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ABSTRACT 18 

The persistence of soil contamination after cessation of oil activities remains a major 19 

environmental issue in tropical regions. The assessment of the contamination is particularly 20 

difficult on vegetated sites, but promising advances in reflectance spectroscopy have recently 21 

emerged for this purpose. This study aimed to exploit vegetation reflectance for estimating low 22 

concentrations of Total Petroleum Hydrocarbons (TPH) in soils. A greenhouse experiment was 23 

carried out for 42 days on Cenchrus alopecuroides (L.) under realistic tropical conditions. The 24 

species was grown on oil-contaminated mud pit soils from industrial sites, with various 25 

concentrations of TPH. After 42 days, a significant decrease in plant growth and leaf chlorophyll 26 

and carotenoid contents was observed for plants exposed to 5 to 19 g.kg
-1

 TPH in comparison to 27 

the controls (p < 0.05). Conversely, pigment contents were higher for plants exposed to 1 g.kg
-1

 28 

TPH (hormesis phenomenon). These modifications proportionally affected the reflectance of C. 29 

alopecuroides at leaf and plant scales, especially in the visible region around 550 and 700 nm. 33 30 

vegetation indices were used for linking the biochemical and spectral responses of the species to 31 

oil using elastic net regressions. The established models indicated that chlorophylls a and b and 32 

β-carotene were the main pigments involved in the modifications of reflectance (R
2
 > 0.7). The 33 

same indices also succeeded in estimating the concentrations of TPH using random forest 34 

regression, at leaf and plant scales (RMSE = 1.46 and 1.63 g.kg
-1

 and RPD = 5.09 and 4.44, 35 

respectively). Four out of the 33 indices contributed the most to the models (>75%). This study 36 

opens up encouraging perspectives for monitoring the cessation of oil activities in tropical 37 

regions. Further researches will focus on the application of our approach at larger scale, on 38 

airborne and satellite imagery. 39 

1. Introduction 40 

Along with its development during the last century, oil and gas industry has become a major 41 

source of contamination in the environment (Barraza et al., 2018; Durango-Cordero et al., 2018; 42 

Ogri, 2001; Romero et al., 2017). Crude oil and by-products (e.g. petroleum products, 43 

wastewater, oil sludge) are frequently released in soils, following accidental facility failures, bad 44 

practices and, more rarely, storm events (Ahmadun et al., 2009; Chang and Lin, 2006; Correa 45 

Pabón et al., 2019; Hu et al., 2013). They cause important ecological disturbances, because oil 46 
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contaminants – especially Total Petroleum Hydrocarbons (TPH) – are highly toxic toward 47 

organisms (Bejarano and Michel, 2016; Finer et al., 2008; Merkl et al., 2004). The contamination 48 

of soil may persist in brownfields and mud pits after cessation of the oil production activity and 49 

affect ecosystems on the long term (Lassalle et al., 2019b, 2019a). The monitoring of oil 50 

activities has therefore become a critical environmental issue, and gave rise to an increasing need 51 

in reliable and cost-effective methods for assessing soil contamination. For this purpose, 52 

reflectance spectroscopy provided promising results when applied to bare soils (Correa Pabón 53 

and de Souza Filho, 2016; Scafutto and de Souza Filho, 2016). Its application to multi- and 54 

hyperspectral remote sensing imagery makes possible to detect and quantify soil TPH content at 55 

large scale using airborne sensors (Correa Pabón et al., 2019; Scafutto et al., 2017). More 56 

recently, a new approach has been proposed to extend its use to vegetated areas, where oil cannot 57 

be detected directly at the soil surface (Lassalle et al., 2018; Rosso et al., 2005; Sanches et al., 58 

2013a). This approach shows great interest in tropical regions, where vegetation is particularly 59 

dense (Achard et al., 2018; Adamu et al., 2018; Arellano et al., 2015). 60 

TPH affect vegetation health – especially pigment and water contents – and optical properties 61 

in the reflective domain (400 – 2500 nm) (Balliana et al., 2017; Emengini et al., 2013a; Rosso et 62 

al., 2005; Tran et al., 2018). By exploiting the reflectance of leaves and canopies at particular 63 

wavelengths, it is possible to detect the changes induced by TPH in leaf biochemistry (Gürtler et 64 

al., 2018; Lassalle et al., 2018; Sanches et al., 2013a). This approach is however still under 65 

development and needs further improvements in order to be used operationally. Methods based 66 

on vegetation indices (VI) (i.e. reflectance ratios) have succeeded in distinguishing healthy and 67 

oil-exposed vegetation and in discriminating among various types of oil contamination, under 68 

controlled and natural conditions (Emengini et al., 2013a; Lassalle et al., 2019b). In recent 69 

studies, TPH were accurately detected from satellite images (Arellano et al., 2015), but their 70 

quantification remains rarely considered, although it is of great interest for assessing the 71 

environmental risks deriving from the contamination. 72 

The quantification of TPH remains a major challenge, as it implies tracking little variations in 73 

leaf biochemistry from its reflectance. This might be particularly difficult on contaminated 74 

brownfields and mud pits, because the established species are particularly tolerant to oil exposure 75 

(Credoz et al., 2016; Lassalle et al., 2019b). This difficulty is moreover enhanced when dealing 76 

with low TPH concentrations, for two main reasons. In most cases, the lower the concentration, 77 
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the lower the effects on vegetation health and reflectance (Emengini et al., 2013a; Sanches et al., 78 

2013a). These effects become more difficult to detect below a certain concentration (Lassalle et 79 

al., 2019b). Moreover, some species undergo a stimulation of growth under exposure to low oil 80 

contamination (Kirk et al., 2002; Lin et al., 2002). It is particularly frequent for tropical species. 81 

These phenomena make the quantification of TPH very challenging using vegetation reflectance. 82 

Previous studies focusing on heavy metals – which is a very different context of soil 83 

contamination – achieved accurate quantification of these compounds by exploiting reflectance 84 

data in empirical univariate regression models and in Partial Least Square Regression (PLSR) 85 

(Shi et al., 2014b, 2014a). Similar approaches proved efficient for quantifying high levels of 86 

TPH contamination (up to 77 g.kg
-1

) in our previous study (Lassalle et al., 2019a), but became 87 

ineffective below a certain concentration (~ 20 g.kg
-1

). So, to date, there is still no evidence that 88 

low levels of TPH can be quantified using vegetation reflectance, especially in tropical region. 89 

To achieve this, alternative methods are necessary. Emerging machine learning methods, which 90 

proved efficient for solving complex regression problems, could help quantifying low TPH 91 

concentrations (Hastie et al., 2017; Breiman, 2001). 92 

This study aims to assess the potential and limits of vegetation reflectance for quantifying low 93 

TPH concentrations in soils, under controlled conditions. The proposed approach relies on the 94 

combination of VI and a machine learning method – namely Random Forest (RF) regression. 95 

This method was tested on reflectance measurements performed at various acquisition scales, 96 

under realistic tropical conditions. 97 

 98 

2. Materials and Methods 99 

2.1. Study site and greenhouse experiment 100 

An experiment was carried out for 42 days, for which a realistic case of oil contamination was 101 

reproduced under controlled tropical conditions. An industrial vegetated mud pit located in 102 

tropical region was identified for this purpose. Residues of oil production have been accumulated 103 

on this site resulted in persistent oil contamination in soils. After cessation of the activity, the site 104 

has been colonized by herbaceous vegetation, mainly Cenchrus alopecuroides (L.). The 105 

experiment focused on this species, which proved good indicator of oil contamination in 106 

previous studies (Emengini et al., 2013c; Lassalle et al., 2018). To reproduce as faithfully as 107 
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possible the conditions of the mud pit, the soil was sampled on two locations of the site and used 108 

in the experiment. Soil analyses revealed low concentrations of BTEX and Polycyclic Aromatic 109 

Hydrocarbons (PAHs) in both samples, and C5-C40 TPH concentrations of 5 and 21 g.kg
-1

, 110 

respectively. The lower (C5-C10) and intermediate (C10-C21) hydrocarbon fractions have been 111 

partially degraded, so the remaining contamination mostly came from the dense ones (C21-C40 112 

hydrocarbons), which are poorly degradable and whose uptake by roots is very limited (Lassalle 113 

et al., 2019b). Detailed soil analyses can be found in the Supporting Information section. No 114 

substantial change in TPH concentrations was observed for the different treatments at the end of 115 

the experiment (data not shown). In addition, an uncontaminated soil with similar texture was 116 

sampled on another site and used in the experiment. All the soils were homogenized manually 117 

and sieved to 10 mm to remove coarse root residuals. 118 

Five treatments were applied to C. alopecuroides for the greenhouse experiment, with TPH 119 

concentrations ranging from 0 to 19 g.kg
-1

. For this purpose, the soils sampled on the mud pit 120 

and the control site were mixed in varying proportions to obtain five levels of contamination, 121 

respectively 0 (control), 1, 5, 13 and 19 g.kg
–1

 TPH (see Supporting Information). Cultivated 122 

young plants were acclimated for 15 days in greenhouse and reached 15-cm height before being 123 

transplanted in individual pots filled with a 3-cm layer of clay balls and 3 L of the corresponding 124 

treatment soil. For each treatment, 11 replicates were grown for 42 days in May and June at 27° 125 

C and 70% hygrometry, with a 12:12 light:dark photoperiod provided by natural and artificial 126 

light. N-P-K (6-6-6) fertilization was applied weekly to the plants, which were irrigated to field 127 

capacity every day. At the end of the experiment, plant shoots were harvested, oven-dried for 48 128 

h at 60° C and then weighed. 129 

 130 

2.2. Biochemical analyses and reflectance acquisitions 131 

The biochemical and spectral responses of C. alopecuroides to the treatments were measured 132 

during the study. For this purpose, we followed the procedure described in Lassalle et al. 133 

(2019b). Young leaves were sampled on five different replicates per treatment and served for 134 

determining leaf water (LWC) and pigment contents (Arellano et al., 2015; Diepens et al., 2017). 135 

Leaf pigment content was quantified by High Pressure Liquid Chromatography (HPLC), and 136 

included chlorophylls a and b and various carotenoids, such as β-carotene, lutein, antheraxanthin, 137 

violaxanthin and zeaxanthin (Barlow et al., 1996). Differences among the treatments were 138 
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analyzed through ANOVA and Tukey post-hoc tests. In addition, the spectral reflectance of the 139 

same sampled leaves was measured following the protocol described below, and linked to 140 

biochemical analyses (see section 2.3). This procedure was carried out after 21 and 42 day of 141 

experiment. No leaf was sampled before in order to avoid influencing plant growth during early 142 

stages. 143 

Reflectance measurements were also performed directly on the plants (i.e. without picking 144 

leaves) at day 0, 21 and 42, using an ASD FieldSpec 4 Hi-Res spectroradiometer (Malvern 145 

Panalytical, Malvern, UK). Data were acquired in radiance in the reflective domain (400 – 2400 146 

nm) and converted to reflectance using a white reference calibration panel (Spectralon, 147 

Labsphere Inc., North Sutton, USA) (Milton, 1987). For each treatment, three leaves per 148 

replicate were measured at random (n = 165 spectra per date) using a leaf-clip with an internal 149 

light source (10 measurements averaged per leaf). Additional measurements were conducted at 150 

plant scale, by placing a 10°-FOV fore-optic above the pots to obtain a 5-cm wide acquisition 151 

footprint (10 measurements averaged per plant). These measurements were performed on each 152 

replicate (n = 55 spectra per date) under natural light between 11.30 am and 1.30 pm, under clear 153 

sky. The reflectance data from the 1350 – 1450 and 1800 – 1950 nm ranges were not conserved, 154 

because of low atmospheric transmission at plant scale. A Savitzky-Golay smoothing filter was 155 

then applied at the remaining wavelengths, improving the signal-to-noise ratio (Savitzky and 156 

Golay, 1964). 157 

 158 

2.3. Vegetation indices 159 

In this study, 33 VI were computed and used in two ways. They are listed in the Supporting 160 

Information section. These indices have been specifically exploited for detecting oil-induced 161 

changes in leaf biochemistry in our previous study, so here they were tested for quantifying TPH 162 

(Lassalle et al. 2019b). Most of them exploited reflectance in the visible (VIS) region (450 – 700 163 

nm), which is the most important spectrum region for assessing oil contamination. It has been 164 

shown that under exposure to oil, changes in the values of a single vegetation index result from 165 

the alteration of several inter-correlated pigments that share common light absorption features 166 

(e.g. chlorophylls and carotenoids). Consequently, the pigments to which an index has been 167 

initially linked in the literature may differ from those involved in the response to oil exposure. 168 

So, it is necessary to identify which pigments contribute the most to index changes, in order to 169 
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understand how vegetation reflectance is affected by oil. For this purpose, the 33 indices were 170 

first computed from the reflectance data of leaves sampled for biochemical analyses, and each of 171 

them was linked to leaf pigment and water contents using Elastic net (ENET) multiple regression 172 

(Zou and Hastie, 2005), as described in Lassalle et al. (2019b). ENET is a penalized least 173 

squared regression method that allows selecting predictors under multicollinearity. 174 

Multicollinearity appears when predictors – in our case, leaf pigment contents – are linear 175 

combination of each other, and results in confusions when selecting those contributing the most 176 

to the target variable (i.e. VI) (Belsley et al., 1980; Dormann et al., 2013). ENET regression 177 

prevents from such consequences and has already proved efficient for identifying biochemical 178 

parameters involved in reflectance changes under exposure to contaminants (Lassalle et al., 179 

2019b). For each VI, the best predictors were retained and the R
2
 of the model was calculated. 180 

In a second time, the same 33 indices were computed from the reflectance data acquired at leaf 181 

and plant scales and used for predicting TPH concentrations using RF regression (Breiman, 182 

2001). RF is an ensemble method that builds and average a lot of independent decision trees to 183 

model the relationship between predictors (i.e. the 33 VI) and a response variable – here, TPH 184 

concentration (Hastie et al., 2017; Hutengs and Vohland, 2016; Mutanga et al., 2012). Each tree 185 

is constructed from a set of decision rules that results from the recursive fragmentation of the 186 

original space into successively smaller sub-regions. To define these sub-regions, binary splits 187 

are applied independently to each vegetation index. A simple model is then adjusted between VI 188 

and TPH concentrations with respect to the splits, and those minimizing the mean squared error 189 

between the measured and predicted concentrations are retained. The succession of the selected 190 

index splits represents the branches of the decision tree, in such a way that each set of decision 191 

rules leads to an estimation of TPH concentration (see Hutengs & Vohland (2016) for a complete 192 

description). RF accounts for non-linear relationships between the predictors and the response 193 

variable – which can occur for low concentrations of contaminants, so it was of great interest in 194 

our case. Moreover, RF informs on the relative contribution of VI to the quantification of TPH 195 

(Breiman, 2001; Grömping, 2009), which is essential for operational applications of the method. 196 

The RF regression was fitted to half of the data (50% training set) and tested on the remaining 197 

part (50% test set), at leaf and plant scales separately (Lassalle et al., 2019b, 2019a). For this 198 

purpose, we used the data from day 42, because no difference among the treatments was 199 

observed on the previous dates, so no quantification of TPH was possible (see section 3.1). The 200 
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predictions of TPH made on the test set were compared to those from initial soil analyses based 201 

on the R
2
, the Root Mean Squared Error (RMSE) and the Residual Predictive Deviation (RPD) 202 

(Shi et al., 2014). The RPD denotes the ratio of the standard deviation of the measured TPH 203 

concentrations to the RMSE calculated between the measured and predicted concentrations. 204 

 205 

3. Results and discussion 206 

3.1. Biochemical and spectral responses to oil contamination 207 

As expected, C. alopecuroides was highly tolerant to oil, as none of the plants from the 208 

contaminated treatments died during the experiment. This observation is consistent with previous 209 

studies carried out on the same species with various types of oil contamination (engine oil and oil 210 

and gas waste mud) (Emengini et al., 2013c; Lassalle et al., 2018). No visible stress symptom 211 

was observed on any of the replicates before the last stages of the experiment (35 – 42 days), so 212 

no difference in leaf pigment contents and in leaf and plant reflectance was observed among the 213 

treatments on the previous dates (0 and 21 days, data not shown). On day 42, leaf discoloration 214 

was observed for the individuals exposed to 5 g.kg
-1

 TPH or more, expressing a significant 215 

decrease in leaf chlorophyll and carotenoid contents when compared to the control (p < 0.05) 216 

(Fig. 1). Plant growth was also significantly affected on this date. The alterations in pigment 217 

contents induced an increase of reflectance by 5 to 10% in the VIS region, especially around 550 218 

and 700 nm (Fig. 2). Other regions of the spectrum were also affected in the same way by 219 

contamination. This response was more pronounced at leaf scale, because plant reflectance is 220 

also influenced by plant architecture, background soil and illuminating and viewing geometry 221 

(Asner, 1997; Sanches et al., 2013a). As suggested in previous works (Emengini et al., 2013c; 222 

Lassalle et al., 2018), the late response of C. alopecuroides to oil highlights its interest for 223 

monitoring long-term contaminated sites, especially brownfields and mud pits remaining after 224 

cessation of oil and gas activities. 225 

 226 
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 227 

Figure 1. Shoot dry weight and leaf chlorophyll and carotenoid contents (mean ± SD; n = 11 and 228 

5 samples per treatment, respectively) of C. alopecuroides after 42 days of exposure to various 229 

levels of Total Petroleum Hydrocarbons (TPH). Significant differences among the treatments are 230 

denoted by different lowercase letters (ANOVA and Tukey post-hoc tests, p < 0.05). (VAZ: 231 

Violaxanthin + Antheraxanthin + Zeaxanthin.) 232 

 233 

Alterations in leaf biochemistry and optical properties are very common for vegetation 234 

exposed to contaminants (Balliana et al., 2017; Lassalle et al., 2019b; Rosso et al., 2005; Sanches 235 

et al., 2013a). They depend on multiple factors, especially the species, the contamination type 236 

and concentration and the time of exposure, and have been previously observed on C. 237 

alopecuroides and other tropical species (Arellano et al., 2017b; Emengini et al., 2013c; Lassalle 238 

et al., 2017). In the case of oil, these alterations result from the reduction of water and nutrient 239 

availability in soils and uptake capacities of roots (Athar et al., 2016; Balasubramaniyam and 240 

Harvey, 2014; Nie et al., 2011). Additional effects may come from the accumulation of 241 

hydrocarbons in tissues (Baruah et al., 2014), but they mostly involve low-carbon TPH, so they 242 

are unlikely to explain the responses observed in our experiment. The amplitude of these 243 

biochemical and spectral responses was determined by the level of contamination, which 244 

confirmed previous results obtained for higher levels of oil (Emengini et al., 2013c; Sanches et 245 

al., 2013a). The more the TPH, the lower the leaf pigment contents and the higher the reflectance 246 

(Fig. 2). Consequently, leaf chlorophyll content felt to 17.7 (± 3.0) µg.cm
-2

 under exposure to 19 247 

g.kg
-1

 TPH, while it reached 51.7 (± 3.5) µg.cm
-2

 for control at the end of the experiment (Fig. 248 

1). A similar trend was observed on carotenoids, and suggested being able to discriminate among 249 

the different levels of contamination using reflectance data. 250 
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 251 

 252 

Figure 2. Mean reflectance of C. alopecuroides in the reflective domain after 42 days of 253 

exposure to various levels of Total Petroleum Hydrocarbons (TPH), at leaf and plant scales. 254 

Reflectance data from the 1350–1450 and 1800–1950 intervals were removed, because of low 255 

atmospheric transmission at plant scale. (The legend is common to both figures.) 256 

 257 

In contrast to the other treatments, a stimulating effect was observed for plants exposed to 1 258 

g.kg
-1

 TPH. Shoot dry weight and leaf chlorophyll and carotenoid contents were significantly 259 

higher for this treatment than those of the control (p < 0.05), and reflectance was slightly lower 260 

at leaf and plant scales. This particular response – called hormesis – has already been observed 261 

on the growth of other oil-exposed species in previous studies (Kirk et al., 2002; Lin et al., 2002; 262 

Salanitro et al., 1997). However, its causes remain poorly documented. To our knowledge, this 263 

study is the first to bring evidence of this phenomenon using reflectance measurements. Previous 264 

experiments aimed to simulate accidental oil spills (e.g. pipeline leakage), by applying high 265 
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doses of oil – mainly diesel or engine oil – to crop species, which are particularly sensitive to 266 

such contamination (Emengini et al., 2013a; Gürtler et al., 2018; Sanches et al., 2013a). 267 

Consequently, strong alterations in leaf biochemistry and reflectance have been observed 268 

regardless of the contamination level, so no hormesis has been noticed. The responses of C. 269 

alopecuroides observed in our study substantially differed, because we focused on a totally 270 

different context. When oil contamination persists in industrial brownfield and mud pit soils – 271 

such as that reproduced in our experiment, the most phytotoxic fractions of petroleum 272 

hydrocarbons (e.g. BTEX, PAH) are almost absent from the mixture. The effects on oil-tolerant 273 

established vegetation are therefore much less pronounced than those observed for other types of 274 

oil contamination with high proportion of these compounds (e.g. crude oil, diesel, gasoline), 275 

especially at low concentration (Lassalle et al., 2019b). Here, PAHs and BTEX were found 276 

below the detection limits (0.02 and 0.05 mg.kg
-1

, respectively) at 1 g.kg
-1

 of TPH and in the 277 

control soil, so they did not affect the plants negatively. Conversely, these compounds are likely 278 

to induce positive effects at very low concentration (Maliszewska-Kordybach and Smreczak, 279 

2000), but they cannot be the only contaminants responsible for the differences observed 280 

between the two treatments. Some other hydrocarbon fractions – which were absent from the 281 

control soil – enhance the availability of nutrients and organic matter for plants by stimulating 282 

microorganisms (Li et al., 1990). Therefore, the very low concentrations of PAHs and BTEX 283 

combined to those of other hydrocarbon fractions might have induced the hormetic effect 284 

observed in this study. 285 

 286 

3.2. Vegetation indices 287 

3.2.1. Elastic net regressions 288 

The VI succeeded in linking the biochemical and spectral responses of C. alopecuroides to oil 289 

contamination. 20 out of the 33 indices tested were strongly correlated to leaf pigment or water 290 

content (R
2
 ≥ 0.7) (Tab. 1). For most of them, at least three contributing pigments were 291 

identified, the others having not being retained by the ENET regression. Chlorophylls and β-292 

carotene were often the most contributing ones, and provided some of the best models (R
2
 ≥ 0.8) 293 

when used together (i.e. without addition of other carotenoids). Therefore, these pigments 294 

explained most of the modifications in reflectance observed among the treatments in the VIS 295 
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region. Other carotenoid pigments – especially lutein and violaxanthin – were frequently retained 296 

in the models (e.g. GM2 and PSSRb indices), thus confirming previous results obtained on 297 

another oil-tolerant species (Lassalle et al., 2019b). These pigment are usually of less 298 

contribution to leaf optical properties, because of the masking effect of chlorophylls, which are 299 

present at higher concentrations in leaves and share common light absorption features (Feret et 300 

al., 2008; Zhang et al., 2017). Our study shows that they also contribute to the spectral response 301 

of vegetation to oil contamination. 302 

  303 
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Table 1. Results of the elastic net regressions performed on the 33 vegetation indices. For each 304 

index, the R
2
 of the model is presented, along with the contributing set of biochemical 305 

parameters (in order of importance). (Chl a: Chlorophyll a, Chl b: Chlorophyll b, B-car: β-306 

carotene, Lut: Lutein, Ant: Antheraxanthin, Vio: Violaxanthin, Zea: Zeaxanthin, LWC: Leaf 307 

Water Content.) 308 

Index R² Pigments 

CARI 0.76 B-car, Chl b 

CCI 0.73 B-car, Chl b, Chl a 

CTR1 0.24 Vio, B-car, Chl b, Lut, Ant, Zea, Chl a 

CTR2 0.81 Chl a, Chl b 

GM1 0.84 B-car, Chl b, Chl a 

GM2 0.87 Chl a, Chl b, B-car, Lut 

LI1 0.65 Chl a, Chl b 

LI2 0.18 Chl a 

LI3 0.42 Vio, Lut, Ant, Zea, B-car, Chl b, Chl a 

mCARI1 0.43 Ant, B-car, Lut, Chl b, Zea, Chl a 

mCARI2 0.12 Chl a 

mSR705 0.72 Chl a 

MTCI 0.84 Chl a, Chl b 

ND705 0.82 B-car, Chl b, Chl a 

PRI1 0.54 B-car, Vio, Chl b, Zea, Ant, Chl a, Lut 

PRI2 0.67 Chl b, Chl a 

PRI3 0.63 Chl b, Chl a, Lut 

PSRI 0.43 B-car, Chl b, Lut, Ant, Zea, Chl a 

PSSRa 0.72 Chl a 

PSSRb 0.88 Chl a, Chl b, Lut, B-car, Vio 

PSSRc 0.83 Chl a 

SIPI1 0.71 Chl a, Chl b 

SIPI2 0.81 Chl a, Chl b 

SIPI3 0.73 Chl a, Chl b 

SR705 0.83 B-car, Chl b, Chl a 

TCARI 0.68 B-car, Chl b, Chl a 

TCARI_OSAVI 0.75 B-car, Chl b, Chl a 

VOG1 0.75 B-car, Chl b, Chl a 

VOG2 0.7 B-car, Chl b, Chl a 

VOG3 0.71 B-car, Chl b, Vio, Chl a 

DWSI 0.82 LWC 

 309 

 310 

The close relationship between some indices and contributing pigments are illustrated in 311 

Figure 3. As observed, these indices exhibited strong link with single pigment content. ENET 312 

regression allowed identifying those contributing the most to index changes, in order of 313 
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importance. These results confirmed the interest of combining pigment contents into multiple 314 

models for better understanding the effects induced by oil contamination on vegetation 315 

reflectance (Lassalle et al., 2019b). Most of the indices exploited reflectance around 550 and 700 316 

nm, which was particularly affected by oil (Fig. 2), so they were particularly adapted to our 317 

context of study. The same wavelengths also proved efficient for assessing soil contaminated by 318 

oil and by-products in other situations (oil extraction, pipeline leakages, etc.). Zhu et al. (2014) 319 

exploited reflectance at 700 nm for distinguishing among various levels of alteration in pigment 320 

contents induced by phenanthrene contamination on Suaeda salsa. Likewise, Sanches et al. 321 

(Sanches et al., 2013b) used the same spectrum region for assessing the effects of oil leakages on 322 

crops species. One of the main advantages of VI relies on their robustness. Some of them remain 323 

only little affected by bare soil and plant architecture, so they can be applied for tracking subtle 324 

alterations in leaf pigment contents induced by oil at different acquisition scales (e.g. leaf, plant 325 

and canopy) (Blackburn, 1998; Dash and Curran, 2007). For example, the same 33 indices 326 

succeeded in discriminating among various types of oil contamination from leaf to canopy scales 327 

in previous study (Lassalle et al., 2019b). Here, they were suitable for estimating TPH 328 

concentrations in soils. 329 

 330 

 331 

Figure 3. Relationship between vegetation indices and leaf pigment contents. Figures include 332 

data from leaves sampled on all the treatments, after 21 and 42 days of experiment (n = 50). 333 

 334 

3.2.2. Random Forest regressions 335 

RF regressions performed using the 33 VI provided accurate predictions of TPH 336 

concentrations on the test set, at leaf and plant scales. These results are presented in Figure 4. 337 

High R
2
 values – respectively 0.96 and 0.95 at leaf and plant scales – indicated strong correlation 338 

between the measured and predicted concentrations on the test sets. Predictions of TPH were 339 



 15 

very close to the true concentrations, as indicated by the low RMSE values obtained at both 340 

scales. This accuracy was confirmed by RPD values greater than 4.4. RPD provides a better 341 

interpretation of predictions, because it compares the RMSE to the variability in the true TPH 342 

concentrations. RPD values above 2 or 3 are usually needed for considering the models reliable 343 

for use. The 33-VI based RF models were therefore particularly adapted for estimating TPH in 344 

our study. The analysis of residuals revealed that the highest level of contamination (19 g.kg
-1

) 345 

was the most difficult to predict, as it was almost systematically underestimated (Fig. 4). This 346 

may be caused by saturation in the spectral response of C. alopecuroides to this type of oil 347 

contamination, as described for other species in previous study. Confusions also arose at the 348 

lowest concentrations (0 – 1 g.kg
-1

). They highlighted the difficulty to detect the hormesis 349 

phenomenon using reflectance data, for which only little differences were observed among the 350 

two treatments (Fig. 2). These results thus helped identifying the detection limit of our approach. 351 

 352 

 353 

Figure 4. Comparison between the measured and predicted concentrations of Total Petroleum 354 

Hydrocarbons (TPH) using the 33 vegetation indices and the random forest regression on the test 355 

set, at leaf and plant scales (top figures), and residuals of the predictions (bottom figures). 356 

 357 
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The relative contribution of VI to the RF models was consistent from leaf to plant scales. Four 358 

out of the 33 indices contributed the most to TPH predictions (> 75%, Fig. 5). These indices 359 

were among those closely linked to leaf pigment contents (R
2
 > 0.7, Tab. 1), and more precisely 360 

chlorophylls and β-carotene. They exploit reflectance around 550 and 700 nm, but also 670 – 361 

680 and 750 nm, which helped enhancing the differences among the treatments. Only few 362 

wavelengths are therefore necessary for estimating TPH accurately using reflectance 363 

spectroscopy. Conversely, the other indices remained of little contribution to the models (< 5% 364 

each), especially those linked to additional carotenoids (e.g. lutein, violaxanthin), because they 365 

brought redundant information. 366 

The consistence of the results between acquisition scales opens up promising perspectives for 367 

operational applications of our approach under natural conditions. Some of the main indices – 368 

especially the MTCI and TCARI / OSAVI – have been originally designed for imagery 369 

application purposes (Dash and Curran, 2007; Haboudane et al., 2002), and proved efficient for 370 

detecting – but not for quantifying – oil contamination in tropical regions. For example, Arellano 371 

et al. (2015) used the MTCI index to discriminate among control and oil-contaminated sites in 372 

the Amazon forest using hyperspectral satellite images. However, the application of these indices 373 

for estimating the level of contamination remained unexplored until now. This study was a first 374 

attempt in that direction, but further researches are needed to assess the reliability of our 375 

approach under natural conditions, using field measurements, and in the long term using multi- 376 

and hyperspectral imagery. High to very high spatial resolution might help achieving this, 377 

because the contamination can occur on a few square meters and be therefore difficult to detect 378 

using medium to low spatial resolution imagery (Adamu et al., 2018; Arellano et al., 2015). As 379 

discussed in section 3.1, the case of persistent low contamination in brownfields and mud pits 380 

makes the estimation of TPH very challenging, because of the composition of the contamination 381 

and the tolerance of the species. Under natural conditions, additional difficulties should be 382 

considered before application of our approach. Vegetation established on brownfields and mud 383 

pits is exposed to a multitude of environmental factors that affect its health and reflectance (e.g. 384 

drought, waterlogging), especially in the tropical regions with marked seasonality (Adamu et al., 385 

2016; Smith et al., 2004). These factors might overlap with the effects induced by TPH, making 386 

their estimation more difficult. Thanks to recent advances, it seems however possible to 387 

discriminate among oil and other stressors using reflectance spectroscopy (Emengini et al., 388 
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2013b; Lassalle et al., 2019b, 2018). Because of the selective growing conditions imposed, only 389 

few species are generally established on soils with oil (Noomen et al., 2012), as observed on our 390 

study site. This makes the estimation of TPH feasible, provided that these species are oil-391 

sensitive. Species richness is however very high in some tropical regions subject to oil 392 

contamination (Arellano et al., 2017a, 2017b). Such diversity in plant species means important 393 

differences in sensitivity to oil among them. Some species are totally tolerant to oil, whereas 394 

others are affected even at very low concentration. This makes the estimation of TPH more 395 

difficult, so it is necessary to identify the most suitable species before, as we did under controlled 396 

conditions.  397 

 398 

 399 

Figure 5. Relative contribution of the vegetation indices to the estimation of Total Petroleum 400 

Hydrocarbons (TPH) using random forest regression, at leaf and plant scales. Only indices with 401 

non-zero contribution are displayed. 402 

 403 

4. Conclusion 404 

This study aimed to quantify low TPH concentrations in soils using C. alopecuroides 405 

reflectance under controlled tropical conditions. Modifications in leaf biochemistry appeared 406 

after a long-term exposure, depending on the level of contamination. Pigment contents were 407 

reduced for TPH concentrations of 5 g.kg
-1

 and above, whereas they increased at lower 408 
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concentration when compared to control. These modifications were linked to the reflectance data 409 

through VI, which brought evidence of the implication of chlorophylls and various carotenoids in 410 

the spectral response of the species to oil. The same indices succeeded in predicting TPH 411 

concentrations with good accuracy using RF regressions, at leaf and plant scales. Four out of the 412 

33 indices tested were almost sufficient to achieve these predictions. This study emphasizes the 413 

potential of reflectance spectroscopy for quantifying oil contamination in tropical regions with 414 

dense vegetation. More specifically, the long-term response of C. alopecuroides to oil highlights 415 

its interest for assessing persistent contamination, for example after cessation of the oil 416 

production activity. Although our approach is at early stage and needs further improvements, we 417 

are convinced that it could soon result in imagery applications. The emergence of new satellite- 418 

and UAV-embedded hyperspectral sensors is sparking a growing interest by oil and gas 419 

companies, because they could help assessing oil contamination locally or at large scale. Our 420 

study under controlled conditions was the first necessary step prior to such applications. In its 421 

continuity, our upcoming research will focus on the adaptation of the approach to hyperspectral 422 

imagery with high spatial resolution, and its assessment in tropical region with heavy past oil and 423 

gas production activities. 424 
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