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ABSTRACT

Editing of 3D colored meshes represents a fundamental com-
ponent of nowadays computer vision and computer graphics
applications. In this paper, we propose a framework based on
the p-laplacian on directed graphs for structure-preserving fil-
tering. This relies on a novel objective function composed of
a fitting term, a smoothness term with a spatially-variant pTV
norm, and a structure-preserving term. The last two terms
can be related to formulations of the p-Laplacian on directed
graphs. This enables to impose different forms of processing
onto different graph areas for better smoothing quality.

Index Terms— 3D colored meshes, graph signal, struc-
ture preserving filtering, p-Laplacian.

1. INTRODUCTION

Structure-preserving filtering is one of the most important
processing tasks dedicated to image editing and computa-
tional photography. During the last decade, many structure-
preserving smoothing filters have been proposed so far
[1, 2, 3, 4]. To enable the editing of an image, they de-
compose it into a base layer containing the rough structures
with preserved edges and several layers of increasing level of
details. From this hierarchical representation, image editing
tasks such as smoothing, abstraction, and sharpening can be
performed [5]. At the same time, the advent of low cost 3D
sensors has enabled the large development of 3D scanning.
Using either a real 3D scanner or a set of images obtained
by moving around an object, one can easily obtain 3D col-
ored point clouds or meshes where each point or vertex is
described by its 3D position and RGB color. However, the
visual quality of the acquired data is not always of sufficient
especially when a further 3D printing is planned. In addition,
if the 3D data has to be used in virtual reality applications, it
often has to be post-processed to be visually simplified. With
such 3D processing tasks to be performed, there is interest
into the development, as this has been done for images, of
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structure-preserving filters that operate on 3D colored data.
Very few works have considered this kind of problem. Some
structure-preserving filters have been extended to 3D meshes
but they only consider the editing of the 3D points’ coordi-
nates to sharpen the mesh [6, 7]. Some recent works have
considered the extension for 3D colored meshes by a 3D
extension of unsharp masking [8] or with the use of morpho-
logical filters to obtain a hierarchical decomposition of the
3D color information [9, 10] .

In this paper we propose a structure-preserving filter
based on an objective function composed of three terms
(Sec. 3): a data-fitting term, a smoothness term and a struc-
ture preserving term. To have a more adaptive filtering, the
smoothness term relies on a spatially-variant p-total vari-
ation norm (pTV). This extends our previous works [11]
that considered only the two first terms with a fixed pTV
norm. The smoothness term can be related to formulations
of the p-Laplacian on directed graphs (Sec. 2). Finally the
structure-preserving term enables to preserve the most im-
portant structures. This enables to impose different forms of
regularization onto different 3D areas for better smoothing
quality, as illustrated and discussed in Sec. 4.

2. P-LAPLACIANS ON DIRECTED GRAPHS

Graphs provide a powerful and common structure for repre-
senting and processing structured and unstructured data, like
images, colored 3D point clouds or meshes. The data are as-
sumed to be composed of elements living in Rnc , e.g. 3D
points or RGB colors. A data of nv elements is represented
by a real matrix F = [fi,c]i∈Nv,c∈Nc , with Nv = {1, . . . , nv}
and Nc = {1, . . . , nc}, so that fi,c encodes the c-th compo-
nent of the i-th element. Alternatively, the i-th element can be
represented by a vector fi = [fi,c]c∈Nc . The elements are con-
nected by edges to form a graph used as a domain for process-
ing the data. Since connections do not usually have the same
strength, a weight is associated to each edge, and the graph
can be fully represented by its weighted vertex-vertex adja-
cency matrix W = [wi,j ]i∈Nv,j∈Nv , with wi,j ∈ (0,+∞)
if the elements i and j are connected by an edge from i to
j, or wi,j = 0 if they are not. Graphs are here assumed to



be without self-loops (wi,i = 0) and directed (wi,j and wj,i
can be different). This is motivated by the construction of
graphs based on k-nearest neighbors, that are known to pro-
duce asymmetric connections in general, i.e. an edge from i to
j does not necessarily imply an edge from j to i. Such graphs
are commonly symmetrized, i.e. W is replaced by 1

2 (W +
WT ), before processing the data. While this is mathemat-
ically correct for most methods based on the unnormalized
Laplacian L = diag((W+WT )1nv )−(W+WT ) [12, 13, 14],
this is not the case for most second-order operators, espe-
cially non-linear operators like curvatures and p-Laplacians
[15, 11]. These operators are the main ingredients of filtering
techniques based on variational principles, but few of them
have been considered for directed graphs. We have recently
proposed several formulations of the p-Laplacian [11]. In this
paper we describe the unnormalized case used by the filtering
process presented in the next section.

Given a data F, its gradient over an weighted graph
W can be defined as ∇WF = (∂Wj F)j∈Nv , with ∂Wj F =
[
√
wi,j(fj,c − fi,c)]i∈Nv,c∈Nc the directional differences ac-

cording to vertex j. The gradient at a vertex i is thus given by
∇W
i F = [

√
wi,j(fj,c − fi,c)]j∈Nv,c∈Nc . Its magnitude

|∇W
i F| =

 nv∑
j=1

wi,j

nc∑
c=1

(fj,c − fi,c)2
1/2

=

 nv∑
j=1

wi,j‖fj − fi‖2
1/2

=

(
nc∑
c=1

|∇W
i Fc|2

)1/2

,

with ‖f‖ =
√∑nc

c=1 f
2
c and Fc ∈ Rnv the restriction of F

to the c-th component, provides a basic tool for measuring
the variations of F at each vertex. The regularity of F over
the graph can then be measured by its p-total variation (pTV)
defined as the L1 norm of a power of the gradient magnitude:

‖F‖pTV = ‖ |∇WF|p‖1 =

nv∑
i=1

|∇W
i F|p (1)

where p ∈ [1,+∞) controls the degree of regularity, and
|∇WF| = [ |∇W

i F| ]i∈Nv . As for undirected graphs [16, 17],
it is easy to show that∇‖F‖pTV = pLp,FF holds, with

Lp,F = diag((Wp,F + WT
p,F)1nv )− (Wp,F + WT

p,F) (2)

and Wp,F = diag(|∇WF|p−2)W. In other terms, we have:

[Lp,FF]i,c =

nv∑
j=1

(
wi,j

|∇W
i F|2−p

+
wj,i

|∇W
j F|2−p

)
(fi,c − fj,c)

This defines the p-Laplacian of F on W. The Laplacian L is
retrieved for p= 2, and for p= 1, L1,FF defines the weighted
(mean) curvature of F. The p-Laplacian is non-linear, and
Lp,F is symmetric, positive semi-definite, and can be viewed

as a data-dependent Laplacian. It can be rewritten as Lp,F =
diag(Wp,F1nv ) −Wp,F with Wp,F = Wp,F + WT

p,F, equiv-
alent to a data-dependent Laplacian on an undirected graph.

The regularity measured by the pTV norm and the p-
Laplacian depends on the global parameter p. As proposed
in the following section, more flexibility can be obtained by
adapting this parameter locally at each vertex.

3. ADAPTIVE P-LAPLACIAN
STRUCTURE-PRESERVING FILTERING

We present a structure-preserving smoothing filter based on
an adaptive p-Laplacian and an adaptive preservation of gra-
dient magnitudes. This is inspired by a recent work in image
processing [18] which considers other measures of local vari-
ations and a different formulation of their local adaptation.

3.1. Energy formulation

Given a data F0 ∈ Rnv×nc , the proposed method consists to
find a smoother version that minimizes an objective function
E(F,F0) = λdEd(F,F

0)+λsEs(F,F
0)+λrEr(F), withEd

a data term, Er a regularity term, Es a structure-preserving
term, and λd, λs, λe ∈ [0,+∞) constant balancing weights.

The data termEd aims at providing a solution close to F0.
This is measured according to the mean square error:

Ed(F,F
0) = ‖F− F0‖2 (3)

with ‖F‖ =
√

tr(FTF). The local differences (fi,c − f0i,c)
should be null, or low, at vertices representing parts of the
data that must be preserved. This is guided by the structure-
preserving termEs. It measures a weighted mean square error
between the gradient magnitude of F and the one of F0 on the
same weighted graph S = [si,j ]i,j∈Nv :

Es(F,F
0) =

1

2ns

nv∑
i=1

αi
(
|∇S

i F|2 − |∇S
i F0|2

)2
(4)

with α = [αi]i∈Nv , αi ∈ [0, 1] the degree of structure preser-
vation, and ns = nc

∑nv
i=1 αi a normalization term. The term

α behaves as a mask that enforces more or less the preserva-
tion of the gradient magnitude of F0. To ensure that structures
in F0 are preserved , it should be defined from an indicator or
a detector of saliency, as detailed in Sec. 3.3.

The local differences involved in the approximation terms
Ed and Es should be higher at vertices representing unimpor-
tant details. This is obtained by reducing the variations of F 0

at these vertices according to an adaptive pTV function:

Er(F) =

nv∑
i=1

1

pi
|∇W

i F|pi (5)

where pi ∈ [1, 2] fixes the degree of regularity at vertex i and
ensures convexity of (5). Intuitively, it should depend on F0



and be inversely proportional to αi, i.e. large at vertices where
the data needs to be smoothed and low where the data must
be preserved. Note that the graphs W and S are different.
In practice, it is more coherent and computationally effective
that they are structurally equivalent, i.e. si,j = 0⇔ wi,j = 0.

Since the terms Ed, Es and Er are convex functions of F,
the objective function E is also convex, and several methods
can be used to compute a solution. In this paper we derive a
simple filter related to weighted mean filtering.

3.2. Filtering process

To optimize the objective function E w.r.t. F, we consider
the gradient ∇E(F) = [∂E(F)/∂fi,c]i∈Nv,c∈Nc and try to
solve the system of nonlinear partial difference equations
∇E(F) = 0 with

∇E(F) = 2(F− F0) + λrLr,FF + 2
ns
λsLs,FF (6)

where Lr,F and Ls,F are defined below.
Indeed, it is straightforward that ∇Ed(F) = 2(F − F0),

and the gradient of the regularity term Er is given by
∇Er(F) = Lr,FF, with

[Lr,FF]i,c =

nv∑
j=1

(
wi,j

|∇W
i F|2−pi

+
wj,i

|∇W
j F|2−pj

)
(fi,c − fj,c)

Contrary to the p-Laplacian described in Sec. 2, Lr,F uses
here a regularity degree p = [pi]i∈Nv adapted to each vertex.

Similarly, the gradient of the structure preserving term Es
is given by ∇Es(F) = 2

ns
Ls,FF with

[Ls,FF]i,c =

nv∑
j=1

(aisi,j + ajsj,i) (fi,c − fj,c) (7)

with ai = αi(|∇S
i F|2 − |∇S

i F0|2).
We propose to use a linearized Gauss-Jacobi iterative

method to find a solution to the system of non-linear equa-
tions. Let t be an iteration step, and F(t) be the solution at
step t. Starting with F(0) = F0, and g0 = |∇SF0|2, the
method iterates the following steps:

∀i, hi ← |∇W
i F(t)|pi−2

∀i, gi ← αi

(
|∇S

i F(t)|2 − g0i
)

∀i,∀j, wi,j ← 1
2 (hiwi,j + hjwj,i)

∀i, ∀j, si,j ← 1
ns

(gisi,j + gjsj,i)

∀i, ∀c, f
(t+1)
i,c ←

λdf
0
i,c +

∑nv
j=1(λrwi,j + λssi,j)f

(t)
j,c

λd +
∑nv
j=1 λrwi,j + λssi,j

until convergence or a given number of steps is reached. An
iteration computes F(t+1), at each vertex, as a weighted mean
of F(t) in the neighborhood of the vertex in the graph W + S.
Contrary to the family of filters based on pTV on undirected
[16, 17] and directed graphs [11], the proposed filter adapts
the regularity parameter p locally and enforces the gradients
to be preserved according to a structure-preserving map.

3.3. Parameters for colored 3D point clouds

The proposed structure-preserving filter depends on several
parameters: the graphs W and S, the vector of local regu-
larity degrees p, and the vector of local structure-preserving
strengths α. They are determined by the nature of the data and
the desired filtering effect. We describe them for smoothing
colored 3D point clouds. Given a setX = {xi}i=1,...,nv of nv
points xi ∈ R3, and the RGB colors F0 ∈ Rnv×3 associated
to these points (nc = 3), we assume a connected graph S0 has
already been constructed for connecting the points. When X
samples the surface of a 3D object, S0 should be the graph
induced by the edges of a mesh havingX as vertices. But any
graph can be used as long as it is connected and represents the
geometric structure of the data.

The graphs S and W are constructed by connecting each
point xi ∈ X to its k nearest points, within an α-hop Nα

i

in S0, according to the dissimilarity measure d(xi, xj) =
dEMD(H(Φτi ), H(Φτj )), where Φτ = (Φτi )i=1,...,nv associates
to each point xi a feature Φτi = (f0j )j∈N τi ∪{i}, i.e. the colors
of the points xj around xi within a τ -hop N τ

i in S0. Since
S0 is not assumed to be regular, features do not have the same
size, and a simple L2 norm cannot be used to compare them.
The Earth Mover Distance dEMD [19] between the histograms
H of the features in the L∗a∗b∗ color space is more appropri-
ate. The retained connections are then directly used to con-
struct the graph S. This graph is unweighted, i.e. si,j = 1
if xj is among the k nearest neighbors of xi, or 0 otherwise.
The graph W has the structure of S but it is weighted accord-
ing to the distances between the features defined above by a
parameter-less similarity:

wi,j = 1−
dEMD(H(Φτi ), H(Φτj ))

max
l=1,...,nv
si,l=1

dEMD(H(Φτi ), H(Φτl ))
(8)

if si,j = 1, and 0 else. Remark that S and W are directed.

The two other parameters p and α are defined from a com-
mon saliency map m = [mi]i=1,...,nv which indicates, for
each point xi, the local degree of structure in F0. This is
measured by the normalized sum of distances within a ρ-hop
in S0: mi = 1

|Nρi |
∑
j∈Nρi

dEMD(H(Φρ−1i ), H(Φρ−1j )). The
parameters are then defined by :

pi = 1 +
1

1 +m2
i

, αi =
mi −minjmj

δi(maxjmj −minjmj)
(9)

with δi the number of edges starting at i in S (outgoing de-
gree). This enables to normalize the gradients in the objective
function Es. As discussed in the previous section, p and α
defined by Eq. 9 are antagonists, one for smoothing the data
and the other for preserving its main structures.



Original mesh Structure mask

p(vi) = 2, λe = 0 p(vi) = 1, λe = 0

λe = 0 Proposed model

Fig. 1. Illustration of the proposed model.

4. EXPERIMENTAL RESULTS AND CONCLUSION

To illustrate the proposed feature-preserving filter, we con-
sider colored 3D point clouds acquired by digitizing an object
by means of a scanner. A mesh obtained by reconstruction
techniques is also provided. We use this mesh to define the
initial graph S0. For all the experiments, the parameters for
constructing the graphs S and W, and the saliency map m, are
fixed to α = 5, τ = 1 and ρ = 2 for the sizes of the hops,
and the number of neighbors is set to k = 10. The balancing
terms in the objective function are set to λd = 10−3, λr = 1,
and λs = 0.25. The number of iterations is fixed to 25.

Figure 1 shows results on a low-resolution mesh (a scan
of a stuffed duck with 19247 vertices and 38490 faces) to
illustrate the benefit of the proposed approach (each image
shows a caption of the mesh and two cropped and zoomed ar-
eas). First row shows the original mesh and its structure mask
M (shown with a heat map LUT). Second row shows clas-
sical results obtained with fixed values of p and no structure-
preserving term. With p = 2 (the Laplacian) a strong smooth-
ing effect is obtained, whereas with p = 1 (the Graph To-

Fig. 2. First row: original mesh, structure mask. Second row:
filtering and sharpening results.

tal Variation), the edges are better preserved. However some
small structures are also kept. Better filtering results are ob-
tained with a spatially varying norm and the unwanted small
details are removed. However, some parts such as the duck’s
collar are now more blurry. This problem is then corrected by
using the whole model we propose that incorporates an ad-
ditional structure-preserving term. The final result is inline
with our objective: to eliminate unimportant fine-scale details
while maintaining the primary structures.

Figure 2 shows an exemple of 3D colored mesh editing
for sharpening. The mesh is a high-resolution scan (780977
vertices and 1557701 faces) of a medieval house in the city
of Bellac, France. As it can be seen, in the filtering result,
the small fine details have been suppressed while preserving
the strongest structures. This can be used as the base layer of
a sharpness enhancement procedure [20]. The difference be-
tween the original mesh and its filtering is computed, boosted
by a factor 0.8 and added back to the filtered version. As it
can be seen, the sharpened result has enhanced the local con-
trast without artifact magnification or detail loss. Note that
the enhancements are better visible at high resolution. This
shows the benefit of our approach for 3D editing tasks. Fur-
ther works will consider other minimization schemes as well
as other editing tasks such as inpainting and abstraction.
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[10] O. Lézoray, “3d colored mesh graph signals multi-layer
morphological enhancement,” in International Confer-
ence on Acoustics, Speech and Signal Processing, 2017,
pp. 1358–1362.

[11] Z. Abu-Aisheh, S. Bougleux, and O. Lézoray, “p-
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