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3-D Characterization of Urban Areas Using
High-Resolution Polarimetric SAR Tomographic

Techniques and a Minimal Number
of Acquisitions

Yue Huang , Member, IEEE and Laurent Ferro-Famil , Member, IEEE

Abstract— This article addresses the 3-D reconstruction of
urban areas using a minimal number of Synthetic Aperture
Radar (SAR) acquisitions, that is, a set of three images, char-
acterized by intermediate spatial resolution features. In such
extreme conditions, conventional tomographic techniques reveal
unadapted to refined 3-D imaging purposes, either due to the
resulting intrinsic coarse vertical resolution, or to the low
dimensionality of the data set, that prevents any separation
of complex mixed scattering patterns. A new high-resolution
(HR) tomographic estimator, based on a polarimetric signal
subspace fitting criterion, is proposed to overcome these lim-
itations, as this method adapts to the statistical behavior of
the backscattered signals using robust metrics. The optimization
of the corresponding focusing criterion is led through a new
polarimetric alternating projection algorithm, characterized by
a low computational cost, which may also be used to optimize
the polarimetric the deterministic maximum likelihood criterion.
The proposed polarimetric signal subspace fitting technique is
shown to outperform the other studied HR techniques over
both simulated signals and data acquired by the DLR’s ESAR
sensor at L-band over Dresden city, Germany. Finally full-rank
polarimetric tomographic estimators are proposed that generalize
nonparametric polarimetric estimators, and permit to estimate
second-order polarimetric representations in 3-D, instead of
unitary rank target vector with their conventional versions.
This approach makes it possible to characterize polarimetric
scattering mechanisms in 3-D.

Index Terms— Alternating projections, maximum likelihood
(ML), Synthetic Aperture Radar (SAR) imaging, spectral analysis
techniques, subspace fitting, urban remote sensing.

I. INTRODUCTION

URBAN environments may be considered as 3-D media,
whose response consists of a wide variety of coexisting

and complex scattering mechanisms, such as double-bounce
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scattering due to wall-ground reflections, surface scattering
from roofs and from the ground, volumetric scattering over
vegetated areas. Due to their intrinsic 2-D nature, Synthetic
Aperture Radar (SAR) images cannot separate and charac-
terize scattering contributions located at different elevations
within a given range-azimuth resolution cell. SAR Interfer-
ometry (InSAR) may be used to estimate the topography of
surfaces, but in the case of volumetric scenes, 2-D resolution
cells may contain scatterers located at different elevations, and
the characterization of such environments requires 3-D imag-
ing capabilities. SAR tomography is a natural solution to the
layover problem, and uses an additional aperture in elevation,
in order to separate multiple scatterers within a 2-D resolution
cell, from their specific phase patterns induced by spatial
diversity. This 3-D imaging technique has been successfully
applied to the characterization of man-made environments
[1]–[7], using different data sets acquired by air- or space-
borne sensors, operated over various frequency bands.

As shown in [8], 3-D SAR focusing may be considered
as a spectral estimation problem, which can be handled by
numerous techniques. Classical Fourier-based methods repre-
sent the most basic kind of solution, and have been applied
in [9] for the first demonstration of airborne SAR tomography.
Due to practical factors, such as limited revisiting capabilities,
acquisition costs, or temporal decorrelation, TomoSAR config-
urations usually consist of a moderate number of Multibaseline
Interferometric SAR (MB-InSAR) images, measured with
unevenly distributed baselines. In such cases, 3-D focusing
using classical Fourier imaging techniques may lead to a poor
vertical resolution, with vertical impulse responses having
high sidelobes, and may fail to discriminate closely spaced
scatterers. High-resolution (HR) spectral estimation methods,
such as MUSIC, approaches based on Maximum Likelihood
(ML) criteria, or other kinds of cost functions, can be used
to resolve closely spaced scatterers in elevation, as shown
in [10], [8], and [4]. These techniques are generally based
on the analysis of the covariance matrix of the received
MB-InSAR data, the estimation of which requires spatial
multilooking, and leads to a gain of statistical robustness
at the cost of a loss of horizontal resolution. Over spatially
heterogeneous zones, such as dense urban areas, the accuracy
of covariance matrix estimates may be strongly affected by
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the limited size of the sets of statistically stationary samples
used to compute second-order statistics. Some neighborhood
adaptive multidimensional SAR filtering methods [11], [12]
have been designed to preserve point-like scatterers and
fine textures, and reduce the speckle effect over complex
environments. The impact of nonlocal adaptive filtering on
3-D reconstruction from TomoSAR data has been studied
in [7] and [13]. The reconstruction of urban areas in 3-D using
spaceborne SAR sensors recently experienced an important
development, with the advent of HR SAR missions, such as
TerraSAR-X (TSX) [3]. Spaceborne observation modes can
produce time series of acquisitions resulting in large stacks
of images, that may be used to estimate long-term ground
motion [14], but also to build 3-D maps [1]–[3], over perma-
nent or persistent scatterers whose response remains coherent
over time. In this case, one may choose to resort to sparse
signal analysis techniques, also referred to as Compressed
Sensing (CS) approaches, which aim to estimate, under a set of
conditions, the response of scatterers from a single snapshot,
i.e., without spatial averaging. Such techniques rely on both
the hypothesis of a number of scatterers per resolution cell
that is much smaller than the number of acquisitions, and
on the low dimensionality of a nominal MB-InSAR response,
which may be represented with a small number of parameters.
Specific signal processing techniques, often based on convex
optimization, estimate jointly the number of sources and their
parameters using particular criteria, whose sparsity promoting
character may be tuned with a user-defined parameter [2], [3].
Several studies indicate that, over urban areas, time series of
approximately 30 spaceborne SAR images shall be employed
in order to reach satisfying results with classical sparse signal
analysis techniques [2], [3]. Nevertheless, many areas in the
world have been imaged in an interferometric configuration
a few times only, and using intermediate resolution SAR
sensors. This article addresses this kind of situation and
performs SAR tomographic reconstruction in the extreme
case of a minimal number, i.e., three, of polarimetric SAR
images acquired with an intermediate spatial resolution, e.g.,
2 m × 3 m. Within one resolution cell, the number of
dominant scattering responses becomes comparable with the
number of available acquisitions, which invalidates the use
of sparse signal analysis techniques. This work proposes to
perform 3-D reconstruction using covariance-based spectral
estimation techniques, operated with polarimetric diversity.
Indeed, as shown in [4], [6], [15]–[17], the application of con-
ventional polarimetric tomographic estimators for the purpose
of 3-D mapping over built-up areas in this extreme TomoSAR
configuration led to significantly improved results with respect
to single-polarization techniques. Using several polarization
channels resulted in an undeniable increase of performance
improvements for the characterization of urban areas, both in
terms of discrimination of layover scattering contributions and
determination of their dominant scattering features. In the gen-
eral case, i.e., without any particular assumption on the source
signal statistics, M = 3 acquisitions, composed of NP polari-
metric channels, may be used to reconstruct up to M − 1 = 2
sources having arbitrary and potentially equal polarimetric
responses and up to NP M − 1 sources having all different

polarimetric patterns. The first, more generic, option is used
in this article. A tomographic technique, characterized by its
statistical adaptivity was proposed in [18] in order to cope
with the complex nature of scattering patterns encountered
in dense environments such as urban areas. The Polarimetric
Noise Subspace Fitting (P-NSF) estimator, inspired from the
study [19], was proposed in [18], together with its analytical
solution for the estimation of 3-D polarimetric parameters.
Despite its rather good performance for SAR tomography
purposes reported in [18], this technique, due to its use of
noise subspace of the observed signal, meets limitations in
the presence of highly coherent scatterers. To overcome this
limitation, a new model-adaptive estimator, named Polarimet-
ric Signal Subspace Fitting (P-SSF), is proposed in this article.
As has been reported in the past studies, parameter estimation
using polarimetric multidimensional tomographic estimators
has to face the issue of computational complexity, which was
maintained at a low level in the case of the P-NSF in [18], [19].
Therefore, a new alternating maximization algorithm, named
Polarimetric Alternating Projection (P-AP), is proposed to
solve the optimization of the P-SSF focusing criterion,
which can be implemented as an iterative mono-dimensional
approach with computational attractiveness. It is noteworthy
that the proposed P-AP algorithm can be used as a solution for
the Polarimetric Deterministic Maximum Likelihood (P-DML)
technique too. Similar to conventional ones, described in
[4], [15], [18], the proposed polarimetric approaches, P-SSF
and P-DML, estimate, for each detected and localized scat-
terer, a polarimetric target vector, i.e., a unitary-rank polari-
metric representation. This information can be effectively used
to characterize scattering environments with a low polarimetric
randomness. As this was illustrated in [20], intermediate
resolution polarimetric SAR images measured over urban
environments reveal very complex features, due to the mix-
ing of very different scattering mechanisms within a single
resolution cell. In such a case, unitary-rank representations
are not well adapted to handle the whole polarimetric infor-
mation and second-order polarimetric statistics have to be
estimated, in order to provide a full-rank (FR) polarimetric
representation. FR polarimetric tomographic techniques have
been proposed in [21], and used for 3-D imaging of under-
foliage targets in [22], [23], or over forested areas in [24].
A thorough derivation of FR polarimetric and nonparametric
estimators is provided, which allows one to characterize the
properties of 3-D polarimetric second-order representations
using classical tools. This article is organized as follows.
In Section II, tomographic signal models and focusing tech-
niques are presented for a minimal TomoSAR configuration
in both scalar and polarimetric cases. The performance of
commonly used tomographic estimation techniques is illus-
trated using numerical simulations. A case study based on a
dual-baseline PolInSAR data set is investigated to demonstrate
the need for HR adaptive polarimetric estimators and FR
polarimetric analysis in practice. The polarimetric SSF and
DML estimators are derived in Section III and their perfor-
mance is evaluated using simulations and L-band data acquired
by the DLR’s E-SAR sensor over the test site of Dresden.
Section IV describes FR PolTomoSAR techniques and the
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TABLE I

LIST OF ACRONYMS OF METHODS AND MODELS

application of FR polarimetric Capon’s approach to the test
data set. In particular, it is shown that this approach is able to
separate entangled 3-D features of vegetated areas and built-
up structures in dense urban areas. The acronyms of methods
and models used in this article are listed in Table I.

II. ASSESSMENT OF SAR TOMOGRAPHY PERFORMED

USING A MINIMAL CONFIGURATION

This section aims to assess the performance of existing SAR
tomographic focusing techniques in the particular case of a
minimal configuration, i.e., using a stack composed of three
images. Comparisons are led in order to evaluate the ability of
these techniques to discriminate and characterize objects with
respect to various factors such as vertical resolution, statistical
properties of SAR echoes, or polarimetric scattering patterns.
The results of this analysis are then used to define the features
a performing estimator should possess in the specific case
under study. The derivation of such an estimator is the object
of the section after the present one.

A. Tomographic Signal Models

1) Single-Polarization TomoSAR Signal Models: Consider-
ing an azimuth-range resolution cell that contains ns scatterers
located at different heights, the data vector measured over M
SAR acquisitions, y ∈ CM×1, can be formulated as the sum
of the backscattered contributions, as follows:

y(l) =
ns∑

i=1

si (l) a(zi )+ n(l) = A(z)s(l)+ n(l) (1)

where l = 1, . . . , L indicates one of the L independent real-
izations of the signal acquisition, also called looks. The source
signal vector, s(l) = [s1(l), . . . , sns (l)]T , contains the complex
reflection coefficient of each scatterer, related to its reflectivity
through pi = E(|si (l)|2), whereas the interferometric phase
information associated with a source located at the elevation
position z above the reference focusing plane, is given by the
steering vector

a(z) = [1, exp( jkz2 z), . . . , exp( jkzM z)]T (2)

where kzm = (4π/λ)(B⊥m /r1 sin θ) is the two-way vertical
wavenumber between the master and the mth acquisition
tracks. The carrier wavelength is represented by λ and B⊥m

is the perpendicular baseline, whereas θ stands for the inci-
dence angle and r1 is the slant range distance between the
master track and the scatterer. The steering matrix gathers
the interferometric phases of all the sources, and is written
as A(z) = [a(z1), . . . , a(zns )], with z the vector of unknown
source heights. The complex additive noise, n ∈ CM×1 is
assumed to follow a Gaussian distribution and to be white in
time and space, i.e., n ∼ N (0, σ 2

n I(M×M)) and E(n(l)nH (k)) =
σ 2

n I(M×M)δl,k . The covariance matrix of the received signal (1)
is generally expressed as R = E(yyH ) = ARssAH + σ 2

n IM×M ,
where the source covariance matrix is Rss = E(ssH ), and
p = diag(Rss) = [p1, . . . , pns ]T .

Depending on the nature of the observed medium, the
composite signal y(l) may follow different behaviors linked to
the statistical properties of the source signal s(l), as described
in [18]. For distributed scatterers, the observed signal behavior
may be represented by the Unconditional Model (UM) [25],
which accounts for the random nature of the source signal,
using a multiplicative Gaussian noise term. This type of
behavior is suitable to model speckle-affected responses over
distributed environments, such as rough surfaces, ground, and
natural volumes. Deterministic scatterers have a highly coher-
ent scattering response, which may be represented using the
Conditional Model (CM) [25], which assumes a frozen source
signal over all the observations. This behavior is generally
related to specular or well-localized scattering mechanisms
and can be observed over coherent scatterers like calibra-
tors, facets facing the radar, double-bounce reflections over
dihedral-like objects having smooth surfaces or may be linked
to resonant behaviors over quasi-periodic media [20], [26].
Under both UM and CM assumptions, the received signal y(l)
follows a complex multivariate gaussian distribution, but with
different likelihood functions

2) PolTomoSAR Signal Models: The polarimetric response
of a scatterer may be represented by an NP -element data
vector, v, containing the complex scattering coefficients mea-
sured for different transmitted and received polarization states.
In a monostatic configuration, and using the well-known Pauli
polarization basis [27], this vector can be written as v =

1√
2
[Shh+ Svv, Shh− Svv, 2Shv]T , where Sxy, with x and y equal

to h or v, represents one element of the (2 × 2) scattering
matrix S. Depending on the polarimetric configuration at hand,
the number of available channels verify 1 ≤ NP ≤ 4. Over
complex urban environments, both interferometric and polari-
metric scattering fluctuations of speckle-affected responses
can be taken into account by using v(l) = s(l)k(l), where
p = E(v(l)H v(l)) represents the span [27], or polarimetric
reflectivity, of the scatterer’s response, and k(l) ∈ C

NP×1 is
a target vector containing a normalized polarimetric infor-
mation, kH (l)k(l) = 1. Classical incoherent Polarimetric
SAR (PolSAR) analysis is usually derived from the second-
order statistics of polarimetric data, i.e., from the covariance
matrix of the polarimetric responses

T = E(|s|2kkH ) (3)

with 1 ≤ rank(T) ≤ NP , depending on the observed medium.
In the unitary-rank case, the relative information between

the polarimetric channels is deterministic, and the polarimetric

. 
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response writes v(l) = s(l)k. Signals measured in a Multi-
baseline PolInSAR configuration are then gathered in an
NP M-element Polarimetric Tomographic received signal, yP ,
is formed by stacking the TomoSAR responses for each
polarization channel, as yP = [yT

1 , . . . , yT
NP
]T ∈ CNP M×1,

where yq ∈ CM×1 represents the TomoSAR response for the
qth polarimetric channel, i.e., [yq] j = [v j]q (q = 1, . . . , NP ).
Using this convention, the polarimetric steering vector of the
i th source, i.e., the ideal interferometric response with unitary
polarimetric target vector ki , is given by

a(zi , ki ) =
(
INP×NP ⊗ a(zi )

)
ki = Ba(zi )ki (4)

where ⊗ stands for the Kronecker product operator. Similar to
the single polarization case, the received PolTomoSAR signal
yP(l) may be formulated as

yP(l) =
ns∑

i=1

si (l) a(zi , ki )+ n(l)

= A(z, K)s(l)+ n(l) ∈ C
NP M×1 (5)

with A(z, K) = [a(z1, k1), . . . , a(zns , kns )] ∈ CNP M×ns the
polarimetric steering matrix. The UM and CM model assump-
tions described for single-polarization signals can be used in
the PolTomoSAR case too, as shown in [18].

The FR PolTomoSAR signal model and the corresponding
focusing techniques are described in detail in Section IV.

B. Single Polarization Tomography

1) Common Single Polarization Tomographic Techniques:
The objective of single polarization tomographic focusing
concerns the estimation of z and p, the elevation and reflec-
tivity of the ns measured scatterers, from L realizations of
the MB-InSAR signal, {y(l)}Ll=1. This inverse problem may
be solved using spectral analysis techniques [6], [8], [17],
[18], [28], based on the L-look estimate of the data covariance
matrix, R̂ = (1/L)

∑L
l=1 y(l)yH (l). The wide variety of exist-

ing spectral analysis methods may be categorized according
to some of their features, such as their processing principle,
performance, and complexity [29]–[31].

a) Mono-dimensional approaches: They determine ẑ as
the coordinates of the local maxima of a continuous mono-
dimensional objective function P(z), whose generic form is
given by

P(z) = (
aH (z)Qpa(z)

)q
(6)

and hence have a low computational complexity, which does
not depend on the number of scatterers ns . Within this cat-
egory, nonparametric techniques, such as the Fourier Beam-
former (BF), with Q = R̂, p = q = 1 in (6), and Capon’s
method (CP) [32], with Q = R̂, p = q = −1 in (6),
are commonly applied for tomographic focusing [8], [10],
[33], [34]. Both BF and CP are known to be relatively
robust to focusing artifacts, generally implied by problematic
acquisition conditions or scattering behaviors, but have a
coarse resolution, limited by the range spanned by the {kzi }Mi=1
values at hand. With respect to BF, CP possesses, for high
enough Signal-to-Noise Ratio (SNR), improved resolution,

and sidelobe levels, at the cost of a reduced radiometric
accuracy. MUSIC [35] is a parametric HR technique [36],
characterized by a much improved resolution, which does not
directly depend on SNR or baseline distribution, but rather
on the quality of the estimation of R. The mono-dimensional
objective function is given, in the case of MUSIC, by (6) with
Q = ÊnÊH

n , p = 1, q = −1, Ên being a matrix formed by
the eigenvectors of R̂ corresponding to its M − n̂s smallest
eigenvalues. Being based on subspace orthogonality, MUSIC is
known to perform badly in the presence of correlated scatterer
responses [29], and, as a parametric approach, it requires to
estimate the model order n̂s , whereas model order selection
may be performed a posteriori for BF and CP. The reflec-
tivity vector, p, may be estimated directly from P(z) for
BF and CP, whereas an additional processing step, typically
a Least-Square (LS) estimation [36], [37], is required for
MUSIC.

b) Multidimensional techniques: They aim to jointly esti-
mate the features of the ns scatterers, the number to be
estimated, through the optimization of a concentrated criterion,
Q(z), p being generally estimated implicitly [25], [38]. Such
parametric techniques are more robust and accurate than
mono-dimensional estimators, as they account for the complex
interactions between the different responses, but at an expen-
sive computational cost, which increases with n̂s ≤ M − 1,
the search dimension. Most of the multidimensional HR
techniques able to cope with irregular kzi distribution, are
inspired by the ML approach, which determines the parame-
ters maximizing a likelihood function, established under the
Unconditional (UM) or CM assumption [38]. The resulting
Stochastic (SML) or Deterministic ML (DML) estimators are
characterized by a very high resolution, the DML estimator
being statistically less efficient than SML, especially for
highly correlated source signals [25]. ML techniques show,
in most cases, better performance than MUSIC, with a higher
computational cost [39]. One may note that the approach
proposed in [40] is not utilized in this study, as it optimizes an
SML criterion under a very strong simplifying the assumption,
considering that all the scatterers to be discriminated within a
range resolution cell have exactly the same complex reflection
coefficient, si in (1). Using the SML criterion, and the under-
lying UM statistical behavior, the assumed property of equal
reflectivities is verified with probability 0, and hence may
generate distortions. Weighted Subspace Fitting (WSF) tech-
niques were introduced in [29], [30], [38], and [41] in order
to overcome limitations of ML approaches in terms of com-
putational complexity, and, more importantly, of performance
when dealing with a finite number of looks, i.e., when using
R̂ instead of R, or assuming an erroneous model order, n̂s .
They estimate source parameters based on the LS fitting
between modeled and estimated noise or signal subspaces,
Ên or Ês , respectively. The use of a weighting term allows
one to compensate discrepancies between true and estimated
subspace features, leading to the NSF or SSF multidimensional
criteria, QN SF (z) = ‖ÊH

n A(z)‖2
W and QSSF(z) = ‖Ês −

A(z)T‖2W where ‖x‖2W � xH Wx. For specific values of the
weighting matrix, W, the NSF or SSF techniques can be
asymptotically associated with other spectral estimators, such

. 



ACCEPTED MANUSCRIPT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG AND FERRO-FAMIL: 3-D CHARACTERIZATION OF URBAN AREAS 5

as a multidimensional version of MUSIC, or ML methods [29].
In particular, a consistent W value permits one to obtain
minimum variance estimates, which asymptotically reach the
Cramér–Rao Lower Bound (CRLB) [38], and hence adapt
to the statistics of the measured sources [6], [18], [25].
WSF approaches are asymptotically equivalent to the SML
technique, but with a reduced computation cost [38]. In the
case of low SNR conditions, the SSF technique provides better
estimation accuracy than the SML [25]. For a specific value
of W, the SSF estimator is asymptotically equivalent to, and
outperforms, the DML technique [41]. One may note that
similar to the MUSIC approach, the performance of the NSF
estimator may be affected by model order mismatch [38].
As this is shown in Section II-B2, ML and WSF approaches
allow to reach very good performance in extreme conditions,
but the numerical evaluation of their objective functions may
require some particular attention and specific steps, such as
intermediate decompositions [38], in order to avoid divergent
behaviors occasioned by avoidable numerical instabilities, and
not to the approaches themselves.

2) Performance Assessment: The performances of the dif-
ferent aforementioned tomographic estimators are compared
in the particular case of a small number of acquisitions, M .
MB-InSAR signals are simulated for two scatterers, separated
by a lag in elevation denoted �z, and whose source terms
verify pi = 1, and |E(s1s∗2 )| = ρ. Acquisition noise is
considered, with SNR, SNR = pi

σ 2
n

equal to 20 dB as a
default value. Simulations are realized with 500 independent
trials. A wide variety of signal models may then be simply
simulated by setting ρ = 0.995 for coherent (CM) signals,
ρ = 0 for uncorrelated ones (UM), intermediate values for
hybrid behaviors [6], [17], [18]. The geometry of the M SAR
acquisitions is characterized by a regular distribution of kzi ,
with spacing �kz = 0.2, leading to a vertical resolution of
δz = 10 m for M = 3 and δz = 5 m for M = 6. Due to
its poor resolution and its inability to separate signals in the
investigated configurations, the BF technique is not considered
in this evaluation.

a) Asymptotic properties: Simulations are run with two
UM scatterers, with ρ = 0 and �z = 4 m, and the data
covariance matrix is estimated with a different number of
looks L, in order to investigate the asymptotic properties of
the investigated techniques. Fig. 1 illustrates the performances
in terms of Root Mean Squared Error (RMSE) in elevation,
as a function of L. CP shows the worst performance, due to
a limited vertical resolution, whereas HR estimators, such as
MUSIC and WSF techniques, are asymptotically equivalent
to ML techniques for large sample size values, i.e., L = 256
here. Using an intermediate-resolution TomoSAR configura-
tion, i.e., M = 6 with δz = 5 m, these approaches achieve
extremely good performance even with a low number of looks.
For a minimal TomoSAR configuration, i.e., M = 3 with
δz = 10 m, a deterioration of the performance is observed,
and HR methods provide a significant improvement compared
to Capon’s technique. One may note in Fig. 1 that in both
cases, L = 256 appears as a number of looks for which
all techniques have converged to their asymptotic behavior,

Fig. 1. Height RMSE for a varying number of looks L . ρ = 0, �z = 4 m.
(Outer Plot) δz = 10 m (M = 3). (Inner Plot) δz = 5 m (M = 6).

Fig. 2. Height RMSE of ẑ in a minimal configuration for varying source
separation �z with M = 3 (δz = 10 m). (Outer Plot) ρ = 0.995. (Inner Plot)
ρ = 0.

and this number of looks is selected as the default value
in the following sections. Compared to other HR estimators,
the performance of the DML technique degrades significantly,
as L reaches insufficient values, whereas WSF techniques lead
to good estimates whatever the number of looks.

b) Estimation accuracy and source correlation: Fig. 2
shows the performance of the studied estimators in the low-
resolution case, M = 3 (δz = 10 m), for different source
correlations ρ and separations �z. For uncorrelated scatterers,
ρ = 0, the results plotted in Fig. 2(a) indicate that, as a
mono-dimensional method, the MUSIC estimator fails in the
presence of closely spaced scatterers, with �z < 2 m, whereas
multidimensional methods, like WSF and ML techniques,
show a more robust behavior. In the presence of coherent
scatterers, Fig. 2(b) depicts a degraded performance for all

. 
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Fig. 3. Height RMSE for varying SNR values and different array size.
ρ = 0.995, �z = 4 m. (Outer Plot) M = 3. (Inner Plot) M = 6.

methods. Capon and MUSIC techniques fail completely, since
the source signal covariance matrix, R̂ss , tends to be singular.
The NSF estimator performs better than the DML technique,
whereas the SSF estimator outperforms all the other tech-
niques, whatever the correlation, due to its model-adaptive
nature conferred by the fitting matrix W used in the WSF
criterion.

c) Coherent scatterers and SNR: Simulations are run
with CM scatterers and for varying SNR values. One may
observe in Fig. 3 that much better results are obtained in the
intermediate-resolution case, M = 6 (δz = 5 m), compared to
those of the low-resolution configuration, M = 3 (δz = 10 m).
Divergences between the characteristics of the HR techniques
are observed when the resolution and SNR values are low.
Fig. 3 shows that, using a minimal TomoSAR configuration,
Capon and MUSIC estimators have a significantly degraded
performance. The NSF technique performs similar to SML,
and better than the DML estimator, when SNR < 20 dB. The
SSF estimator outperforms the other techniques, whatever the
SNR value.

C. Polarimetric Tomography

Compared to its single-polarization counterpart, Polarimet-
ric SAR Tomography (PolTomoSAR) is expected to improve
the performance of 3-D focusing. In particular, polarization
diversity helps to further discriminate scattering sources, and
may reveal particularly useful in the case of low vertical
resolution and configurations with a small number of images.
Moreover, such an imaging mode offers the possibility to
map and identify scattering behaviors in 3-D. However, limita-
tions regarding the handling of potentially complex stochastic
scattering using spectral analysis techniques such as those
mentioned in the SP case, are still relevant for polarimetric
configurations.

1) Common Polarimetric Tomographic Techniques: Polari-
metric SAR tomography aims to estimate not only the eleva-
tion zi and reflectivity pi of each source, but also its scattering
vector ki , a unitary NP -element complex vector describing
how the considered source reflects impinging waves for each

polarimetric channel. Several multivariate spectral analysis
techniques, based on the data (NP M × NP M) covariance
matrix, R̂P , can be found in the literature [4], [19], [42], [43],
and may be qualified as unitary-rank polarimetric tomographic
estimators, since the retrieved polarimetric information con-
sists of a target vector, as opposed to FR techniques, estimating
polarimetric covariance matrices, and presented later in this
article. Mono-dimensional Polarimetric (P-) techniques, such
as P-BF, P-CP, and P-MUSIC, use a 1-D objective function
P(z, k) = (aH (z, k)Qpa(z, k))q , whose polarimetric opti-
mization, for each z value, generally relies on the eigende-
composition of a (NP × NP ) matrix, in order to determine the
target vector k(z). Compared to the SP case, the computational
complexity of such P-tomographic techniques is only multi-
plied by a small factor, and remains particularly attractive.

Multidimensional approaches, such as the P-ML and P-WSF
estimators, may be formulated from their single polariza-
tion expressions by replacing the steering matrix A(z) with
A(z, K). The height and polarimetric parameters, z, K, may
be estimated by optimizing the cost function Q(z, K) over a
(2NP − 1)n̂s-dimensional space, which implies an excessive
computational burden. There exist computationally efficient
solutions for solving ML criteria techniques in single polar-
ization case [38], [44], but they have not been extended to the
polarimetric case. Two versions of the P-ML technique pro-
posed in [42] and [15] rely on the definition of an approximate
cost function with a scalar argument and hence suffer from
the drawbacks of mono-dimensional approaches. Regarding
WSF techniques, an analytical solution for the polarimetric
NSF estimator has been proposed in [19] and [18], which
permits to maintain the computational cost close to the one of
the single polarization case, and relies on an n̂s-dimensional
search. As has been shown in the scalar case, the SSF estimator
outperforms other techniques due to its adaptivity to complex
scattering and statistical features. It is thus expected that
the extension of the SSF technique to the polarimetric case
may be of great interest for 3-D focusing purposes and a
computationally efficient solution is proposed in this article.

2) Performance Assessment: Numerical illustrations given
in this section are based on the baseline configuration used in
the single polarization case, and deals with fully Polarimet-
ric (P) acquisitions, NP = 3.

a) Use of polarimetric diversity: This case study con-
siders two scatterers, with uncorrelated responses with equal
polarimetric covariance matrices, T1 = T2 = T, characterized
by a degree of polarimetric scattering randomness, H , varying
from 0 to 1. The polarimetric entropy is defined in [45]
as H (T) = −∑NP

q=1 λ̃q logNP
λ̃q where λ̃q = λq/

∑NP
i=1 λi ,

with λq an eigenvalue of the polarimetric covariance matrix
T defined in (3). For a deterministic polarimetric responses,
i.e., k(l) = k0,∀l in (3), the polarimetric covariance matrix
has a unitary rank and H = 0. Completely unpolarized
responses, i.e., polarimetric white noise, are characterized by
a white covariance matrix, i.e., λq = λ1,∀q , and H = 1.
In a general case, 0 ≤ H ≤ 1. The relevance of polari-
metric data processing diversity is evaluated by considering
a system working with a single polarization channel, repre-
sented by an NP -element complex vector ka that takes into
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Fig. 4. Height RMSE of the MUSIC estimator with two sources in the most
favorable (solid) and least favorable (+ dash) polarization selection cases.
M = 3 (δz = 10 m), ρ = 0.

account specific antenna polarization states at both transmit
and receive. Hence, for a specific polarimetric configuration
of the system, the received signal may be formulated as a
linear transformation of its polarimetric counterpart as y =
(ka ⊗ IM×M)H yP . Two characteristic polarimetric configu-
rations may be considered, i) in the most favorable case,
the acquisition polarization state is parallel to the eigenvector
of T, kmax, corresponding to the largest eigenvalue, i.e.,
|kH

a kmax|/(‖ka‖‖kmax‖) = 1 and the SNR on the receiver is
maximal; ii) in the least favorable case, these target vectors
are orthogonal, i.e., kH

a kmax = 0, and the SNR is minimal.
Fig. 4 shows that using MUSIC in the most favorable case
leads to performances that do not depend significantly on the
entropy value, meaning that optimally tuning the polarimetric
channel to ka ∝ kmax is the best solution, in general. Using a
fixed polarization, or, at least, a nonoptimal one, may lead to a
severe deterioration in performance, depending on the entropy
of the observed polarimetric response. Indeed, the receiver’s
polarization state ka may fall into, or close to, the null space of
well polarized responses, with H = 0, whereas when H = 1,
the energy of the backscattered response is equally distributed
over polarimetric directions, and using polarimetric diversity
does not permit to improve the SNR. Simple conclusions may
be drawn from the curves plotted in Fig. 4. Using fully polari-
metric acquisitions and polarimetrically adaptive processing
permits to reach the performance indicated by the continuous
plots, whereas working over a particular polarimetric channel
leads to the performance lying between the continuous and
dashed curves. One may note that polarimetric diversity is
particularly useful for low H values, typically reached over
artificial objects, and when observing closely spaced scatterers.

b) Influence of the polarimetric distance: The sensitivity
to polarimetric diversity of several spectral estimators used
from tomographic focusing has been investigated in [18].
Following a similar evaluation protocol, one finds that the
use of polarimetric diversity plays a major role, in terms of
scatters’ separation and height estimation accuracy, in extreme
configurations, i.e., with a coarse resolution and for correlated
responses. In such problematic situations, the subspace fitting

technique, P-NSF, outperforms the other HR techniques inves-
tigated here.

D. Discussion

The performance of the different spectral estimation meth-
ods as well as the definition of an optimal solution have
to be considered in the frame of this study, i.e., for 3-D
reconstruction of complex urban environments using a min-
imal number of images. To this end, a case study of a dense
urban area imaged by the DLR’s E-SAR sensor in a fully
polarimetric mode, i.e., Np = 3 at L-band with M = 3
images is investigated. This application data set was acquired
on August 1, 2000, with a small baseline of 10 m and a large
one of 40 m. The SAR images have a resolution of 2 m in
range, and 3 m in azimuth.

1) Coherent Scattering Behavior: The diversity of statistical
scattering behavior over the observed scene may be appreci-
ated in the light of the results of the coherent Time-frequency
(TF) analysis led in [20] using a single PolSAR image.
The correlation indicator ρTF shown in Fig. 5 and derived
in [20] and [46] shows that coherent scatterers, with ρTF

close to 1, mostly correspond with built-up structures, whereas
distributed scatterers, whose ρTF tends to equal 0, indicate
vegetated areas, bare surface and shadow areas. However, over
many regions of the scene, ρTF takes intermediate values,
characteristic of hybrid scattering environments, as they were
defined in [20]. This observation reveals the important need for
adaptive tomographic techniques, able to deal with different
types of statistical scattering behaviors, encountered over such
complex environments as urban areas. Adaptivity being an
intrinsic feature of WSF techniques, their use over dense built-
up areas presents great potential.

2) Comparison of Single Polarization Tomographic Tech-
niques: A comparison between WSF techniques and other
commonly used single polarization tomographic estimators
is given using the Dresden test data set. Tomograms are
computed at VV polarization, along the path aligned with the
range direction, passing by two buildings, and indicated in
yellow in Fig. 6. Here, the model order is uniformly fixed at
n̂s = 2 and tomograms are computed in slant range, in order
to demonstrate the performance of tomographic estimators
for sidelobe suppression and robustness against model order
mismatch. As shown in Fig. 7(a) and (b), the nonparametric
approaches BF and Capon permit to localize some dom-
inant scattering sources, but are severely limited by their
coarse vertical resolution, and they cannot precisely estimate
the different features of buildings. The HR capability for
scatterers’ separation of the evaluated parametric techniques
is demonstrated in Fig. 7(c)–(f). Nevertheless, the different
methods investigated in this assessment do not show similar
levels of discrimination and robustness. As indicated in Fig. 7
using magenta ellipses, sidelobes over the ground may be
observed in the tomograms computed using MUSIC, DML,
and NSF techniques. These artifacts are due to model order
mismatch, whereas those observed over buildings are either
due to irregularly sampled baselines, or to the limitations of
these approaches with respect to source correlation. One may
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Fig. 5. Polarimetric features of the intermediate resolution L-band SAR data acquired over the city of Dresden [20]. (a) Pauli-coded image.
(b) TF correlation ρTF. (c) PolSAR Entropy H .

Fig. 6. Selected test area and tomographic profile location. (a) Google
image c©. (b) Pauli-coded image.

observe that results obtained with the SSF technique and given
in Fig. 7(f) show great robustness for sidelobe suppression
even in this extreme case. The superiority of SSF and DML
approaches with respect to MUSIC and NSF in the presence
of strong source correlation is due to the rank deficiency
of the source covariance matrix [38], [47]. In such a case,
the true steering vectors are not all orthogonal to the noise
subspace [47] and some sources simply cannot be discrimi-
nated. This limitation may be overcome by working on the
signal subspace that is complementary to the noise subspace.
Theoretical demonstrations and numerical illustrations may be
found in [38], indicating that the NSF estimator is asymptoti-
cally equivalent to the SSF one when dealing with uncorrelated
signals, but is less efficient for the estimation of coherent or
highly correlated signals. A correct model order estimate is
required to obtain the optimal weighting matrix of NSF, so that
this estimator can achieve its optimal performance. In the case
of completely correlated sources, the first eigenvector of the
data covariance matrix is composed of linear combinations of
the steering vectors of all sources, and the SSF and DML
approaches have to face a very similar problem, that consists

of estimating structured steering vectors from their weighted
sum. One may note that in the case of uncorrelated source
signals, MUSIC has a noticeably good performance, as it is
asymptotically equivalent to the DML. As stated in [41], one
may theoretically show that the optimally weighted SSF never
performs worse than DML and, in general, outperforms DML.
The difference between performance can be large in the case
of highly correlated source signals [41]. Finally, according to
the theoretical study proposed in [29], it turns out that the
DML estimator is not statistically efficient if the number of
images, M , is small, even if the number of looks used to
perform the estimation, L, is large. DML estimates can achieve
the CRLB only if M is takes sufficiently large values. In the
context of tomographic reconstruction, one may understand
this limitation as the difficulty to estimate linear combinations
of structured vectors using a small set of M observations. For
larger M values, the improved level of sparsity, with M  n̂s ,
permits the DML approach to reach high performance. This
is basically what is done in the so-called compressive-sensing
approaches presented in [2] and [3], where a L1 norm con-
straint is added to the DML criterion in order to select the
model order.

3) Polarimetric Information Handling: In the extreme
configuration studied in this work, it is obvious that polar-
ization diversity may play an important role in the dis-
crimination of closely spaced sources, as previously reported
in [18], [4], [15], and [48]. Nevertheless, as shown in Fig. 4,
the performance of these techniques may be modulated by
the randomness of the observed polarimetric information.
Moreover, the 2-D entropy, H , computed over the test area
and displayed in Fig. 5(c), reaches high values over the studied
areas, indicating the limited possibilities of 2-D SAR polarime-
try for characterizing this region. PolTomoSAR techniques
are expected to overcome these limitations by discriminating
contributions merged in layover areas and effectively estimate
the dominant scattering patterns. Nevertheless, over complex
media or 3-D structures containing numerous different scatter-
ers into vertical sections smaller than the tomographic vertical

. 
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Fig. 7. VV reflectivity tomograms (in dB) estimated in slant range along the profile shown in Fig. 6. The area without scattering response is indicated in
gray color. (a) Beamforming. (b) Capon. (c) MUSIC (n̂s = 2). (d) DML (n̂s = 2). (e) NSF (n̂s = 2). (f) SSF (n̂s = 2).

resolution, one may still observe high entropy values. In such
cases, classical unitary-rank tomographic techniques are not
adapted and may lead to useless indicators. We then propose to
resort to FR polarimetric techniques, such as the ones proposed
in [21], which can provide second-order polarimetric features,
i.e., polarimetric covariance matrices, in 3-D. The outputs of
this technique may then be processed using existing tech-
niques, formerly developed for 2-D applications, and extended
to 3-D analysis.

4) Required Features for Tomographic Focusing in a
Minimal Configuration: From the elements of the discussion
presented above, it is possible to define some key properties
an estimator should possess in order to perform tomographic
focusing in a minimal configuration with a satisfying level of

quality. HR capabilities and coherent source, i.e., statistical
diversity, handling are among the most required features,
as shown by SP experiments over real data. Polarimetric
information shall be used to improve the estimation results.
From the experimental and theoretical properties mentioned
previously, two methods, the SSF and DML, seem to satisfy
all these requirements, and their extension to the polarimetric
case is the subject of Section III.

III. PROPOSED POLARIMETRIC SSF
AND DML ESTIMATORS

This section presents a solution to HR polarimetric tomo-
graphic focusing on the P-SSF and P-DML approaches.
A generic unitary-rank polarimetric optimization technique,

. 
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based on the extension of the alternating projection
approach [49] to the polarimetric case is first proposed. This
method is then adapted to the P-SSF and P-DML criteria.

A. Polarimetric Optimization Using Alternating Projections

The optimization of both the P-SSF and P-DML criteria
may be cast as

ẑ, K̂ = arg max
z,K

Q(z, K)

with

Q(z, K) = tr(PA(z,K)
M) (7)

where M is a (NP M × NP M) positive semidefinite hermitian
matrix that will be, respectively, defined by the P” SSF and
P” DML estimator, and PA(z,K)

represents the projector onto
the space spanned by the columns of A(z,K), given by

PA = A(AH A)−1AH (8)

where the arguments (z, K) have been omitted, and with
A = [

a(z1, k1), . . . , a(zns , kns )
]

the NP M × ns PolTomoSAR
steering matrix. Using the fact that PA remains invariant by
any permutation of the columns of A, one may rewrite the
projector as PA = P[Ãi a(zi ,ki )], with

Ãi =
[
a1, . . . , ai−1, ai+1, . . . , ans (9)

where the notation ai = a(zi , ki ) is adopted. This expression
may then be used to optimize the criterion in (7) with respect
to a single source at a time. This mono-dimensional approach
writes

ẑi , k̂i = arg max
z,k

Qi (z, k)

with

Qi (z, k) = tr(P[Ãi a(z,k)]M). (10)

The maximization of (7) may then be achieved by alternatively
optimizing the 1-D criterion (10) for different values of
i ∈ [1, . . . , ns ], until convergence. As reported in [49] in the
SP case, despite its suboptimal character, this method generally
shows a satisfying convergence behavior, provided that it is
initialized in an adequate way. Its main interest resides in the
way the optimization in (10) can be conducted. The projector
of a compound matrix verifies the following expression:

P[Ãi a(z,k)] = PÃi
+ Pa(z,k)Ãi

with

a(z, k)Ãi
= P⊥̃Ai

a(z, k) = b(z, k) (11)

where P⊥̃Ai
= (I−PÃi

), and is the result of the projection of the
considered steering vector onto the space orthogonal to the one
spanned by the reduced matrix Ãi . Taking into account that
Pb = bbH /(bH b), the criterion in (10) may be rewritten as

Qi (z, k) = tr(PÃi
M)+ bH (z, k)Mb(z, k)

‖b(z, k)‖2
(12)

with b(z, k) defined in (11). One may note that the first
term of the right-hand side of (12) does not depend on the

parameters used to optimize the criterion, z and k and can
then be dropped. The single source optimization of (10) can
then be simplified as

ẑi , k̂i = arg max
z,k

bH (z, k)Mb(z, k)

‖b(z, k)‖2

= arg max
z,k

Q̃i (z, k). (13)

By replacing b(z, k) with b(z) in (13), one gets the SP
expression derived in [49], which may be assimilated to a
BF result, normalized by ‖b(z)‖2, and evaluated at very low
computational cost. In the polarimetric case, one cannot, as in
the classical polarimetric mono-dimensional case, i.e., using
P-CAPON and P-MUSIC, directly optimize (13) using an
eigendecomposition, since ‖b(z, k)‖2 cannot be determined
a priori, k being unknown. By inserting the alternative expres-
sion of a PolTomoSAR steering vector of (4) into (11), one
gets

b(z, k) = P⊥̃Ai
Ba(z)k = Ba(z)Âi

k (14)

the criterion in (13) can be rewritten as

Q̃i (z, k) = kH M′(z)k
kH B′(z)k

with

M′(z) = Ba
H (z)Âi

MBa(z)Âi

B′(z) = Ba
H (z)Âi

Ba(z)Âi
(15)

where the (NP × NP ) matrix M′(z) may be associated with
a version of M focused at the elevation position z. Given
that both M′(z) and B′(z) are positive semidefinite hermitian
matrices, the maximization of (15) may be achieved through
the following generalized eigenvalue decomposition:

M′(z)k = λB′(z)k s.t. kH k = 1 (16)

where the generalized eigenvalues represent optimal solutions
for Q̃i (z, k), reached for scattering vectors given by the
corresponding eigenvectors. Therefore, at a given iteration of
the P-AP algorithm, the parameters of the i th scatterer are
estimated as

ẑi = arg max
z

λmax(M′(z), B′(z))

k̂i = emax(M′(ẑi ), B′(ẑi)) (17)

where λmax(A, B) ≥ 0, represents the largest generalized
eigenvalue of A, B ≥ 0, and emax(A, B) is the corresponding
eigenvector. One may note here that the evaluation of the
orthogonal projector and the generalized eigenvalue problem
required in (17) shall be conducted with care in order to ensure
that the whole approach provides meaningful results. Indeed,
orthogonal projectors are generally not evaluated directly
through (8), but rather using more stable procedures, based
on matrix decompositions, such as the QR factorization [38].
Reducing the generalized eigenvalue decomposition in (16)
to a classical eigenvalue problem through matrix inversion,
or pseudo inversion, should, in a general way, be avoided,
since such an alternative may break conditions for hermitian
symmetry, and hence lead to meaningless results. The synopsis
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Algorithm 1 P-AP Algorithm
procedure P-AP(zin, Kin)

z(0)← zin, K(0)← Kin � Initialization
n← 0
repeat � Iteration

n← n + 1
z(n)← z(n − 1), K(n)← K(n − 1)
for i = 1 : ns do � Sequential optimization

get ẑi , k̂i from (17)
[z(n)]i ← ẑi , [K(n)]i ← k̂i � Update

until convergence
ẑ← z(n), K̂← K(n)

return ẑ, K̂

of the proposed P-AP algorithm is given in Algorithm 1.
As mentioned earlier, the algorithm shall be initialized with
good enough parameter estimates, such as those provided by
the P-MUSIC 1-D algorithm, for instance. The convergence
of this technique may be decided by evaluating the amount
of change from one iteration to the other, of one or several
indicators, such as the criterion to be optimized Q(z, K), or its
parameters z, K. Dealing with these parameters might help to
set a reasonable practical threshold of convergence.

B. Polarimetric SSF Estimator

Weighted subspace-based spectral estimation techniques
were proposed in [41] and [38], and rely on the eigendecom-
position of the covariance matrix of the measured signal. In the
PolTomoSAR case, this covariance may be written as

R = A(z, K)RssAH (z, K)+ σ 2
n I

= E�EH = Es�sEH
s + σ 2

n EnEH
n (18)

where � = diag({λi}NP M
i=1 ), with λi ≥ λi+1 ≥ 0, denotes

the eigenvalue matrix of R, and E is its corresponding
orthonormal eigenvector matrix. The PolTomoSAR responses
of ns scatterers occupy a subspace whose dimension is at
most ns , the remaining eigenvalues of R being equal to
the noise variance, i.e., {λi}NP M

i=ns+1 = σ 2. One may then
define the so-called signal subspace by Es = [e1, . . . , ens ]
with eigenvalues �s = diag([λ1, . . . , λns ]), whereas the noise
subspace is given by En = [ens+1, . . . , eNP M ]. It is clear from
(18) that if the source covariance matrix, Rss, has rank ns , then
En is orthogonal to ARssAH , implying that the space range of
Es coincides with the one of A(z, K). These properties may
be exploited to estimate signal parameters using weighted LS
fitting criteria, defined as

QP-NSF(z, K) = ||ÊH
n A(z, K)||2W

QP-SSF(z, K) = ||Ês − A(z, K)T||2W (19)

where ‖X‖2W = tr(XWXH ). The use of a weighting matrix, W,
aims to compensate or attenuate the effects of discrepancies
in the relationship between subspaces and measured signals,
when computations are led from a covariance matrix estimated
with a finite number of looks, i.e., when using R̂, Ê, �̂,
in place of R, E, �. The different solutions obtained for

WSF estimators are presented in details in [41]. After replac-
ing in (19) T by it LS estimate T̂ = A†(z)Ês , X† being
the pseudo-inverse of X, the P-SSF optimization may be
written as

ẑ, K̂ = arg max
z,K

Q̃P-SSF(z, K)

with

Q̃P-SSF(z, K) = tr(PA(z,K)M)

M = ÊsWÊH
s . (20)

This optimization is similar to the generic one introduced
in (7), and hence, it may be conducted efficiently using
the P-AP algorithm depicted in Algorithm 1. Depending
on the weighting matrix selected in (19), one may obtain
tomographic estimators with different properties. Inserting
W = (AH Ês(�̂s − σ̂ 2I)−2�̂sÊH

s A)−1 into the cost function
QP-NSF(z, K) yields the optimal P-NSF estimator, whose esti-
mation error covariance attains the CRLB [19], [41]. The
equivalent optimal P-SSF estimator is obtained by incorporat-
ing W = (�̂s− σ̂ 2I)2�̂

−1
s in QP-SSF(z, K) [38]. These optimal

WSF estimators are used in this article. Once the elevation and
polarimetric features of different scatterers are determined, one
may estimate their reflectivity using a classical approach such
as the minimization of an LS criterion

σ̂i = 1

L

L∑
l=1

|ŝi(l)|2, with ŝ(l) = A†(ẑ, K̂)y(l). (21)

C. Polarimetric DML Estimator

From the Gaussian statistical behavior given under the CM
model assumption, one may derive the likelihood of the L
acquired independent signals, {y(l)}Ll=1. As shown in [38],
reflectivities can be estimated using the LS approach described
in (21), and the DML optimization is written as

ẑ, K̂ = arg max
z,K

QP-DML(z, K)

with

Q̃P-DML(z, K) = tr(PA(z,K)R̂). (22)

Similar to the P-SSF case, the optimization described in (22)
may be achieved efficiently using the P-AP algorithm given
in Algorithm 1, and replacing M with R̂ in (7).

D. Illustration of the Performance of the P-SSF
and P-DML Estimators

Two examples are simulated in order to illustrate the perfor-
mance of the proposed P-SSF and P-DML estimators, in the
presence of coherent scatterers, and for low SNR values. The
received MB-PolInSAR signals from two coherent scatterers
with �z ∈ [0, 4] m or SNR ∈ [0, 30] dB, are simulated in two
polarimetric cases, k1 ‖ k2, and k1 ⊥ k2, ki (i = 1, 2) being
chosen arbitrarily.
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Fig. 8. Height RMSE of estimation performance of unitary-rank polarimetric
estimators for a varying height difference �z. ρ = 0.995, SNR = 0 dB. (Outer
Plot) M = 3. (Inner Plot) M = 6 (a) k1 ‖ k2. (b) k1⊥k2.

1) Estimation Accuracy at Low SNR and High Correlation:
This example aims to evaluate the estimation accuracy
for coherent scatterers (ρ = 0.995) using unitary-rank
polarimetric tomographic methods in the low-SNR case,
i.e., SNR = 0 dB. In Fig. 8, P-MUSIC and P-Capon
techniques show a low performance, whatever the separation
in elevation �z, due to the rank deficiency of Rss. When
k1 ‖ k2 [Fig. 8(a)], in the case of M = 6, the performance
of P-DML technique degrades for �z ≤ 2.5 m but P-SSF
maintains a low RMSE for extremely small �z values. In the
very low resolution case, M = 3, all the methods show a
similar behavior, with an RMSE of 1 − 2 m over the whole
studied range of �z. In the case of a favorable polarimetric
diversity, k1 ⊥ k2, the P-SSF polarimetric adaptivity leads
to a significant improvement for the separation of closely
spaced scatterers, as shown in Fig. 8(b). In summary, the P-
SSF technique shows a performance equal to, or much higher
than, one of the P-DML approach.

Fig. 9. Height RMSE of unitary-rank polarimetric estimators with varying
SNR values, ρ = 0.995. Results of SP estimators are shown in gray.
(a) M = 3, k1 ‖ k2. (b) M = 3, k1⊥k2.

2) SNR Requirement for Accurate Estimation: The different
polarimetric tomographic estimators are applied to signals sim-
ulated for two CM scatterers, with ρ = 0.995 and �z = 4 m
observed at varying SNR values. As one can observe in
Fig. 9, multidimensional polarimetric estimators perform much
better than the mono-dimensional P-MUSIC and P-Capon
techniques. However, the results of the P-NSF technique are
often worse than those of the P-DML and P-SSF techniques,
due to an inaccurate estimation of the noise subspace in the
presence of coherent scatterers. Compared with the P-DML
technique, the gain in performance of the P-SSF technique is
more prominent in the low-SNR case (SNR < 10 dB) than in
the high-SNR case. Among all the methods investigated in this
study, the P-SSF technique maintains the lowest RMSE and
demonstrates overall robust performance. The use of parallel
scattering vectors leads to results similar to those obtained
in the single polarization case, as shown using gray curves
in Fig. 9(a).

E. Application

In the extreme case of M = 3 acquisitions, several tech-
niques are applied to estimate Digital Surface Models (DSMs)

. 
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Fig. 10. DSMs (in meter) derived from polarimetric SAR data stack using single-polarization and polarimetric MUSIC and WSF estimators, n̂s = 2, compared
to the LiDAR-derived DSM. (a) Google image. (b) Pauli-coded image. (c) LiDAR. (d) VV MUSIC. (e) VV NSF. (f) VV SSF. (g) P-MUSIC. (h) P-NSF.
(i) P-SSF.

over the whole test area, which are compared with a LiDAR-
derived 3-D map, as shown in Fig. 10. The LiDAR DSM in
Fig. 10(c) represents a specific information layer, indicating

buildings’ height over their specific footprint, whereas those
obtained by tomographic estimators depict a whole 3-D
urban scene, containing buildings, green spaces, and other

. 
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kinds of environments. Over built-up areas, DSMs derived
from VV data by using MUSIC or WSF techniques show
numerous artifacts, as depicted in Fig. 10(d)–(f). No major
differences may be observed between results obtained from the
mono-dimensional MUSIC approach and the multidimensional
WSF methods, despite their much higher complexity. DSMs
obtained using fully polarimetric data sets and WSF techniques
shown in Fig. 10(d) and (i) illustrate a clear enhancement with
respect to their SP counterparts, due to the improved discrim-
ination of closely spaced scatterers provided by polarimetric
diversity. Nevertheless, a global underestimation of elevation,
indicated by magenta contours, may be perceived on the
P-NSF results, over orientated buildings as well as over some
tall buildings. This is certainly due to the limitation of the
P-NSF estimator in the presence of coherent scatterers. One
may note that the P-MUSIC derived DSM does not demon-
strate a clear improvement with respect to its SP version,
whose quality was comparable to WSF products. This might
be due to a worse use of the additional dimensions provided by
polarimetric diversity, and shall be connected to the 1-D nature
of this algorithm. The DSM derived by the P-SSF technique
displayed in Fig. 10(i) provides an overall characterization
of buildings which matches well with the LiDAR map of
Fig. 10(c) and correspond to the highest level of quality
observed among the methods tested in this study. Fig. 11
presents a detailed view of the 3-D reconstruction obtained by
the P-SSF technique over some regions of interest, indicated
in Fig. 11(a). Over Zone 1, buildings reconstructed by the
P-SSF technique [Fig. 11(c)] are very close in appearance to
the ones derived from LiDAR data [Fig. 11(b)]. Over Zone 2,
the interval between horizontally and vertically aligned edi-
fices cannot be discriminated in Fig. 11(e), due to the loss
of horizontal resolution induced by spatial filtering employed
during the tomographic processing. The shapes reconstructed
between the buildings over Zone 3 in Fig. 11(g), are due to a
bias generated by volumetric vegetation.

IV. FR POLARIMETRIC TOMOGRAPHIC FOCUSING

A. FR Polarimetric Tomographic Signal Model
Over distributed environments, whose radar response is

affected by the speckle phenomenon, polarimetric information
is very unlikely to follow a deterministic behavior, as assumed
in (5). In order to account for polarimetric variations over the
different realizations of the measured vector, this model may
then be modified as follows:

yP-FR(l) =
ns∑

i=1

si(l) a(zi , ki (l))+ n(l)

= A(z, K(l))s(l)+ n(l) (23)

where the subscript FR stands for Full-Rank and the polari-
metrically stochastic PolTomoSAR steering vector is given by
a(zi , ki (l)) = ki (l) ⊗ a(zi). The covariance matrix of the
received PolTomoSAR data may then be written as

RP =
ns∑

i=1

Ti ⊗ a(zi)aH (zi )+ σ 2
n I(3M×3M) (24)

where Ti represents the arbitrary rank covariance matrix of
the polarimetric response of the i th scatterer.

Fig. 11. Comparison of 3-D building reconstruction by P-SSF estimator
with LiDAR data. (a) Google image c©. (b) Zone 1-LiDAR. (c) Zone 1-P-SSF.
(d) Zone 2-LiDAR. (e) Zone 2-P-SSF. (f) Zone 3-LiDAR. (g) Zone 3-P-SSF.

B. FR Polarimetric Estimators

The objective of FR polarimetric tomography is to estimate
the height zi , reflectivity σi , and polarimetric covariance

. 
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matrix Ti of each of the ns observed scatterer. Linear mono-
dimensional FR estimators, i.e., FR-BF or FR-CP, may be
defined by extending polarimetric solutions to the case of FR
polarimetric quantities. Source parameters are estimated as the
coordinates of the ns largest local maxima of a FR polarimetric
objective function P(z, T)

ẑ, T̂ = arg max
z,T,loc

PFR(z, T). (25)

This estimation requires then to evaluate, for each elevation z,
the maximal value reached by the objective function when T
varies over the space of positive semidefinite hermitian matri-
ces. This high-dimensional search problem may be simplified
by considering unitary-rank polarimetric objectives, recalled
hereafter

PP-BF(z, k) = aH (z, k)R̂P a(z, k)

(Np M)2

PP-CP(z, k) = 1

aH (z, k)R̂−1
P a(z, k)

(26)

together with the eigenstructure of a polarimetric covariance
matrix

T = U�UH =
NP∑
j=1

λ j u j uH
j . (27)

The objective functions in (26) correspond to estimates of
the scene reflectivity for a given elevation and unitary-rank
polarimetric scattering mechanism, and may be related to the
polarimetric covariance matrix as follows:

PP (z, k) = kH T(z)k. (28)

This relationship may then be used to estimate T(z) through
the determination of its eigenparameters. Optimal values of
k provide estimates of the eigenvectors of the polarimetric
covariance matrix

û1 = arg max
k1

PP (z, k1)

û2 = arg max
k2,kH

2 û1=0
PP (z, k2) (29)

where kH
i ki = 1. The eigenvalues are then determined as the

reflectivity values corresponding to the different target vectors
that are eigenvectors of T(z)

λ̂ j = PP (z, û j) j = 1, . . . , NP . (30)

Inserting the expression of a(z, k) in (4) into (26), one gets
the expression of the polarimetric BF objective function

PP-BF(z, k) = kH BH
a (z)R̂PBa(z)k
(Np M)2

. (31)

Comparing this expression with (28) permits to conclude that
the (NP × NP ) matrix BH

a (z)R̂PBa(z) is actually the FR-BF
estimate of T(z). In order to account for the whole Full Rank
polarimetric information, the FR-BF objective is defined as

PFR-BF(z) =
NP∑
j=1

PP-BF(z, u j ) (32)

Fig. 12. Entropy RMSE obtained by FR polarimetric estimators (M = 3).

that is, the total polarimetric intensity estimated at elevation
z over NP orthogonal polarimetric directions, and hence,
independent of the considered polarization basis. The FR-BF
approach may then be summarized as

ẑ = arg max
z,loc

PFR-BF(z) = tr(MBF(z))

T̂BF(ẑ) = MBF(z)

with

MBF(z) = BH
a (z)R̂P Ba(z)

(Np M)2
. (33)

Similarly, one may express the FR-CP objective function as

PP-CP(z, k) = 1

kH BH
a (z)R̂−1

P Ba(z)k
. (34)

Again, comparing (34) with (28), and defining the FR objec-
tive as the total polarimetric reflectivity estimated at a given
height, one gets the following estimation procedure:

ẑ = arg max
z,loc

PFR-CP(z) = tr
(
M−1

CP(z)
)

T̂CP(ẑ) = M−1
CP(z)

with

MCP(z) = BH
a (z)R̂−1

P Ba(z). (35)

C. Simulations

As seen previously, nonparametric tomographic estimators
have a strongly limited vertical resolution, and the estimation
of FR polarimetric quantities do not modify this kind of
properties. This section concentrates on their performance
concerning the estimation of polarimetric parameters, such as
the entropy H . Results obtained using the FR-Beamforming
and FR-Capon estimators are summarized in Fig. 12. The
accuracy of entropy estimates is evaluated for two scatterers,
separated by �z = 10 m and �z = 5 m, and for a minimal
configuration with M = 3. The performance of the FR-BF
technique is strongly conditioned by the height difference �z,
whereas the FR-Capon estimator is less sensitive, due to its
better resolution, and reaches lower entropy RMSE values.

. 
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It is interesting to see that the performance of FR polarimetric
estimators improves for increasing values of H .

Due to the lack of resolution, the estimation of 3-D polari-
metric information using the Beamforming technique gener-
ally leads to poor results, whereas the quality of tomographic
focusing using the FR-Capon approach has been appreciated
in [21]. In order to further characterize the scattering fea-
tures of urban areas, the FR-Capon technique can be hence
considered as the best choice so far, since FR solutions of
parametric estimators have not been developed yet. Reflec-
tivity estimates performed using the Capon technique are
known to be altered by a bias [50]. In the case of the FR-CP
method, this bias affects the eigenvalues of the reconstructed
polarimetric covariance matrix T̂CP(ẑ), and may perturbate
the estimated polarimetric information. As one may observe
in Fig. 12, the influence of this bias on FR-CP estimates
remains negligible with respect to the preponderant role played
by spatial resolution. Indeed the polarimetric entropy RMSE
values obtained with FR-CP are smaller than those obtained
with FR-BF, which are not intrinsically biased, but suffer from
a lack of spatial resolution.

D. Application

As shown in the previous simulations, the performance of
unitary-rank polarimetric estimators may be influenced by the
entropy value of the analyzed polarimetric responses. Thus,
it is important to demonstrate how 3-D entropy behaves over
built-up areas. The FR-Capon technique is applied over the
whole test zone to estimate H (z), the polarimetric entropy
of each 3-D resolution cell. Fig. 13(c) and (d) illustrates
a comparison between the 2-D PolSAR entropy and the
estimated entropy at the ground elevation zg , i.e., H (ẑg) with
ẑg obtained by the P-SSF technique. It may be observed
that the entropy estimated at ẑg is obviously lower than the
value of the 2-D PolSAR entropy over built-up areas, with,
in general, H (ẑg) < 0.7, due to the separation of scattering
contributions in elevation. However, over some vegetated areas
or low-intensity open areas, H (ẑg) is close to the PolSAR
entropy, with H (ẑg) > 0.85, either due to the saturation of
scattering patterns within a 3-D resolution cell or due to the
low SNR. Three profiles are selected in the range direction as
indicated in Fig. 13(a) and (b). The first one goes through a
set of buildings that are orthogonal to the range axis, whereas
the buildings located along the other two profiles show a
nonnull orientation with respect to the azimuth direction. The
entropy H is obtained at the scatterers’ elevations estimated
by the P-SSF technique, that may be compared with LiDAR
data. The resulting tomograms in Fig. 13(e)–(g) indicate that
the entropy maintains a low value over bare soil and wall–
ground interaction due to the presence of a dominant scattering
mechanism within that resolution cell. However, it reaches
an intermediate value over building roofs, due to a mixture
of scattering features, and a high value over vegetated areas
located between the buildings caused by volume scattering.
Special attention may be paid to Profile 3, over which the
entropy derived by 2-D PolSAR technique seems to be

Fig. 13. P-SSF tomograms in ground range with entropy values estimated
by the FR-Capon estimator. LiDAR-derived building heights are indicated
by a white dotted line. (a) Optical image in 2000. (b) Pauli-based image.
(c) 2-D entropy. (d) Entropy at ground level: H (ẑg). (e) Entropy H (ẑi) over
Profile 1. (f) Entropy H (ẑi) over Profile 2. (g) Entropy H (ẑi) over Profile 3.

. 
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saturated for oriented buildings [Fig. 13(c)]. However, using
the FR-Capon technique, it is possible to discriminate these
oriented buildings from the vegetated areas in Fig. 13(f) as
they show lower 3-D entropy values.

V. CONCLUSION

SAR tomographic focusing for 3-D imaging using
a minimal configuration, i.e., three images only, and
intermediate-resolution SAR data, is a challenging application,
which may reveal useful for the characterization of numerous
complex urban environments, over which only a few images
were acquired in an adequate configuration. This article shows
that some performing processing techniques may be designed,
that make use of polarimetric diversity, and adapt well to such
extreme configurations, both theoretically and using actually
measured signals. Numerical simulations considering different
numbers of acquisitions, or values of source correlation and
SNR, indicate that conventional single- or multipolarization
tomographic focusing techniques are differently affected by
these factors. In virtue of the relationship between vertical
resolution, ambiguity, and number of images, nonparametric
techniques, known for their robustness to the presence of
noise or nonnominal signal patterns, reveal badly adapted
to this kind of applications due to their limited resolution
of analysis. Among HR estimation techniques, multidimen-
sional approaches such as ML and WSF perform better than
mono-dimensional ones, such as MUSIC, in the presence
of coherent or closely spaced scatterers. Compared with the
SML method, the DML undergoes a significant degradation
of performance over coherent scatterers, especially in the low
SNR case, whereas WSF techniques maintain an asymptotic
equivalent performance. The SSF estimator outperforms other
HR parametric estimators, whatever the source correlation
or SNR values, due both to its model-adaptivity, and to the
fact that it is not based on the orthogonality of the received
signals with a noise subspace, whose definition becomes
ambiguous in the presence of correlated sources. In a minimal
tomographic configuration, the use of polarization diversity
plays an important role in the discrimination of closely spaced
scatterers. The amount of improvement that may be expected
from polarimetric processing depends on the entropy, or polari-
metric randomness, of the observed source responses, and may
reach extremely high levels when measuring fully polarized
signals, H ≈ 0, whereas unpolarized features, H ≈ 1, do not
lead to better discrimination with respect to single-polarization
measurements. From these observations, one may naturally
conclude that the P-SSF estimator is, among the investigated
solutions, the most attractive solution, as it combines the use
of polarimetric diversity with excellent performance in terms
of scatterer discrimination in a minimal configuration and at
low SNR case. A new iterative optimization technique, P-AP,
based on alternating projections over polarimetric and spatial
subspaces is derived, which permits to solve the P-SSF and the
P-DML criteria in a similar way. The P-SSF is then shown to
outperform all the other studied polarimetric HR techniques
and its application to real data lead to satisfying recon-
struction results, using three polarimetric SAR images only.
FR nonparametric tomographic estimators are proposed, which

permit further characterize reconstructed urban areas. Unlike
classical unitary rank approaches, they are able to estimate
at 3-D complex polarimetric scattering mechanisms with an
intermediate vertical resolution. These simple techniques are
used to discriminate entangled vegetated and built-up areas and
allow to export any polarimetric signal processing techniques
developed for 2-D images in the 3-D world.
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