Guillaume Lassalle 
email: guillaume.lassalle@onera.fr
  
Anthony Crédoz 
  
Rémy Hédacq 
  
Georges Bertoni 
  
Dominique Dubucq 
  
Sophie Fabre 
  
Arnaud Elger 
  
Anthony Credoz 
  
  
Estimating persistent oil contamination in tropical region using vegetation indices and random forest regression

Keywords: reflectance spectroscopy, soil contamination, Total Petroleum Hydrocarbons, vegetation indices, Random Forest

come  

Introduction

Along with its development during the last century, oil and gas industry has become a major source of contamination in the environment [START_REF] Barraza | Distribution, contents and health risk assessment of metal(loid)s in small-scale farms in the Ecuadorian Amazon: An insight into impacts of oil activities[END_REF][START_REF] Durango-Cordero | Spatial Analysis of Accidental Oil Spills Using Heterogeneous Data: A Case Study from the North-Eastern Ecuadorian Amazon[END_REF][START_REF] Ogri | A review of the Nigerian petroleum industry and the associated environmental problems[END_REF][START_REF] Romero | Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill[END_REF]. Crude oil and by-products (e.g. petroleum products, wastewater, oil sludge) are frequently released in soils, following accidental facility failures, bad practices and, more rarely, storm events [START_REF] Ahmadun | Review of technologies for oil and gas produced water treatment[END_REF][START_REF] Chang | A study of storage tank accidents[END_REF][START_REF] Correa Pabón | Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils[END_REF][START_REF] Hu | Recent development in the treatment of oily sludge from petroleum industry: A review[END_REF]. They cause important ecological disturbances, because oil contaminants -especially Total Petroleum Hydrocarbons (TPH) -are highly toxic toward organisms [START_REF] Bejarano | Oil spills and their impacts on sand beach invertebrate communities: A literature review[END_REF][START_REF] Finer | Oil and gas projects in the Western Amazon: Threats to wilderness, biodiversity, and indigenous peoples[END_REF][START_REF] Merkl | Phytoremediation in the tropics-the effect of crude oil on the growth of tropical plants[END_REF]. The contamination of soil may persist in brownfields and mud pits after cessation of the oil production activity and affect ecosystems on the long term (Lassalle et al., 2019b(Lassalle et al., , 2019a)). The monitoring of oil activities has therefore become a critical environmental issue, and gave rise to an increasing need in reliable and cost-effective methods for assessing soil contamination. For this purpose, reflectance spectroscopy provided promising results when applied to bare soils [START_REF] Correa Pabón | Spectroscopic characterization of red latosols contaminated by petroleum-hydrocarbon and empirical model to estimate pollutant content and type[END_REF][START_REF] Scafutto | Quantitative characterization of crude oils and fuels in mineral substrates using reflectance spectroscopy: Implications for remote sensing[END_REF]. Its application to multi-and hyperspectral remote sensing imagery makes possible to detect and quantify soil TPH content at large scale using airborne sensors [START_REF] Correa Pabón | Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils[END_REF][START_REF] Scafutto | Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring[END_REF]. More recently, a new approach has been proposed to extend its use to vegetated areas, where oil cannot be detected directly at the soil surface [START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF][START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF]Sanches et al., 2013a). This approach shows great interest in tropical regions, where vegetation is particularly dense [START_REF] Achard | Direct or indirect on-shore hydrocarbon detection methods applied to hyperspectral data in tropical area[END_REF][START_REF] Adamu | Remote sensing for detection and monitoring of vegetation affected by oil spills[END_REF][START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF].

TPH affect vegetation health -especially pigment and water contents -and optical properties in the reflective domain (400 -2500 nm) [START_REF] Balliana | Development of Canavalia ensiformis in soil contaminated with diesel oil[END_REF]Emengini et al., 2013a;[START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF][START_REF] Tran | Germination , physiological and biochemical responses of acacia seedlings ( Acacia raddiana and Acacia tortilis ) to petroleum contaminated soils *[END_REF]. By exploiting the reflectance of leaves and canopies at particular wavelengths, it is possible to detect the changes induced by TPH in leaf biochemistry [START_REF] Gürtler | Determination of changes in leaf and canopy spectra of plants grown in soils contaminated with petroleum hydrocarbons[END_REF][START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF]Sanches et al., 2013a). This approach is however still under development and needs further improvements in order to be used operationally. Methods based on vegetation indices (VI) (i.e. reflectance ratios) have succeeded in distinguishing healthy and oil-exposed vegetation and in discriminating among various types of oil contamination, under controlled and natural conditions (Emengini et al., 2013a;Lassalle et al., 2019b). In recent studies, TPH were accurately detected from satellite images [START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF], but their quantification remains rarely considered, although it is of great interest for assessing the environmental risks deriving from the contamination.

The quantification of TPH remains a major challenge, as it implies tracking little variations in leaf biochemistry from its reflectance. This might be particularly difficult on contaminated brownfields and mud pits, because the established species are particularly tolerant to oil exposure [START_REF] Credoz | Experimental study of hyperspectral responses of plants grown on mud pit soil[END_REF]Lassalle et al., 2019b). This difficulty is moreover enhanced when dealing with low TPH concentrations, for two main reasons. In most cases, the lower the concentration, the lower the effects on vegetation health and reflectance (Emengini et al., 2013a;Sanches et al., 2013a). These effects become more difficult to detect below a certain concentration (Lassalle et al., 2019b). Moreover, some species undergo a stimulation of growth under exposure to low oil contamination [START_REF] Kirk | Phytotoxicity assay to assess plant species for phytoremediation of petroleum-contaminated soil[END_REF][START_REF] Lin | The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass, Spartina alterniflora[END_REF]. It is particularly frequent for tropical species.

These phenomena make the quantification of TPH very challenging using vegetation reflectance.

Previous studies focusing on heavy metals -which is a very different context of soil contamination -achieved accurate quantification of these compounds by exploiting reflectance data in empirical univariate regression models and in Partial Least Square Regression (PLSR) (Shi et al., 2014b(Shi et al., , 2014a)). Similar approaches proved efficient for quantifying high levels of TPH contamination (up to 77 g.kg -1 ) in our previous study (Lassalle et al., 2019a), but became ineffective below a certain concentration (~ 20 g.kg -1 ). So, to date, there is still no evidence that low levels of TPH can be quantified using vegetation reflectance, especially in tropical region.

To achieve this, alternative methods are necessary. Emerging machine learning methods, which proved efficient for solving complex regression problems, could help quantifying low TPH concentrations [START_REF] Hastie | The Elements of Statistical Learning The Elements of Statistical Learning[END_REF][START_REF] Breiman | Random forests[END_REF].

This study aims to assess the potential and limits of vegetation reflectance for quantifying low TPH concentrations in soils, under controlled conditions. The proposed approach relies on the combination of VI and a machine learning method -namely Random Forest (RF) regression.

This method was tested on reflectance measurements performed at various acquisition scales, under realistic tropical conditions.

Materials and Methods

Study site and greenhouse experiment

An experiment was carried out for 42 days, for which a realistic case of oil contamination was reproduced under controlled tropical conditions. An industrial vegetated mud pit located in tropical region was identified for this purpose. Residues of oil production have been accumulated on this site resulted in persistent oil contamination in soils. After cessation of the activity, the site has been colonized by herbaceous vegetation, mainly Cenchrus alopecuroides (L.). The experiment focused on this species, which proved good indicator of oil contamination in previous studies (Emengini et al., 2013c;[START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF]. To reproduce as faithfully as possible the conditions of the mud pit, the soil was sampled on two locations of the site and used in the experiment. Soil analyses revealed low concentrations of BTEX and Polycyclic Aromatic Hydrocarbons (PAHs) in both samples, and C 5 -C 40 TPH concentrations of 5 and 21 g.kg -1 , respectively. The lower (C 5 -C 10 ) and intermediate (C 10 -C 21 ) hydrocarbon fractions have been partially degraded, so the remaining contamination mostly came from the dense ones (C 21 -C 40 hydrocarbons), which are poorly degradable and whose uptake by roots is very limited (Lassalle et al., 2019b). Detailed soil analyses can be found in the Supporting Information section. No substantial change in TPH concentrations was observed for the different treatments at the end of the experiment (data not shown). In addition, an uncontaminated soil with similar texture was sampled on another site and used in the experiment. All the soils were homogenized manually and sieved to 10 mm to remove coarse root residuals.

Five treatments were applied to C. alopecuroides for the greenhouse experiment, with TPH concentrations ranging from 0 to 19 g.kg -1 . For this purpose, the soils sampled on the mud pit and the control site were mixed in varying proportions to obtain five levels of contamination, respectively 0 (control), 1, 5, 13 and 19 g.kg -1 TPH (see Supporting Information). Cultivated young plants were acclimated for 15 days in greenhouse and reached 15-cm height before being transplanted in individual pots filled with a 3-cm layer of clay balls and 3 L of the corresponding treatment soil. For each treatment, 11 replicates were grown for 42 days in May and June at 27° C and 70% hygrometry, with a 12:12 light:dark photoperiod provided by natural and artificial light. N-P-K (6-6-6) fertilization was applied weekly to the plants, which were irrigated to field capacity every day. At the end of the experiment, plant shoots were harvested, oven-dried for 48 h at 60° C and then weighed.

Biochemical analyses and reflectance acquisitions

The biochemical and spectral responses of C. alopecuroides to the treatments were measured during the study. For this purpose, we followed the procedure described in Lassalle et al. (2019b). Young leaves were sampled on five different replicates per treatment and served for determining leaf water (LWC) and pigment contents [START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF][START_REF] Diepens | Toxicity effects of an environmental realistic herbicide mixture on the seagrass Zostera noltei[END_REF].

Leaf pigment content was quantified by High Pressure Liquid Chromatography (HPLC), and included chlorophylls a and b and various carotenoids, such as β-carotene, lutein, antheraxanthin, violaxanthin and zeaxanthin [START_REF] Barlow | Improved resolution of mono-and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC[END_REF]. Differences among the treatments were analyzed through ANOVA and Tukey post-hoc tests. In addition, the spectral reflectance of the same sampled leaves was measured following the protocol described below, and linked to biochemical analyses (see section 2.3). This procedure was carried out after 21 and 42 day of experiment. No leaf was sampled before in order to avoid influencing plant growth during early stages.

Reflectance measurements were also performed directly on the plants (i.e. without picking leaves) at day 0, 21 and 42, using an ASD FieldSpec 4 Hi-Res spectroradiometer (Malvern Panalytical, Malvern, UK). Data were acquired in radiance in the reflective domain (400 -2400 nm) and converted to reflectance using a white reference calibration panel (Spectralon, Labsphere Inc., North Sutton, USA) [START_REF] Milton | Principles of field spectroscopy[END_REF]. For each treatment, three leaves per replicate were measured at random (n = 165 spectra per date) using a leaf-clip with an internal light source (10 measurements averaged per leaf). Additional measurements were conducted at plant scale, by placing a 10°-FOV fore-optic above the pots to obtain a 5-cm wide acquisition footprint (10 measurements averaged per plant). These measurements were performed on each replicate (n = 55 spectra per date) under natural light between 11.30 am and 1.30 pm, under clear sky. The reflectance data from the 1350 -1450 and 1800 -1950 nm ranges were not conserved, because of low atmospheric transmission at plant scale. A Savitzky-Golay smoothing filter was then applied at the remaining wavelengths, improving the signal-to-noise ratio [START_REF] Savitzky | Smoothing and Differentiation of Data by Simplified Least Squares Procedures[END_REF].

Vegetation indices

In this study, 33 VI were computed and used in two ways. They are listed in the Supporting Information section. These indices have been specifically exploited for detecting oil-induced changes in leaf biochemistry in our previous study, so here they were tested for quantifying TPH (Lassalle et al. 2019b). Most of them exploited reflectance in the visible (VIS) region (450 -700 nm), which is the most important spectrum region for assessing oil contamination. It has been shown that under exposure to oil, changes in the values of a single vegetation index result from the alteration of several inter-correlated pigments that share common light absorption features (e.g. chlorophylls and carotenoids). Consequently, the pigments to which an index has been initially linked in the literature may differ from those involved in the response to oil exposure. So, it is necessary to identify which pigments contribute the most to index changes, in order to understand how vegetation reflectance is affected by oil. For this purpose, the 33 indices were first computed from the reflectance data of leaves sampled for biochemical analyses, and each of them was linked to leaf pigment and water contents using Elastic net (ENET) multiple regression [START_REF] Zou | Regression and variable selection via the elastic net[END_REF], as described in Lassalle et al. (2019b). ENET is a penalized least squared regression method that allows selecting predictors under multicollinearity.

Multicollinearity appears when predictors -in our case, leaf pigment contents -are linear combination of each other, and results in confusions when selecting those contributing the most to the target variable (i.e. VI) [START_REF] Belsley | Detecting and Assessing Collinearity[END_REF][START_REF] Dormann | Collinearity: a review of methods to deal with it and a simulation study evaluating their performance[END_REF]. ENET regression prevents from such consequences and has already proved efficient for identifying biochemical parameters involved in reflectance changes under exposure to contaminants (Lassalle et al., 2019b). For each VI, the best predictors were retained and the R 2 of the model was calculated.

In a second time, the same 33 indices were computed from the reflectance data acquired at leaf and plant scales and used for predicting TPH concentrations using RF regression [START_REF] Breiman | Random forests[END_REF]. RF is an ensemble method that builds and average a lot of independent decision trees to model the relationship between predictors (i.e. the 33 VI) and a response variable -here, TPH concentration [START_REF] Hastie | The Elements of Statistical Learning The Elements of Statistical Learning[END_REF][START_REF] Hutengs | Downscaling land surface temperatures at regional scales with random forest regression[END_REF][START_REF] Mutanga | High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm[END_REF]. Each tree is constructed from a set of decision rules that results from the recursive fragmentation of the original space into successively smaller sub-regions. To define these sub-regions, binary splits are applied independently to each vegetation index. A simple model is then adjusted between VI and TPH concentrations with respect to the splits, and those minimizing the mean squared error between the measured and predicted concentrations are retained. The succession of the selected index splits represents the branches of the decision tree, in such a way that each set of decision rules leads to an estimation of TPH concentration (see [START_REF] Hutengs | Downscaling land surface temperatures at regional scales with random forest regression[END_REF] for a complete description). RF accounts for non-linear relationships between the predictors and the response variable -which can occur for low concentrations of contaminants, so it was of great interest in our case. Moreover, RF informs on the relative contribution of VI to the quantification of TPH [START_REF] Breiman | Random forests[END_REF][START_REF] Grömping | Variable importance assessment in regression: Linear regression versus random forest[END_REF], which is essential for operational applications of the method.

The RF regression was fitted to half of the data (50% training set) and tested on the remaining part (50% test set), at leaf and plant scales separately (Lassalle et al., 2019b(Lassalle et al., , 2019a)). For this purpose, we used the data from day 42, because no difference among the treatments was observed on the previous dates, so no quantification of TPH was possible (see section 3.1). The predictions of TPH made on the test set were compared to those from initial soil analyses based on the R 2 , the Root Mean Squared Error (RMSE) and the Residual Predictive Deviation (RPD) (Shi et al., 2014). The RPD denotes the ratio of the standard deviation of the measured TPH concentrations to the RMSE calculated between the measured and predicted concentrations.

Results and discussion

Biochemical and spectral responses to oil contamination

As expected, C. alopecuroides was highly tolerant to oil, as none of the plants from the contaminated treatments died during the experiment. This observation is consistent with previous studies carried out on the same species with various types of oil contamination (engine oil and oil and gas waste mud) (Emengini et al., 2013c;[START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF]. No visible stress symptom was observed on any of the replicates before the last stages of the experiment (35 -42 days), so no difference in leaf pigment contents and in leaf and plant reflectance was observed among the treatments on the previous dates (0 and 21 days, data not shown). On day 42, leaf discoloration was observed for the individuals exposed to 5 g.kg -1 TPH or more, expressing a significant decrease in leaf chlorophyll and carotenoid contents when compared to the control (p < 0.05) (Fig. 1). Plant growth was also significantly affected on this date. The alterations in pigment contents induced an increase of reflectance by 5 to 10% in the VIS region, especially around 550 and 700 nm (Fig. 2). Other regions of the spectrum were also affected in the same way by contamination. This response was more pronounced at leaf scale, because plant reflectance is also influenced by plant architecture, background soil and illuminating and viewing geometry [START_REF] Asner | Biophysical and Biochemical Sources of Variability in Canopy Reflectance[END_REF]Sanches et al., 2013a). As suggested in previous works (Emengini et al., 2013c;[START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF], the late response of C. alopecuroides to oil highlights its interest for monitoring long-term contaminated sites, especially brownfields and mud pits remaining after cessation of oil and gas activities. Alterations in leaf biochemistry and optical properties are very common for vegetation exposed to contaminants [START_REF] Balliana | Development of Canavalia ensiformis in soil contaminated with diesel oil[END_REF]Lassalle et al., 2019b;[START_REF] Rosso | Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination[END_REF]Sanches et al., 2013a). They depend on multiple factors, especially the species, the contamination type and concentration and the time of exposure, and have been previously observed on C. alopecuroides and other tropical species (Arellano et al., 2017b;Emengini et al., 2013c;[START_REF] Lassalle | Hyperspectral signature analysis of three plant species to long-term hydrocarbon and heavy metal exposure[END_REF]. In the case of oil, these alterations result from the reduction of water and nutrient availability in soils and uptake capacities of roots [START_REF] Athar | Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants[END_REF][START_REF] Balasubramaniyam | Scanning electron microscopic investigations of root structural modifications arising from growth in crude oil-contaminated sand[END_REF][START_REF] Nie | Plants ' use of different nitrogen forms in response to crude oil[END_REF]. Additional effects may come from the accumulation of hydrocarbons in tissues [START_REF] Baruah | Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk[END_REF], but they mostly involve low-carbon TPH, so they are unlikely to explain the responses observed in our experiment. The amplitude of these biochemical and spectral responses was determined by the level of contamination, which confirmed previous results obtained for higher levels of oil (Emengini et al., 2013c;Sanches et al., 2013a). The more the TPH, the lower the leaf pigment contents and the higher the reflectance (Fig. 2). Consequently, leaf chlorophyll content felt to 17.7 (± 3.0) µg.cm -2 under exposure to 19 g.kg -1 TPH, while it reached 51.7 (± 3.5) µg.cm -2 for control at the end of the experiment (Fig. 1). A similar trend was observed on carotenoids, and suggested being able to discriminate among the different levels of contamination using reflectance data. In contrast to the other treatments, a stimulating effect was observed for plants exposed to 1 g.kg -1 TPH. Shoot dry weight and leaf chlorophyll and carotenoid contents were significantly higher for this treatment than those of the control (p < 0.05), and reflectance was slightly lower at leaf and plant scales. This particular response -called hormesis -has already been observed on the growth of other oil-exposed species in previous studies [START_REF] Kirk | Phytotoxicity assay to assess plant species for phytoremediation of petroleum-contaminated soil[END_REF][START_REF] Lin | The dose-response relationship between No. 2 fuel oil and the growth of the salt marsh grass, Spartina alterniflora[END_REF][START_REF] Salanitro | Crude oil hydrocarbon bioromediation and soil ecotoxicity assessment[END_REF]. However, its causes remain poorly documented. To our knowledge, this study is the first to bring evidence of this phenomenon using reflectance measurements. Previous experiments aimed to simulate accidental oil spills (e.g. pipeline leakage), by applying high doses of oil -mainly diesel or engine oil -to crop species, which are particularly sensitive to such contamination (Emengini et al., 2013a;[START_REF] Gürtler | Determination of changes in leaf and canopy spectra of plants grown in soils contaminated with petroleum hydrocarbons[END_REF]Sanches et al., 2013a).

Consequently, strong alterations in leaf biochemistry and reflectance have been observed regardless of the contamination level, so no hormesis has been noticed. The responses of C. alopecuroides observed in our study substantially differed, because we focused on a totally different context. When oil contamination persists in industrial brownfield and mud pit soilssuch as that reproduced in our experiment, the most phytotoxic fractions of petroleum hydrocarbons (e.g. BTEX, PAH) are almost absent from the mixture. The effects on oil-tolerant established vegetation are therefore much less pronounced than those observed for other types of oil contamination with high proportion of these compounds (e.g. crude oil, diesel, gasoline), especially at low concentration (Lassalle et al., 2019b). Here, PAHs and BTEX were found below the detection limits (0.02 and 0.05 mg.kg -1 , respectively) at 1 g.kg -1 of TPH and in the control soil, so they did not affect the plants negatively. Conversely, these compounds are likely to induce positive effects at very low concentration [START_REF] Maliszewska-Kordybach | Ecotoxicological Activity of Soils Polluted with Polycyclic Aromatic Hydrocarbons (PAHs) -Effect on Plants[END_REF], but they cannot be the only contaminants responsible for the differences observed between the two treatments. Some other hydrocarbon fractions -which were absent from the control soil -enhance the availability of nutrients and organic matter for plants by stimulating microorganisms [START_REF] Li | Chronic Low Level Hydrocarbon Amendments Stimulate Plant Growth and Microbial Activity in Salt-Marsh Microcosms[END_REF]. Therefore, the very low concentrations of PAHs and BTEX combined to those of other hydrocarbon fractions might have induced the hormetic effect observed in this study.

Vegetation indices

Elastic net regressions

The VI succeeded in linking the biochemical and spectral responses of C. alopecuroides to oil contamination. 20 out of the 33 indices tested were strongly correlated to leaf pigment or water content (R 2 ≥ 0.7) (Tab. 1). For most of them, at least three contributing pigments were identified, the others having not being retained by the ENET regression. Chlorophylls and βcarotene were often the most contributing ones, and provided some of the best models (R 2 ≥ 0.8) when used together (i.e. without addition of other carotenoids). Therefore, these pigments explained most of the modifications in reflectance observed among the treatments in the VIS region. Other carotenoid pigments -especially lutein and violaxanthin -were frequently retained in the models (e.g. GM2 and PSSRb indices), thus confirming previous results obtained on another oil-tolerant species (Lassalle et al., 2019b). These pigment are usually of less contribution to leaf optical properties, because of the masking effect of chlorophylls, which are present at higher concentrations in leaves and share common light absorption features [START_REF] Feret | PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[END_REF][START_REF] Zhang | An extended PROSPECT : Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b[END_REF]. Our study shows that they also contribute to the spectral response of vegetation to oil contamination.

Table 1. Results of the elastic net regressions performed on the 33 vegetation indices. For each index, the R 2 of the model is presented, along with the contributing set of biochemical parameters (in order of importance). (Chl a: Chlorophyll a, Chl b: Chlorophyll b, B-car: βcarotene, Lut: Lutein, Ant: Antheraxanthin, Vio: Violaxanthin, Zea: Zeaxanthin, LWC: Leaf Water Content.) The close relationship between some indices and contributing pigments are illustrated in Figure 3. As observed, these indices exhibited strong link with single pigment content. ENET regression allowed identifying those contributing the most to index changes, in order of importance. These results confirmed the interest of combining pigment contents into multiple models for better understanding the effects induced by oil contamination on vegetation reflectance (Lassalle et al., 2019b). Most of the indices exploited reflectance around 550 and 700 nm, which was particularly affected by oil (Fig. 2), so they were particularly adapted to our context of study. The same wavelengths also proved efficient for assessing soil contaminated by oil and by-products in other situations (oil extraction, pipeline leakages, etc.). Zhu et al. ( 2014) exploited reflectance at 700 nm for distinguishing among various levels of alteration in pigment contents induced by phenanthrene contamination on Suaeda salsa. Likewise, Sanches et al. (Sanches et al., 2013b) used the same spectrum region for assessing the effects of oil leakages on crops species. One of the main advantages of VI relies on their robustness. Some of them remain only little affected by bare soil and plant architecture, so they can be applied for tracking subtle alterations in leaf pigment contents induced by oil at different acquisition scales (e.g. leaf, plant and canopy) [START_REF] Blackburn | Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches[END_REF][START_REF] Dash | Evaluation of the MERIS terrestrial chlorophyll index (MTCI)[END_REF]. For example, the same 33 indices succeeded in discriminating among various types of oil contamination from leaf to canopy scales in previous study (Lassalle et al., 2019b). Here, they were suitable for estimating TPH concentrations in soils. was the most difficult to predict, as it was almost systematically underestimated (Fig. 4). This may be caused by saturation in the spectral response of C. alopecuroides to this type of oil contamination, as described for other species in previous study. Confusions also arose at the lowest concentrations (0 -1 g.kg -1 ). They highlighted the difficulty to detect the hormesis phenomenon using reflectance data, for which only little differences were observed among the two treatments (Fig. 2). These results thus helped identifying the detection limit of our approach. The relative contribution of VI to the RF models was consistent from leaf to plant scales. Four out of the 33 indices contributed the most to TPH predictions (> 75%, Fig. 5). These indices were among those closely linked to leaf pigment contents (R 2 > 0.7, Tab. 1), and more precisely chlorophylls and β-carotene. They exploit reflectance around 550 and 700 nm, but also 670 -680 and 750 nm, which helped enhancing the differences among the treatments. Only few wavelengths are therefore necessary for estimating TPH accurately using reflectance spectroscopy. Conversely, the other indices remained of little contribution to the models (< 5% each), especially those linked to additional carotenoids (e.g. lutein, violaxanthin), because they brought redundant information.

Index
The consistence of the results between acquisition scales opens up promising perspectives for operational applications of our approach under natural conditions. Some of the main indicesespecially the MTCI and TCARI / OSAVI -have been originally designed for imagery application purposes [START_REF] Dash | Evaluation of the MERIS terrestrial chlorophyll index (MTCI)[END_REF][START_REF] Haboudane | Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[END_REF], and proved efficient for detecting -but not for quantifying -oil contamination in tropical regions. For example, [START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF] used the MTCI index to discriminate among control and oil-contaminated sites in the Amazon forest using hyperspectral satellite images. However, the application of these indices for estimating the level of contamination remained unexplored until now. This study was a first attempt in that direction, but further researches are needed to assess the reliability of our approach under natural conditions, using field measurements, and in the long term using multiand hyperspectral imagery. High to very high spatial resolution might help achieving this, because the contamination can occur on a few square meters and be therefore difficult to detect using medium to low spatial resolution imagery [START_REF] Adamu | Remote sensing for detection and monitoring of vegetation affected by oil spills[END_REF][START_REF] Arellano | Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images[END_REF]. As discussed in section 3.1, the case of persistent low contamination in brownfields and mud pits makes the estimation of TPH very challenging, because of the composition of the contamination and the tolerance of the species. Under natural conditions, additional difficulties should be considered before application of our approach. Vegetation established on brownfields and mud pits is exposed to a multitude of environmental factors that affect its health and reflectance (e.g. drought, waterlogging), especially in the tropical regions with marked seasonality [START_REF] Adamu | An investigation into the factors influencing the detectability of oil spills using spectral indices in an oil-polluted environment[END_REF][START_REF] Smith | Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks[END_REF]. These factors might overlap with the effects induced by TPH, making their estimation more difficult. Thanks to recent advances, it seems however possible to discriminate among oil and other stressors using reflectance spectroscopy (Emengini et al., 2013b;Lassalle et al., 2019b[START_REF] Lassalle | Assessing Soil Contamination Due to Oil and Gas Production Using Vegetation Hyperspectral Reflectance[END_REF]. Because of the selective growing conditions imposed, only few species are generally established on soils with oil [START_REF] Noomen | Spectral and spatial indicators of botanical changes caused by long-term hydrocarbon seepage[END_REF], as observed on our study site. This makes the estimation of TPH feasible, provided that these species are oilsensitive. Species richness is however very high in some tropical regions subject to oil contamination (Arellano et al., 2017a(Arellano et al., , 2017b)). Such diversity in plant species means important differences in sensitivity to oil among them. Some species are totally tolerant to oil, whereas others are affected even at very low concentration. This makes the estimation of TPH more difficult, so it is necessary to identify the most suitable species before, as we did under controlled conditions. 

Conclusion

This study aimed to quantify low TPH concentrations in soils using C. alopecuroides reflectance under controlled tropical conditions. Modifications in leaf biochemistry appeared after a long-term exposure, depending on the level of contamination. Pigment contents were reduced for TPH concentrations of 5 g.kg -1 and above, whereas they increased at lower concentration when compared to control. These modifications were linked to the reflectance data through VI, which brought evidence of the implication of chlorophylls and various carotenoids in the spectral response of the species to oil. The same indices succeeded in predicting TPH concentrations with good accuracy using RF regressions, at leaf and plant scales. Four out of the 33 indices tested were almost sufficient to achieve these predictions. This study emphasizes the potential of reflectance spectroscopy for quantifying oil contamination in tropical regions with dense vegetation. More specifically, the long-term response of C. alopecuroides to oil highlights its interest for assessing persistent contamination, for example after cessation of the oil production activity. Although our approach is at early stage and needs further improvements, we are convinced that it could soon result in imagery applications. The emergence of new satelliteand UAV-embedded hyperspectral sensors is sparking a growing interest by oil and gas companies, because they could help assessing oil contamination locally or at large scale. Our study under controlled conditions was the first necessary step prior to such applications. In its continuity, our upcoming research will focus on the adaptation of the approach to hyperspectral imagery with high spatial resolution, and its assessment in tropical region with heavy past oil and gas production activities.

Figure 1 .

 1 Figure 1. Shoot dry weight and leaf chlorophyll and carotenoid contents (mean ± SD; n = 11 and 5 samples per treatment, respectively) of C. alopecuroides after 42 days of exposure to various levels of Total Petroleum Hydrocarbons (TPH). Significant differences among the treatments are denoted by different lowercase letters (ANOVA and Tukey post-hoc tests, p < 0.05). (VAZ: Violaxanthin + Antheraxanthin + Zeaxanthin.)

Figure 2 .

 2 Figure 2. Mean reflectance of C. alopecuroides in the reflective domain after 42 days of exposure to various levels of Total Petroleum Hydrocarbons (TPH), at leaf and plant scales. Reflectance data from the 1350-1450 and 1800-1950 intervals were removed, because of low atmospheric transmission at plant scale. (The legend is common to both figures.)

Figure 3 .

 3 Figure 3. Relationship between vegetation indices and leaf pigment contents. Figures include data from leaves sampled on all the treatments, after 21 and 42 days of experiment (n = 50).

Figure 4 .

 4 Figure 4. Comparison between the measured and predicted concentrations of Total Petroleum Hydrocarbons (TPH) using the 33 vegetation indices and the random forest regression on the test set, at leaf and plant scales (top figures), and residuals of the predictions (bottom figures).

Figure 5 .

 5 Figure 5. Relative contribution of the vegetation indices to the estimation of Total Petroleum Hydrocarbons (TPH) using random forest regression, at leaf and plant scales. Only indices with non-zero contribution are displayed.
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