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A FEW ASPECTS OF MASS-ACTION SHEAVES

ALEXANDRU IOSIF

Abstract. We emphasize that the set of mass-action networks on a fixed set of species
should be regarded as a monoid, for the mass-action approximation works under the
homogeneity assumption, while in real systems this is only locally true. Hence, if
one seeks a meaningful global approximation of mass-action form, one should regard
mass-action networks as local pictures of a more general object. In this article we
propose sheaves as a natural framework for evolving chemical reaction networks.

1. Introduction

A chemical reaction network N is a finite directed graph whose vertices are labelled
by distinct monomials m1, . . . ,ms ∈ Z[x1, ..., xn], called chemical complexes, and whose
edges are labelled by real positive parameters k1, . . . , kr, called rate constants. We refer
to [7] for a detailed introduction to these networks. Here the variables x1, . . . , xn play
the role of concentrations of chemical species and the chemical complexes are of the form

mi = xyi :=
∏

j x
(yi)j
j for some column vector yi ∈ Zn

≥0 and i ∈ [s]. We interpret this by

saying that the ith complex has (yi)j units of species j. The zero complex is the monomial
1. The source of a reaction is called an educt complex and the sink of a reaction is called a
product complex. Let Ye and Yp denote the matrices whose columns are the exponents of
the educt and produc complexes, respectively, ordered by k. Then, any chemical reaction
network N can be uniquely identified by a quadruple (Ye, Yp, k, x). In this paper we are
concerned with mass-action networks for which the kinetics is of the form

ẋ = (Yp − Ye)diag(k)xYe .

A solution x of (Yp − Ye)diag(k)xYe = 0 is called a steady state. As the coordinates
of x represent concentrations of chemical species, one usually requires that x is either
nonnegative or positive. Note that the set of steady states of a mass-action network forms
an algebraic variety (or a semialgebraic variety if one requires that x ≥ 0 or x > 0).

Sometimes it is interesting to take several chemical reaction networks, put them
together, and give some of the properties of the resulting chemical reaction network
in terms of the properties of the former chemical reaction networks. An example of
this procedure can be found in [5], where the authors apply it to the identifiability and
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steady state invariants of chemical reaction networks. Suppose we would like to join two
reactions. The output depends on the reactions and it can be classified into four cases:

• Case 1: The reactions have different educts and products.
• Case 2: The reactions have the same educts and different products.
• Case 3: The reactions have different educts and the same products.
• Case 4: The reactions have the same educts and products.

The following definition is an intent to cover these four cases and it is a generalization of
the definition of union of chemical reaction networks introduced in [5].

Definition 1.1. The sum N1 +N2 of two chemical reaction networks N1 and N2 is the
union of N1 and N2 where equally labelled vertices are identified and equally directed
parallel arrows sum over the rate constants. Let X denote a (possibly infinite) set of
chemical species. The set of all chemical reaction networks on X with + is a monoid
(X,+) with identity element the empty reaction 0 for which ẋ = 0 ∀x ∈ X.

Remark 1.2. The way we define the sum of reactions only works if the summands are
independent. This is not always the case in chemistry: It is well known that there exist
inert systems which start to react after adding them a set of catalysts. This more general
situation is not considered in this article and it will be analyzed in a future work.

Remark 1.3. Note that, by allowing generalized mass-action dynamics with real rate
constants (rather than positive), (X,+) becomes a group.

It could happen that two chemical reaction networks represent essentially the same
object, labelled in different ways. Two chemical reaction networks N1 and N2, both on n
species and r arrows, are equivalent (written N1 ∼ N2) if there are permutations σ ∈ Σr

and τ ∈ Σn such that Y T
•,N1

= τ(σY•,N2)
T , for • ∈ {e, p}. ∼ is an equivalence relation.

However note that elements of the same class might have different physical meaning.

2. Chemical reaction sheaves

Let C ⊆ R3 be a container in which a set of chemical reactions takes place and suppose
that the set of chemical reactions can change in time but the shape and position of the
container are constant. We model the chemistry taking place in C as a topological space
X = R3 × R (three dimensions for space and one for time) with the product topology
and some extra data: to each open subset U of X we associate a submonoid ν(U) of N
such that for each inclusion U ⊆ V of open sets of X we have ν(U) ⊆ ν(V ) and, if U is ∅
or an open subset of X − C × R, then ν(U) = {0}.
Definition 2.1. The data (X, ν) is called a chemical reaction sheaf if every stalk νP has
the form {0,NP}, where NP 6= 0 if P ∈ C × R and NP = 0 otherwise. A finite chemical
reaction sheaf if a chemical reaction sheaf for which ν(X) is finite.

Remark 2.2. By associating {0,N} to each nonempty open set that intersects C × R,
and {0} to each other open set, N can be regarded as a finite chemical reaction sheaf.
Actually note that every finite chemical reaction sheaf is of this form.
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Experimentally, we can only hope to measure a finite set of temporal restrictions
ν|R3×t1 , . . . , ν|R3×tn of a chemical reaction sheaf. As R3 × ti ' R3, by sending (x, ti) to x,
ν|R3×ti can be regarded as a sheaf νti over R3. This motivates the following definition.

Definition 2.3. An algebraic path between ν|R3×t1 and ν|R3×t2 is any morphism between
the sheaves νt1 and νt2 . An algebraic path is called reversible if it is an isomorphism,
otherwise it is called irreversible.

3. Mass-action sheaves

Definition 3.1. A mass-action sheaf is a chemical reaction sheaf in which every chemical
reaction network is a mass-action network.

Mass-action networks which are described by the same set of ODEs are indistinguishable:
two reaction networks N1 and N2 are dynamically equivalent, written N1∼̇N2, whenever
their dynamics are described by the same set of ODEs. We denote the set of equivalence
classes of N with respect to ∼̇ by

Ṅ = N/∼̇.
A central problem in mass-action networks is the classification of parameters with respect
to the existence of multiple steady states. From this angle, it is interesting to have a
good description of the variablity of the chemical reaction graphs inside each class of Ṅ.
We refer to [1, 2] for results in this direction.

Remark 3.2. Unless some differentiability conditions are required, ν need not be de-
scribed by PDEs. However this is not necessary, as many Biological processes are not
globally smooth (e.g., the cell can suddenly start a mechanism based on external stimuli).

4. Steady state sheaves

As every mass-action network has an associated steady state variety, whenever one
is only interested in the steady states, one can approximate the evolution between two
mass-action networks by a morphism between two steady state varieties. At the level of
sheaves, when one restricts the analysis to steady states, the object of interest is a sheaf
of steady states. At the level of steady states it is enough to keep information about the
steady state ideal 〈(Yp − Ye)diag(k)xYe〉 and about the conservation relations (actually,
if one requires that x > 0, one only needs saturated ideals). Moreover, if one is only
interested in strictly positive steady states, then almost every ideal represents the set of
steady states of a chemical system [3]. In particular, up to a saturation, every binomial
ideal can be regarded as the steady state ideal of a mass-action network [6, Corollary 1.8].
However, by doing so, information about the dynamics might be lost. Yet, it would be
interesting to have a nice graphical description of the elements of the same class, when
two reactions are considered equivalent if they have the same steady states (or the same
nonnegative or positive steady states). A possible approach might be through the study
of the Gröbner bases structures of these ideals [4].
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5. Discussion

While the previous constructions are very general, when modelling “evolving biological
systems” one would like to restrict algebraic paths to chemically relevant ones. For in-
stance, for long intervals of time, one might wish to achieve stable autocatalytic reactions.
This also suggests the need for a good definition of entropy. In such a framework the
algebraic paths which increase the entropy of the system would define the direction of
time. Besides, if Pt1,t2 denotes the set of all algebraic paths between νR3×t1 and νR3×t2 , it
would be interesting to find the elements of Pt1,t2 which optimize the entropy. Note that
entropy might break the reversibility of algebraic paths.

Finally, we propose the following problems:

Problem 5.1. Find conditions for a mass-action sheaf to be globally described by PDEs.

Problem 5.2. Find conditions for a steady state sheaf to be a scheme.
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