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PARTIAL REGULARITY FOR
FRACTIONAL HARMONIC MAPS INTO SPHERES

VINCENT MILLOT, MARC PEGON, AND ARMIN SCHIKORRA

ABSTRACT. This article addresses the regularity issue for stationary or minimizing fractional
harmonic maps into spheres of order s € (0, 1) in arbitrary dimensions. It is shown that such
fractional harmonic maps are C°° away from a small closed singular set. The Hausdorff
dimension of the singular set is also estimated in terms of s € (0,1) and the stationar-
ity /minimality assumption.

CONTENTS
1. Introduction 1
2. Functional spaces, fractional operators, and compensated compactness )
3. Fractional harmonic maps and weighted harmonic maps with free boundary 15
4. Small energy Holder regularity 19
5. Small energy Lipschitz regularity 28
6. Higher order regularity 34
7. Partial regularity for stationary and minimizing s-harmonic maps 38
Appendix A. On the degenerate Laplace equation 49
Appendix B. A Lipschitz estimate for s-harmonic functions 50
Appendix C. An embedding theorem between generalized Q-spaces 51
References 53

1. INTRODUCTION

The theory of fractional harmonic maps into a manifold is quite recent. It is has been
initiated some years ago by F. Da Lio and T. Riviere in [9, 10]. In those first articles, they
have introduced and studied 1/2-harmonic maps from the real line into a smooth and compact
closed submanifold A" C R%. A map u : R — A is said to be a 1/2-harmonic map into N if it

is a critical point of the 1/2-Dirichlet energy
1 _ 2
fwm) =L [ L[] ey,
3 T JJexe Tyl

among all maps with values into AV, or equivalently, if it satisfies the Euler-Lagrange equation
(=A)zu L Tan(u, N) (1.1)

in the distributional sense. Here (—A)® denotes the integro-differential (multiplier) operator
associated to the Fourier symbol (27|¢])?¢, s € (0,1). The notion of 1/2-harmonic map into
N appears in several geometrical problems, such as free boundary minimal surfaces or Steklov
eigenvalue problems, see [8] and references therein. The special case N' = S?~! is important
for both geometrical and analytical issues. From the analytical point of view, it enlightens the
internal structure of equation (1.1). Indeed, the Lagrange multiplier associated to the constraint
to be S?~!-valued takes a very simple form, and (1. 1) reduces to the equation

8t = (5 [ =R g ) e, (12)

which is in clear analogy with the equation for usual harmonic maps from a 2d-domain into

the sphere. In particular, there is a similar analytical issue concerning regularity of solutions

since the right hand side of (1.2) has a priori no better integrability than L', and elliptic

linear theory does not apply. In their pioneering work [9], F. Da Lio and T. Riviére proved
1
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complete smoothness of 1/2-harmonic maps through a reformulation of equation (1.2) in terms
of algebraic quantities, the “3-terms commutators”, exhibiting some compensation phenomena.
In [10] (dealing with arbitrary targets), smoothness of 1/2-harmonic maps follows from a more
general compensation result for nonlocal systems with antisymmetric potential, in the spirit
of [39]. In the same stream of ideas, K. Mazowiecka and the third author obtained in [29]
a new proof of the regularity of 1/2-harmonic maps, very close to the original argument of
F. Hélein [24] to prove smoothness of harmonic maps from surfaces into spheres (see also [25]).
Once again, the key point in [29] is to rewrite the right hand side of (1.2) to discover a suitable
“fractional div-curl structure”. From the new form of the equation, they deduce that (—A)2u
belongs (essentially) to the Hardy space H' by applying their main result [29, Theorem 2.1],
a generalization to the fractional setting of the div-curl estimate of R. Coifman, P.L. Lions,
Y. Meyer, and S. Semmes [4]. Continuity of solutions is then a consequence of Calderén-
Zygmund theory, from which it is possible to deduce C'*°-regularity.

Several generalizations of the regularity result of [9, 10] have been obtained, e.g. for critical
points of higher order or/and p-power type energies (still in the corresponding critical dimen-
sion), see [7, 11, 12, 29, 44, 45, 46]. The regularity theory for 1/2-harmonic maps into a manifold
in higher dimensions has been addressed in [36] and [32] (see also [30]). In higher dimensions,
the theory provides partial regularity (i.e. regularity away from a “small” singular set) for
stationary 1/2-harmonic maps (i.e. critical points for both inner and outer variations), and
energy minimizing 1/2-harmonic maps. It can be seen as the analogue of the partial regularity
theory for harmonic maps by R. Schoen and K. Uhlenbeck [48, 49] in the minimizing case, and
by L.C. Evans [17] and F. Bethuel [1] in the stationary case. In [32], the argument consists in
considering the harmonic extension to the upper half space in one more dimension provided
by the convolution with the Poisson kernel. The extended map is then harmonic and satisfies
a nonlinear Neumann boundary condition which fits within the (previously known) theory of
harmonic maps with partially free boundary, see [15, 16, 21, 22, 43].

The purpose of this article is to extend the regularity theory for fractional harmonic maps
in arbitrary dimensions to the context of s-harmonic maps, i.e., when the operator (—A)% is
replaced by (—A)® with arbitrary power s € (0,1). As a first attempt in this direction, we only
consider the case where the target manifold A is the standard unit sphere S¥~! of R?, d > 2.
We now describe the functional setting.

Given s € (0,1) and © C R™ a bounded open set, the fractional s-Dirichlet energy in € of a
measurable map u : R” — R? is defined by

. 2
Eu(u, Q) %// [utz) “(+2)| dzdy, (1.3)
RrxRP)\(QoxQe) T — y[mHs

where ¢ denotes the complement of Q, i.e. Q¢ :=R™\ . The normalisation constant 7, s > 0,
whose precise value is given by (2.1), is chosen in such a way that

1/ [(=A)iu|’de  Vue 2(%RY).

Ex(u,0) =

Following [32, 33], we denote by H*(Q;R%) the Hilbert space made of L2 (R™)-maps u such
that &(u, Q) < oo, and we set

H3(Q;5%1) = {UGHS(Q RY) : u(z) € ST for ae. :UER”}.

We then define weakly s-harmonic maps in €2 as critical points of &(u,?) in the (nonlinear)
space H*(Q;S91). More precisely, we say that a map u € H*(Q;S?!) is a weakly s-harmonic
map in Q into S if

d u+ 1ty d
—&, - 0 = Q,RY).
[dt(‘S <|u + ti| )L_o 0 Ve 9( )

Exactly as (1.2), the Euler-Lagrange equation reads

u\xr)—u 2
(—A)u(z) = (7’5 / M dy) u(z) in 2'(9), (1.4)
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where (—A)® is the integro-differential operator given by
L u(r) — u(y)
(_A)éu(x) = pV (771,5 /Rn |:C . y|n+28 dy 9
and the notation p.v. means that the integral is taken in the Cauchy principal value sense. We
refer to Section 2 and 3 for the precise weak (variational) formulation of equation (1.4).

Once again, the right hand side in (1.4) has a priori no better integrability than L', and
linear elliptic theory does not apply to determine the regularity of solutions. However, in the
case n < 2s, that isn =1 and s € [1/2, 1), the equation is subcritical. For n =1 and s = 1/2,
this is the result of [9, 10]. For n =1 and s € (1/2,1), solutions are at least Holder continuous
by the embedding H® < C%*~1/2 and this is enough to reach C'-smoothness by applying
Schauder type estimates for the fractional Laplacian.

Theorem 1.1. Assume thatn =1 and s € [1/2,1). Ifu € ﬁS(Q;Sd_l) is a weakly s-harmonic
map in ), then u € C>(Q).

On the other hand, the case n > 2s is supercritical, and by analogy with (usual) weakly
harmonic maps in dimension at least 3, we do not expect any regularity without further as-
sumptions. Indeed, in his groundbreaking article [38], T. Riviere has constructed a weakly
harmonic map from the 3-dimensional ball into S? which is everywhere discontinuous. A natu-
ral extra assumption to assume on a weakly s-harmonic map is stationarity, that is

[dgs(uo@,Q)} =0 VX € CH R,
dt t=0
where {¢;}:cr denotes the integral flow of the vector field X. According to the standard
terminology in calculus of variations, a weakly s-harmonic map in € is a critical point of
Es(+, ) with respect to outer variations (i.e. in the target), a stationary map is a critical
point of &(-,) with respect to inner variations (i.e. in the domain), and thus a stationary
weakly s-harmonic map in ) is a critical point of E(-, 2) with respect to both inner and outer
variations.

Our second main result provides partial regularity for such maps. In its statement, the
singular set of v in  is defined as

sing(u) := Q\ {z € Q: u is continuous in a neighborhood of z}

dimy denotes the Hausdorff dimension, and H"~! is the (n—1)-dimensional Hausdorff measure.
Theorem 1.2. Assume that s € (0,1) and n > 2s. If u € ﬁS(Q;Sdfl) is a stationary weakly
s-harmonic map in §, then u € C*°(Q2\ sing(u)) and

(1) for s >1/2 and n > 3, dimy sing(u) < n — 2;

(2) for s> 1/2 and n =2, sing(u) is locally finite in §2;

(3) for s =1/2 and n > 2, H" (sing(u)) = 0;

(4) for s <1/2 andn > 2, dimy sing(u) < n — 1;

(5) for s <1/2 and n =1, sing(u) is locally finite in Q.

The other common assumption to consider is energy minimality. We say that a map u €
H*(2;S%1) is a minimizing s-harmonic map in § if
Es(u, Q) < Es(v,Q)
for every competitor v € ﬁS(Q;Sd’l) such that v — u is compactly supported in 2. Notice
that minimality implies criticality with respect to both inner and outer variations, so that a

minimizing s-harmonic map in 2 is in particular a stationary weakly s-harmonic map in €.
However, minimality implies a stronger partial regularity, at least for s € (0,1/2).

Theorem 1.3. Assume that s € (0,1) and n > 2s. Ifu € ﬁS(Q;Sd_l) is a minimizing
s-harmonic map in 2, then u € C®(Q\ sing(u)) and

(1) forn >3, dimy sing(u) <n —2;

(2) for n =2, sing(u) is locally finite in §2;

(3) forn =1, sing(u) =0 (i.e., u € C*°(Q)).
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Before describing the way we prove Theorem 1.2 and Theorem 1.3, let us comment on the
sharpness of the results above.

Remark 1.4. In the case s € (0,1/2), essentially no better regularity than the one coming
from the energy space can be expected from a weakly s-harmonic map in Q. Indeed, for an
arbitrary set £ C R™ such that the characteristic function x g belongs to H 5(Q), consider the
function u := xg — xg-. Identifying R? with the complex plane C, we can see u as a map from
R" into S*, and it belongs to ﬁs(ﬂ; S1). It has been observed in [33, Remark 1.7] that u is a
weakly s-harmonic map in Q into S, i.e., it satisfies (1.4). For s = 1/2, we believe that, in
the spirit of [38], it should be possible to construct an example of a 1/2-harmonic map from
the 2-dimensional disc into S' which is discontinuous everywhere using the material in [31].
However, for s € (1/2,1) and n = 2, it remains open whether or not such pathological example
do exist.

Remark 1.5. For s € (0,1/2), the partial regularity for stationary weakly s-harmonic maps is
sharp in the sense that the size of the singular set can not be improved. Following Remark 1.4
above and [33, Remark 1.7], for a set E C R™ such that yg € ﬁs(ﬂ), the map u := xg — XE-
is a weakly s-harmonic map in 2 into S!, and

gs(ua Q) = ’Yn,sPQS(Ev Q) 5

where Pos(E,Q) is the fractional 2s-perimeter of E in Q introduced by L. Caffarelli, J.M.
Roquejoffre, and O. Savin in [2], and it is given by

dxd
Py (E,Q) = // +// +// 77%
(ENQ) x (E<NQ) (ENQe) x (EcNQ) (ENQ) x (E<NQe) |z — |

Therefore, u is a stationary weakly s-harmonic map in 2 if and only if F is stationary in {2 for
the shape functional Py,(-, ) (see [33]). This includes the case where OF is a nonlocal minimal
surface in the sense of [2]. In particular, if E is a half space, then u is a stationary weakly
s-harmonic map in 0, and sing(u) = OE N Q is an hyperplane.

Remark 1.6. For arbitrary spheres, Theorem 1.3 is sharp for s = 1/2, see Example 7.15. This
example is built on the minimality of the map x/|z| from the plane R? into S! proved in [30,
Theorem 1.4]. The minimality of z/|x| for s # 1/2 is open, but one can check that it is at least
a stationary s-harmonic map into S! in the unit disc D; C R2?, showing that Theorem 1.2 is
sharp also for s € [1/2,1).

For arbitrary s € (0,1), the following classical example suggests that Theorem 1.3 might be
sharp anyway. Consider the minimization problem (still in dimension n = 2),

min {Ss(u, Dy):ue H*(D1,SY), u(z) = /|| in R?\ Dl} :

Existence of solutions follows easily from the direct method of calculus of variations, and any
solution is obviously a minimizing s-harmonic map in D;. Since x/|z| does not admit any
S'-valued continuous extension to D1, any solution must have at least one singular point in D;.

Remark 1.7. For s = 1/2 and d > 3 (i.e., for S? or higher dimensional target spheres), the
size of the singular set of a minimizing 1/2-harmonic map can be reduced. It has been proved
in [30, Theorem 1.3] that in this case, sing(u) = 0 for n = 2, it is locally finite for n = 3, and
dimysing(u) < n — 3 for n > 4. It would be interesting to know if this improvement persists
for s #£1/2.

The proofs of Theorems 1.1, 1.2, and 1.3 rely on several ingredients that we now briefly de-
scribe. The first one consists in applying the so-called Caffarelli-Silvestre extension procedure [3]
to the open half space R’j_ﬂ :=R"x (0,400). This extension (which may have originated in the
probability literature [37]) allows us to represent (—A)® as the Dirichlet-to-Neumann operator
associated with the degenerate elliptic operator Ly := —div(2'72*V.), where z € (0, +0oc) de-
notes the extension variable. In this way (after extension), we can reformulate the s-harmonic
map equation as a degenerate harmonic map equation with partially free boundary, very much
like in [32, 33]. Under the stationarity assumption, the extended map satisfies a fundamental
monotonicity formula, which in turn implies local controls in the space BMO (bounded mean
oscillation) of the s-harmonic map under consideration by its energy.
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Probably the main step in the proof is an epsilon-regularity result where we show that under
a (standard) smallness assumption on the energy & in a ball, then a (stationary) s-harmonic
map is Holder continuous in a smaller ball. The strategy we follow here is quite inspired from the
argument of L.C. Evans [17] making use of the conservation laws discovered by F. Hélein [24] and
the duality H!/BMO. In our fractional setting, we make use of the fractional conservation laws
together with the “fractional div-curl lemma” of K. Mazowiecka and the third author [29]. A
main difference with [17] lies in the fact that an additional “error term” appears when rewriting
the s-harmonic map equation in the suitable form where compensation can be seen. To control
this error term in arbitrary dimensions, we make use of a recent embedding result between
Triebel-Lizorkin-Morrey type spaces [26] and various characterizations of these spaces [42, 57].

Once Hélder continuity is obtained, we prove Lipschitz continuity in an even smaller ball
using an adjustment of the classical “harmonic replacement” technique, see [47]. More precisely,
using the extension, we adapt an argument due to J. Roberts [40] in the case of degenerate
harmonic maps with free boundary (i.e., with homogeneous - degenerate - Neumann boundary
condition). With Lipschitz continuity in hands, we are then able to derive C'*°-regularity from
Schauder estimates for the fractional Laplacian.

To obtain the bounds on the size of the singular set, we follow somehow the usual dimension
reduction argument of Almgren & Federer for harmonic maps (see [53]), which is based on the
strong compactness of blow-ups around points. Here compactness (for s # 1/2) is obtained as
in [33], and it is a consequence of the monotonicity formula together with Marstrand’s Theorem
(see e.g. [28]). Finally, in the minimizing case and s € (0,1/2), we obtain an improvement on
the size of the singular set (compared to the stationary case) from the triviality of the so-called
“tangent maps” (i.e. blow-up limits), a consequence of the regularity of minimizing s-harmonic
maps in one dimension proved in [34].

Notation. Throughout the paper, R™ is often identified with 8Ri+1 =R" x {0}. More gener-
ally, sets A C R™ can be identified with Ax {0} C OR’"". Points in R"*! are written x = (z, 2)
with z € R® and z € R. We shall denote by B,.(x) the open ball in R"*! of radius 7 centered at
x = (z, z), while D, (z) := B,(x) NR™ is the open ball (or disc) in R™ centered at z. If x =0,
we simply write B, and D,., respectively. For an arbitrary set G C R"*!, we write

Gt :=GNRI" and 07G:=0GNR}.
IfGC Ri“ is a bounded open set, we shall say that G is admissible whenever

e OG is Lipschitz regular;
o the (relative) open set 9°G C R’ defined by

°G = {x € 9GNORY . B (x) C G for some r > 0} ,
is non empty and has Lipschitz boundary;
e IG =0TGUIG.
Finally, we usually denote by C' a generic positive constant which only depends on the

dimension n and s € (0,1), and possibly changing from line to line. If a constant depends on
additional given parameters, we shall write those parameters using the subscript notation.

2. FUNCTIONAL SPACES, FRACTIONAL OPERATORS, AND COMPENSATED COMPACTNESS

2.1. Fractional H*-spaces. For an open set Q C R"™, the Sobolev-Slobodeckij space H*(Q) is
made of all functions u € L? (Q) such that!

[u }HS(Q) = Jns // Erg)‘z dedy <00, ns:i= s2%7 **(?17;25). (2.1)
QxQ |a?—y\" ° I'(1—s)
It is a separable Hilbert space normed by || - || s =1l 2. []iIS(Q). The space H{ ()

denotes the class of functions whose restriction to any relatlvely compact open subset ' of
belongs to H*(€'). The linear subspace H§,(£2) C H*(R"™) is in turn defined by

H{y(Q) :={ue H*(R") :u=0ae. in R"\ Q}.

IThe normalization constant ~, s is chosen in such a way that [u]g{s(ﬂw) = / (27|€)2%)a)? dé , where @
RTL

denotes the (ordinary frequency) Fourier transform of u.
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Endowed with the induced norm, H,(€?) is also a Hilbert space, and

2
'Yns ul\xr s
[u] e ny = // Ju(z) - n(ﬁ)s‘ dedy = 26,(u, Q) Yu € HEy(Q),
(R xR™)\ (2¢ x2¢) |z —yl

where &;(-, Q) is the s-Dirichlet energy defined in (1.3).
If Q is bounded and its boundary is smooth enough (e.g. if 9Q is Lipschitz regular), then

Hiy() = 7)1 (2.2)
(see [20, Theorem 1.4.2.2]) . The topological dual space of Hi,(€2) is denoted by H *(£2).

We are mostly interested in the class of functions
H5(Q) = {u € L2 (R") : &(u, Q) < oo} .

The following properties hold for any open subsets 2 and € of R™:

H#(Q) is a linear space;

H*(Q) C H*(Q') whenever ' C Q, and &(-, Q) < &(-,Q);
e if Q' is bounded, then H*(Q) N H (R™) C ﬁS(Q’) ;

e if Q is bounded, then HE (R™) N L=(R™) C H*(Q),

loc

where the third item follows from Lemma 2.1 below. Still by Lemma 2.1, H* (Q) is a Hilbert
1/2

space for the scalar product induced by the norm u — [Jul|g. o) = (||u||2LQ(Q) + &E5(u, Q))
(see e.g. [33] and [32, proof of Lemma 2.1]).

Lemma 2.1. Let zy € Q and p > 0 be such that D,(xo) C Q. There exists a constant
C, =C,(p,n,s) >0 such that

2
u(x
/n . u()| dz < C, (gs(u,D,,(Io)) + Hu||2L2(Dp(:co)))

T — mOl + 1)n+25

for every u € H*(Q).

Remark 2.2. Assume that Q is bounded open set with a Lipschitz boundary From the
Hilbertian structure of H* (), it follows that any bounded sequence {uk} in H*(Q) admits a
subsequence converging weakly in HS(Q) In addition, if u; — u weakly in Hs (2), then up — u
strongly in L?(2) by the compact embedding H*(Q) < L?*(Q) (see e.g. [20, Theorem 1.4.3.2]).
In particular, [luxllL2(@) — llullr2e). Since liminfy [Jurl|f. o) = llullz.(q), it follows that
lim infy, Es(ug, Q) = Es(u, Q).

2.2. Fractional operators and compensated compactness. Given an open set ) C R™,
the fractional Laplacian (—A)® in Q is defined as the continuous linear operator (—A)*® :
H*(Q) — (H*(Q)) induced by the quadratic form &(-,Q). In other words, the weak form
of the fractional Laplacian (—A)®u of a given function u € H*(Q) is defined through its action
on H*(Q) by

Yn,s (u(z) — u(y)) (e(z) — o(y))
((=A)*u, <,0>Q //(Rann)\(chQc) dxdy . (2.3)

2 |z — gyt

Notice that the restriction of the linear form (—A)®u to the subspace H,(£2) belongs to H*(2)
with the estimate [|(—A)%ul|%;-. ) < 2E(u, Q).

Remark 2.3. Notice the operator (—A)® has the following local property: if u € ﬁs(Q) and
Q' C Q is an open subset, then

<(_A)Su7 90>Q = <(_A)Su7 90>Q/ Vgo € Hg(](ﬂl) .

Following [29], we now relate the fractional Laplacian (—A)?® to suitable notions of fractional
gradient and fractional divergence. To this purpose, we first need to recall from [29] the notion of
(fractional) “s-vector field” over a domain. The space of s-vector fields in 2, that we shall denote
by L2,(2) (in agreement with [29]), is defined as the Lebesgue space of L?-scalar functions over
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the open set (R™ x R™)\ (¢ x 2¢) C R?" with respect to the measure |z — y|~"dzdy. In other
words,

Lgd(Q) = {F : (Rn X R") \ (Q(' X QC) —R: HFHLgd(Q) < OO}7

with

F 2
IFNZ2 (0 = // [F(,y)P (:v,y)l dzdy .
od (R™ xR™)\ (2¢ X Q°) lz —yl

We endow L2 () with the (pointwise) product operator ® : L2,() x L2,(Q)x — L'(2) given
by

F(z,y)G(z,y) |
g |z —yl”
Note that © is a continuous bilinear operator thanks to Fubini’s theorem, and it plays the role
of “pointwise scalar product” between two s-vector fields. With this respect, we define the
(pointwise) “squared modulus” of a s-vector field F' € L2 () by

FP=FoFeclL(Q). (2.4)

FoG(x) =

The (fractional) s-gradient is defined in [29] as a linear operator from the space of scalar valued
functions H*(Q2) into the space of s-vector fields over 2. More precisely, we define it as the
continuous linear operator dy : H*(2) — L2,(Q) given by

dsu(z,y) :=
@9) == Ty

Obviously, one has

Hdsu”igd(ﬂ) =2&5(u, ) and H|d5u|2HL1(Q) < 284 (u, 2)

for every u € H*(Q).

In turn, the (fractional) s-divergence, denoted by div,, is defined by duality as the adjoint
operator to the s-gradient operator restricted to H§,(€2). To do so, the main observation is that
for F € L2,(f2), we have

Fodyp e LNR™) for every ¢ € Hy(Q),
with
[F ©dsellprmn) < 1|22, ) [@le@n) -

In this way, we can indeed define div, : L2 () — H~*() as the continuous linear operator
given by

(div,F, ), :=/ Fodpdr Vo e Hgy(Q),
Rn

which satisfies the estimate [|divsF'[|g-«(q) < [|Flzz2, (o) for all ' € L2,(9).
From the definition of ds and divy, it readily follows that

Proposition 2.4. We have (—A)® = divs(ds), i.e.,
<(—A)Su,ga>Q = / dsu © dspdx
Rn

for every u € H* () and every ¢ € H§,(Q).

One of the main results in [29] is a compensated compactness result relative to the s-gradient
and s-divergence operators in the spirit of the classical “div-curl” lemma [4]. To present this
result, let us recall that the space BMO(R") is defined as the set of all u € L{ _(R™) such that

loc

[ulBmO(Rn) = Sup ][ [u — (u)y,r| dz < 400,
D, (y) D, (y)

where (u), , denotes the average of u over the ball D, (y). The following theorem corresponds
to [29, Proposition 2.4].
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Theorem 2.5. Let F € L?,(Q) be such that
diveFF =0 in H*(Q).
There exist a universal A > 1 such that for every ball D, (xo) satisfying Da,(zo) C

Q,
[ (F o du)eds] < CIFlL 00 VET D (Ielaon + 7"l

for every u € ﬁIS(Q) and ¢ € (D, (x0)), and a constant C = C(n,s).

Remark 2.6. In the statement of [29, Proposition 2.4], the s-vector field F' is assumed to be
s-divergence free in the whole R™ and u € H*(R™). However, a careful reading of the proof
reveals that only the assumptions in Theorem 2.5 on F' and u are used.

2.3. Weighted Sobolev spaces. For an open set G C R"™!, we consider the weighted L?2-
space
L*(G, |2|°dx) := {v e LL (G):|z|3v € L2(G)} with @ := 1 — 2s,
normed by
912G ey 2= [P .
Accordingly, we introduce the weighted Sobolev space
HY(G, |2]%dx) := {v € L2(G,|2|*dx) : Vo € L2(G, \z|adx)} :
normed by
vl (6,2 2ax) = V]2 (@, 210ax) + 1V V] L2(6, 20 d%) -
Both L%(G,|z|*dx) and H'(G,|z|*dx) are separable Hilbert spaces when equipped with the

scalar product induced by their respective Hilbertian norms.
On H(G, |z|*dx), we define the weighted Dirichlet energy Ey(-, G) by setting

(s)
r(1—s)’

The relevance of the normalisation constant 65 > 0 will be revealed in Section 2.4 (see (2.16)).

E;(v,G) = % /G |2|%| Vo dx  with § := 22571 (2.6)

Some relevant remarks about H!(G,|z|?dx) are in order. For a bounded admissible open
set G C R, the space L?(G, |2|*dx) embeds continuously into LY(G) for every 1 < v < 1
whenever s € (0,1/2) by Hélder’s inequality. For s € [1/2,1), we have L?(G, |z|%dx) — L?*(G)
continuously since a < 0. In any case, it implies that

HY(G,|2|%dx) — W(G) (2.7)

continuously for every 1 < v < min{-,2}. As a first consequence, H'(G, |z|*dx) — L*(G)
with compact embedding. Secondly, for such «’s, the compact linear trace operator

v E Wl’fy(G) = Vjgoa € Ll(c’)OG) (2.8)

induces a compact linear trace operator from H!(G,|z|%dx) into L' (0°G), extending the usual
trace of smooth functions. We shall denote by vjgo the trace of v € H'(G,|z|"dx) on "G,
or simply by v if it is clear from the context. We may now recall the following Poincaré’s
inequality, see e.g. [33, Lemma 2.5].

Lemma 2.7. Ifv € HY(B,,|z|°dx), then

n+2s

||” - (U)THLl(Dr) <Cr v””L?(Bi,\zl“dX) )
for a constant C' = C(n, s), where (v), denotes the average of v over D,..

The next lemma states that the trace v|goe has actually H*-regularity, at least locally.

Lemma 2.8. If v € HY(Bj ,|2|%dx), then the trace of v on °B} ~ D, belongs to H*(D,.),
and

[0)3s(p,) < CEs(v, B,),
for a constant C = C(n, s).
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Proof. The proof follows exactly the one in [34, Lemma 2.3] which is stated only in dimension
n = 1. We reproduce the proof (in arbitrary dimension) for convenience of the reader, slightly
anticipating a well-known identity presented in Section 2.4 (see (2.16)).

Rescaling variables, we can assume that r = 1. Moreover, we may assume without loss of
generality that v has a vanishing average over the half ball B+. Let ¢ € C*(Bs;[0,1]) be a
cut-off function such that {(x) =1 for |x| < 1, {(x) = 0 for |x| 3/2. The function v, := (v
belongs to H*(R", |z|*dx), and Poincaré’s inequality in HI(R"H, |z|*dx) (see e.g. [18]) yields

/ 2% Vu,.|? dx < 2ES(’U,B;_)+C/ 2% v]? dx < CE4(v, By ), (2.9)
R Bf
for a constant C' = C({,n,s). On the other hand, it follows from (2.16) in Section 2.4 below
that

|2 // ‘,U* v*(y)| +1
dedy dzdy < CE, (v, R . (2.10
/ /DD \x—yl"“é _— |x—y|”+23 vdy < OB, (v, RY™). (2.10)

Gathering (2.9) and (2.10) leads to the announced estimate. O

2.4. Fractional harmonic extension and the Dirichlet-to-Neumann operator. Let us
consider the so-called fractional Poisson kernel P, ; : ]RT'I — [0, 00) defined by

225 ) s F(M)
P, s(x):=0ns W with 0, s := 772 ?z) , (2.11)

where x 1= (x,2) € RTFI := R"™ x (0,00). The choice of the constant o, s is made in such a
way that f]R" P, s(x,z)dz =1 for every z > 0 (see e.g. the computation in Remark 7.14). As
shown in [3] (see also [37]), the function P, s solves

div(2*VP, ) =0 in R},
P,s=26 on R
where Jy denotes the Dirac distribution at the origin.
From now on, for a measurable function u defined over R™, we shall denote by u® its extension
to the half-space Ri“ given by the convolution (in the x-variable) of u with P, s, i.e.,

2s
u®(z, z) = O’nﬁs/ 2 uly) — dy. (2.12)
R ( 2

[z —y|* + 22)

Notice that u° is well defined if u belongs to the Lebesgue space L' over R™ with respect to the
probability measure

(2.13)

In particular, ©® can be defined whenever u € Hs (Q) for some non-empty open set @ C R"™ by
Lemma 2.1. Moreover, if u € L>®(R"), then u¢ € L®(R"'*") and

mg = Un,s(l + |y|2)_

||ue||L°°(Ri+1) g ||u||Lao(Rn) . (214)

For a function v € L'(R", m,), the extension u® has a pointwise trace on 8Ri+1 ~ R" which is
equal to u at every Lebesgue point. In addition, u® solves the equation

: a e : 1
{le(Z Vu®) =0 in R},

2.15
u® =u on am“ . ( )

By analogy with the standard case s = 1/2 (for which (2.15) reduces to the Laplace equation),
the map u® is referred to as the fractional harmonic extension of u.

It has been proved in [3] that u® belongs to the weighted space H'(R"!, |z|%dx) whenever
u € H*(R™). Extending a well-known identity for s = 1/2, the H*-seminorm of u coincides up
to a multiplicative constant with the weighted L2-norm of Vu¢, and u® turns out to minimize
the weighted Dirichlet energy among all possible extensions. In other words,

()2 gy = B (u®, YY) = in {ES(U,R1+1) cve HY(RT, |2[%dx), v =u on R”} (2.16)

for every v € H*(R™) (thanks to the choice of the normalisation factor 5 in (2.6)).
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Ifue H* (Q) for some open set Q@ C R™, we have the following estimates on u®, somehow
extending the first equality in (2.16) to the localized setting.

Lemma 2.9. Let Q C R™ be an open set. For everyu € H*(Q), the extensionu® given by (2.12)
belongs to H'(G, |z|*dx) N LE (R}, |z|°dx) for every bounded admissible open set G C R’

loc

satisfying 0°G C Q. In addition, for every point xg = (x9,0) € Q x {0} and r > 0 such that
D3, (z0) € €,

112 (3 () o) < € (TQ& (u, Dar(0)) + rzfzs”u”%zw%(%))) ’ (2.17)

and
E, (u®, B (x0)) < C&(u, Day (o)) , (2.18)
for a constant C' = C(n, s).

Proof. Translating and rescaling variables, we can assume that g = 0 and r = 1. Then (2.17)
follows from [33, Lemma 2.10] (which is stated for s € (0,1/2), but the proof is in fact valid for
any s € (0,1)). Denote by @ the average of u over Dy. Noticing that (v — @)® = u® — 4, and
applying [33, Lemma 2.10] to u — @ yields
Ey(u®, BY') < C(&s(u, D2) + llu = alZ2p,)) -
On the other hand, by Poincaré’s inequality in H*(Ds), we have
[ — @) 2(p,y < Clulfe(p,) < C&(u, Da),
and (2.18) follows. O

Corollary 2.10. Let Q C R™ be an open set, and G C RT’l a bounded admissible open set

such that O°G C Q. The extension operator u — u® defines a continuous linear operator from
H*(Q) into HY(G, |z|%dx).

Proof. Set ¢ := dist(9°G, Q¢), and
hi := min {% , inf {dist(x, OR}™) : x = (2,2) € G, dist((z,0),0°G) > 5/2}} >0,

hg = sup {dist(x7 OR™Y) i x = (,2) € G} < fo0.
We also consider a large radius R > 0 in such a way that G C Dr x R, and we define
w = {ac € R™ : dist((z,0),0°G) < §/2 } ,
and
G* = (w X (O,hl]) U (DR X (hl,hg)) .

By construction, G, is a bounded admissible open set satisfying 9°G, C Q andAG C G,.
Therefore, it is enough to show that the extension operator is continuous from H*(Q2) into
H1(G,,|2|%dx). In other words, we can assume without loss of generality that G = G..

Covering w X (0, h1] by finitely many half balls B;/6(xi) with x; € w x {0}, and applying
Lemma 2.9 in those balls, we infer that u® € H'(w x (0, k1), |2|%dx), and

613 o (0,01 2oty < Car(Es(u, Q) + [lull72g))

for a constant Cg = C (G, n, s).
On the other hand, one may derive from formula (2.12) and Jensen’s inequality that
2

) + 90 o < Co [ WO 4y Vx= (@,2) € D x (1, ho).

re (lo —yl> +h3) =
It then follows from Lemma 2.1 that u® € H'(Dg x (h, hs), |2|%dx) with
013 (D (o o) < Car(Es (1, Q) + [lull72q))
which completes the proof. O
Another useful fact about the extension by convolution with P,, s, is that it preserves some

local Hélder continuity. It is very classical and follows from the explicit formula (and regularity)
of P,, 5. Details are left to the reader.
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Lemma 2.11. Ifu € L=(R") N C%?(Dg) for some 3 € (0,min(1,2s)), then u® € Co’ﬂ(B;/4),

and
R[u)cosps ) < Co(R%[ulcos pg) + lullpe@n)) (2.19)

for a constant Cg = C3(B,n,s).

Let us now assume that 2 C R" is a bounded open set with Lipschitz boundary. If u € H 5(Q),
the divergence free vector field 2*Vu® admits a distributional normal trace on €2, that we denote
by A(%)u. More precisely, we define A(%)y through its action on a test function ¢ € 2(Q) by
setting

<A<2S>u, ¢>Q = / 2V - Vb dx, (2.20)
Ry

where @ is any smooth extension of ¢ compactly supported in ]Rf'l U . Note that the right-
hand side of (2.20) is well defined by Lemma 2.9. By the divergence theorem, it is routine to
check that the integral in (2.20) does not depend on the choice of the extension ®. It can be
thought of as a fractional Dirichlet-to-Neumann operator. Indeed, whenever u is smooth, the
distribution A*)u is the pointwise-defined function given by

AP)y(z) = —lim 2°9,u(z, ) = 2s lim w(@,0) ;u (z,2)
zJ0 zl0 248

at each point = € Q.

In the case Q = R™, it has been proved in [3] that A(?%) coincides with (—A)*, up to
the multiplicative factor d5. In the localized setting, this identity still holds, see e.g. [33,
Lemma 2.12] and [32, Lemma 2.9].

Lemma 2.12. If Q C R"” is a bounded open set with Lipschitz boundary, then
(—A)® = 8,A) on H*(Q).

One of the main consequences of Lemma 2.12 is a local counterpart of (2.16) concerning the
minimality of u®. This is the purpose of Corollary 2.13 below, inspired from [2, Lemma 7.2],
and taken from [33, Corollary 2.13].

Corollary 2.13. Let 0 C R™ be a bounded open set, and G C Ri"'l an admissible bounded

open set such that 909G C Q. Letu € Hs (4R, and let u® be its fractional harmonic extension
to R given by (2.12). Then,

E;(v,G) — Es(u®,G) = Es(v, Q) — E5(u, ) (2.21)

for all v € HY(G;R?,|2|%dx) such that v — u® is compactly supported in G U 9°G. In the
right-hand side of (2.21), the trace of v on O°G is extended by u outside O°G.

2.5. Inner variations, monotonicity formula, and density functions. In this section,
our main goal is to present the monotonicity formula satisfied by critical points of Es(-,Q)
under inner variations, i.e., by stationary points. We start recalling the notion of first inner
variation, and then give an explicit formula to represent it.

Definition 2.14. Let Q C R™ be a bounded open set. Given a map u € }AIS(Q;]Rd) and a
vector field X € C1(R™;R™) compactly supported in Q, the first (inner) variation of £(-, Q) at
u and evaluated at X is defined as

56, (u, ) [X] = [jté’s(uo ¢‘t’Q)L_o ,

where {¢;}:er denotes the integral flow on R™ generated by X, i.e., for every z € R™, the map
t — ¢:(x) is defined as the unique solution of the ordinary differential equation

d
aﬂﬁt(x) = X (¢u(2)),
do(z) =2x.

The following representation result for 6€; was obtained in [33, Corollary 2.14] as a direct
consequence of Corollary 2.13. We reproduce here the proof for completeness.
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Proposition 2.15. Let Q C R"” be a bounded open set, and G C R’}rﬂ an admissible bounded

open set such that °G C Q. For each u € fIS(Q;Rd), and each X € C*(R™;R"™) compactly
supported in O°G, we have

n+1
5E4 (u, Q)[X] = % /G 2 (1VuPaivk 2 3 (G - 9,u%)0,X, ) dx
ij=1
65a a—1 e|2
+ Ve P X dx, (2.22)
2 G

where X = (X1,...,X,41) € CHG;R™ 1) is any vector field compactly supported in G U 0°G,
and satisfying X = (X,0) on 0°G.

Proof. Let X € CY(G,R"*!) be an arbitrary vector field compactly supported in G' U 9°G
and satisfying X = (X,0) on 9°G. We consider a compactly supported C'-extension of X

to the whole space R™*1, still denoted by X, such that X = (X,0) on R" x {0} ~ R". We
define {®;};cr as the integral flow on R™*! generated by X. Observe that ®; = (¢;,0) on R™,

and spt(®; — idgn+1) NRYT C GUIG. Then, v == u® o ®_, € HY(G;R?, |z|?dx) and
spt(vy — u®) € GUA°G. By Corollary 2.13, we have
E;(v, G) — Eg(u®,G) = Es (v, Q) — E5(u, Q) Vi eR. (2.23)

Since v; = wo ¢_; on R™, dividing both sides of (2.23) by ¢t # 0, and letting ¢ 1 0 and ¢ | 0
leads to

d
0Es(u, N[ X] = | =Es(u® o ®_4,G) . (2.24)
dt =0
On the other hand, standard computations (see e.g. [53, Chapter 2.2]) show that the right-hand
side of (2.24) is equal to the right-hand side of (2.22). O

Definition 2.16. Let © C R"™ be a bounded open set. A map u € ﬁS(Q;Rd) is said to be
stationary in Q if §&(u, Q) = 0.

As we shall see in the next sections, stationarity is a crucial ingredient in the partial regularity
theory since it implies the aforementioned monotonicity formula. This is the purpose of the

following proposition whose proof follows exactly [33, Proof of Lemma 4.2] using vector fields
in (2.22) of the form X = n(|x — xol)(x — x0) with n(t) ~ x[0,,(t).

Proposition 2.17. Let Q C R™ be a bounded open set. If u € ﬁS(Q;Rd) s stationary in 2,
then for every xg = (z9,0) € Q x {0}, the “density function”

1
r € (0,dist(zg, Q%)) — Os(u®, xq,7) := HES(UC,B;F(X()))
is nondecreasing. Moreover,
— . e|2
Gs(ueaxmr) 7®S(ueaX07p) :69/ a% dx
B (x0)\ By (x0) | — %o

for every 0 < p < r < dist(xg, Q°).
As a straightforward consequence, we have

Corollary 2.18. Let Q CR"™ be a bounded open set. If u € ﬁS(Q; RY) is stationary in §2, then
for every xg € Q, the limit

= — i e

Es(u,xg) : }1_% O, (u®, (20,0),7) (2.25)
exists, and the function Bs(u,-) : Q — [0,00) is upper semicontinuous. In addition, for every
X = (1‘0,0) €N x {0},

Lol = x0) - Vucp

@S(UG,XO,T) 753(“5 ‘TO) = 53 |X_X0|n+2—25

dx (2.26)
Bl (x0)

for every 0 < r < dist(xg, Q°).
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Proof. The existence of the limit in (2.25) and (2.26) are direct consequences of the monotonicity
formula established in Proposition 2.17. Then the function E4(u, ) is upper semicontinuous as
a pointwise limit of a decreasing family of continuous functions. O

As we previously said, the monotonicity of the density function r — O4(u®, xg,r) is one of
the most important ingredients to obtain partial regularity. We shall see in the next sections
that the density function relative to the nonlocal energy & also plays a role. For u € s (;RY)
and a point x € Q, we define the density function r € (0, dist(z, 2°)) — 4(u,z,r) by setting

0 (u,xo,1) 1= Es(u, Dy (w0)) . (2.27)

Tn72s

Now we aim to show that one density function is small if and only the other one is also small
at a comparable scale. This is the purpose of the following lemma.

Lemma 2.19. Let Q C R™ be an open set, and u € H*(Q;RY) N L®(R") be such that
lull Loemny < M. For every e > 0, there exists 6 = d(n,s,M,e) > 0 and a = a(n,s, M,e) €
(0,1/4] such that

O,(u’,x9,7) <6 = O(u,xp,ar) <¢
for every xo = (20,0) € Q x {0} and r > 0 satisfying D, (xo) C Q.

Proof. Without loss of generality, we can assume that o = 0. We give ourselves ¢ > 0, and we
shall choose the parameter « € (0,1/4] later on. Using Lemma 2.8, we first estimate

2 _ 2
Es(u, Dyor) < g Jns // (@) - nS_Q)J dady + nys // 7332)g| dzdy
D, j2xD,. /s \x—y| DarxD¢ |z — yl

/2
dzd
< O1E,(u®, BY) +2M2%s// —

m><D ‘xf ‘n 8

where Cy = C1(n,s) > 0. Observe that for (z,y) € Dar X Dy 5, we have [z —y| = |y|—ar > 1yl
so that

dzdy dzdy
2’771’5 // T aias < 2”+23+1,yn’8 // g = _ C n n 237
Dorx DS, |z — | DorxDE ||

where Cy = Cy(n, s) > 0. Consequently,

0(u,0,ar) < ©,(u®,0,7) + Co M.

an—2s
Choosing
) c 1/2s an72s€
a:mln{1/4, (W> } and ¢ := 50,
provides the desired conclusion. O

Corollary 2.20. Let Q C R" be an open set. If u € ﬁS(Q;Rd) N L>*(R™), then

. _ . o _
}1_%03(%1;0,1") =0 <= }%GS(u ,X0,7) =0

for every xg = (20,0) € Q x {0}.
Proof. By Lemma 2.9, we have
O, (u®,x0,7) < CO(u, x0,2r),

for a constant C' > 0 depending only on n and s, and implication = follows. The reverse
implication is a straightforward application of Lemma 2.19. O
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2.6. Energy monotonicity and mean oscillation estimates. In the light of Proposi-
tion 2.17, the purpose of this section is to show a mean oscillation estimate for maps having a
nondecreasing density function at every point. For v € Hl(BE; R?, |z|%dx), a point xo € 30B§,
and r € (0, R — |xg]|), we keep the notation

O, (v,x0,7) 1= E, (U,B;"(xo)) .

pn—2s
The main estimate is the following.

Lemma 2.21. Let v € H'(B}; R, |z|°dx) and ( € Z(Dsps) be such that 0 < ( <1, (=1
in Dgya, and |V(| < LR~ for some constant L > 0. Assume that for every x € 8°B}, the

density function r € (0,R — |x|) = ©Oy(v,x,7) is non decreasing. Then ((v)rn belongs to
BMO(R"™) and
[Cv]%MO(R") <Cp (68(U7 Ov R) + RQSizin”szLZ(B;"Z‘adx))
for a constant Cr, = C(L,n, s).
Before proving this lemma, let us recall that u € L*(Dg) belongs to BMO(Dg) if
[ulpmo(Dg) = sup ][ lu— (w)y,r[dz < +o0,
D.(y)SDr Y/ D:(y)

where (u), » denotes the average of u over the ball D, (y). To prove Lemma 2.21, we shall make
use of the well-known John-Nirenberg inequality, see e.g. [19, Section 6.3].

Lemma 2.22. Let u € BMO(Dg). For every p € [1,00), there exists a constant Cp, = Cp(n, p)
such that

[WEnopy S sup ][ u = (u)yr” dz < Cplulppiopy -
Dv‘(y)gDR D”‘(y)

Proof of Lemma 2.21. Step 1. Rescaling variables, we may assume that R = 1. Let us fix an
arbitrary ball D,.(y) € D; with y € D7/ and 0 < 7 < 1/8. Using the Poincaré inequality in
Lemma 2.7 and the monotonicity assumption on (v, x, ), we estimate

1
e ‘v - (v)y,r| dz < C\/Gs(v,y,r) < C\/Gs(v,y, 1/8) < Cv/BO4(v,0,1),
Dy (y)
where y = (y,0) and C = C(n, s). In particular, V|p,,, belongs to BMO(D7/s), and

[U]BMO(DWS) < C\/ @S(U,O,l) . (228)

By the John-Nirenberg inequality in Lemma 2.22, inequality (2.28), the continuity of the trace
operator (see Section 2.3), and Holder’s inequality, it follows that

||U||Ln(D7/8) < ||U - (U)0,7/8||Ln(D7/8) =+ CHU||L1(D7/8)

< C(Iolsso,0 + I0l(py ) < C(VOLW0T) + 0l s st pujean ) - (2:29)

Step 2. Let us now consider a ball D,.(y) € D7/ with y € D34 and 0 <7 < 1/8. Since

KU - (C'U>y,r| < |<U - C(U)y,r + |C(U)y,r - (Cv)y,r

we can deduce from (2.28) and (2.29) that
1 1-n
— v — (Cv)yr| da < CL( ©,(v,0,1) +7 IIUHL1<DT<y>>)

™ JD,(y)
< CL(VO,,0,1) + [0l 1n(pr,)) < Co (VO (0,0.1) + 1ol s 2oy

for a constant Cr, = C(L,n, s).
Next, for a ball D,.(y) with y & D3/, and 0 <7 < 1/8, we have
1

™™ JD,(y)

< v — (v)y,rl +Lr][ |v|dz  on D7jg,
D, (y)

‘Cv — (CU);”‘ dr =0,

since ¢ is supported in Ds /5.
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Finally, for a ball D,.(y) with r > 1/8, we estimate

1
ey |CU - (Cv)y,r| dz < C/ (vl dz < C”U”Ll(Dl) < C||U||L2(Bl+,\z\udx)a
r D,(y) Dy
which completes the proof. O

Corollary 2.23. Let u € I/_\[S(DQR;Rd) and ( € P(Dsgyg) be as in Lemma 2.21. Assume that
for every x € °B},, the density function r € (0,2R — |x|) = ©O4(u®,x,7) is non decreasing.
Then Cu belongs to BMO(R™) and

[CU]EMO(R") < CL (HS(U/, O, 2R> + R_7L||U||%2(D2R)) 5
for a constant Cr, = C(L,n,s) > 0.

Proof. Apply Lemma 2.21 to u® in BE, and then conclude with the help of Lemma 2.9. O

3. FRACTIONAL HARMONIC MAPS AND WEIGHTED HARMONIC MAPS WITH FREE BOUNDARY

In this section, our goal is to review in details the notion of weakly s-harmonic maps, the
associated Euler-Lagrange equation, and more importantly to present its characterization in
terms of fractional (nonlocal) conservation laws. We shall also prove at the end of this section
that the fractional harmonic extension of an s-harmonic map satisfies a suitable (degenerate)
partially free boundary condition, in the spirit of the classical harmonic map system with
partially free boundary.

3.1. Fractional harmonic maps into spheres and conservation laws.

Definition 3.1. Let Q C R"™ be a bounded open set. A map u € ITIS(Q;Sd’l) is said to be a
weakly s-harmonic map in 2 (with values in S1) if

d t
—€S(M,Q> —0  Vpe D(QRY).
dt 7\ |u + ty| =0

If w is also stationary in §2 (in the sense of Definition 2.16), we say that u is a stationary weakly

s-harmonic map in Q.

Definition 3.2. Let 2 C R"™ be a bounded open set. A map u € I?S(Q;Sd’l) is said to be a
minimizing s-harmonic map in Q (with values in S9=1) if

58(“7 Q) g Es(w7 Q)
for every w € H*(9;S?"!) such that spt(u — w) is compactly included in €.

Remark 3.3. A minimizing s-harmonic map in €2 is obviously a critical point with respect to
both inner and (constrained) outer variations of the energy. In other words, if v is a minimizing
s-harmonic map in 2, then w is also a stationary weakly s-harmonic map in 2.

Remark 3.4. If u € H 5(Q;S?1) is a weakly s-harmonic map in  (stationary, minimizing,
respectively), then u is also weakly s-harmonic in Q' (stationary, minimizing, respectively) for
any open subset ' C Q. It can be directly checked from the definitions, or one can rely on the
Euler-Lagrange equation presented below and Remark 2.3.

Proposition 3.5. Let Q@ C R™ be a bounded open set. A map u € I?S(Q;Sd’l) is weakly
s-harmonic in  if and only if

(=A)*u, ) =0 (3.1)
for every ¢ € Ho(;RY) such that spt(p) C Q and p(z) € Tan(u(z),S1) for a.e. x € Q.
Equivalently,

(—A)°u(z) = (m /n u(z) — u(y)l® dy)u(a:) in 2'(Q). (3.2)

2 |z —y|t2e
Proof. Let u € H*(Q;S%1), fix € 2(Q;R?), and notice that
[d ( u+tp

T — _ . s . d
G| —e- e mp@re.
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Hence,

5 (g )], = (8 eha ~ (-0 - i,

lu + te| t=0

On the other hand, since |u|? = 1, we have

(u(z) = u(y)) - (u(@) - p(@))u(z) = (u(y) - ¢(y))u(y))

and it follows that

(8wt oy = [ (2 [ OO 4y pwyar. @

Consequently, u is weakly s-harmonic in € if and only if (3.2) holds.

By approximation, (3.2) also holds for any test function ¢ € Hg,(€; R)NL>(R™) compactly
supported in . In view of the right-hand side of (3.2), (3.1) clearly holds for every ¢ €
Ho (9 RY) N L°°(R™) compactly supported in € and satisfying ¢ - u = 0. By a standard
truncation argument, it implies that (3.1) holds for every ¢ € Hg,(Q2;RY) compactly supported
in © and satisfying ¢ - u = 0.

The other way around, if (3.1) holds, then the map ¢ — (u - ¢)u with ¢ € 2(Q;R?) is
admissible, and (3.1) combined with (3.3) shows that (3.2) holds, i.e., u is weakly s-harmonic
in Q. 0

Remark 3.6. The variational equation (3.1) corresponds to the weak formulation of the im-
plicit equation

(=A)*u L Tan(u,S% 1) in Q,
and in equation (3.2), the Lagrange multiplier associated with the S?~!-constraint is made
explicit.

Remark 3.7. A weakly s-harmonic map u in Q which is smooth in €, is stationary in €.
Indeed, if X € C1(Q;R") is compactly supported in Q, the smoothness of u implies that

68 (u, Q)[X] = ((-A)°u, X - V’LL>Q

Since |u|? = 1, we have (X - Vu) - u = 0, and thus §&,(u, Q)[X] = 0.

Now we rewrite the Euler-Lagrange equation (3.2) in a more compact form using the frac-

tional s-gradient dyu defined in Subsection 2.2. More precisely, if u =: (u',...,u?), then

’Yn,s |U( ) ’Yns |’u’j ) 2 _ 2
T/n iz — |n+25 Z / iz — |n+2s Z|d WP = |dsul?,

n

according to (2.4) and (2.5). We can thus rephrase Proposition 3.5 as follows: u € H* ;891
is weakly s-harmonic in € if and only if

(—A)su = |dul?u in 2'(Q). (3.4)

Our aim is to further rewrite equation (3.4), or more precisely its right-hand side, to reveal the
fractional ”div-curl structure” of Section 2.2 in the spirit of the well-known div-curl structure
hidden in the classical equation for harmonic maps into spheres [24]. Following [29], the starting
point is to notice that for each i,j € {1,...,d},

|dsu? | (z)u' () = /n u'(z)dsw (2, y)dsw (2, y) a

|z —y|"
B / u'(z)dgwd (z,y) — uf (z)dgu’ (x, y) dou? (z,y) dy (3.5)
. |z =yl o |

+ (dsu® ® dgu?) (2)u? (2) .
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Then, since |u|?> = 1, we have

s Y (Vs L Yo W (@) =l (y)w (@), i
;(dsu O dov’)(z)u! (x) = ; 72 / ( — yn:‘iQ)s (u'(z) — u'(y)) dy
= 1 / W(u%) —ui(y)) dy. (3.6)
We can now introduce for 4,5 € {1,...,d},
QY (z,y) := vl (z)deu? (z,y) — v’ (z)du(z,y) € L2(Q), (3.7)
and
TH(x) := % / W(uz(m‘) —u'(y))dy € L*(). (3.8)

to derive from (3.5) and (3.6) the following reformulation of equation (3.4).

Lemma 3.8. Let Q C R™ be a bounded open set. A map u € ﬁS(Q; S41) is weakly s-harmonic
in Q if and only if

d
(AUl = (Z Qi o dsuj) +T in 2'(Q) (3.9)
j=1
for everyi=1,...,d, where Q" and T* are given by (3.7) and (3.8), respectively.
Remark 3.9. The presence of the extra term T in (3.9), compared the classical harmonic

map equation (see [24]), is essentially due to the fact that the s-gradient d,u is not tangent to
the target sphere.

The fundamental observation made in [29, Lemma 3.1] for Q@ = R and s = 1/2 is a charac-
terization of the 1/2-harmonic map equation in terms of nonlocal conservation laws satisfied
by the Q9’s (thus extending [50] to the fractional setting). In the following proposition, we
slightly generalize this result to a domain of arbitrary dimension and s € (0,1). The proof
remains essentially the same, and we provide it for the reader’s convenience.

Proposition 3.10. Let Q@ C R™ be a bounded open set with Lipschitz boundary. A map u €
H?®(Q;S%71) is weakly s-harmonic in Q if and only if

div, QY =0 in H*(Q) (3.10)
for eachi,j € {1,...,d}, where Q" is given by (3.7).

Proof. Step 1. Assume that u is a weakly s-harmonic map in 2, and let us compute div, Q%.
For ¢ € 2(Q), we have

/ Q7 dypde =

dzdy
|z —y"

// (uz(x)dsu] (J}, y)ds<P(907 y) —u’ (x)dsuz(a:, y)dsw(% y))
(R XR™)\ (Q¢ x Q°)
An elementary computation shows

{ui(x)dw, y) = dy (u'p) (2, y) — p(y)deui (z, y)
w (z)dsp(2,y) = ds(u? ) (2, y) — p(y)dsu! (2, y)

)

so that
QY o dyode = /
RTI,
Since u/¢ and u'p belong to Hg,(2), we infer from Proposition 2.4 and equation (3.4) that

dyu? © dy(u'y)dz — / deu' © dg(uep)da.

n n

QY o dypdr = <(—A)suj,ui<p>Q — <(—A)sui,uﬂ'<p>Q (3.11)
RTL

= [ |dsu|*v/u'pde — / |dsul?u' v/ o dz = 0.
Q Q

Therefore div, Q7 = 0 in 2'(Q), and by approximation also in H—*(Q) (see (2.2)).
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Step 2. We assume that (3.10) holds, and we aim to prove that (3.4) holds. We fix ¢ € 2(; R?),
and we set 1 1= ¢ — (u- @)u € H,(;R?), which satisfies ¢ - u = 0 a.e. in R™. As in the proof
of Proposition 3.5, proving (3.4) reduces to show that

<(7A)Su,¢>Q =0.

Using |u|? = 1, we first observe that

d d
<(_A)5Ua¢>9 = Z <(_A)Suzv'(/)z>g = Z <(_A)Sui7 (wluj)uj>g .
i=1 ij=1
Since Yiul € Hi,(£2), we obtain as in (3.11),
(FAyu, @l = (AP, (Wd)u') — [ Q7 @ dy(v'e!) de
R’n

= <(7A)Suja (wiuj>ui>g
for every i,j € {1,...,d}, thanks to (3.10). Therefore,

d d
<(_A)Sua ¢>Q = Z <(_A)Suj7 (’l/)zuj)ul>g = Z <(—A)Suja (110 : u)uj>Q = 07
i,j=1 J=1
and the proof is complete. O

3.2. Weighted harmonic maps with free boundary.

Definition 3.11. Let G C RT‘l be a bounded admissible open set, and v € H!(G; R4, |z|*dx)
satisfying v(x) € S¢~! for a.e. x € 9°G. The map v is said to be a weighted weakly harmonic
map in G with respect to the partially free boundary condition v(9°G) C S4~1 if

/ 2V - Vddx =0 (3.12)
G

for every ® € H'(G;R?, |2|%dx) such that ® = 0 on 0+ G and ®(x) € Tan(v(x),S? 1) for a.e.
x € 0°G. In short, we shall say that v is a weighted weakly harmonic map with free boundary
in G.

Remark 3.12. Ifv € H'(G;RY, |z|%dx) is a weighted weakly harmonic map with free boundary
in G, then (3.12) means that v satisfies in the weak sense

div(z*Vv) =0 in G,
(3.13)

o OV d—1 0
z OVJ_Tan(v,S ) on 0'G.

In particular, v is smooth in G by standard elliptic regularity.

In view of Remark 3.6, equation (3.13) above, and Lemma 2.12, it is clear that weighted
weakly harmonic maps with free boundary and weakly s-harmonic maps are intimately related.
This relation is made precise in the following proposition (see [32, Proposition 4.6)).

Proposition 3.13. Let 2 C R™ be a bounded open set with Lipschitz boundary. If a map
u € H*(Q:S%Y) is a weakly s-harmonic map in Q, then its extension u® given by (2.12)
is a weighted weakly harmonic map with free boundary in every bounded admissible open set
G C R’frﬂ satisfying 8°G C Q.

Proof. Let us assume that u is a weakly s-harmonic map in €2, and let G C Riﬂ be bounded
admissible open set such that 99G C Q. Let ® € H'(G;R?, |2|*dx) such that & = 0 on 07 G,
and ® -u = 0 on 9°G. We extend ® by 0 to the whole half space ]R’j_“, and the resulting map,
still denoted by @, belongs to H* (R’ R?, |2|%dx). In view of (2.16), P € Hio(RY), and
spt(®gn) € Q. Since prn - u = 0, we conclude from Lemma 2.12 and Proposition 3.5 that

/ ZaVue-VCDdx:/ 2°Vu® - Vodx = i<(—A)Su,(I>“Rn>Q =0.
G Ri“ 58

Hence, u° is indeed a weighted weakly harmonic map with free boundary in G. O
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4. SMALL ENERGY HOLDER REGULARITY

In this section, we present the main epsilon-regularity theorem asserting that under a certain
smallness assumption of the energy in a ball, a weakly s-harmonic map satisfying the mono-
tonicity formula is Holder continuous in a smaller ball. Hélder regularity will be improved to
Lipschitz regularity in the next section with an explicit control on the Lipschitz norm in terms
of the energy.

Theorem 4.1. There exist constants €9 = €9(n,s) > 0 and By = Bo(n,s) € (0,1) such that
the following holds. Let u € H*(Dg;S? ') be a weakly s-harmonic map in Dg such that the
function r € (0, R — |x|) — O, (u®,x,7) is non decreasing for every x € °Bf. If

0,(u,0,R) < e, (4.1)
then u € C%%(Dp/2) and
R260 [u}goﬁowm) <CO,(u,0,R), (4.2)
for a constant C = C(n, s).

For what follows, it is useful to translate the epsilon-regularity theorem above only in terms
of the extension. This is the purpose of the following corollary.

Corollary 4.2. There exist three constants €1 = e1(n,s) > 0, k1 = Kk1(n,s) € (0,1), f1 =
Bi(n,s) € (0,1) such that the following holds. Let uw € H*(Dag;S*™1) be a weakly s-harmonic
map in Dag such that the function r € (0,2R — |x|) — O4(u®,x,7) is non decreasing for every
x € O°Biy. If

©,(u®,0,R) < &1, (4.3)
then u® € C’O’Bl(B:lR) and

RQﬁl [u0]2 < C,

Co,ﬁl(B;rlR) X
for a constant C = C(n, s).

Proof. We consider the constant €9 = €g(n,s) > 0 given by Theorem 4.1. Since |u| = 1, we
obtain from Lemma 2.19 the existence of &1 = &1(n,s) > 0 and a = a(n, s) € (0,1/4] such that
the condition ®4(u®,0, R) < &; implies 0,(u,0,aR) < 9. In turn, Theorem 4.1 tells us that
u € C%P°(DyRys). Then Lemma 2.11 implies that u® € C%#1 (B ) with 81 := min(f, s) and
K1 := a/8. Moreover, combining (2.19) and (4.2) leads to

R [ue]éoyﬁl(BLR) < O(B* [ufgon (Dary2) T 1) <O(R* [u]QCO*%(DaR/z) +1)
< C(Bs(u,O,aR) + 1) <C,

and the proof is complete. O

Remark 4.3. In the case n < 2s, the function r € (0, R — |x|) — ©,(u®, x,7) is nondecreasing
for every u € ﬁs(DR; R?). In other words, in the case n < 2s, Theorem 4.1 and Corollary 4.2
apply to arbitrary weakly s-harmonic maps. Moreover, in the case n =1 and s € (1/2,1) (i.e.,
n < 2s), the conclusions of Theorem 4.1 and Corollary 4.2 apply even without the smallness
assumptions (4.1) or (4.3), since it follows from the classical imbedding H*(R) < C**~1/2(R).
For our purposes, it is convenient to state it suitably. This is the object of the proposition
below, whose proof is postponed to the end of Section 4.1.

Proposition 4.4. Assume that n = 1 and s € (1/2,1). Ifu € }AIS(DR;Rd), then u €
00’871/2(DR/2) and

R MulGo.um1r2(py ) < COs(u, 0, R), (4.4)

for a constant C = C(s).
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4.1. Proof of Theorem 4.1 and Proposition 4.4. The key point to prove Theorem 4.1 is to
obtain a geometric decay of the energy in small balls. Then Holder continuity follows classically
from Campanato’s criterion. The purpose of the next proposition, very much inspired from [17,
Proposition 3.1], is exactly to show such decay.

Proposition 4.5. Assume that n > 2s. There exist two constants €, = €,(n,s) > 0 and
T = 7(n,s) € (0,1/4) such that the following holds. Let u € H*(Dy;S% 1) be a weakly s-
harmonic map in Dy such that the function r € (0,1 —|x|) — O4(us,x,1) is non decreasing for
every x € °Bf. If

gs(ua Dl) < Ex )

then ) )

m&(u, Dq-) S igs(u, Dl) .
Proof. We fix the constant 7 € (0,1/4) that will be specified later on. We proceed by contra-
diction assuming that there exists a sequence {uy} of weakly s-harmonic maps in Dy such that

r € (0,1 — |x|) = Og(us,x,7) is non decreasing for every x € 0°B;, and satisfying
Ei = 55(uk,D1) — 0,
k—oo

and |
ES(uka D‘r) > igs(uk, Dl) . (4.5)

Tn—?s

(Note that this later condition ensures that 5 > 0.) Then we consider the (expanded) map

wy = = o H*(Dy; R N L=(R),
Ek
which satisfies

][ wpder =0 and &Es(wg,D1)=1.
D,

Assumption (4.5) also rewrites
1

.’-n—QS

Es(wk, D»,-) >

N |

By Poincaré’s inequality in H*(D;), we have

lwill72(p,y < CE(wr, D1) < C .

Therefore {wy,} is bounded in H*(D;;R%), so that we can find a (not relabeled) subsequence
and w € H* (D1;RY) such that wy — w weakly in s (Dy) and wy, — w strongly in L?(Dy) (see
Remark 2.2). In particular, ||w||z2(p,) < C. By lower semicontinuity of the energy &,(-, D1),
we also have E(w, D1) < 1 (see again Remark 2.2).

Recalling that wuy satisfies

(8 ue)p, = [ (danfupds Vo€ H(DuR),
D,
we obtain in terms of wy,

(=AY wk, ), = Ek/ dswi*up - odz Vo € 2(Dy;RY). (4.7)

1

Since |ug| = 1, it leads to

[((=a) we, ) | < erllldswn]] s el ey

< 261 (wi, D)@l (1) = 2enllll o () — 0

for every ¢ € 2(D1;R%). On the other hand, the weak convergence in H*(D;) of wy towards
w implies that

<(7A)kav 90>D1 — <(7A)Swa ('0>D1 VSD € 9(Dl,]Rd) .

k—oc0

As a consequence, w satisfies
(=A)Y’w=0 in H *(Dy). (4.8)



PARTIAL REGULARITY FOR FRACTIONAL HARMONIC MAPS 21

By Lemma B.1 in Appendix B, w is (locally) smooth in Dy, and we have the estimate
[wlZee (b, ) + IVl (p, ) < C(Es(w, D1) + |wllf2(p,)) < C- (4.9)

In view of (4.9), we have

2 dxd .
— (23| dedy < C xnyQS 5 < Crnt2=2s, (4.10)
Dy xD; |$—?J|Jr D.xD, [T =yt

Then, writing

|w(z) —w(y)]® // |w(z) —w(y)]®
dedy = dzdy
//D xDg ‘33_ ‘"HS Dy x(D15\Dx) Cw -yt

o) ()
+/\/;_’_><Dc |x_y|n+25 d dy, (411)

1/2
we first estimate, using (4.9),

)2
/l bwta) W)l 4, < i A o @)
Drx(Dyjo\Dy) T — Y[t D, x(D\Dy) | = y[" 25

Next we infer from Lemma 2.1 and (4.9) that

_ 2 2 2
[[ WP g [,
D.x D¢ |z — y[nt2s D, x D¢ |z — y|nt2s

1/2 1/2

2
<C / w(x 2d:v—i—T"/ Md <Ct™. (4.13
() ) e, T+ D ) (113)

r

Gathering (4.10), (4.11), (4.12), and (4.13) yields

1
Tn—?s

Es(w,Dy) < CT* (4.14)

By Lemma 4.6 — which is postponed at the end of the proof — there exists a universal constant
o € (0,1) such that

wy, — w strongly in H*(Dy) . (4.15)
In view of (4.14), we can choose T (depending only on n and s) in such a way that
1
From (4.10) and the strong convergence in (4.15), we first infer that for &k large enough,
|w (= y)? / / |w(z) —w(y)]?
dzdy dzdy +7". (4.17)
//D XDy |9C - y|"+2s DrxDx |$ - 3/|"+2S

In the same way, for k large enough, one obtains from (4.15),

2 _ 2
// |wi(z wfgy)l dmdy:// |wi () wfgy)l dady
.xpe T =yl o (Do\Ds) 1T — |L ‘
2
et
D, x D |~T*Z/|" 3

. 2
<7+ // —|w(a:) Z}Jg‘gzl dzdy
D.x(Dg\D+) |55* |

2
/ / (@ wﬁéy)‘ dedy.  (4.18)
D.xpe  |T—y[nteE
Then we estimate by means of Lemma 2.1,

|wi.(2) — wi(y)|? |wye(2)* + we(y)|?
ﬂ | _ |n+2s da dy ‘ _ |n+29 dxdy
X DS r—=Yy »XxDE r—=y

éC(/D |wk(x)|2dx+7-”/%mdy) gc(/D \wk(:v)|2dx+7-").

T T
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Since wy — w strongly in L?(D;) and in view of (4.9), we deduce that for k large enough,

//TXB; lw, (z) — we(y)|? dady < C(/D, lw(a)|? dz + 7-") <Ot (4.19)

|z —y[n+2e

Combining (4.17), (4.18), and (4.19) together with (4.16), we conclude that for k large enough,

1 1 2s 1 2s

—n Es(wi, D7) < —H Es(w,Dy) + C1* < Yl cr=.
Hence, we can choose 7 € (0,1/4) small enough (depending only on n and s) in such a way
that ﬁé‘s (wg, Dr) < 1/2 whenever k is large enough, contradicting (4.6). O

As it is transparent from the proof above, Proposition 4.5 crucially rests on the strong
convergence stated in (4.15) that we now prove.

Lemma 4.6. There exists a universal constant o € (0,1) such that the weakly converging
subsequence {wy} (towards w) actually converges strongly in H*(Dy).

Proof. We choose the constant o as follows:
) 4 1
o= mm{ﬁ, ﬁ} ,
where A > 1 is the universal constant given by Theorem 2.5.
Step 1. Subtracting (4.8) from equation (4.7) leads to

((=A)*(wy, — w), g0>D1 = Ek/ |dswg [2ug, - pda Yo € 2(D1;RY). (4.20)
D,
By approximation (see (2.2)), this equation also holds for every ¢ € Hg,(Dy;RY) N L>(Dy)
compactly supported in D;. Let us now fix a smooth cut-off function ¢ € Z(Ds,/4) such that
0<(¢<1,(=1in D,. Using the test function ¢y := ((wy, — w) € Hy(D1;RY) N L>®(Dy) in
(4.20) yields

<(*A)S(wk —w), sﬁk>D1 = €k/ |dswp[*uy, - p da . (4.21)

D,

Setting
L = <(—A)s(w;c —w), (wg, — w)>D1 and Ry = Ek/ |dswy |2u - op da
D,

we claim that

Ly > [w, — w]%,s(Da) +o(l) ask— oo, (4.22)
and
lim Ry =0. (4.23)
k— o0

Identity (4.21) rewrites Ly = Ry, and the two claims above will imply that [wy — w]%,s(Da) -0
as k — oo, whence the conclusion.

Step 2. This step is devoted to the proof of (4.22). For simplicity, let us denote
Ak =W —Ww.

Since ¢ =1 in Dy, and ¢ = 0 in D5, we have

Li = (804 (p,) + % (L +1? + 1) (4.24)
with
o (Bal@) = B(0) - C@)Del@) = OO o
k /ADl\DU)X(Dl\DU) ‘x _ y‘71+2$ ray
1@ .o (Br(x) = Di(y) - (C(2) () — ()LL) 4
k //D,,X(Dl\DG) |x _ y|“+23 xray ,
and

© . (Bae) ~ Dal) - Lle)
L -—2//MDf ((x) dady,

|z —y[F2
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Concerning L,(fl), we first rewrite

a (Ak(z) = Dk(y) - k(@) (C(=) — ¢(y)) .
b= //wl\Da)x(Dl\Da) drdy

|z —y|t2e

] 186() = B
(DI\Do)x(D:i\Dy) |7 —y["T2s

(8s(2) = 249)) - 5@ (€) € ,
g //<D1\D )x(D1\Do) .

|z — gyt

Recalling that
gs(Akal) < 2gs(wkaD1) + 285(’LU,D1) < 4

we estimate by means of Holder’s inequality,

‘ / ((Bel@) = Buly) - Au@) ) =€) 0
Di\Dgs)x(D1\Do)

|z —y[nF2

1/2

< C\E (B DY) (// |Ak($¥2¥g(j|ﬂg+—28§(y)|2 dxdy)

Dl\Da' DI\DO‘)

1/2
A 2
(//D \Do)x(D1\Ds) $| kl("+ls 24 dy) = Cldliwy
1 o)X 1 o

Since || Ag|lz2(p,) — 0, we conclude that

LV >0(1) ask— oo. (4.25)
Exactly in the same way, one derives

L,(f) >0(1) ask — 0. (4.26)
For the last term L,(c?’), we use again Holder’s inequality to derive

Au ) 1/2
0 <eveE@en ([ EHED qay) < oadiam, o) @20
Dag x D lz —yl

as k — oo. Gathering now (4.24) with (4.25), (4.26), and (4.27) leads to (4.22).

Step 3. In order to prove (4.23), we need to rewrite Ry in a suitable form. First, we rewrite

Rk = i/ \dsuk|2uk-g@kdx,
€k JD,
and we recall from Lemma 3.8 that for each i =1,...,d,
d d
|d g |2ul, = (Z Q7 e dsui) YT =g, ( Y alo dswgc') T,
j=1 j=1

where Q)7 € L2,(D;) is given by

QY (2,y) = uj(v)dsu (z,y) — ul(x)dsuj,(2,y),

and
i . Tn,s ‘uk (:E) - Uk(y)|2 7 1
3 2
st [ o) = w0
= 4 . /n |J}—y|n+2$ (wk(m) 7wk(y)) dy
Hence,

Z/ Q“stwi)%dx)+si/ Ti-grde = R + R
D D

1,7=1 1
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where we have set

To(x) = 2n / lwi(z) — wi(y)|? (wy(2) — wi(y)) dy .

4 |z —y|nt2s

Step 4. We shall now prove that
lim R =0. (4.28)

k—o00
First, notice that formula (2.12) shows that u§ = epw§ + (ug)o,1, which implies that
O, (u§,x,7r) = 20,(wy,x,r) for every x € 3°B; and r € (0,1 — |x]).

As a consequence, our assumption on O,(uf,x,r) tells us that r € (0,1 — |x|) — O4(w},x,7)
is non decreasing for every x € °Byf.
Applying Corollary 2.23 (with R = 207), we deduce that

1/2

N

[Cwk]BMO®n) < C<5‘g(wk740') + ||wk||%2(D4a)> C,

for some constant C' depending only on n, s, and ¢. Since wy, — w strongly in L?(D;) and ( is
supported in Ds, /4, we have (wy — (w strongly in L'(R") (in other words, ekl @y — 0).
By lower semi-continuity of the BMO-seminorm with respect to the L!-convergence, we deduce
that (w € BMO(R"™), and then (remember that ¢y := ((wp — w))

[orlBmo@n) < C.
Next, we recall from Proposition 3.10 that uj being weakly s-harmonic in D; yields
div, QY =0 in H%(Dy),
for each i,j € {1,...,d}. Applying Theorem 2.5 (with xo = 0 and r = 50/4), we infer that

/D (@ © dgwd) ol dz| < CIRY 12, (0, Es(wh, D) (eklmmon) + 6kl @) )
1

<O NIz (o) -
Since |ug| = 1, we have the pointwise estimate |Q} (z,y)| < |dsul(z, )| + |dsul (2, y)| which
leads to ||} H%(Q)d(Dl) < C&(ug, D1) = O(e2) for each 4,5 € {1,...,d}. Consequently,

R = O(er),

and (4.28) is proved.
Step 5. We complete the proof of (4.23) showing now that
. 2
lim R =0. (4.29)

k— o0

Using the fact that ¢y is supported in Do 4 © D120 € D116, We first write

R,(f) zaz/ Ty - o dz = %i’sei(lk—i—[[k), (4.30)
D,
with
2
Wp\T) — WE
e [ @) = eI, () — () - or(2) dady
Di/16X D116 m—y|
1 Wi (x) — Wi 2
-5/ | j” DO (1 (0) — wn(y)) - (or(e) — ry) dady,
Di/16X D116 ‘T_y‘
and
2
Wep\T) — W
o= [[ ) — O (1 (@) — we () - prle) dedy.  (431)
D1 20xD5 ) |z =yl

We shall estimate separately the two terms I and I1j.
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Concerning I, we apply Holder’s inequality to reach

1 wg(T) —w 3 x) —
w< ] jus(e) = )P lene) = ) 4,4,
Dy /16xD1/16 |$ - y|

< C[wk]%vs/s,a(pl/w)[%k]Hs(Dl/w) ) (4.32)

where [Jys/s6(p, ) denotes the We/36(D, )16)-seminorm (i.e., of the Sobolev-Slobodeckij
space, see (C.3)). Recalling our notation A, := wy — w and the fact that 0 < ¢ < 1, we

have
C(x) — C) *|Ak(2)?
[Sak]%‘[s(Duw) <C <[Ak]§15(D1/16) + // |z — y|n+25k dzdy

Di1/16X D116

> |Ax(x)|?
- (m’“]H“Dw =

< C (&8 Dijig) + 18k 32(, 1)) < C- (4.33)

To estimate [wk]Ws/g,e( D)0 W proceed as follows. First, we fix a further cut-off function
n € Z(Dyg) satisfying 0 <n < 1,7 =1 in Dy 34, and |Vy| < C. Then we apply Corollary C.6
(in Appendix C) to nwy, to derive

|
00, gy = [0k s, 10y <O sup el o, o ) (4.34)

Do (3)CR? pn—2s

and it remains to estimate the right hand side of (4.34). To this purpose, we need to distinguish
different types of balls:

Case 1: Z € D316 and 0 < r < 1/32. Arguing as in (4.33), we obtain
2
[wil e b,z < C ([wk]ifs(m(x)) + //DT(I)X[)T(I) |x_w2|(rir)|2s—2 dxdy)
< C([wk]?ﬁls(p,,,(gz)) + TQ_QSH”H&?(D,.@))) :
Applying Hélder’s inequality in the case n > 3, we obtain
C([wk]:;{s(pr(z)) + 7’"725Hwk||2Ln(DT(gz))) itn >3
C([wk]%ls(DT.(:f)) + 7"2_23Hwk||2m(o,.(5c))) ifn<2.

Let us now recall that r — ©,(w$,x,7) is non decreasing for every x € By (see Step 4). By
the proof of Lemma 2.21, Step 1 (applied to wf), we have

[wk]BMO(D, ) < C\/Es(wZ,BTM) < Cvé&s(wy, D1) < O, (4.36)

where we have used Lemma 2.9 in the last inequality. In case n > 3, we apply the John-
Nirenberg inequality in Lemma 2.22 and use the fact that D,.(z) C D732, to derive

[nwk]%ls(Dr(j)) < (4.35)

[willLr (D, @) < Wkl Ln (D7 a0) < [Jwr — (wk)o,7/3zHLn<D7/32) + Cllwkll L1 D+ 50)

< C([wh]BMO (D aa) F 1wkl 22(Ds j0)) < €'+ (4:37)
Back to (4.35) and in view of Lemma 2.8, we have thus proved that
[nwk]%[s(Dr(i)) < C([wk]%IS(DT(j)) + r”—QS)
< C(Es (w§, B,.(%)) + 7“"_23) < Cr" (O, (wf, x,2r) + 1),
with X := (Z,0). Then the monotonicity of r — ©(wy, X, 2r) together with Lemma 2.9 yields

1 _
m[nwkﬁiswr(f)) < C’(@S(wz,x 1/].6) + 1)

< C(Es(wZ,BfM) + 1) < C(Ss(wk,Dl) + 1) <C.

Case 2: T ¢ D316 and 0 < r < 1/32. This case is trivial since nwy, =0 in D,.(Z).
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Case 3: ¥ € R™ and r > 1/32. Since nwy, is supported in Dy /g and 0 < 7 < 1, we have (recall
that n — 2s > 0)

1
iz M0k (0, () < 32

2 w3 gy

2
n(x)wg(x
< C<[nwkﬁ{5(D1/4) + //D |Z‘( _) ykrf-‘r;'s dxdy)

1/8X DY,

< C([nwk]quwm) + ||wk||2L2(D1/8)> :
Arguing as in (4.33), we obtain
[ka]?{s([)l/@ < C(gs(wk>D1/4) + Hwk||2L2(Dl/4)) )

and thus .

Gathering Cases 1, 2, and 3 above, we have proved that the right hand side of (4.34) remains
bounded independently of k. We can now conclude from (4.34) that [wi]ys/s.6(p, 5 < C. In
view of (4.32) and (4.33), we have thus obtained that

L < C, (4.39)

and it only remains to estimate the term I (defined in (4.31)).
First, we trivially have

_ 3
|IT;| < // e (@) = wi(y)] [A(z)] dzdy
Dy /20xD

— o nt2
<6 |z — y[n+2s

i ()
<4// DN A ()] dady
Dy jsox DS, 1T — Y™

c
1/16

c

1/16

3
WE(Y
+4//,3 XD |x_3§2|+zs|ﬂk(fv)ldxdy. (4.40)
1/20

On the other hand,

3
I/ Jwoe@ |\ ydady <0 [ fon(@)Plon(@)| de
D1/20><D

/16 | —y|n+ee D120

< Cllwkle(p, s 12kl L2 (01 -

Recalling from (4.36) that {wy} is bounded in BMO(D7,14), we can argue as in (4.37) to infer
that {wy} is bounded in L%(D; /59). Hence,

3

WE\T

//D ) |z|;2|+25|Ak(x)|dxdy<C||Ak||Lz(D1). (1.41)
1720 X DY

1/16

Since |ug| = 1, we have |wg| < 2/eg, and consequently

3 2
Wi (y 2 wi (y
// |, ( 2J|r2s [ Ak (2)] dedy < / SO — ( 3|+25 dy | [Ag(z)|dz
Dy ja0x D¢ |z — yl €k J Dy a0 D |z —yl

c
1/16 1/16

</ ( / i (y) )
Sa T ngas W) [Dk(z)| de
€k JDy 50 \JR" (ly| + 1)n+2s y | | Ak ()]

C
< o (& D)+ oo ) 106l 220y - (442)

where we have used Lemma 2.1 in the last inequality. Combining (4.40), (4.41), and (4.42), we
obtain the estimate
1] < Cec |1 Da 2oy = o7 ). (1.43)
In view of (4.30), (4.39), and (4.43), we have thus proved that
Rl(f) = o(eg) ,
and thus (4.29) holds, which completes the whole proof. g
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Proof of Theorem 4.1. Rescaling variables, we can assume that R = 2. We need to distinguish
the two cases n > 2s, and n = 1 with s € (1/2,1).

Case 1: n > 2s. We choose g := 225~ "¢, where €, = €, (n,s) > 0 is the constant provided by
Proposition 4.5. We fix an arbitrary point zg € D;, and we observe that condition (4.1) implies

gs (’U,, Dl(-rO)) < gs(’“’v D2) = 271,—2308(”707 2) < Ex.

Setting e := E(u, Dy), Proposition 4.5 then leads to

1
mﬁs(u,DT(xo)) < & (u, Di(20)) < <e, (4.44)

N —
N

where 7 = 7(n, s) € (0,1/4). Considering the rescaled map u,(x) := u(Tz + zp), one realizes
from (4.44) that u, satisfies &(ur, D1) < %s*, and thus Proposition 4.5 applies. Unscaling
variables, it yields

1 1 1 1 1
m‘ss(uaD‘rQ (‘TO)) = mé‘s(u‘raDT) < ggs(u‘raDl) = W‘S‘s (u, DT(zO)) < Ze-
Arguing by induction, we infer that
Tk(n—Zs)
Es(u, Dk (20)) < —5—e foreach k=0,1,2,3,.... (4.45)

2k

Let us now fix an arbitrary » € (0,1), and consider the integer k such that 7! < r < 7%,
From (4.45), we deduce that

1 TZsfn

1
Es (u, D« (:co)) < %

TTL—QS

&, (u,Dr(xo)) < e < 21% e r?ho

rn—2s
with 28 :=log(2)/log(1/7). By the Poincaré inequality in H*(D,(z)), it yields

1 2 C C
— — (W] A < ———[u]?. < —2&,(u, Dy (29)) < Cer?.
rn Dy (o) |U, (u)x‘h ’ z rn—2s [U]H (Dr(z0)) rn—2s Es (U, 4 (l‘o)) Cer

In view of the arbitrariness of r and zg, we can apply Campanato’s criterion (see e.g. [27,
Theorem 1.6.1]), and it yields u € C%%(D;) with

lu(z) —u(y)| < Cvelz —y[  Vz,ye Dy,

which completes the proof.

Case 2: n =1 and s € (1/2,1). In this case, we simply choose gy := 1, and we invoke
Proposition 4.4 whose proof is given below. O

Proof of Proposition 4.4. Rescaling variables, we can assume that R = 1. Without loss of
generality, we can also assume that u has a vanishing average over D;. We consider a given
cut-off function ¢ € Z(D3/4) such that 0 < ¢ < 1 and ¢ = 1in Dy/5. Arguing as (4.38), we
obtain that ¢u € H*(R;R%) with

[Cultre @y < C(Es(u, D1) + ullZ2(p,)) - (4.46)

On the other hand, by the continuous embedding H*(R") < C%s~1/2(R") (see e.g. [20,
Theorem 1.4.4.1]), we have

[CulZ0.0-1/2 () < O([Cul e ry + CullT2w)) < O(ICulte ) + [ullZ2(p,)) - (4.47)
Combining (4.47) with (4.46) and applying Poincaré’s inequality in H*(D;), we derive that
[u]%oys—lﬂ(plm) < [CU]%o,s—lﬂ(R) < C(é’s(u, Dy) + Hu||2L2(D1)) < C&s(u, D),

which completes the proof of (4.4). O
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5. SMALL ENERGY LIPSCHITZ REGULARITY

In this section, our goal is to improve the conclusion of Theorem 4.1 to Lipschitz continuity,
as stated in the following theorem. Higher order regularity will be the object of the next section.

Theorem 5.1. Let €1 = €1(n,s) > 0 be the constant given by Corollary 4.2. There exists
a constant Ky = Ka(n,s) € (0,1) such that the following holds. Let u € H*(Dyg:;S?!) be
a weakly s-harmonic map in Daop such that the function r € (0,2R — |x|) — O(u®,x,7) is
nondecreasing for every x € GOB;R. If

O,(u®,0,R) < e, (5.1)
then u € C%Y(Dy,r) and
R*|Vul[f(p,, . < COu,0,R),
for a constant C = C(n, s).

The proof of Theorem 5.1 consists in considering the system satisfied by the S¢~!-valued
map u°/|u®|. By Corollary 4.2, u® is Holder continuous, and therefore |u°| > 1/2 in a smaller
half ball Bf. In particular, v := u®/[u®| is well defined and Holder continuous in B. We
shall see that it satisfies in the weak sense the degenerate system with homogeneous Neumann
boundary condition

—div(2p?Vv) = 2°p?|Vo[*v in B},
5.2
“2@20 on "B, 52

with Hélder continuous weight p? := |u¢|2. Up to the extra weight term p?, this system fits into
the class of degenerate harmonic map systems with free boundary considered in [40]. Adjusting
the arguments in [40] to take care of the extra weight p?, we shall prove that v is Lipschitz
continuous in an even smaller half ball. Since u® = v on 9"B;, the conclusion will follow
straight away.

5.1. Proof of Theorem 5.1. The aforementioned Lipschitz estimate on the map u®/|u®| is
the object of the following proposition.

Proposition 5.2. Let u € ﬁls(DgR;Sd’l) be a weakly s-harmonic map in Dagr. Assume
that u® € C%P(B}) for some exponent B € (0,1), and that |u°| > 1/2 in Bf,. Setting n =

RP [UC]CW(B;)’ the map u®/|u®| is Lipschitz continuous in E;/g,, and

RV (/[ )7 (55 ) < Cnp®s(u®, 0, R),

for a constant Cy g = Cp, 3(n, B,n,s).

Before proving this proposition, we need to show that u®/|u®| satisfies system (5.2) in the
weak sense.

Lemma 5.3. Let u € I?S(DQR;S‘FI) be a weakly s-harmonic map in Dag. Assume that
p = |u®| satisfies p > 1/2 a.e. in Bf,. Then the map v :=u°/p belongs to H*(B};RY, |z|*dx)
and it satisfies

/ 2°p?Vov - Vo dx = / 2%p? | V|2 - ¢ dx
B}, B

R

for every ¢ € H'(Bf;RY, |z|%dx) N L>(B}) such that ¢ =0 on 9+ Bp.

Proof. First recall from (2.14) and Lemma 2.9 that u® € H'(B};R% |z|%dx) N LR},
and consequently, p € H'(B}, |z|%dx) N L=(R}™). By assumption p > 1/2, so that 1/p €
HY(B};, |2|*dx)NL>(RH). The space H (B}, |2|%dx)NL>®(R’*!) being an algebra, it follows
that v € HY(B};RY, |z|*dx), and by definition |[v| = 1 a.e. in Bj.

Let us now fix ® € HY(B};RY, |z|%dx) N L>°(B};) such that ® = 0 on 9*Bp. Again,
HY(B};R% |z|°dx) N L>®(B}) being an algebra, 1 := ® — (® - v)v € HY(BE;RY, |z]%dx) N
L”(BE). It also satisfies ¢ = 0 on 0T Bg, and by construction, we have v - ¢ = 0 a.e. in BE.
Now we consider £ := pyp € H(B#;R?, |z|*dx) N L°°(R"), which still satisfies ¢ = 0 on 0T Bp,
and u°- £ =01in B;,f. In particular, u - £ =0 on 8OB§.
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By Proposition 3.13, the map u® is a weighted weakly harmonic map with free boundary in
the half ball B}, i.e., it satisfies (3.12). Hence,

/B+ 2'Vu® - VEdx =0. (5.3)

On the other hand, 9;u® = 9;pv + pOd;v and 9;§ = 9;pv) + pd;¥ in BE fori=1,...,n+1. Then
we notice that v - = 0 implies v - ;1) = —0;v - ¢ in Bf, for i =1,...,n+ 1. In the same way,
the fact that |v|? = 1 leads to v - 9;v = 0 in BE fori=1,...,n+ 1. As a consequence,

Ou® - 0;& = (Dipv + pdyv) - (0ipt + pOib) = p*dyv - O ae. in Bf,
fori=1,...,n+ 1. Inserting this identity in (5.3) yields

/B+ 2°p°Vo - Vpdx = 0. (5.4)

R

To conclude, we notice that
;v - O31p = O;v - (aiCI) —(v-®)0v— (Qw-P+wv- 81-<I>)v) =0;v-0;® — |c'9iv|2v -® a.e. in BE ,
fori=1,...,n+ 1. Using this last identity in (5.4) leads to the announced conclusion. g

As usual, to deal with homogeneous Neumann condition, we extend the equation to the
whole ball by symmetry. In this way, proving estimates up to the boundary reduces to prove
interior estimates.

Corollary 5.4. Let u € ﬁS(DgR;Sd_l) be a weakly s-harmonic map in Dag. Assume that
|u®| = 1/2 a.e. in BE. Then the function p and the map v defined by

us(x, z if x = (x,2) € B},
p(x) = | e( ) L (z,2) " (5.5)
|u®(z, —2)| ifx = (z,2) € By
and
o(x) = u®(z,2)/p(x) z:fx = (x,2) € Béﬁ (5.6)
u®(x, —2)/p(x) ifx=(x,2) € By
belong to H'(Bg, |z|*dx) N L>(Bg) and H*(Bg;R%, |z|*dx) N L*>®°(BRr) respectively, and
/ |z\“p2VvoV(I>dx:/ |2|°0%|V|?v - @ dx (5.7)
BR BR

holds for every ® € H'(Bgr;R?, |2|°dx) N L>=(BR) such that ® =0 on 0Bg.

Proof. The fact that p and v belong to H(Bg, |2|%dx) N L>®(Bg) and H*(Bg;RY,|z|*dx) N
L*>°(BRg) respectively follows from Lemma 5.3 together with the symmetry with respect to the
hyperplane {z = 0}.

We now consider an arbitrary ® € H'(Bg;R?, |2|°dx) N L>=(Bg) satistying ® = 0 on dBg.
We split ® into its symmetric and anti-symmetric parts defined by
bz, 2) + P(z, —2) O(x,2) — Dz, —2)

2 2 ’
Clearly, ®*,®* € H'(Bg;R?, |z|%dx) N L=(Bg) and ®* = ®* = 0 on dBr. By construction,
we have ®°(z, —z) = ®°(x, z) and ®*(x, —z) = —P%(x, 2), so that 0,P°(x, z) = —0,P°(z, —%)
and 9,9%(xz,z) = 9,9%(x, —z). The map v being symmetric with respect to {z = 0}, it also
satisfies 0,v(x, z) = —0,v(x, —z). Therefore,
(Vo V&) (z,2) = (Vv -V®®)(x,—2) and (Vv -V&)(z,z)=—(Vv- V%) (x,—2).

As a first consequence,

D% (z,2) := and ®%(z,z):=

/ |2|"p? Vv - VO dx = 0. (5.8)
Br
Since (v - ®%)(x,—z) = —(v - ®%)(=, z), we also have

/ 12102 | Vo 20 - % dx = 0. (5.9)
Br



30 VINCENT MILLOT, MARC PEGON, AND ARMIN SCHIKORRA

Then we infer from Lemma 5.3 that
/ |2|%p* Vv - VO* dx = 2/ 2%p?Vu - VO* dx
Br Bf,

:2/ zap2|Vv|2v-<I>de:/ |2|*p?|Vu?v - ®@%dx. (5.10)
Bt Br

R

Gathering (5.8), (5.9), and (5.10) leads to (5.7), and the proof is complete. O

Proof of Proposition 5.2. Rescaling variables, we can assume without loss of generality that
R = 1. Throughout the proof, we shall write for a measurable set A C R™+!

|Al, ::/ |2|* dx,
A

1B (¥)|a = |Brla = [Bilar™"72°. (5.11)

and we notice that for y € R™ x {0},

We start by applying Corollary 5.4 to consider the (symmetrized) modulus function p and
the (symmetrized) phase map v defined by (5.5) and (5.6), respectively. Since u® belongs
to CO#(Bf) and [u®| > 1/2 in B, it follows that v € C%#(Bg), and p € C%P(Bg) with
p = 1/2in Bg. By Corollary 5.4, v satisfies (5.7), and from this equation we shall obtain that
v E Co’l(BR/g). We proceed in several steps.

Step 1. Let us fix y € Dy x {0} and r € (0,1/2]. We consider the unique weak solution
w € HY(B,(y); R%, |z|%dx) of

(5.12)

div(]z|*Vw) =0 in B.(y),
w=v on 0B,(y),

see Appendix A. The map v being continuous in B,(y), it follows from Lemma A.3 that
w € C°%B,(y)). Moreover, since v is symmetric with respect to the hyperplane {z = 0},
Lemma A.2 tells us that w is also symmetric with respect to {z = 0}.

Now we estimate through Minkowski’s inequality,

. 1/2 ) 1/2
R [ peevilax) < (e [ arevelax
r/2la J B, 2(y) By /2la B./2(y)

1/2
1
+C 7/ |2|°0%|V (v — w) > dx , (5.13)
|Bv"a B, (y)

and our first aim is to estimate the two terms in the right hand side of this inequality.
From the definition of 77 and the fact that 0 < p < 1, we have

0700 — ()] < 2l — yIP < Cur® ¥x € Byly). (5.14)
Consequently,
[ Ve ax< ) [ pevelaxs [l - 2]Vl dx
Br/2(Y) Br/2(3’) Br/z(}’)
< (1+cm«5)/ 12]° Vw2 dx. (5.15)
Br/2(¥)

Since w is symmetric with respect to {z = 0}, we infer from Lemma A.4 and (5.11) that the

function
1
te(0,r] — / |2|%| Vw|* dx
|Btla JB,(y)
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is nondecreasing. Hence,

1 1 p
7/ 120902 V)2 dx < M/ 129 Va)? dx
1By s2la JB,,0y) 1Brla  J.(y)
1+ CnrP
S [ e ax,
rla Br(y)

where we have used the minimality of w stated in Lemma A.1 in the last inequality. Using
p(y) =1 and p > 1/2, we now estimate as above,

[ Eewekaxs [ vl [ s - AlITeP i
B (y) Br(y)

BT(Y)
< (1+Cnrf) / |22 Vo dx,
B, (y)

to reach oo
1 1+C
S 1222 Vo2 dx < LFET)” 1292 | Vo2 dx . (5.16)
‘BT/2|G By /2(y) |Brla B, (y)

Next, we recall that v —w € H(B,(y); R%, |z|*dx) satisfies v — w = 0 on B, (y). Hence,
we can apply Corollary 5.4 to deduce that

/ |2|%0% |V (v — w)|? dX:/ |z\ap2VU~V(v—w)dx—/ 12|°p?Vw - V(v — w) dx
Br(y) Br(y) Br(y)

:/ 12|10 | V) ?v - (v — w) dxf/ |2|°0*Vw - V(v — w) dx . (5.17)
Br(y) Br(y)

On the other hand, the equation (5.12) satisfied by w yields

/ |2|%p*Vw - V(v — w) dx = p2(y)/ [2|*Vw - V(v —w) dx
Br(y)

B.(y)

H [ - ) Ve Ve - w) dx
Br(y)
= / 12|*(p* — p*(y)) Vw - V(v — w) dx. (5.18)
Br(y)
By (5.14) and the minimality of w, we have

[ Bl = ) Ve Vo —wyax < onr® [ vl -l dx
Bv‘(Y) BT(y)

< C’mﬁ/ |z|“(\Vw\2+|Vv|2) dx
Br(y)

< Cm“ﬂ/ |2|%| Vol dx
B (y)

< Cnr’@/ |z|“p2\VU|2dx, (5.19)
(Y

where we have used that p > 1/2 in the last inequality. Combining (5.17), (5.18), (5.19), and
using that |v| = 1, we infer that

/| I dx < (o vl + On) [ vl (520
Y

Br(y)
Let us now bound |[v — wl| (B, (y))- First, notice that for x € B,.(y),

[o(x) — w(x)| < u(x) = o(y)] + [w(x) —o(y)] < O’ + |w(x) — v(y)|. (5.21)
Next we observe that for each i = 1,...,d, the scalar function w® — v*(y) € H'(B,(y),|z|*dx)
satisfies in the weak sense
div(|z]*V(w’ = vi(y))) =0 in B.(y),
w' —v'(y) =v" — v (y) on 0B,(y) .
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It then follows from Lemma A.3 that for each i =1,...,d,
[w' = 0" (¥) | oo By < 107 = V' )L @B.(3)) < 10 = 0(¥) |08, p)) < Crr”.
Back to (5.21), we have thus obtained
lw = vl L= (5, vy < O
Using this estimate in (5.20), we derive that

/ |2|%p% |V (v — w)[*dx < Cnrﬂ/ 2| p%| Vv]? dx . (5.22)
Br(y)

Br(y)
Now, inserting estimates (5.16) and (5.22) in (5.13), and then squaring both sides of the
resulting inequality, we are led to

1 1+ C,rP/?

1202 Vo2 dx < LE ) |2|%p2| Vo2 dx,
B B
1Brs2la JB, 4(9) |Brla B (y)

for a constant C,, = C,(n,n,s). Iterating this inequality along dyadic radii r = 27F with
k > 1, we deduce that

k
1 ) 1
o [ e axs ([Jav e ) ot [ el vep ax
|Bryiila JB ] [B1/2la J B, ,5(y)

regr (V) j

gcmB/B "2 Vo2 dx, (5.23)
1

for a constant C, 3 = Cp 3(n, B,n,s). Next, for an arbitrary radius » € (0,1/2], we consider
the integer k > 1 satisfying rp41 < r < 71, and estimate

1 a 202 ant2-2s a 2 2
|2|p7 Vo[ dx < ———— 2|7Vl dx,
| Brla B (y) |Br,la B, (y)
to conclude from (5.23) and the symmetry of v and p with respect to {z = 0} that

1
|Bra

/ 12| 0% Vu|? dx < C,,yg/ |2|°p?| V|2 dx  Vr € (0,1/2].
Br(y) B

Noticing that |[Vu®|? = |Vp|? + p?|Vv|?, and in view of the arbitrariness of y, we have thus
proved that
1
7/ 12102 Vol dx < cn,ﬁ/ 24 VuPdx Yy € Dyjo x {0}, ¥r € (0,1/2]. (5.24)
1Brla JB,(y) Bf

Step 2. Our main goal in this step is to obtain an estimate similar to (5.24) for balls which
are not centered at points of {z = 0}. By symmetry of v and p with respect to {z = 0}, it is
enough to consider balls centered at points of Rﬁ“.

Let us fix an arbitrary point y = (y,t) € Bf/sa and notice that Et/Q(y) C Bf . We also
consider an arbitrary radius 7 € (0,/2] (so that B,.(y) C Bf"). As in Step 1, we introduce the
(weak) solution w € H'(B,(y); R?, |2|?dx) of (5.12). Exactly as in (5.13), we have

2\ ntl 1/2 9\ n+l 1/2
(%) / AP ax) < ((2) / 1202 V]? dx
r BT/?(y) r Br/2(y)

1/2
1

+C —/ 2%V (v — w)|? dx . (525

(Tnﬂ B,,,<y)|| V( )| (5.25)

Arguing precisely as in Step 1, we derive that (5.22) still holds. Then, we estimate as in (5.15),

/ 12102 [ Vul? dx < (p2(y) + cmﬁ)/ 12| Vw2 dx . (5.26)
Bv-/z(Y) B7'/2(Y)
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Applying Lemma A.5 with § = t/r and then the minimality of w, we obtain

2\ nt+1 1
B[ evePaxcs (1+5) g [ lalevul ax
r B,./2(y) t/rn B.(y)
Cr 1
<1+ — —/ 2|\ VoPdx.  (5.27
(15 )7 [, I Vol ax. (520

Combining (5.26) with (5.27), and using again the Hélder continuity of p? (as in (5.14)) together
with 1/2 < p < 1, we deduce that

2\ n+1 u 1 a
(7) / 12]%p?| V] dx < (1+C(m~ﬁ +r/t)) n+1/ 27| Vo2 dx.  (5.28)
Br/?()’) r B (y)

r
Inserting (5.22) and (5.28) in (5.25), we infer that
1 1+ Cy(rP2 + 1/t
e [ R ax < RO g ax,
1Bry2(Y)| JB, 5(v) |Br(y)| B.(y)

for a constant C,, = C,(n,n,s). Arguing as Step 1 (using the dyadic radii 7, := 27%¢), the
arbitrariness of r € (0,¢/2] in this latter estimate implies that

1 / 2 2 Cnﬁ 2 2
—_ [2|%p*| V|~ dx < \z|“p |[Vol*dx  Vr e (0,t/2], (5.29)
Bl S, Boo )] S, e

for a constant Cy, g = Cp 3(n, B,n,s). Then, we notice that for every radius r € (0,¢/2],
t*(1+r/t)*B.(y)| ifs<1/2
B,y)la < 4 L0 TIDEY) 2
t*(1—r/t)*B.(y)| ifs>1/2,
and
t*(1—r/t)*B.(y)| ifs<1/2
Bu(y)]s > a( /)al )l /2,
t*(1+r/t)*B.(y)| ifs>1/2.
Consequently, dividing (5.29) by t*, we obtain

1 / 2 2 Ch.s 2 2
— |2|%p%|Vv]” dx € ———2—~— |z|*p*|Vv|“dx Vre (0,t/2]. (5.30)
|Br(¥)la JB, ) |Btj2(¥)la /B, 4
Setting y := (y,0) € D3 x {0}, we now observe that By/(y) C B$/2(~) and 3t/2 < 1/2.
Using the symmetry of v and p with respect to {z = 0} and (5.24), we deduce that
1 C
T [ RV ax s e [ P
1Bi2(¥)la JB, () By /o (la /S, )
¢ / 21, (2
< = |z|*p*| Vu|* dx
1Bst/2(¥)la JBs, (3)
<cn,g/ 12| V|2 dx. (5.31)
BY

Combining (5.30) and (5.31), and in view of the arbitrariness of y, we infer that

1 u o
|B,.(y )‘ /B ( )|Z| PQ‘VU|2dX§Cn,6/B+ 2| Vu®]? dx Vy:(y,t)EBf/g, vr e (0,t/2].
a y B

Still by symmetry of v and p, this estimate actually holds for every y = (y,t) € By3\ {z = 0}
and r € (0, |t|/2). By Lebesgue’s differentiation theorem, we have thus proved that

p*|Vol? < Cmﬁ’/ 2|*|Vus[*dx  a.e. in Byys,
+

and the conclusion follows from the fact that p > 1/2. O

Proof of Theorem 5.1. Once again, rescaling variables, we can assume that R = 1. Under

condition (5.1), Corollary 4.2 says that u® € C%%'(B[ ) and [u®]co.61 (g ) is bounded by a
31

constant depending only on n and s. Since |u®| = |u| = 1 on 8B} , we can thus find a constant

ka2 = Ka(n,s) € (0,1) such that 6k2 < k1 and |[u| > 1/2 in By, . Since 81 = fi1(n,s), and
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3k2)1 [u] 0.5, p+  is bounded by a constant depending only on n and s, Proposition 5.2
C%81 (B )
K2
implies that v := u®/|u®| is Lipschitz continuous in E:z with
=+
‘U(X) - U(Y)|2 g O®s(uev Oa KQ)‘X - y|2 g C@s(ue’ Oa 1)|X - Y‘Z vxvy € BK,Q )

for a constant C' = C(n,s). Since v(x) = u(z) for every x = (z,0) € 8B} , the conclusion

follows. 0

6. HIGHER ORDER REGULARITY

We have now reached the final stage of our small energy regularity result where it only
remains to prove that a Lipschitz continuous s-harmonic map is of class C*°. To achieve this
result, we shall apply (local) Schauder type estimates for (—A)®. We only refer to [41] for those
estimates as it is best suited to our presentation (see also [52]).

Theorem 6.1. Let u € ﬁs(Dl;Sdfl) be a weakly s-harmonic map in Dyi. If u is Lipschitz
continuous in Dy, then u € C°°(D3).

Proof. The proof of Theorem 6.1 follows from a bootstrap procedure. The initiation of the
induction consists in passing from Lipschitz regularity to C1'*-regularity, and it is the object of
Proposition 6.2 in the following subsection. Then we shall prove in Proposition 6.6 that C*<-
regularity upgrades to C**t1%regularity for every integer k > 1. In applying this bootstrap
argument, we first fix an arbitrary point zo € D;/, and an integer k& > 1. We translate
variables by zy and rescale suitably in order to apply Proposition 6.2 and Proposition 6.6, and
then conclude that v is C*® in a neighborhood of . O

6.1. Holder continuity of first order derivatives.

Proposition 6.2. Let u € fIS(Dg; S?1Y be a weakly s-harmonic map in Ds. If u is Lipschitz
continuous in D3, then u € CY*(D,..) for every a € (0,1) and some . = r.(n,s) € (0,1/2).

One of the main ingredients to obtain an improved regularity is the following elementary
lemma.

Lemma 6.3. Let f : D3 — R% be a Lipschitz continuous function, g : D3 — R% an Hélder
continuous function, and ¢ : D1 — [0,1] a measurable function. Assume that one of the
following items holds:
(i) s €(0,1/2) and g € C%*(D3) for some o € (2s,1];
(ii) s € (0,1/2) and g € C®*(D3) for every a € (0,2s);
(iii) s € [1/2,1) and g € C**(D3) for every o € (0,1).
Then the function

ey f<3|j@)/?n.+(298(x ) —g(a) ((y)dy (6.1)

G:xeD—
Dy

belongs to

(1) C%%(Dy) in case (i);

(2) C%% (Dy) for every o/ € (0,2s) in case (ii);

(3) CO%(Dy) for every o’ € (0,2 — 2s) in case (iii).
Proof. Step 1. We first claim that G is well defined in all cases. To simplify the notation, we
write

D(z,y) = (f(z +y) = f(2) - (9(z +y) — g(x)) . (6.2)
Observe that in all cases, we have 1+ « > 2s (it holds for every a € (0, 2s) in case (ii), and we
can choose such « € (0,1) in case (iii)). Since |I'(z,y)| < Cf.4.0ly/' T, we have

IC(z,y)l dy
/[) |y|’n+28 dy g Cf,g,a b |y|n+28—(1+a) < Cf)g,a Vx € Dl )
1 1

for a constant Cf 4 o depending only on f, g, a, n, and s.

Step 2, case (i). Fix arbitrary points x,h € D;. Since
IT(x + h,y) — T(z,y)| < Cfgalh|*ly|* Vye€ Dy, (6.3)
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we have
1

|G(z 4+ h) — G(z)| < Cfg,al A" /D [y dy < Cf,g,alh|*,

for a constant Cf 4 o depending only on f, g, a, n, and s.
Step 3, case (). Let us fix an arbitrary € € (0,s). We set o :=2s — ¢ and §:= 1 — 2¢. Since
ID(z + h,y) = Tz, y)| < [Tz +hy)| + [D(z,y)| < Crelyl™™,
we can use (6.3) to obtain
(@ + by ) = D@, )| < Cra.elyl HOUD R |7 = Cp g+ |0 Wy e Dy. (6.4)

Hence,

1
ly["—=
for a constant C'y 4. > 0 depending only on f, g, €, n, and s.

|mx+m—aun<@@ww5é dy < Cpgelh|*F, (6.5)

Step 4, case (iii). Now we fix an arbitrary € € (0,1—s), and we set & := 1—¢ and § := 2—2s—2¢.
Then (6.4) still holds, and consequently also (6.5). O

Proof of Proposition 6.2. Step 1. We start by fixing a radial cut-off function ¢ € Z(R"™) such
that 0 < (< 1,(=1in Dy/p,and ( =0 in R"\D3/4. With ¢ in hands, we rewrite for z € Dy,

/ Ju(z) —u)l* | _/ lu(z +y) — u(=)|?
y= dy

|$ _ y|n+25 |y|n+2s
_ u(z + y) — u(z)]? lu(z +y) —u(@)]*
—Ll e qw@+ém L. 60)
and we set ,
_ lu(z +y) — u(z)]
Gulw):= [ e ay. (6.7)

By Lemma 6.3 (applied to f = g = u), the function G, is Lipschitz continuous in D; for
s € (0,1/2), and it belongs to C%%(Dy) for every a € (0,2 — 2s) for s € [1/2,1).

Concerning the second term in the right hand side of (6.6), we use the identity |u|? =1 to
rewrite it as

jule + ) — u(a)P? [ 20-Cw)
Jop e cman= | SRy

1/2 :
([ A ) . 69)

In view of (6.8), it is convenient to introduce the constant Ly > 0 and the function Z € C*(R")

given by
_ [ 20=<(y) _ 2 (0-¢@)
L¢ = /Rn s dy and Z(z):= Lo e

In this way, the right-hand side of (6.8) can be written as
Hy(z) == L¢(1 = Z *u(x) -u(z)) forx € Dy. (6.9)
Notice that Z «u € C*°(R™), so that H,, is Lipschitz continuous in D;.

Summarizing our manipulations in (6.6) and (6.8), we have obtained

ulr) —u 2
| = 6o+ M) Vae Dy

Now we introduce the map F, : D; — R given by

Fo(z) = 7;’3 (Gu(z) + Hy(2))u(z) . (6.10)

Then F,, € C%1(Dy) for s € (0,1/2), and F,, € C%*(D;) for every a € (0,2—2s) for s € [1/2,1).
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Step 2. We consider the map ug : R” — R? given by g := Cu. Then ug € CYL(R™) and ug = 0
in R™\ Dy. In particular, ug € Hgy(D1;R?). A lengthy but straightforward computation shows
that

(-8 w0 = (A ut (-8 Ju—nn [ LD é(y_”y('ﬁ(@‘ W) 4y i (D1 RY,

i.e., in the sense of (2.3). Since u is a weakly s-harmonic map in Ds, it satisfies equation (3.2).
In view of Step 1, we thus have

(—A)*ug = (Fy + ((—A)°¢)u - wn,s/ (@~ |i(y_))y(i(f;)_ “W) 4y in B (D RY).
(6.11)

The function (—A)*¢ being smooth over R™, we infer from Step 1 that (F, + ((—A)SC)u belongs
to C%Y(Dy) for s € (0,1/2), and to C%%(Dy) for every a € (0,2 — 2s) for s € [1/2,1). We now
determine the regularity of the last term in the right-hand side of (6.11) arguing as in Step 1.

We write it as
/ (C(z) = C(y) (u(z) — uly)) dy =: I(x) + 11(x),

Rn

|z — y[nt2s
with
to) = [, KIS .
and
1H(e) = /n Clz+y) - C(If/)lzl(f?(x 9 @) g ey ay
e i(y_»y('gfil —W) (1 (o — )y

By Lemma 6.3, the term I belongs to C%'(D;) for s € (0,1/2), and to C%*(D;) for every
a € (0,2 —2s) for s € [1/2,1). On the other hand, the function ¢ being smooth and equal to 1
in Dy /5, the term IT has clearly the regularity of u in Dy, that is C%!(Dy). Summarizing these
considerations, we have shown that ug € H*(R™;R%) N L>(R") is a weak solution of

(—A)SUO = Fo in D1 s
Uy = 0 in R™ \ D1 ;

for a right-hand side Fy which belongs to C%!(Dy) for s € (0,1/2), and to C%®(D;) for every
a € (0,2—2s) for s € [1/2,1). From well-known (by now) regularity estimates for this equation
(see e.g. [41, Section 2]), the map ug belongs to C*(Dy /5) for every a € (0,2s) for s € (0,1/2),
and to CH* (D 5) for every o € (0,1) for s € [1/2,1). Since ug = u in Dy 5, the proposition
is proved in the case s € [1/2,1), and we obtained u € C*(Dys) for every a € (0,2s) for
s€(0,1/2).

Step 3. We now assume that s € (0,1/2), and it remains to prove that u actually belongs to
C1(D,.,) for every a € (0,1) and a radius r, € (0,1/2) depending only on s. To this purpose,
we rescale u by setting u(x) := u(x/6), and from Step 2, we infer that u € C*(D3) for every
a € (0,2s). We shall now make use of the following lemma.

Lemma 6.4. Assume thats € (0,1/2). Let f : D3 — R% and g : D3 — R? be two C!-functions,
and ¢ : D1 — [0,1] a measurable function. Assume that one of the following items holds:

(i) f,g € CH*(Ds) for every a € (0,2s);
(ii) f,g € CH*(D3) for some a € (2s,1);

Then the function G : D; — R given by (6.1) belongs to

(1) CY(Dy) for every o/ € (0,2s) in case (i);
(2) CY*(Dy) in case (ii);
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and for x € Dy,

8iG(x) = /D  —— ai];g(ﬁlgs(g(x D =9@) ) ay
n /D (f(ﬂ;‘ +y) — f(x))|y|£(2;gs(x +y) — aig(x)) C(y)dy, (6.12)

fori=1,...,n.

Proof. We keep using notation (6.2). First we fix an arbitrary point € Dy and we claim that
G admits a partial derivative 0;G at x. Indeed, for ¢ > 0 small enough, we have

|F(.’[ + teiay) - F($,y)| < nyg|y|t Vy € Dl 3
since f and g are C! over Ds. Hence,

Dz + tes, y) — Dz, y)|

1—2s— 1
e < Cpglyl > e LY(Dy),

and it follows from the dominated convergence theorem that G admits a partial derivative 0;G
at x given by formula (6.12).

Next we apply Lemma 6.3 to the right-hand side of (6.12) to deduce that 9;G is Holder
continuous, and the conclusion follows. O

Proof of Proposition 6.2 completed. We consider the function G : D; — R as defined in
(6.7) with @ in place of u. By Lemma 6.4 (applied to f = g = 1), Gz € CH%(D;) for every
a € (0,2s). On the other hand, the function Hy : D1 — R as defined in (6.9) clearly belongs
to C1(Dy) for every a € (0,2s). Consequently, the map Fy : D; — R? as defined in (6.10)
also belongs to C1:®(Dy) for every a € (0,2s). Since @ is a rescaling of u, it is also s-harmonic
in Dy, and thus (—A)*u = F; in 2’'(D;). Next, we keep arguing as in Step 2, and we consider
the bounded map ug := (u. Applying Lemma 6.4 again, we argue as in Step 2 to infer that
(=A)Ty = Fy in H—*(Dy;RY), for a right-hand side Fy € C1*(D;) for every a € (0,2s). By
the results in [41], we have u € Cl’a<D1/2) for every a € (0,4s) if 4s < 1, and g € Cl’“(Dl/Q)
for every a € (0,1) if 4s > 1. Once again, since up = u in Dy /3, we have u € C’l’o‘(Dl/z) for
every a € (0,4s) if 4s < 1, and u € C*(Dy 2) for every a € (0,1) if 4s > 1.

In the case s € [1/4,1/2), we have thus proved that v € C*(Dy 1) for every a € (0,1).
Hence it remains to consider the case s < 1/4. In that case, we repeat the preceding argument
considering the rescaling u(x) := u(xz/6). Following the same notation as above, Lemma 6.4
tells us that Gg belongs to C1%(D;) for every a € (0,4s), and hence also Fy. Then, applying
the results of [41] to @y, we conclude that @ € C1*(D; ) for every a € (0,6s) if 6s < 1, and
@ € CH*(Dy19) for every a € (0,1) if 6s > 1. Therefore, if s > 1/6, then u € C*(Dy /7o) for
every a € (0,1), which is the announced regularity. On the other hand, if s € (0,1/6), then we
repeat the argument. It is now clear that repeating a finite number ¢ of times this argument,
one reaches the conclusion that u € C"*(D g)-¢/2) for every a € (0,1), and £ is essentially the
integer part of 1/2s. O

Before closing this subsection, we provide an analogue of Lemma 6.4 in the case s € [1/2,1).

Lemma 6.5. Assume that s € [1/2,1). Let f : D3 — R and g : D3 — R< be two C!-functions,
and ¢ : D1 — [0,1] a measurable function. If f and g belongs to C*(D3) for every a € (0,1),
then the function G : D1 — R given by (6.1) belongs to CL"‘/(Dl) for every o/ € (0,2 — 2s),
and (6.12) holds.

Proof. We proceed as in the proof of Lemma 6.4 using notation (6.2). We fix an arbitrary point
x € Dy and we want to show that G admits a partial derivative 0;G at z. For ¢t > 0 small, we
have

N(ate) ~Lay) = (| Of(@rype)=0uf(a-+pe0) dp) - (sla-+y1e) —gla+1e)

+(fla+9) = @) - ([ (@ala+ -+ pe) = dgta+ pes)) dp)
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for every y € D;. Fixing an exponent a € (2s — 1, 1), we deduce that
IT(x + tei,y) — D(z,y)| < Crgalyl™™t Vye Dy.

Consequently,

l+a—n—2 1
|y|n+2st < Cfgalyl famn=2 e LY(Dy).

As in the proof of Lemma 6.4, it now follows that G admits a partial derivative 0;G at =
given by (6.12), and the Holder continuity of the partial derivatives of G is a consequence of
Lemma 6.3. 0

6.2. Holder continuity of higher order derivatives.

Proposition 6.6. Let u € ﬁs(Dg;Sd’l) be a weakly s-harmonic map in D3. If u € C*%(D3)
for some integer k > 1 and every a € (0,1), then u € C*+12(D,. ) for every a € (0,1), where
the radius v € (0,1/2) is given by Proposition 6.2.

Proof. We proceed as in Step 1 in the proof of Proposition 6.2, and we consider the function
Gy : D1 — R given by (6.7). We claim that G,, € C*(D;) for every a € (0,1) if s € (0,1/2),
and that G, € C*(Dy) for every a € (0,2 — 2s) if s € [1/2,1), together with the formula

Yu(x —0%ulx)) - (OB VYulx OB vulr
aﬁGu(x)zz(5>/D (0 u(x +y) — 0 u(x)) - (0% u(z +y) — 9°"u(x))

|y|n+2s C(y)dy (6.13)
vsp
for every multi-index 8 € N™ of length |3| < k. To prove this claim, we distinguish the case
s € (0,1/2) from the case s € [1/2,1).
Case s € (0,1/2). We proceed by induction. First notice that the fact that G, € C1*(Dy)
for every « € (0,1) follows from Lemma 6.4, as well as (6.13) with |3] = 1. Next we assume
that G, € C%“(Dy) for every a € (0,1) for some integer £ < k, and that (6.13) holds for every
multi-index § satisfying |3| = ¢. Applying Lemma 6.4 to each term in the right hand side of
(6.13), we infer that 9°G, € C1*(D;) for every a € (0,1) and each 3 satisfying |3| = ¢, and
that (6.13) holds for multi-indices 8’ in place of § of length |8'| = |3] + 1. The claim is thus
proved for s € (0,1/2).
Case s € [1/2,1). We proceed exactly as in the previous case but using Lemma 6.5 instead of
Lemma 6.4.

Now we consider the function H, : D; — R given by (6.9) which clearly belongs to C*%(Dy)
for every o € (0,1) by our assumption on u. Consequently, the map F, : D; — R? belongs
to C*(Dy) for every a € (0,1) if s € (0,1/2), and to C*<(D;) for every a € (0,2 — 2s) if
s € [1/2,1). By the results in [41] (together with Lemma 6.4 and Lemma 6.5), it implies that
the map wug := Cu as defined in Step 2, proof of Proposition 6.2, belongs to Ck“’o‘(Dl/Q) for
every o € (0,2s) if s € (0,1/2), and to C¥T1:(Dy j5) for every a € (0,1) if s € [1/2,1). Since
ug = u in Dy, the proof is thus complete for s € [1/2,1). In the case s € (0,1/2), we argue
as in the proof of Proposition 6.2, Step 3, applying (inductively) Lemma 6.4 to formula (6.13)
with |8] = k. It leads to the fact that u € C*+1.¢(D,. ) for every a € (0, 1), and hence concludes
the proof. O

7. PARTIAL REGULARITY FOR STATIONARY AND MINIMIZING S-HARMONIC MAPS

In this section, we complete the proof of Theorems 1.1, 1.2, and 1.3. For n > 2s, we need
to prove compactness of stationary / minimizing s-harmonic map to apply Federer’s dimension
reduction principle. This is the object of the first subsection.

7.1. Compactness properties of s-harmonic maps.

Theorem 7.1. Assume that s € (0,1)\ {1/2} and n > 2s. Let Q@ C R™ be a bounded open set.
Let {ux} C ﬁs(Q;Sd_l) be a sequence of stationary weakly s-harmonic maps in ). Assume
that supy, Es(uk, ) < +o0, and that up, — u a.e. in R™. Then u € ﬁs(Q;Sd_l), up — u weakly
in H* (Q;Rd), and u is a stationary weakly s-harmonic map in Q). In addition, for every open
subset w C Q and every bounded admissible open set G C Ri"'l satisfying @ C Q and 0°G C Q,

(i) ux — u strongly in H*(w;RY);
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(ii) u§ — u® strongly in H'(G;RY,|z|%dx).

Theorem 7.2. Assume that s € (0,1/2). In addition to Theorem 7.1, if each uy, is assumed to
be a minimizing s-harmonic map in §2, then the limit u is a minimizing s-harmonic map in Q.

Theorem 7.3. Let Q C R™ be a bounded open set and {u,} € HY2(Q;S%1) be a sequence of
minimizing 1/2-harmonic maps in €. Assume that supy €1 (ug, ) < +o00, and that up — u a.e.
in R™. Then the conclusion of Theorem 7.1 holds and the limit u is a minimizing 1/2-harmonic
map in €.

Remark 7.4. In the case s € (1/2,1), we do not know if minimality of the sequence {ux}
implies minimality of the limit. We believe this is indeed the case, but we won’t need this fact.

Remark 7.5. In the case n = 1 and s € (1/2,1), sequences of (arbitrary) weakly s-harmonic
maps with uniformly bounded energy are relatively compact, i.e., the conclusion of Theorem 7.1
holds. This fact is a consequence of the Lipschitz estimate established in Theorem 5.1 together
with Remark 4.3. Since we shall not need this, we leave the details to the reader.

Remark 7.6. In the case s = 1/2, sequences of (stationary or not) 1/2-harmonic maps are not
compact in general, see e.g. [6, 31, 35, 30]. The prototypical example is the following sequence
of smooth 1/2-harmonic maps from R” into S' C C given by

kxl —1

uk(‘r):uk('rl) = kxl_i_l-v kENv

which is converging weakly but not strongly to the constant map 1 in H/? (D,) for every r > 0.
(Recall that uy being smooth, it is stationary, see Remark 3.7.)

Proof of Theorem 7.1. Step 1. We fix two arbitrary admissible bounded open sets G, G’ C Rﬁ“
such that G C G’UA°G’ and satisfying 9°G’ C 2. Since uj, — u a.e. in R™ and |uy| = 1, we first

deduce that |u| = 1 and uy — u strongly in L (R?;R%). Tt then follows from our assumption

that {uy} is bounded in fIS(Q; R9). Next we derive from Remark 2.2 that u € H* (€;S971) and
uy, — u weakly in H*(€;R?). In view of Corollary 2.10, u§ — u® weakly in H'(G'; R?, |z|%dx).
Since |ug| < 1, we have uf (x) — u®(x) for every x € G’ by dominated convergence. In turn,
we have |u§ — u®| < 2, and it follows by dominated convergence again that u§ — u® strongly
in L?(G';RY,|2|%dx). Recalling that div(2*Vu$) = 0 in G’, we infer from standard elliptic
regularity that u$ — u® in CL_(G’). In particular,

loc
u§ — u®  strongly in HL (G';R?). (7.1)

We aim to show that u§ — u® strongly in H'(G;RY,|2|dx). To prove this strong conver-
gence, we consider the finite measures on G’ U 9°G’ given by

ds ,
M = 52“|VUZ|2$”+1LG .

Since supy, pur(G' U9°G’) < +00, we can find a further (not relabeled) subsequence such that
ds
g — ?z“|Vue|2$"+1l_G’ + Using  as k — 00, (7.2)

weakly* as Radon measures on G’ U9°G’ for some finite nonnegative measure Hsing- In view of
(7.1), the defect measure figng is supported by 9°G’.
Since uy is stationary in 2, it satisfies the monotonicity formula in Proposition 2.17, and

thus
1

e By()) € (B () (73)

for every x € 9°G’ and 0 < p < r < dist(x, 07 G’). From the weak* convergence of py, towards
1, we then infer that

1 1
ﬁu(Bp(X)) < B (%))
for every x € 3°G’ and 0 < p < r < dist(x, 0t G"). As a consequence, the (n — 2s)-dimensional
density

B,
@n_QS(/J,,X) -— lim /’L( T(X))

r—0 rn72s
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exists and is finite at every point x € 9°G’. More precisely, (7.3) implies that

2s—n

0" %% (1, x) < (dist(x,07G")) supE,(ug, G') < +oo  ¥x € 0°G’.
k

We now consider the “concentration set”
Y= {x € 8°G" : inf { liminf r** ™"y, (B,(x)) : 0 < r < dist(x,07G")} > 61} )
T k—o0

where the constant €; > 0 is given by Corollary 4.2. From the monotonicity of u; and p
together with (7.2), we deduce that

Y= {x € 0°G" : lim lim inf 725"y, (B, (x)) > 51}

r—0 k—oo

= {X € °G’ : lim r** " u(B,(x)) = 81} ,

r—0
that is
Y= {x € °G": 0" (U, x) > 61} :

Observing that x € 9°G’ — ©"~25(u, x) is upper semi-continuous, the set ¥ is a relatively
closed subset of 9°G’.

We claim that spt(using) € X. To prove this inclusion, we fix an arbitrary point xg = (20, 0) €
9°G’ \ 3. Then we can find a radius 0 < r < dist(xg, 0" G’) such that r**~"u(B,(x0)) < €1
and ©(0B,(xg)) = 0. By (7.2) and our choice of r, we have limy pr(B;(x0)) = u(Br(x0)).
Therefore, 25" uy,(B,(x0)) < €1 for k large enough, and we derive from Theorem 5.1 that for
k large enough, uy, is bounded in C%!(Dy,,(x0)) (and u € C%1(D,,.(x0))), where the constant
Ko € (0,1) only depends on n and s. It then follows by dominated convergence that

[ = ulbts (D won) 2,0

Setting wy, := ur — u, we now estimate

Eo(wh, Daryrys (@0)) < C([ur = (. ooy

-~ 2
+// |[wi (2) :ffgy)l dmdy).
Danyrss(w0)xDg, (o) 1€ =Yl

Since |wg| < 2 and wi — 0 a.e. in R™, by dominated convergence we have

— 2
/ / e fﬁgy)' dzdy — 0. (7.4)
Dasyr/3(@o) X DE, . (20) |$ - y‘ k—o0

KoT

Hence & (wy, Day,r/3(x0)) — 0, and it follows from Lemma 2.9 that

E, (u,i —u®, B:ﬂ/g(xo)) < C&(up — wu, D2nzr/3(Io)) — 0.

Hence, uf, — u® strongly in Hl(B:ﬂ/g(xO), |z|*dx), and thus jising(Br,r/3(x0)) = 0. This

shows that xo & spt(fsing), and the claim is proved.

Next we claim that p(X) = 0. Indeed, assume by contradiction that p(X) > 0. Then the
density ©"~2%(u,x) exists, it is positive (greater than 1) and finite, at every point x € X.
By Marstrand’s theorem (see e.g. [28, Theorem 14.10]), it implies that n — 2s is an integer, a
contradiction.

Knowing that u(X) = 0, we now deduce that pging(X) = 0. But pging being supported by X,
it implies that pging = 0. As a consequence, Eg(u, G) — E4(u®, G), which combined with the
weak convergence in H'(G;R?, |z|*dx) implies that Eg(u§ — u®,G) — 0. We have thus proved
that u§ — u® strongly in H(G;R?,|z|%dx).

Step 2. We consider in this step an open subset w C €2 such that w C €2, and our goal is to
prove that uj — u strongly in H*(w;RY). Set § := %dist(w, Q¢), and consider a finite covering
of w by balls (Ds(z;))icr with z; € w. By Lemma 2.8 and Step 1, we have for each i € I,

[up — u]ils(Dzé(zi)) < CE4(uf, — u®, Bfs(x;)) kjgoO, (7.5)
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where x; := (x;,0). Writing again wy, := up — u, we now estimate

|wy (2 wk( )P
2
// o) - P g,
= JIps@oxrn o —y[nE

<O ([0 (pag ey + / /D |wk|;w)_;1:f§y)|2 dedy).  (76)

icl s(wi)xDgs(wi)

As in (7.4), by dominated convergence we have

_ 2
// Jwp,(2) ;Ufgy)I dedy — 0 Viel. (7.7)
Ds(x )><D2‘5(55L') |I - y| k—o0

Combining (7.5), (7.6), and (7.7) leads to & (wy,w) — 0, and thus uj, — u strongly in H*(w; R?).

Step 3. Our aim in this step is to show that u is a weakly s-harmonic map in €2, i.e., u satisfies
equation (3.2), or equivalently (3.4), by Proposition 3.5. To this purpose, we fix an arbitrary
¢ € 2(RY), and we choose an open subset w C € such that spt(¢) C w and @ C . Writing
again wy := u — u, we have proved in Step 2 that & (wg,w) — 0.
Recalling our notations from Subsection 2.2, we observe that
|dsug|? — |dsul? = |dswi|? + 2dswy, © dgu,
and then estimate
2 2 2
i — el ) < el + 2 0

Es(wy,w) + 2| dswg | .2

(w)
2, (w) ||0‘l UHLQd(w)

<
<2
< 26, (wi, w) + 2V2[|dsul 12, () V/Es (Wi, w) -

Therefore |dguz|?> — |dsul? in L (w), and we can find a further (not relabeled) subsequence and
h € L'(w) such that

|dsu|*(2) — |dsul?(z) for a.e. © € w, and |dsug|*(z) < h(zx) for ae. x € w.

Since |ug| = 1 and ux — w a.e. in w, it follows by dominated convergence that |dguz|?us —
|dsu|?u in L' (w). Consequently,

/\dsuk|2uk~gadx—>/|dsu|2u~gadm.
Q k—o0 Q

On the other hand, the weak convergence of uy, to u in H* (Q; R?) implies that ((—A)%ug, ¢)
converges to <(—A)Su,g0>ﬂ. Hence,

<(—A)Su,<p>Q = lim <(—A)Suk,<p>ﬂ = kli_g)lo/ﬂ |dsur*uk - p da = /Q |dsul?u - pdz,

k—o0

Q

so that u is indeed weakly s-harmonic in  (see (3.4)).

Step 4. It now only remains to prove that u is stationary in €2. This is in fact an easy consequence
of the strong convergence of u¢ established in Step 1. Indeed, let us fix an arbitrary vector field
X € CY(R™;R™) compactly supported in ©. Combining the strong convergence of u$ established
in Step 1 together with the representation of the first variation €, stated in Proposition 2.15,
we obtain that 6&(ug, Q)[X] — & (u, Q)[X], whence & (u, Q) = 0. O

Proof of Theorem 7.2. In view of Remark 3.3 and Theorem 7.1, it only remains to prove that
the limiting map w is a minimizing s-harmonic map in Q. We follow here the argument in [34,
Theorem 4.1].

Let us now consider an arbitrary u € ﬁs(Q;Sd_l) such that spt(u — u) C Q. We select an
open subset w C Q with Lipschitz boundary such that spt(u — @) C w and @ C Q. Define

(a) = {ﬂ(x) if v € w,

ug(z) otherwise.
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Since s € (0,1/2) and dw is Lipschitz regular, it turns out that i, € H*(Q;S91) (see e.g. [33,
Section 2.1]), and spt(uy — ug) C Q. By minimality of ux, we have E;(ug, Q) < E(Ug, Q). Since
Ur = ug in R™ \ w, it reduces to

~ n,s 2 n,s U —u 2
Es(up,w) < Es(ug,w) = S // |w = |n+21| dzdy + 7 // [t \a: — nk—‘EQs) dzdy .
Xw Xwe

On the other hand,

i) — w4

1
T gt S oy € L' (wx wf),

since w has Lipschitz boundary. Hence, &;(tg,w) — Es(u,w) by dominated convergence and
the fact that @ = w in R™ \ w. By Fatou’s Lemma, we have lim infy & (ug, w) > E(u,w), and
we reach the conclusion that & (u,w) < & (u,w). Once again, the fact that @ = v in R" \ w
then implies that &s(u, Q) < & (@, ). By arbitrariness of u, we conclude that u is indeed a
minimizing s-harmonic map in €. (|

Proof of Theorem 7.3. Step 1. Once again, we fix two arbitrary admissible bounded open sets
G,G" C R such that G C G' U 0°G’ and satisfying 9°G” C Q. Exactly as in the beginning
of the proof of Theorem 7.1, Step 1, we have: (i) uy — u strongly in L% (R%;R%); (i) up — u
weakly in H1/2(Q RY); (iii) u§ — u® strongly in L2(G'; R?); (iv) u§ — u® weakly in H(G'; R?).

Since each uy is minimizing, we infer from [30, Theorem 3.6] that each u§ is a minimizing
harmonic map with (partially) free boundary in G, i.e.,

E%(UZ,G/) < E%(’U,G/)

for every v € H'(G'; R?) satisfying v(x) € S¥! a.e. on 9°G’, and spt(v —u§) € G’ UG’ (see
e.g. [30, Definition 3.1]). Applying [30, Theorem 3.5] (which is based on [13, 14]), we conclude
that u$ — u® strongly in H} (G’ U9°G’;RY), and that u® is a minimizing harmonic map with
(partially) free boundary in G’. In particular, u§ — u® strongly in H(G;R?).
Step 2. In view of the arbitrariness of G/, we first deduce that u® is a minimizing harmonic
map with (partially) free boundary in every admissible bounded open set G’ C Riﬂ such that
G C Q. By [30, Theorem 3.6], it implies that w is a minimizing 1/2-harmonic map in .

It now only remains to show that ui — u strongly in fIl/z(w;Rd), where w C Q) is an
open subset satisfying w C Q. Applying Lemma 2.8 and Step 1, the strong convergence in
HY/? (w;RY) can be achieved exactly as in the proof of Theorem 7.1, Step 2. O

We now close this subsection with an easy consequence of Theorem 7.1 and Theorem 7.3 in
terms of the pointwise density function Zg(u, -) defined in (2.25).

Corollary 7.7. Assume that n > 2s. In addition to Theorem 7.1 and Theorem 7.3, if {x} C Q
is a sequence converging to x. € €0, then

limsup Z(ug, vx) < Eg(u, T4) -
k— o0

Proof. Without loss of generality, we can assume that z, = 0. Applying Corollary 2.18, we
obtain for r > 0 small enough and r, := |zy],

1

=25

Es(ukaxk> g Q(UZ?XIWT) < E8<uk7Brtrrk)7 (78)

where x;, := (2%,0). By Theorem 7.1 (in the case s # 1/2) and Theorem 7.3 (in the case
s =1/2), u§ — u® strongly in H*(Bj,,|2|?dx). Since 7 — 0, we deduce from (7.8) that

lim sup Z;(ug, zx) < O(u®,0,7),

k—o0

and the conclusion follows letting r — 0. g
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7.2. Tangent maps. We assume throughout this subsection that s € (0,1) and n > 2s. We
consider a bounded open set 2 C R™ and a map u € H*(Q;S%1) that we assume to be

e a stationary weakly s-harmonic map in €2 for s # 1/2;
e a minimizing 1/2-harmonic map in 2 for s = 1/2.

We shall apply the results of Subsection 7.1 to define the so-called tangent maps of u at a given
point. To this purpose, we fix a point of study zg € ) and a reference radius py > 0 such that
D3,y (x0) C 2. We introduce the rescaled function

ufﬂoyp(x) = U(IEO + p:L’) s

and we observe that (us,,,)®(x) = u®(xo+px) = ug, ,(x) with xg = (0, 0). Rescaling variables,
Ug,,p 1S a stationary weakly s-harmonic map in (Q — z¢)/p for s # 1/2, or a minimizing 1/2-
harmonic map in (Q — x¢)/p for s = 1/2. In addition,

O, (15, . 0,7) = O, (uf,x0, pr) V1 € (0, po/p] (7.9)

Zo,p?

This identity together with the monotonicity formula in Proposition 2.17 and Lemma 2.9 yields

®s(ue Oa 7") < ®s(ue>X07 PO) < Cp%s—ngs(u’ Q) vr € (07 PO/P] )

To,p’?
for a constant C' depending only on n and s. In turn, Lemma 2.8 implies that
[ao.plTrs (D) < CPF° " 25 Es(u, Q) ¥ € (0, po/ (4p)].
Using |ug,,,| = 1, we can now estimate for r € (0, po/(4p)],
dmdy n—zs s—n
gs(umo,paDr) < C([Uzo,pﬁqs(DzT) + // m) é CT 2 (P(Q) €s(u,Q) + 1) .
D, xDs,. Y

Given a sequence pr — 0, we deduce from the above estimate that

lim sup &5 (Ugg,pp, Dr) < 400 Vr > 0.

k—o0
Applying Theorem 7.1, Theorem 7.2, and Theorem 7.3, we can now find a subsequence {p} }
and ¢ € HE (R™;S971) such that

Uy, pr — ¢ strongly in ae (Dy), and ug, ,

;= ¢ strongly in HY (B}, |2|*dx) for all > 0,
where

(i) if s # 1/2: @ is a stationary weakly s-harmonic map in D, for all r > 0;
(ii) of s < 1/2 and u minimizing: ¢ is a minimizing s-harmonic map in D, for all r > 0.

Definition 7.8. Every function ¢ obtained by this process will be referred to as a tangent map
to u at the point xo. The family of all tangent maps to u at x is denoted by Ty, (u).

We now present some classical properties of tangent maps following e.g. [53] or [33, Section 6].
Lemma 7.9. If p € T, (u), then
O,(¢%0,r) =EBs(p,0) = Es(u,z0) Vr>0,

and @ is positively 0-homogeneous, i.e., p(Ax) = @(x) for every A > 0 and x € R™. In
particular,

Bs(p, Az) = Bs(p,x) for every x € R™\ {0} and A > 0. (7.10)

Proof. From the strong convergence of ug,_ p. 10 % in HY(B;,|z|°dx) and (7.9), we first deduce
that
O,(¢°,0,7) = lim O4(u’,xq, p7) = Es(u,9) Vr > 0.
k—o0

Then, the constancy of r — O(¢°,0,r) together with the monotonicity formula in Proposi-
tion 2.17 implies that x-V¢°(x) = 0 for every x € Rﬁ“. Hence, ¢° is positively 0-homogeneous,
and the homogeneity of ¢ follows. As a consequence, for z € R™ \ {0} and A > 0,

®5<¢ev )‘X’ T) = 68(9067 Xa ’I”/)\) I
where x := (z,0). Letting now r — 0 yields (7.10). O
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Lemma 7.10. If ¢ € T, (u), then
Es(py) S Es(p,0) VyeR™.
In addition, the set
S(p) = {y e R : E(p,y) = Zulp,0)}
is a linear subspace of R™, and p(x +y) = p(x) for every y € S(¢) and every x € R™.

Proof. Step 1. By Corollary 2.18, we have have for every y € R™ and p > 0,

— . e|2
Lalx—y) Ve

|X _ y|n+2—25 dx = 68(5067 Yy, ,0) 5 (711)

'='S(<P7y)+58/+

By (y)

where y = (y,0). On the other hand, by homogeneity of ¢,

n—2s
(p+ Iylg o
pﬂ,— S

(p+ ly))—2

Os(¢%y,p) < (%0, p+ Jy]) = Wﬁs(%w

Combining this inequality with (7.11) and letting p — oo yields

— . e 2
L= y) Ve
|X_y|n+2—25

Es(p,y) + 05 x < Ey(p,0).

n+1
RY

Step 2. Next, assume that Z,(p,y) = Zs(p, 0) for some y # 0. Then (x —y) - Vg©(x) = 0 for
all x € R’j_ﬂ. By 0-homogeneity of ¢, we then have y - Vip©®(x) = 0 for all x € ]R:L_H, and thus

olx+y) =¢(x) VreR". (7.12)

The other way around, if (7.12) holds for some y # 0, then (x—y)-V¢®(x) = 0 for all x € R}
(again by homogeneity). We then infer from (7.11) and (7.12) that for p > 0,

Ei(py) = 04(¢%y, p) = Bs(¢°,0,p) = Es(p,0),
i.e., y € S(p). Hence, (7.12) caracterizes S(p), and the linearity of S(p) follows. O

Remark 7.11. If there exists ¢ € Ty, (u) such that dim S(¢) = n, then ¢ is clearly constant,
and thus Z;(u, 29) = E4(p,0) = 0. By Theorem 5.1, u is continuous in a neighborhood of zg,
so that ¢ = u(xp). In other words, T, (u) = {u(xo)}.

As a consequence, if on the contrary Zg(u,zg) > 0, then all tangent maps ¢ € T, (u) must
be non constant, and hence satisfy dim S(yp) < n — 1.

Lemma 7.12. Assume that s € [1/2,1). If ¢ € T, (u) is not constant, then
dim S(p) <n—2.

Proof. We proceed by contradiction assuming that there exists a non constant tangent map
¢ € Ty, (u) such that dimS(p) = n — 1. Rotating coordinates if necessary, we can assume
that S(p) = {0} x R*~!. By Lemma 7.10, the map ¢ only depends on the z;-variable, that is
o(x) =: Y(x1) where ¢ € HE (R;S41). Since ¢ is positively 0-homogeneous and non constant,
the map ¢ is of the form

a ifx; >0
= , 7.13
V(1) {b ifz; <0 ( )

for some points a,b € S?~1, a #£ b. However, a direct computation shows that [Y]Ee(—1,1) = o0,
ie. ¥ & H*(—1,1), a contradiction. O

Lemma 7.13. Assume that n > 2, s € (0,1/2), and that u is a minimizing s-harmonic map
in Q. If o € Ty, (u) is not constant, then

dim S(p) <n-—2.

To prove Lemma 7.13, we shall make use of the following pleasant computation.
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Remark 7.14. For n > 2, we have

d /
Qps i= / #n“s = M. (7.14)
Reot (14 [2/]2) "5 s

Indeed, we easily compute in polar coordinates and setting ¢ := r?,

n—1

dz’ I +o0 rn—2 |S”72| too i1
e = ST ez dr =" mm At
re-t (14 [2/[2) " o (14127 o (L+1)=

Recalling the value of v, s given in (2.1), we thus have

/ dz’ B |S"’2|B(n—l 1+25>
reo1 (14 |2/)2)"5 2 2 72
= s (7.15)

2= 2
2 F(n-EQs) F(7z+23) Yr,s :

where B(-, ) denotes the Euler Beta function.

Proof of Lemma 7.13. Step 1. We proceed again by contradiction assuming that there exists
a non constant tangent map ¢ € Ty, (u) such that dim S(p) = n — 1. Rotating coordinates if
necessary, we can proceed as in the proof of Lemma 7.12 to infer that ¢(z) =: ¥(x1) where
Y € HE (R;S?1) is of the form (7.13) for some points a,b € S¥71, a # b. We claim that 1 is
a minimizing s-harmonic map in the interval (—1,1). Once the claim is proved (which is the
object of the next step), we can infer from the regularity result [34, Theorem 1.2] that 1) is
continuous in (—1, 1), which again enforces a = b, a contradiction.

Step 2. We now prove that ¢ is a minimizing s-harmonic map in (—1,1). To this purpose, we
fix an arbitrary competitor v € H*((—1,1);S%1) such that spt(v — ¢) C (—1,1). Given r > 1,
we consider the open set . C R™ defined by @, := (—1,1) x D/ where D). denotes the open
ball in R"~! centered at the origin of radius 7. We define a map 0, € H*(Q,;S%"!) by setting

for x = (z1,2") € R™,
: /
5o(x) = v(xy) ?f 2’| <7,
Y(zy) if |2 =r.

Recalling that u is assumed to be minimizing, ¢ is minimizing in every ball. Since spt(v, —¢) C
Qr+1, we thus have

gs(‘ﬂa Qr+1) g 55(57‘7 Qr—i—l) .
Since v, = ¢ in R™ \ @, it reduces to

Es(p, Qr) < Es(vr,Qr). (7.16)

We claim that
1

W@(@,Qr) — E(v,(-1,1)), (7.17)

where |D!| denotes the volume of D! in R"~!. Since we could have taken v to be equal to 1,
(7.17) also holds with ¢ in place of v, and ¥ in place of v. Therefore, dividing both sides of
(7.16) by |D..| and letting r — oo leads to

E (¥, (-1,1)) < &(v, (—1,1)),

which proves that 1 is indeed minimizing in (—1,1).
Let us now compute &(v, Q) to prove (7.17). First, by Fubini’s theorem we have

[vr(z) = 0r(y)?
dzdy
//TXQT |$_ ‘n+25
dx'dy’
= lv(z1) —v(y1)|? // e ) dradyr
//(—1,1)2 ( xoy (Jor — g2 + o -y [2) "5 )




46 VINCENT MILLOT, MARC PEGON, AND ARMIN SCHIKORRA

Then we observe that a change of variables yields

// dx'dy’
Dyxny (|21 — 2 + [2/ — /)5

dz'dy’
-/ Y A(m - wi])
Dkt (21— g + |a? — g/ )0

o — |12 -

Ar(Jer —w1l),

where o, s is given by (7.14), and A, (t) is defined for ¢t > 0 by

dx'dy’
t) - 2 ’ 712 22
px(ppye (B2 + [2f —y'?) 2

Therefore,

|Ur ( )| / // |U xl ( )|2
dedy = an .| D! L) = OV 4 day
/| o |x7 s D f ) e =g

_ //(_1 b lo(z1) — v(y)|PAr(|z1 — y1]) daqdyy . (7.18)

Similarly, we compute

// [or(x) — ZZF(QS)\ dzdy
@rx(@pe 1T =l
dz'dy’
= v(z1) —v(y)? // 15 ) dradys
//<—1,1>x(—1,1>c ) °( pyxre=t (Joy — |2 + |27 — y/2) "5 )

w [ e = v A s desdn,
—1,1)2

so that

2
U (T v(xy) — v
ﬁ | ( ) n-i-(2s)‘ dIdy—Oén s|D |/] | ( 1) E%{}gj dl‘ldyl
Qrx(Qr)° |z -yl (—1,1)x(=1,1)¢ |1 — 1

+ //(_171)2 [w(z1) — ()P Ar(Jor — 1)) dzidys . (7.19)

Combining (7.18) and (7.19) leads to

1
7 (U’!‘?Q’I) = s(U7 (—1, 1)) —I.+1I.,
23]
where
M,s 2
L. .= 7 // v(z1) —v(y)|*Ar (|21 — y1|) dzrdys ,
7 L ) = o)A )
and
o= [ o) v A — i o
2|Dy] J J <11y
Since |v| = || = 1, we have

I.+1I,<Crt™ // Ay (lxr —y1]) dedyr
(-1,1)?
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and using Fubini’s theorem again, we estimate

J[ A b dea
1,1
(G B—
D! x(DL)e (-1,0xR (|Jz1 — Y12+ |2/ = ¥'|?) =
dz'dy’
C// . ny 1+2s
1. x(D!)e |.’,E *y‘

n—1-—2s
<Cr .

Therefore,

L v, =& (v —2s
|D;|88( TaQr) 55( ( ))+O( )

and the proof is complete. O
7.3. Proof of Theorem 1.1, Theorem 1.2, and Theorem 1.3.

Proof of Theorem 1.1. Let us fix an arbitrary point zg € §2, and set rg := %dist(xo, Q°). With-
out loss of generality, we can assume that o = 0, so that our aim is to show that u is smooth in a
neighborhood of zp = 0. As noticed in Remark 4.3, the function r € (0, 2ro—|x|) — O4(u®,x,7)
is nondecreasing for every x € 8035;0. Moreover, since 2s —n = 2s — 1 > 0, we have

lim 0 (u,0,7) =0.
r—0
Then we deduce from Corollary 2.20 that
lim ©,(u®,0,7) =0.
r—0

As a consequence, we can find 1 € (0,7¢) such that ©4(u® 0,71) < €1, where the constant e;
is given by Corollary 4.2. From Theorem 5.1, we infer that u € C%'(D,,r;) for a constant
ks € (0,1) depending only on s. In turn, Theorem 6.1 tells us that u € C°°(D,,,, /2)- O

Proof of Theorem 1.2, case s = 1/2. Considering the constant £; > 0 given by Corollary 4.2,
we define

Y= {m €0:Ey(u,x) > 51}. (7.20)

By Corollary 2.18, ¥ is relatively closed subset of €2. On the other hand, it is well known that
H" LX) =0, see e.g. [58, Corollary 3.2.3].

We claim that v € C*(Q \ X). Indeed, if zg € @\ X, then we can find a radius r €
(0, 3dist(zo, Q2¢)) such that ©4(u®,0,r) < e;. Applying Theorem 5.1 and Theorem 6.1, we
conclude that v € C°°(D,,,/2), and the claim is proved.

Obviously, sing(u) C ¥, and it now only remains to show that sing(u) = 3. This is in fact a
direct consequence of the regularity result in [21, Theorem 4.1]. Indeed, assume by contradiction
that there is a point xo € ¥ \ sing(u). Since sing(u) is a relatively closed subset of €2, we can
find r > 0 such that Dsy,(z9) C Q \ sing(u), i.e., u is continuous in Dy, (zg). Consequently, u
is continuous in B;"(x¢) U 8° B, (x0), where xo = (z¢,0). However, by Proposition 3.13 (with
s =1/2), u® € H' (B} (x¢); R?%) also solves

/ Vu® - Vodx =0
B}t (z0)

for every ® € HY(B;(x0);RY) such that ® = 0 on 97 B,(x0) and u - ® = 0 on 9B, (xo).
Then [21, Theorem 4.1] tells us that u® € C'b °‘(B+/2( 0)) for every a € (0,1). Consequently,
Es(u,z9) =0, ie., o € X, a contradiction. O

Proof of Theorem 1.2, case s # 1/2. We still consider the relatively closed subset X of 2 defined
n (7.20). As in the case s = 1/2, it follows from Theorem 5.1 and Theorem 6.1 that u €
C>*(Q\X). In particular, sing(u) C ¥. On the other hand, if u is continuous in a neighborhood
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of a point xy € §, then T,,(u) = {u(zo)}, and thus Z;(u,z9) = 0. Hence, ¢y ¢ X, and we
conclude that sing(u) = X. In view of Remark 7.11 and Lemma 7.12, we have

{zeQ:dimS(p) <n—1VpeT,(u} ifse(0,1/2);
{zeQ:dimS(p) <Kn—2 VpeT,(v)} ifse(1/2,1).

We can now apply e.g. [53, Chapter 3.4, proof of Lemma 1] (which only relies on the upper
semicontinuity of E; stated in Corollary 7.7, the strong convergence of blow-ups to tangent
maps, and the structure results on tangent maps established in Subection 7.2) to conclude that
dimy ¥ <n—1for s € (0,1/2), dimy X <n—2 for s € (1/2,1), and that ¥ is locally finite in
Qif n =1 with s € (0,1/2) or n = 2 with s € (1/2,1). O

Proof of Theorem 1.3. For s € (1/2,1), we simply apply Theorem 1.2 (recalling that minimality
implies stationarity). We thus assume that s € (0,1/2]. Since w is minimizing in €, the
results in Subsection 7.2 apply. Hence, we can repeat the proof of Theorem 1.2 to derive that
u € C®(Q\ X), sing(u) = X, where ¥ is still given by (7.20). In view of Lemma 7.12 and
Lemma 7.13, we now have

Y={zeQ:dimS(p) <n—2 Vp e T,(u)}.

Once again, [53, Chapter 3.4, proof of Lemma 1] shows that dimyuY < n — 2, and that ¥ is
locally finite in Q if n = 2. O

We complete this section with an example showing that Theorem 1.3 is sharp in every space
dimension for s = 1/2.

Example 7.15. In [30, Theorem 1.4], it has been proved that the map usp : R? — S! given
by
x
U2D (.’IJ) =,
|z
is a (0-homogeneous) minimizing 1/2-harmonic map. Obviously, the origin belongs to sing(usap).
In arbitrary dimension n > 2, we consider the 0-homogeneous map u, : R” — S! defined as

us () := ugp ('),
with 2’ := (z1,22) € R? and z = (2/,2"”). Then u, is a minimizing 1/2-harmonic map into S!
with sing(u.) = {(0,0)} x R*~2.
To prove that u, is minimizing, we proceed as follows. First notice that u, € H/2(Dg; R2)N
HY? (R™) for every R > 0. According to [30, Definition 3.1 and Theorem 3.6], it is enough to

loc
show that u$ is a minimizing harmonic map with (partially) free boundary in every admissible

bounded open set G C Riﬂ. In turn, by 0-homogeneity of u$, it is enough to show that u$ is
a minimizing harmonic map with (partially) free boundary in a given admissible bounded open
set G C Riﬂ, that we choose to be

G:=DP x (-1,1)" 2 x (0,1),

where D§2) denotes the open unit disc in R? centered at the origin. Applying Fubini’s theorem
and changing variables, we start computing for z > 0,

dy//
e _ / /
ug(z,z) = Tn, i /IR2 zuap (Y') </Rn_2 (2 — I+ |2 — ' + 22)"7“ dy

B dy” zuap (y') /
= Tn,L ntl 3 dy 3
P\ eos Q4 ) ) Juo (o =y + )8

where we have used that o,

1= Vn, L As in Remark 7.14, we have

/ dy” w2 T(3/2) 7
Rz (

1
=T :7’2 .
"2+ 1) 3

() m
Hence,

uS(z, 2) = usp (2, 2) . (7.21)
Now we consider a competitor v € H'(G;R?) satisfying v(x) € S! for a.e. x € 9°G and
spt(v —u¢) € G U A°G. By a classical slicing property for Sobolev functions, for a.e. z” €



PARTIAL REGULARITY FOR FRACTIONAL HARMONIC MAPS 49

(—1,1)"2, we have: (i) v(-,2",-) € Hl(D?) x(0,1);R?); (ii) v(z’,2",0) € St for a.e. 2’ € Df);

(iii) spt(v(-, 2", ) — uap) C Dgz) x [0,1). By minimality of uep and [30, Theorem 3.6], we infer

that

/D<2) o |V ov(z! 2", 2)|? da’dz > /D(z) o |VuSp (2, 2)|> da’dz for a.e. 2 € (—=1,1)"72.
1 X0, 1 X0,

It now follows from Fubini’s theorem and (7.21) that

1
Ei(v,G) > 7/ / Vo o(z! 2" 2)|? da’dz | da”
2 2 Ji—1,ym-2 \Up® x0,1)

1
=5/ / Vusp (&, ) da'd | da” = By (u, G),
2 Ji—1,1m-2 \JD® x(0,1) 2

and the minimality of u$ is proved.

APPENDIX A. ON THE DEGENERATE LAPLACE EQUATION

In this first appendix, our aim is to recall some of the properties satisfied by weak solutions
of the (scalar) degenerate linear elliptic equation

div(|2|*Vw) =0 in Bgr(xo), (A1)

with x¢ = (0, 20) € R"T!. Those properties are essentially taken from [40], and we reproduce
here the statements for convenience of the reader. The notion of weak solution to this equation
corresponds to the variational formulation. In other words, we say that w € H(Bg(xq), |2|*dx)
is a weak solution of (A.1) if

/ |2|*Vw - V&dx =0
BR(xo)

for every ® € H'(BRr(x), |2|*dx) such that ® = 0 on dBg(xo).

One may complement (A.1) with a boundary condition of the form w = v on Br(xq) for
a given v € H'(BRr(xg), |2|*dx). This boundary condition is thus interpreted in the sense of
traces. Classically, such a boundary condition uniquely determines the solution of (A.1) which
can be characterized by energy minimality.

Lemma A.1l. Let v € H(Br(xo), |2|%dx). The equation

div(]z|*Vw) =0 in Br(xo),
w="v on 8BR(X0) 5

admits a unique weak solution which is characterized by

/ |z|“\Vw\2dx§ / |z\“|V<I>|2dx
BR(XO) BR(XO)

for every ® € H(Br(xo), |2|*dx) satisfying ® = v on dBgr(xo).

As for the usual Laplace equation, energy minimality can be used to prove that w inherits
symmetries from the boundary condition. In our case, we make use of the following lemma.

Lemma A.2. Let xg € R" x {0} and v € HY(Bg,|z|*dx). If v is symmetric with respect to
{z = 0}, then the weak solution w of (A.2) is also symmetric with respect to {z = 0}.

Concerning interior regularity of weak solutions, the issue is of course near the hyperplane
{#z = 0}. Indeed, if the ball Br(xg) is away from {z = 0}, then the operator becomes uniformly
elliptic with smooth coefficients, and the classical elliptic theory tells us that weak solutions
are C in the interior. For an arbitrary ball, the general results of [18] about degenerate
elliptic equations apply, and they provide at least local Holder continuity in the interior. Using
the invariance of the equation with respect to the z-variables, the regularity can be further
improved (see e.g. [40, Corollary 2.13]). Some boundary regularity and related maximum
principles are also known from the general theory in [23]. We reproduce here the statement in
[40, Lemma 2.18].
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Lemma A.3. Letv € H'(Bg(xo), |2|*dx)NC®(Br(x0)). The weak solution w of (A.2) belongs
to C°(BRr(x0)). Moreover,

min w= min v and max w= max v.
Br(xo) 9BR(x0) Br(xo) 9BRr(x0)

A further fundamental property of weak solutions of (A.1) is an energy monotonicity in
which one has to distinguish balls centered at a point of {z = 0} from balls lying away from
{# = 0}. The two following lemmas are taken from [40, Lemma 2.8] and [40, Lemma 2.17],
respectively.

Lemma A.4. Let xg € R" x {0} and w € H'(Bgr(xo),|2|°dx) a weak solution of (A.1).
Assume that either s > 1/2, or that s < 1/2 and w is symmetric with respect to the hyperplane
{z =0}. Then,

#/ 2] Vuw? dx < L/ 121V ? dx
pn+2725 Bp(xo) T.n+2725 B, (xo)

for every0 < p<r < R.

Lemma A.5. Letw € H'(Bgr(xo),|2|%dx) be a weak solution of (A.1). Ifxg = (z9,20) € R}
and R > 0 are such that Br(xq) C RT‘l and zy = OR for some 6 > 2, then

2 n+1/ , c N 1 ,
2 21| Vaw|2 dx < (14 —2— T/ 12| Vw2 dx,
(R) Br/2(xo0) ( 0 — 1>R i Br(xo)

for a constant C' = C(n).

APPENDIX B. A LIPSCHITZ ESTIMATE FOR S-HARMONIC FUNCTIONS

The purpose of this appendix is to provide an interior Lipschitz estimate for weak solutions
w € H*(Dy) of the fractional Laplace equation
(=AYw=0 in H °(Dy). (B.1)

The notion of weak solution is understood here according to the weak formulation of the s-
Laplacian operator, see (2.3). Interior regularity for weak solutions is known, and it tells us
that w is locally C'*° in D;. The following estimate is probably also well known, but we give a
proof for convenience of the reader.

Lemma B.1. If w € H¥(Dy) is a weak solution of (B.1), then w € C>(D1y2), and
||w|\%oo(D1/2) + ”Vw”%M(Dl/Q) < C(é’s(w,Dl) + HU}H%Z(Dl)) ) (B.2)
for a constant C' = C(n, s).

Proof. As we already mentioned, the regularity theory is already known, and we take advantage
of this to only derive estimate (B.2). Let us fix an arbitrary point 2o € D /5. We consider the
extension w® which belongs to Hl(BfM(xo), |z|*dx) with x¢ := (z¢,0) by Lemma 2.9. In view

of Lemma 2.12, it satisfies
/ 2Vw® - Voédr =0
B:r/4(x0)

for every ® € Hl(BfM(xo), |z|*dx) such that ® = 0 on 6+Bf/4(xo). Then we consider the even
extension of w® to the whole ball By /4(xo) that we still denote by w® (i.e. w®(z,2) = w®(z, —2)).
Then w® € H! (B1/4(x0), |2|°dx), and arguing as in the proof of Corollary 5.4, we infer that
w® is a weak solution of (A.1) with R = 1/4. According to [40, Corollary 2.13], the weak
derivatives 9;w® belongs to H'(Bys(x0), |2|*dx) for i = 1,...,n, and they are weak solutions
of (A.1) with R = 1/8. Now, applying [18, Theorem 2.3.12] to w® and d;w®, we infer that

w® € CY*(By14(x0)) for some exponent o = av(n, s) € (0,1),
(W] co.o (B, 16(x0)) S CllWEllL2(B, s(x0),2]2dx) 5 (B.3)
and
[wae]co,a(Bl/w(xO)) < CHVzweHLZ(BI/S(XO),\z|adx) ) (B4)
for a constant C' = C(n, s).
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On the other hand, for every x € By /16(X0), we have (recall our notation in (5.11))

1 1
weol <ot - e [ letedy| s [ ety
1B1/16la JB, 16(a0) 1B1/16la J B, )16 (x0)

< O([w]con (B juox)) + [0 N122(8, uox0) f21wax) -
Combining this estimate with (B.3) and Lemma 2.9 leads to
HwCHQL‘X’(Bl/lG(xO)) < C(Es(w, Dy) + ||w||2L2(D1)) .
The same argument applied to V,w® and using (B.4) instead of (B.3) yields
||V93we||%°°(31/16(x0)) < OlVar®|[F2(p, s (xo), 212dx) < CEs(w, D1),

thanks to Lemma 2.9 again. Now the conclusion follows from the fact that w® = w and
Vw® —VwonﬁBl/lﬁ( 0)- O

APPENDIX C. AN EMBEDDING THEOREM BETWEEN GENERALIZED Q,-SPACES

In this appendix, our goal is to prove one of the crucial estimates used in the proof of
Theorem 4.1, Corollary C.6 below. In turns out that this estimate does not explicitly appear in
the existing literature (to the best of our knowledge), but it can be shortly derived from recent
results in harmonic analysis. The purpose of this appendix is thus to explain how to combine
those results to reach our goal. First, we need to recall some definitions and notations.

The space % (R™) can be defined as the topological subspace of the Schwartz class .7 (R™)
made of all functions ¢ such that the semi-norm

[ellar :== sup sup [07G(O)] (1™ +1¢17M)
l[vI<M R

is finite for every M € N, where v = (71,...,v) € N, |y ;= y1+...+7vn, and 87 := 9]* ... ).

Its topological dual is denoted by ./ (R™), and it is endowed with the weak *-topology, see

e.g. [55, 57].

The following Qj?-spaces were introduced in [5, 57], generalizing the notion of Q,-space
(see [51, Section 1.2.4] and references therein), in the sense that Q,(R™) = Qn/a(R")
Definition C.1 ([5, 57]). Given a € (0,1), p € (0,00] and g € [1, 00), define Q7+4(R") as the
space made of elements f € .7, (R™) such that f(z)— f(y) is a measurable function on R™ x R"

and )
11 |f(@) = fy)l* e
I fllgaa@ny = sup |Q| (//QXQ - y|n+aq dxdy < +o0,

where () ranges over all cubes of dyadic edge lengths in R"™.

Remark C.2. Endowed with || - [[ga:a(gn), the space Q5*7(R") is a semi-normed vector space,

and y
1/q
a_sa |f(@) — fy)|*
Napq(f):= sup rr7a // dzdy
- D, (z0)CR™ ~(20)X Dy (20) = yrtes

provides an equivalent semi-norm.

The following embeddings between Q;?-spaces hold.

Theorem C.3. [f0<a; <as<1,1< g <q <oo, and 0 < A < n are such that

al—izag—i, (C.1)
0 q2

then Q'ﬁ;qz (R™) — Q%’l‘“ (R™) continuously.

As we briefly mentioned at the beginning of this appendix, this theorem actually follows quite
directly from a more general embedding result between some homogeneous Triebel-Lizorkin-
Morrey-Lorentz spaces [26] together with an identification result between various definitions
of homogeneous Triebel-Lizorkin-Morrey type spaces [42], and a characterization of the Q¢-
spaces within this scale of spaces [57]. We refer to the monograph [51] for what concerns the
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spaces involved here, and we limit ourselves to their basic definition. To this purpose, we
consider a reference bump function ¢ € .(R™) such that

sptd C {€ e R S < gl <2f and [9(9)]>C >0 for = <é| <
(In particular, ¥ € 75 (R™).) For J € Z, we denote by 1, the function defined by
Yi(x) = 20map(27) .

Definition C.4. Given p,q € (0,00), s € R, and 7 € [0, 0), the homogeneous Triebel-Lizorkin
space F;.7(R™) is defined to be the set of all f € .7 (R") such that

Oﬂw
W Ut

1/p

o ) p/a
Wiz =5 oz | [ (2 @ se)?) ae) - < voc,
|Q| e\ 5,
where @) ranges over all cubes of dyadic edge lengths in R™, and jg := —log, 4(Q) with £(Q)

the edge length of Q.
Definition C.5. Given 0 < p < u < 00, 0 < ¢ < 00, and s € R, the homogeneous Triebel-
Lizorkin-Morrey space 5; 4.u(R™) is defined to be the set of all f € .7 (R") such that
1/q
1 . v q/p
Il a =0 Q13 [ (@ @)”) ] < 4oc.
o Q Q jeZ
where @) ranges over all cubes of dyadic edge lengths in R™.

Proof of Theorem C.3. In [26], the author introduced a more refined scale of homogeneous
Triebel-Lizorkin spaces of Morrey-Lorentz type, denoted by FS uq (R™). In the case u = p = q,
those spaces coincide with the homogeneous Triebel-Lizorkin-Morrey spaces above, namely

Eyp (RY) =&, om0 (RY)

for every p € (0,00), A € (0,n], and s € R. More precisely, their defining semi-norms are
equivalent (in one case the supremum is taken over all dyadic cubes, while in the other it is
taken over balls). By [26, Theorem 4.1], under condition (C.1) the space FJ\(Z’;; L (R™) embeds

continuously into F a, L (R™). In other words,

gaz nqz(R")(—>5a1 gy (R™) (C.2)
X

42,42,
continuously. On the other hand, [42 Theorem 1.1] tells us that

So n 0615 n n o n 062, 3 .
54117111 h (R ) F‘h a1 ql (R ) and gq:(hw%(R ) = Fq2 q2 q2 (R )

with equivalent semi-norms. Finally, by [57, Theorem 3.1] we have

a1 n—2 —

thvélnql R") = Q%}qul (R") and FQ27;12nq2 R") = Q%%éqz (R"),
~ ~
with equivalent semi-norms. Hence, the conclusion follows from (C.2). O

We are now ready to state the important corollary of Theorem C.3 used in the proof of
Theorem 4.1. Given s € (0,1), p € [1,00), and an open set  C R™ we recall that the
Sobolev-Slobodeckij WP (§2)-semi-norm of a measurable function f is given by

hvoniy = [ HOIO gy,)™ (©3)

Corollary C.6. Let s € (0,1) and f € L'(R™). If

sup 2 [ f1he (b, (ay) < +00. (C4)
D, (x)CR"
then,
2s—n -n
sup 13 [f]%/VS/&G(D,.(w)) <C sup ¥ [f]%ls(D,,.(w))a
Dy (z)CR™ Dy (z)CR"

for a constant C = C(n, s).
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Proof. Since f € L'(R"), it belongs to .#”/(R™), and thus to .7/ (R") (see [55, Sec 5.1.2, p. 237]).

Then, condition (C.4) implies that f € Qi’fs (R™). On the other hand, QZ’/QS (R™) — Q;Q ?}SG(R")

continuously by Theorem C.3. Then the conclusion follows from the definition of Q;é ?}S(R”)
together with Remark C.2.
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