usual components of a physical
class (electronical, mechanical, thermal ...) and encodes their constitutive laws.
PyPHS then creates an associated graph object and performs a realizability
analysis. If the system is realizable, a PHS structure and corresponding equations
are derived from the graph and one can compute simulations using the numerical
scheme introduced in section 2.3. The complete library and documentation are
available on https://github.com/pyphs/pyphs.

3.3.2 Construction of components with piecewise linear constitutive
laws

In order to solve realizability conflicts using the method presented in section 3.2,
we need a class of constitutive laws for which sum, inversion and composition
exist and are computable. Piecewise linear functions are thus considered, and
we define the H ′i of the form fX,Y ∈ C0(R,R) with (X,Y ) ∈ I2N , N > 0 where
IN = {(X0, ..., XN ) ∈ RN+1 s.t. X0 < X1 < ... < XN}:
(i) if Xn ≤ x < Xn+1 with n ≥ 0 and n < N , then fX,Y (x) = Yn+ Yn+1−Yn

Xn+1−Xn
(x−

Xn)
(ii) if x < X0, then fX,Y (x) = Y0 + Y1−Y0

X1−X0
(x−X0)

(iii) if x > XN , then fX,Y (x) = YN−1 + YN−YN−1

XN−XN−1
(x−XN ) (iv) it exists n s.t.

0 ≤ n < N and Xn = Yn = 0. For this class of functions, we define inverse, sum
and composition laws as internal laws:
f−1X,Y = fY,X
fA,B + fC,D = fE,F where E = sort(A,C) and F = fA,B(E) + fC,D(E)
fC,D ◦ fA,B = fE,F where E = sort(A, f−1A,B(C)) and F = [fC,D ◦ fA,B ](E)
We define sort(A,B) as the set of all the elements of A and B, sorted. The Hi

are computed from the H ′i by integration with trapezoidal rule and laws for
equivalent components are given by equation (22). The components replacement
algorithm is presented in alg. 1.

4 The Ondes Martenot circuit

The Ondes Martenot, invented by Maurice Martenot in 1928, are one of the first
electronic musical instrument based on heterodyne processing: two oscillators
generate a high frequency sinusoidal voltage (around 80 kHz); one is fixed, and
the player controls the frequency of the second one using a ribbon, whose position
controls a capacitor made of several capacitors connected in parallel. The sum of
these two voltages is an amplitude-modulated signal whose envelope is detected
using a triode vacuum tube, producing an audible sound. The triode vacuum
tube is a non-linear component which produces harmonics. This enriched signal
is then routed towards special kinds of loudspeakers selected by the musician.
Figure 3 shows the schematic of the controllable oscillator of Onde 169. This
part of the circuit is a good candidate for our method as it contains several
parallel capacitors.
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Divide system graph between parallel and series subgraphs;
for each subgraph do

if subgraph is parallel then
for each storage component do

if component is flow-controlled then
Store component dataset;

end

end
if there are at least two stored components then

Compute equivalent H;
Remove stored components from subgraph;
Replace with new component dataset;

end

end
if subgraph is series then

for each storage component do
if component is effort-controlled then

Store component dataset;
end

end
if there are at least two adjacent stored components then

Compute equivalent H;
Remove stored components from subgraph;
Replace with new component dataset;

end

end

end
Algorithm 1: Component replacement algorithm based on a dataset (X,
Y)∈ I2N and an interpolating function fX,Y ∈ C0(R,R)
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Figure 3: Schematic of the controllable oscillator of Onde 169 (source: Musée de
la Musique, Paris)

5 Results

The algorithm is performed on a system made of three non-linear capacitors
in parallel. As the real laws of the circuit capacitors are not known yet since
the components could not be measured, we generate data for three piecewise
linear functions representing H ′1, H ′2 and H ′3 with the constraint that H ′1(X1) =
H ′2(X2) = H ′3(X3) and take a set X1 of sorted q values evenly spaced by
0.5.10−5 in [0, 10−4] (see table 2). The manually computed law for such a system

is H(x) = x4

4C3 where C = 3
√
C1+ 3

√
C2+ 3

√
C3. Figure 4 shows a comparison with

this law and the one automatically computed using algorithm 1 and equation
(22).

C1 C2 C3

value 440pF 47pF 27pF

X = {q} X1 X2 = X1 3

√
C2

C1
X3 = X1 3

√
C3

C1

Y = H′(X)
X3

1

C1

X3
2

C2

X3
3

C3

Table 2: Data generated for three non-linear capacitors in parallel
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Figure 4: Comparison between manually computed law and automatically
computed law for three non-linear capacitors connected in parallel

6 Discussion

The results of the simulation are consistent with the theory. The replacement
method allow to compute equivalent laws for non linear mono-variate components
connected in a non-realizable way. A modeling based on the PHS formalism can
then (1) simulate a larger class of circuits without preprocessing or reorganizing
from the user’s part and (2) include more complex models as constitutive laws. A
current work tackles the extension of this method to multivariate laws, as some
components depend from several variables, like the ribbon-controlled capacitor
of the Ondes Martenot whose capacity varies in time.

7 Summary

As a summary, this paper shows that some components connections in circuits
are not readily adapted to the formalism of Port-Hamiltonian Systems. A simple
method to resolve such conflicts of realizability is introduced. This work forms
part of larger project, aiming to simulate the whole electronics of Ondes Martenot,
which is an essential step to provide reliable sound synthesis.
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