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Abstract

In this study, we derive the joint asymptotic distributions of functionals of quantile estimators (the
non-parametric sample quantile and the parametric location-scale quantile) and functionals of mea-
sure of dispersion estimators (the sample standard deviation, sample mean absolute deviation, sam-
ple median absolute deviation) - assuming an underlying identically and independently distributed
sample. Additionally, for location-scale distributions, we show that asymptotic correlations of such
functionals do not depend on the mean and variance parameter of the distribution. Further, we com-
pare the impact of the choice of the quantile estimator (sample quantile vs. parametric location-scale
quantile) in terms of speed of convergence of the asymptotic covariance and correlations respec-
tively. As application, we show in simulations a good finite sample performance of the asymptotics.
Further, we show how the theoretical dependence results can be applied to the most well-known risk
measures (Value-at-Risk, Expected Shortfall, expectile). Finally, we relate the theoretical results to
empirical findings in the literature of the dependence between risk measure prediction (on historical
samples) and the estimated volatility.
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1 Introduction and Notation

In this paper we analyse the asymptotic dependence properties of functionals of quantile estimators with
functionals of measure of dispersion estimators for underlying identically and independently distributed
(iid) samples. By measures of dispersion we mean well-known quantities as the variance or standard
deviation, but also less frequently used ones as, for example, the mean or median absolute deviation -
we introduce and formalise those concepts in the next subsection.

One motivation to look at this dependence comes from the empirical study in [9]. Therein the correlation
between a log-ratio of sample quantiles with the sample standard deviation is measured empirically using
log-returns from different stock indices. Note that looking at a functional of the sample quantile (as e.g.
the logarithm) is more general than considering only the linear correlation between sample quantile and
sample standard deviation. Another reason of considering those functionals is that the results directly
relate to risk measure estimation (and their dependence with volatility measures, represented in this case
by measures of dispersion): The sample quantile can be seen as a Value-at-Risk (VaR) estimator and the
functional framework allows us to extend the results also to Expected Shortfall (ES).

In this spirit the results presented in the paper treat in a broad way the joint distribution and linear corre-
lation of general functionals of quantile estimators and functionals of measure of dispersion estimators.
The reason why we consider also other measures of dispersion than the classical sample variance is that
using this latter brings asymptotic constraints (such as the existence of the fourth moment of the under-
lying distribution) which can be relaxed when using other measures like the mean absolute deviation or
median absolute deviation. It is quite important in practice, as pointed out in Section 4 in the context
of quantitative risk management (QRM) and risk measures: We illustrate how results on the asymptotic
dependence between VaR, ES or the expectile with these measures of dispersion follow from the results
presented. Also, coming back to the first motivation of this research, theoretical results for the depen-
dence between the log-ratio of sample quantiles and the sample standard deviation are presented - as
counterpart to the empirical estimation in [9]. We also link these theoretical results to empirical findings
in [43, 44].

In the existing literature there exist works on the asymptotic joint distribution of the sample mean and
the sample quantile ([29], [17] for two different approaches). Still, we only found one paper, [8], which
looks as a biproduct at the joint distribution of a vector of sample quantiles with the r-th absolute sample
moment in the case of an underlying Gaussian distribution with known mean. Although their framework
seems to include the joint distribution of a sample quantile with the sample variance (second absolute
sample moment) as well as with the sample mean absolute deviation (first absolute sample moment), note
that the work in [8] differs as it assumes the mean to be known and a Gaussian underlying distribution.
Moreover, in the case of the joint distribution of the sample quantile with the sample median absolute
deviation, to the best of our knowledge, no result exists.

The structure of the paper is as follows. We present in Section 2 the main result about the asymptotic
joint distribution and dependence between functionals of quantile estimators and functionals of three
different measures of dispersion, in the following order: sample variance, sample mean absolute devia-
tion and sample median absolute deviation. First, we consider the sample quantile as quantile estimator.
We show its joint asymptotic distribution with the above mentioned sample measures of dispersion using
their existing Bahadur representations. Those results presented are valid for all distributions (which fulfil
certain moment and smoothness conditions). Next, we consider the parametric location-scale quantile
estimator, which means to restrict ourselves to the class of location-scale distributions, an important
class in applications. Hence, we subsequently present the asymptotic joint distributions for function-
als of the three different measure of dispersion estimators considered, but now with functionals of the
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location-scale quantile estimator. We conclude this section by analysing the effect of the sample size,
first when the quantile estimator and the measure of dispersion estimator each have different sample
sizes (in an asymptotic sense). Second, we evaluate the finite sample approximation of the asymptotics:
In a simulation study we compare the sample correlation between quantile estimators and measure of
dispersion estimators (each on a finite sample) to the theoretical asymptotic correlation - considering
elliptical distributions with light and heavy tails, respectively.

To compare the two quantile estimators considered, we focus in Section 3 on location-scale distributions
as this is a broad group of distributions often used in financial modelling and from which the theoretical
question arised. In Subsections 3.1 and 3.2 we present the asymptotic covariances and correlations for
functionals of the sample quantile and location-scale quantile respectively with each of the three mea-
sures of dispersion. Further, we provide all the explicit asymptotic covariances and correlations in the
cases of a Gaussian and a Student distribution. As described, one has two different alternatives of using
(consistent) estimators to estimate the underlying true quantile. The parametric location-scale quantile is
especially of interest as this estimator has a higher speed of convergence than the sample quantile. Still,
such a parametric estimator needs to assume a specific underlying distribution which might add some
model risk in practice. With regard to this, we present an important result in Subsection 3.3. Therein
we show the asymptotic difference in the dependence structure (for each corresponding measure of dis-
persion) when using the one or the other quantile estimator for the two main examples considered, the
Gaussian and the Student distribution.

In Section 4, we apply the results from the previous sections in the context of quantitative risk manage-
ment. In a first part, we make the link to risk measures apparent. Taking as example the three most
popular risk measures in quantitative risk management, Value-at-Risk, Expected Shortfall and expectile,
we show their asymptotic dependence with each of the three measure of dispersion estimators. Given the
constant debate about the properties and advantages of these different risk measures (see e.g. [10], [15],
and the references therein), this adds another layer to the discussion. Again, in the cases of an underly-
ing Gaussian or Student distribution, we provide the explicit formulae and also plots of the asymptotic
correlation in these cases. In the second part, we look at a specific problem in finance: Therein we
consider the non-linear dependence looking at the linear correlation between log-ratios of Value-at-Risk
estimators (i.e. sample quantiles) and the sample standard deviation (i.e. a non-linear dependence be-
tween the sample quantile and the sample standard deviation). This was computed empirically in [9] to
assess the pro-cyclicality of risk measurement using historical data from different stock indices. We also
relate this dependence between sample quantile and sample standard deviation to the empirical work
in [43, 44]. We then provide theoretical values in the setup given in [9] when assuming underlying iid
models. Additionally to the asymptotic correlation between the sample quantile and sample standard
deviation, we consider this correlation when using the different measures of dispersion introduced as
well as with the parametric location-scale quantile instead of the sample quantile. Finally, we show
how these theoretical results scale when using longer samples (in an asymptotic meaning that we will
explain) and compare finite sample empirical results, in an identical setting as in [9], with the theoretical
asymptotics. We conclude in Section 5 discussing implications of the different results for their use in
practice, also giving a concise comparison of the theoretical conditions on the underlying distribution
(of the asymptotic results) depending on the different quantile and dispersion estimators used.

All proofs are developed in the Appendix, so that the series of results appears clearly in the main body
of the paper to offer a statistical tool set.

Let us end with a remark about the structure. The new and general results about the joint asymptotics
of the sample quantile (location-scale quantile) with different measures of dispersion are in Section 2
and hold for any distribution (in particular for the case of location-scale distributions) - with certain
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restrictions on its smoothness and existence of moments. Then we apply those results to the specific
cases of location-scale distributions in Section 3 and each time explicitly consider the three different
cases of our measure of dispersion separately with examples, although they can be derived from the
main theorems in Section 2. We are aware it extends the paper, but think it may be a useful and good
reference in applications with specific results being explicitly available.

Notation

Let us start with common mathematical notation. The rounded-up and rounded-off integer-parts of a
real number x ∈ R are denoted, respectively, as

dxe = min {m ∈ Z : m ≥ x} and bxc = max {m ∈ Z : m ≤ x}.

The signum function is denoted by sgn and defined, as usual, by

sgn(x) :=


−1 if x < 0,

0 if x = 0,

1 if x > 0.

Further, Γ(.) is the Gamma function; we will need it either for integers or half-integers, i.e.

Γ(x) :=

{
(x− 1)! for integers x > 0,
√
π (2x−2)!!

2
2x−1

2
for half-integers x, i.e. odd integer-multiples of 1

2 ,

where ! and !! denote the factorial and double-factorial function, respectively. Also, we denote by d→, P→
the convergence in distribution and in probability, respectively.

Focusing on statistical quantities, let us work with a sample of size n, (X1, · · · , Xn), with parent random
variable (rv) X , parent cumulative distribution function (cdf) FX , (and, given they exist,) probability
density function (pdf) fX , mean µ, variance σ2, and quantile of order p as qX(p) := inf{x ∈ R : p ≤
FX(x)}. We denote its ordered sample by X(1) ≤ ... ≤ X(n). Whenever it exists, we introduce the
standardised version (with mean 0 and variance 1) of X , Y := X−µ

σ , and correspondingly the cdf, pdf
and quantile of order p as FY , fY and qY (p). In the special case of the standard normal distribution
N (0, 1), we use the standard notation Φ, φ,Φ−1(p) for the cdf, pdf and quantile of order p, respectively.
We use the symbol ∼ for ‘distributed as’, i.e. Y ∼ N (0, 1) means that Y is N (0, 1)-distributed.

In this paper, we focus on the following five estimators. First, we consider the three estimators of the
dispersion: (i) the sample variance σ̂2

n, (ii) the sample mean absolute deviation around the sample mean
(MAD) θ̂n, and (iii) the sample median absolute deviation around the sample median (MedianAD) ξ̂n:

(i) σ̂2
n = 1

n−1

∑n
i=1(Xi − X̄n)2, where X̄n = 1

n

∑n
j=1Xj ,

(ii) θ̂n = 1
n

∑n
i=1|Xi − X̄n|,

(iii) ξ̂n = 1
2(W(bn+1

2
c) + W(bn+2

2
c)), where Wi = |Xi − ν̂n|, i = 1, ..., n (and its ordered sample

W(1) ≤ ... ≤W(n)), and ν̂n = 1
2(X(bn+1

2
c) +X(bn+2

2
c)) (sample median of the original sample).

Note that, for the sample MAD, we could have taken a factor of 1
n−1 instead of 1

n , and this does not
matter asymptotically. We chose the latter to be in line with the literature (see e.g. [20],[34],[39]),
although we think, conceptually, 1

n−1 does make more sense.
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To unify the notation of sample variance and the sample MAD, one can use the notion of the r-th absolute
centred sample moment, i.e.

m̂(X,n, r) :=
1

n

n∑
i=1

|Xi − X̄n|r, with r = 1, 2, (1)

so that σ̂2
n = n−1

n m̂(X,n, 2) and θ̂n = m̂(X,n, 1). To have a framework that incorporates the three

measures of dispersion, we introduce the notation Di,n, for i = 1, 2, 3, with D̂1,n = σ̂2
n or

√
D̂1,n = σ̂n

the sample variance or sample standard deviation respectively, with D̂2,n = θ̂n the sample MAD, and
D̂3,n = ξ̂n the sample MedianAD. Correspondingly, the theoretical counterparts are denoted as Di, i =
1, 2, 3 with D1 = σ2,

√
D1 = σ,D2 = θ,D3 = ξ.

Then, we consider two estimators of the quantile of order p of the distribution:

(iv) the sample quantile qn(p) = X(dnpe),

(v) the quantile estimated parametrically by its location-scale model whenever FX belongs to the
location-scale family of distributions: qn,µ̂,σ̂(p) = µ̂n + σ̂nqY (p), where µ̂n and σ̂n are any
estimators of the mean µ and standard deviation σ. Here we choose them to be the sample mean
X̄n and the square root of the sample variance σ̂n (by abuse of notation) respectively. When
assuming µ to be known, we write qn,σ̂(p) = µ+ σ̂nqY (p).

Recall that the location-scale family of distributions F is the class of distributions such that

if F ∈ F , then for any a ∈ R, 0 < b <∞, G(x) := F (ax+ b) ∈ F . (2)

Again, to have a unified notation, we introduce the quantile estimator q̂n that should represent either the
sample quantile qn, or the location-scale quantile models qn,µ̂,σ̂ (or qn,σ̂ for µ known).

In addition, to be consistent in the notation with related results in the literature, we generalise a notation
used in [6, 17]: First recall that the quantile can be written as a minimiser (see [25])

qX(p) = argmin
a∈R

E[Lp(X − a)],

for the so called quantile loss function Lp(x) := (p − 1I(x≤0))x. Hence, one can consider the case of
a = qX(p) and write

E[Lp(X − qX(p))] = p (E[X]− E[X|X ≤ qX(p)])

called ‘minimized expected quantile loss function’ in [6], and denoted by τ(p) in [17], where it appeared
as part of the asymptotic covariance of the sample quantile with the sample mean.

So, assuming that the underlying rv X has finite moments up to order l, and that η is a continuous
real-valued function, we use in this paper the following generalization: for 1 ≤ k ≤ l and p ∈ (0, 1),

τk(η(X), p) = (1− p)
(
E[ηk(X)|X > qX(p)]− E[ηk(X)]

)
, (3)

= p(1− p)
(
E[ηk(X)|X > qX(p)]− E[ηk(X)|X < qX(p)]

)
, (4)

where we provided (4) to point out that this quantity involves the truncated moments of both tails. We
abbreviate, when η is the identity function, τk(X, p) as τk(p).
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Further, note that for the results we present, we need different conditions on the underlying random vari-
able X depending on the choice of quantile estimator and measure of dispersion estimator. Although
not always needed for the theoretical results (if interested in minimal requirements, see Table 9 in Sec-
tion 4), we will assume for simplicity that

(C1) FX is absolutely continuous and strictly monotonically increasing,

i.e. X has a pdf fX(x) such that, both, 0 < fX(x) < ∞ and FX(qX(p)) = p almost everywhere. Two
other conditions, which do not need to hold for all x ∈ R (but in given intervals), are

(C2) FX is Hölder-continuous,

(C3) the second derivative of FX exists and is bounded

Also, we denote necessary moment conditions, for an integer k > 0, as follows

(Mk) E[X2k] <∞ (i.e. finite 2k-th moment)

and will usually need in this study (M1) (i.e. existence of second moment) or (M2) (existence of the
fourth moment).

Finally, to have results as general as possible (in view of applications), all along the paper we will
consider functionals h1, h2 of the estimators that we assume to be continuous real-valued functions with
existing derivatives denoted by h′1 and h′2 respectively. Note that in fact, to apply the Delta method, it
suffices for the derivatives to exist only at one point - the point where they are evaluated at. We will omit
recalling it in the conditions of the results.

To end this section, we summarise for convenience the notation of the different statistical quantities with
their corresponding estimators in Table 1.
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Table 1: Notation of statistical quantities and their (possibly various) estimators used in this paper

Statistical quantities Corresponding Estimators

mean µ sample mean X̄n = 1
n

∑n
i=1Xi

variance σ2 sample variance (unknown µ) σ̂2
n = 1

n−1

∑n
i=1(Xi − X̄n)2

(known µ) σ̃2
n = 1

n

∑n
i=1(Xi − µ)2

mean absolute deviation
(MAD)

θ = E[|X − µ|] Sample MAD (unknown µ)
(known µ)

θ̂n = 1
n

∑n
i=1|Xi − X̄n|

θ̃n = 1
n

∑n
i=1|Xi − µ|

r-th centred/central moment µr = E[(X − µ)r]
r-th absolute centred moment
(measure of dispersion)

m(X, r) = E[|X−µ|r] Sample measure of dispersion
(unknown µ)

m̂(X,n, r) = 1
n

∑n
i=1|Xi − X̄n|r

Sample measure of dispersion
(known µ)

m̃(X,n, r) = 1
n

∑n
i=1|Xi − µ|r

cdf FX(x) empirical cdf Fn(x) = Fn,X(x) = 1
n

∑n
i=1 1I(Xi≤x)

pdf fX(x)
quantile of order p qX(p) = F−1

X (p) sample quantile qn(p) = X(dnpe)
parametric location-scale quan-
tile (unknown µ)

qn,µ̂,σ̂(p) = µ̂n + σ̂nqY (p)

parametric location-scale quan-
tile (known µ)

qn,σ̂(p) = µ+ σ̂nqY (p)

median ν = qX(1/2) sample median ν̂n = 1
2 (X(bn+1

2 c)
+X(bn+2

2 c)
)

median absolute deviation
(MedianAD)

ξ = q|X−ν|(1/2)
where F|X−ν|(x) =
FX(ν+x)−FX(ν−x)

sample MedianAD ξ̂n = 1
2 (W(bn+1

2 c)
+W(bn+2

2 c)
)

2 Asymptotic Joint Properties of Quantile and Dispersion Estimators for
iid rv’s

Having fixed the general notation, let us present our main results. We divide them into two subsections
according to the quantile estimator we used. We start with the asymptotic joint distributions when using
a sample quantile. Subsequently, we present the analogous results when using a location-scale quantile.
As mentioned in the introduction, the results with the sample quantile hold for any iid distributions while
the ones with the location-scale quantile only for location-scale distributions (both being subject to some
smoothness and moment conditions).

2.1 Historical Estimation

We present two results. The first one for the relation of functionals of the sample quantile with function-
als of either the sample MAD or the sample variance in a unified setting. The second for functionals of
the sample quantile with functionals of the sample MedianAD.

Theorem 1 Consider an iid sample with parent rv X having mean µ, variance σ2. Assume conditions
(C1), (C3) in a neighbourhood of qX(p) and (Mr) for r = 1, 2 respectively as well as (C2) at µ for
r = 1. Then the joint behaviour of the functionals h1 of the sample quantile qn(p) (for p ∈ (0, 1)) and
h2 of the sample measure of dispersion m̂(X,n, r) (defined in (1)), is asymptotically normal:

√
n

(
h1(qn(p))− h1(qX(p))

h2(m̂(X,n, r))− h2(m(X, r))

)
d−→

n→∞
N (0,Σ(r)), (5)

9



where the asymptotic covariance matrix Σ(r) = (Σ
(r)
ij , 1 ≤ i, j ≤ 2) satisfies

Σ
(r)
11 =

p(1− p)
f2
X(qX(p))

(
h′1(qX(p))

)2
; Σ

(r)
22 =

(
h′2(m(X, r))

)2
Var (|X − µ|r + (2− r)(2FX(µ)− 1)X) ;

(6)

Σ
(r)
12 = Σ

(r)
21 = h′1(qX(p))h′2(m(X, r))× τr(|X − µ|, p) + (2− r)(2FX(µ)− 1)τ1(p)

fX(qX(p))
, (7)

where τr is defined in (3).

The asymptotic correlation between the functional h1 of the sample quantile and the functional h2 of the
measure of dispersion is - up to its sign a± - the same whatever the choice of h1, h2:

lim
n→∞

Cor (h1(qn(p)), h2(m̂(X,n, r))) = a±×
τr(|X − µ|, p) + (2− r)(2FX(µ)− 1)τ1(p)√

p(1− p) Var (|X − µ|r + (2− r)(2FX(µ)− 1)X)
,

(8)
where a± = sgn(h′1(qX(p))× h′2(m(X, r))).

Remark 2 Notice that in the case the functionals h1, h2 are such that h′1(qX(p))h′2(m(X, r)) = 0,
we have asymptotic linear independence: Equations (7) and (8) will equal zero (as sgn(0) = 0 by
definition). This remark holds for all other results involving the functionals h1, h2 too, but we will not
mention it each time.

Note that apart from choosing the dependence with the sample variance (r = 2) or sample MAD (r = 1),
the choice of r also has an impact on the required existence of moments of X . Indeed, with r = 2, we
require the existence of the fourth moment of X , while, with r = 1, only a finite second moment.

Further, note that we could have formulated Theorem 1 in a more general form using a function h(x, y) =(
h1(x, y)
h2(x, y)

)
or considering a vector-valued version of the theorem (vector of sample quantiles), but pre-

ferred for readability the above presentation (see Appendix D for such extensions).

The case of the dependence between functionals of the sample quantile qn(p) and MedianAD ξ̂n cannot
be included in the same mathematical framework and needs to be formulated separately. The different
dependent structure appears clearly in the expressions of the covariance and correlation (e.g. involving
maxima - something we did not have in Theorem 1).

Proposition 3 Consider an iid sample with parent rvX with, if defined, mean µ and variance σ2. Under
conditions (C1) and (C3) in the neighbourhoods of qX(p), ν, ν±ξ, the joint behaviour of the functionals
h1 of the sample quantile qn(p) (for p ∈ (0, 1)) and h2 of the sample MedianAD ξ̂n (defined in Table 1)
is asymptotically normal:

√
n

(
h1(qn(p))− h1(qX(p))

h2(ξ̂n)− h2(ξ)

)
d−→

n→∞
N (0,Γ),

where the asymptotic covariance matrix Γ = (Γij , 1 ≤ i, j ≤ 2) satisfies

Γ11 =
p(1− p)
f2
X(qX(p))

(
h′1(qX(p))

)2
; Γ22 =

1 + γ/f2
X(ν)

4(fX(ν + ξ) + fX(ν − ξ))2

(
h′2(ξ)

)2
; (9)

Γ12 = Γ21 = h′1(qX(p))h′2(ξ)× (10)

−max (0, FX(ν + ξ)−max (FX(ν − ξ), p)) + 1−p
2 + fX(ν+ξ)−fX(ν−ξ)

fX(ν) max
(
−p

2 ,
p−1

2

)
fX(qX(p)) (fX(ν + ξ) + fX(ν − ξ))

10



where γ = (fX(ν + ξ)− fX(ν − ξ)) fX(ν) (fX(ν + ξ)− fX(ν − ξ)− 4) (1− FX(ν − ξ)− FX(ν + ξ))
and ν denotes the median of the sample (see Table 1).

The asymptotic correlation between the two functionals is - up to its sign a± - the same whatever the
choice of h1, h2: lim

n→∞
Cor

(
h1(qn(p)), h2(ξ̂n)

)
=

a± ×
−max (0, FX(ν + ξ)−max (FX(ν − ξ), p)) + 1−p

2 + fX(ν+ξ)−fX(ν−ξ)
fX(ν) max

(
−p

2 ,
p−1

2

)
√

p(1−p)
4

√
1 + γ

f2
X(ν)

(11)

where a± := sgn(h′1(qX(p))h′2(ξ)).

Two remarks with respect to the result presented. First, note that the asymptotic dependence with the
sample MedianAD does not even require a finite mean. Second, for symmetric distributions, it holds
that fX(ν + ξ) = fX(ν − ξ) and γ = 0, so the expressions of Γ and (11) simplify a lot.

2.2 Location-Scale Quantile

As a comparison to using historical estimation via sample quantiles (denoted by qn), let us estimate
the quantile via the known analytical formula for the quantile of the model when considering a given
location-scale distribution with unknown but finite mean µ and variance σ2 as defined in equation (2).
Consequently, we can write the quantile of order p in such cases as

qX(p) = µ+ σqY (p), (12)

where Y is the corresponding rv with standardised distribution with mean 0 and variance 1.

Hence, if we estimate µ by the sample mean X̄n and σ by the square-root of the sample variance, σ̂n,
the quantile estimator based on (12) can be written as

q̂n,µ̂,σ̂(p) = X̄n + σ̂nqY (p). (13)

In the case µ is known, this reduces to qn,σ̂(p) = µ + σ̂nqY (p), and studying the dependence with the
dispersion measure estimators will be simpler.

We keep the same structure as in Subsection 2.1: First, we present a unified result for the dependence
of (here) the location-scale quantile with the sample variance or sample MAD. Then, we present the
corresponding result when using the sample MedianAD. Since we distinguish the cases µ unknown
from known, we always start with the more general case (µ unknown), and, as a Corollary, present the
case with known mean µ.

Let us start with presenting the analogon of Theorem 1 for functionals of the location-scale quantile
estimator.

Proposition 4 Consider an iid sample with parent rv X having mean µ and variance σ2. Assume
conditions (C1), (M2), as well as (C2) at µ for r = 1. Then, taking r = 1, 2, the joint behaviour of
the functionals h1 of the quantile qn,µ̂,σ̂(p) from a location-scale model (for p ∈ (0, 1)) and h2 of the
measure of dispersion m̂(X,n, r) (defined in Table 1) is asymptotically normal:

√
n

(
h1(qn,µ̂,σ̂(p))− h1(qX(p))

h2(m̂(X,n, r))− h2(m(X, r))

)
d−→

n→∞
N (0,Λ(r)), (14)

11



where the asymptotic covariance matrix Λ(r) = (Λ
(r)
ij , 1 ≤ i, j ≤ 2) satisfies

Λ
(r)
11 = σ2

(
h′1(qX(p))

)2 (
1 + qY (p)

(
qY (p)(E[Y 4]− 1)/4 + E[Y 3]

))
; (15)

Λ
(r)
22 =

(
h′2(m(X, r))

)2
Var

(
|X − µ|r + (2− r)(2FX(µ)− 1)X

)
; (16)

Λ
(r)
12 = Λ

(r)
21 = σr+1 h′1(qX(p))h′2(m(X, r))× (17)(

E[Y r+1] + (2− r)
(
2FY (0)− 1− 2E[|Y |r+11I(Y <0)]

)
+
qY (p)

2

(
E[|Y |r+2]− E[|Y |r] + (2− r)(2FY (0)− 1)E[Y 3]

))
.

The asymptotic correlation between the functional h1 of the sample quantile and the functional h2 of the
measure of dispersion is - up to its sign a± - the same whatever the choice of h1, h2:

lim
n→∞

Cor (h1(qn,µ̂,σ̂(p)), h2(m̂(X,n, r))) = a±× (18)

E[Y r+1] + (2− r)
(

2FY (0)− 1− 2E[|Y |r+11I(Y <0)]
)

+ qY (p)
2

(
E[|Y |r+2]− E[|Y |r] + (2− r)(2FY (0)− 1)E[Y 3]

)
√(

1 + qY (p)
(
qY (p)E[Y 4]−1

4 + E[Y 3]
))

Var
(
|Y |r + (2− r)(2FY (0)− 1)Y

) ,

where a± = sgn(h′1(qX(p)) × h′2(m(X, r))). Hence, the asymptotic correlation does not depend on
the mean µ and the variance σ2 of the underlying location-scale distribution, and, as before, is - up to
its sign - independent of the specific choice of h1, h2.

Further, if we assume the location-scale distribution to be symmetric, then the asymptotic correlation
between the location-scale quantile qn,µ̂,σ̂ and the measure of dispersion estimator can be proved to
have its minimum absolute correlation (value of 0) for p = 0.5 and to be (point-)symmetric with respect
to p = 0.5.

Note that using the location-scale quantile model implies assuming the existence of a finite fourth mo-
ment with the sample variance and with the sample MAD - this is in contrast to the historical estimation
with the sample quantile.

Further, while equations (17) and (18) for covariance and correlation simplify when either having a
symmetric distribution or with zero third central moment µ3 (e.g. for elliptical distributions), it is also
worth looking specifically at the case when the mean of the distribution is known, thus estimating the
quantile as qn,σ̂ = µ+ qY (p)σ̂n:

Corollary 5 Under the same conditions and notations as in Proposition 4, we can say that the asymp-
totic covariance of the functional h1 of the quantile qn,σ̂ from a location-scale distribution with known
mean and the functional h2 of the measure of dispersion m̂(X,n, r), is, for p ∈ (0, 1), asymptotically
normal:

√
n

(
h1(qn,σ̂(p))− h1(qX(p))

h2(m̂(X,n, r))− h2(m(X, r))

)
d−→

n→∞
N (0, Λ̃(r)), (19)

where the asymptotic covariance matrix Λ̃(r) = (Λ̃
(r)
ij , 1 ≤ i, j ≤ 2) satisfies

Λ̃
(r)
11 = σ2

(
h′1(qX(p))

)2
q2
Y (p)

E[Y 4]− 1

4
; Λ̃

(r)
22 =

(
h′2(m(X, r))

)2
Var

(
|X − µ|r + (2− r)(2FX(µ)− 1)X

)
;

(20)

Λ̃
(r)
12 = Λ̃

(r)
21 = σr+1 qY (p)

2

(
E[|Y |r+2]− E[|Y |r] + (2− r)(2FY (0)− 1)E[Y 3]

)
h′1(qX(p))h′2(m(X, r)).

(21)
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The asymptotic correlation remains independent - up to its sign - of the specific choice of h1, h2:
lim
n→∞

Cor (h1(qn,σ̂(p)), h2(m̂(X,n, r))) =

sgn
(
h′1(qX(p))h′2(m(X, r))(p− FY (0))

)
× E[|Y |r+2]− E[|Y |r] + (2− r)(2FY (0)− 1)E[Y 3]√

(E[Y 4]− 1) Var(|Y |r + (2− r)(2FY (0)− 1)Y )
.

(22)

Note, that in this case the correlation is (up to sign changes) constant in p.

We now consider the joint asymptotics of functionals of the location-scale quantile estimator with func-
tionals of the sample MedianAD.

Proposition 6 Consider an iid sample with parent rv X from a location-scale distribution having mean
µ and variance σ2. Under (C1), (M2) and (C3) in the neighbourhoods of ν, ν ± ξ, the joint behaviour
of the functionals h1 of the quantile qn,µ̂,σ̂(p) from a location-scale model (for p ∈ (0, 1)) and h2 of the
sample MedianAD ξ̂n (defined in Table 1) is asymptotically normal:

√
n

(
h1(qn,µ̂,σ̂(p))− h1(qX(p))

h2(ξ̂n)− h2(ξ)

)
d−→

n→∞
N (0,Π), (23)

where the asymptotic covariance matrix Π = (Πij , 1 ≤ i, j ≤ 2) satisfies

Π11 = σ2
(
h′1(qX(p))

)2 (
1 + qY (p)

(
qY (p)(E[Y 4]− 1)/4 + E[Y 3]

))
; (24)

Π22 =
1 + γ/f2

X(ν)

4(fX(ν + ξ) + fX(ν − ξ))2

(
h′2(m(X, r))

)2
; (25)

Π12 = Π21 =
h′1(qX(p))h′2(ξ)σ2

2
(
fY (ν+ξ−µ

σ ) + fY (ν−ξ−µσ )
) ×( −E

[
(Y 2qY (p) + 2Y )1I( ν−ξ−µσ

<Y≤ ν+ξ−µ
σ )

]

+
fY (ν+ξ−µ

σ )− fY (ν−ξ−µσ )

fY (ν−µσ )
E
[
(Y 2qY (p) + 2Y )1I(Y≤ ν−µσ )

]
+
qY (p)

2

(
1−

fY (ν+ξ−µ
σ )− fY (ν−ξ−µσ )

fY (ν−µσ )

) )
.

(26)

The asymptotic correlation remains independent - up to its sign - of the specific choice of h1, h2:

lim
n→∞

Cor
(
h1(qn,µ̂,σ̂(p)), h2(ξ̂n)

)
= sgn(h′1(qX(p))h′2(ξ))× (27)

−E
[
(Y 2qY (p) + 2Y )1I( ν−ξ−µσ <Y≤ ν+ξ−µσ )

]
+

fY ( ν+ξ−µσ )−fY ( ν−ξ−µσ )

fY ( ν−µσ )
E
[(
Y 2qY (p) + 2Y

)
1I(Y≤ ν−µσ )

]
+ qY (p)

2

(
1− fY ( ν+ξ−µσ )−fY ( ν−ξ−µσ )

fY ( ν−µσ )

)
√

1 +
(fY ( ν+ξ−µσ )−fY ( ν−ξ−µσ ))

2

f2
Y ( ν−µσ )

− 4(fY ( ν+ξ−µσ )−fY ( ν−ξ−µσ ))
fY ( ν−µσ )

(
1− FY (ν−ξ−µσ )− FY (ν+ξ−µ

σ )
)
×
√

1 + q2
Y (p)E[Y 4]−1

4 + qY E[Y 3]

.

In the case where the mean of the distribution is known, we have:

Corollary 7 Under the same conditions and notations as in Proposition 6, the joint behaviour of the
functional h1 of the quantile qn,σ̂ from a location-scale distribution with known mean and the functional
h2 of our sample MedianAD ξ̂n, is, for p ∈ (0, 1), asymptotically normal:

√
n

(
h1(qn,σ̂(p))− h1(qX(p))

h2(ξ̂n)− h2(ξ)

)
d−→

n→∞
N (0, Π̃), (28)
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where the asymptotic covariance matrix Π̃ = (Π̃ij , 1 ≤ i, j ≤ 2) satisfies

Π̃11 = σ2
(
h′1(qX(p))

)2
q2
Y (p)(E[Y 4]− 1)/4 ; (29)

Π̃22 =
1 + γ/f2

X(ν)

4(fX(ν + ξ) + fX(ν − ξ))2

(
h′2(m(X, r))

)2
; (30)

Π̃12 = Π̃21 =
σ2qY (p)

2
(
fY (ν+ξ−µ

σ ) + fY (ν−ξ−µσ )
) × h′1(qX(p))h′2(ξ) × (31)

(
−E

[
Y 21I( ν−ξ−µσ

<Y≤ ν+ξ−µ
σ )

]
+
fY (ν+ξ−µ

σ )− fY (ν−ξ−µσ )

fY (ν−µσ )
E
[
Y 21I(Y≤ ν−µσ )

]
+

1

2

(
1−

fY (ν+ξ−µ
σ )− fY (ν−ξ−µσ )

fY (ν−µσ )

))
.

The asymptotic correlation remains, as before, independent - up to its sign - of the specific choice of
h1, h2:

lim
n→∞

Cor
(
h1(qn,σ̂(p)), h2(ξ̂n)

)
= sgn

(
(p− FY (0))× h′1(qX(p))h′2(ξ)

)
× (32)

−E
[
Y 21I( ν−ξ−µσ

<Y≤ ν+ξ−µ
σ )

]
+

fY ( ν+ξ−µ
σ

)−fY ( ν−ξ−µ
σ

)

fY ( ν−µ
σ

)
E
[
Y 21I(Y≤ ν−µσ )

]
+ 1

2

(
1− fY ( ν+ξ−µ

σ
)−fY ( ν−ξ−µ

σ
)

fY ( ν−µ
σ

)

)
√

1 +
(fY ( ν+ξ−µ

σ
)−fY ( ν−ξ−µ

σ
))

2

f2
Y ( ν−µ

σ
)

− 4(fY ( ν+ξ−µ
σ

)−fY ( ν−ξ−µ
σ

))
fY ( ν−µ

σ
)

(
1− FY (ν−ξ−µσ )− FY (ν+ξ−µ

σ )
)
×
√

E[Y 4]−1
4

.

While in the case of the asymptotics of the sample MedianAD with the sample quantile we did not even
required a finite mean of the underlying distribution, we need in this case a finite fourth moment, as we
are considering the location-scale quantile.

2.3 Specific Cases and Methods

We briefly want to address two points. First, recall that the results about the asymptotic joint distribu-
tion so far have been presented in a functional form, i.e. for arbitrary functions h1, h2 (fulfilling, as
mentioned, the conditions of the Delta method, i.e. to be continuous and have existing derivatives at the
evaluated points). Here we turn to specific choices of functions h1, h2 and show how they are related.
Second, we briefly present and comment on the methods and ideas needed in the proofs given in the
Appendix A.

Common structure of cases considered - Clearly, in applications one considers specific choices of
h1, h2. For example the covariance/correlation with the quantile estimator itself, as well as with its
logarithm, is of interest in finance. The following proposition shows how such cases are related to each
other.

Proposition 8 Consider an iid sample with parent rv X with, if defined, mean µ and variance σ2.
Denote by q̂n a given quantile estimator (either qn(p), qn,µ̂,σ̂(p) or qn,σ̂(p)) and by D̂i,n a measure of
dispersion estimator (i = 1, 2, 3). Assume sufficient conditions on X to be given (i.e. depending on
the chosen estimators, some of (C1) − (C3), (Mk)). Then, the asymptotic covariance and correlation
respectively of different functionals of these quantities are related to each other in the following way:

lim
n→∞

Cov(
√
nq̂n,
√
nD̂i,n) =

1

2qX(p)
× lim
n→∞

Cov(
√
nq̂2

n,
√
nD̂i,n) = 2Di × lim

n→∞
Cov

(√
nq̂n,

√
n

√
D̂i,n

)
= qX(p)× lim

n→∞
Cov(

√
n log|q̂n|,

√
nD̂i,n) = qX(p)

√
Di × lim

n→∞
Cov

(√
n log|q̂n|,

√
n

√
D̂i,n

)
,
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and for the asymptotic correlations it holds that

lim
n→∞

Cor(q̂n, D̂i,n) = lim
n→∞

Cor

(
q̂n,

√
D̂i,n

)
= sgn(p− FX(0))× lim

n→∞
Cor(q̂2

n, D̂i,n)

= sgn(p− FX(0))× lim
n→∞

Cor(log|q̂n|, D̂i,n) = sgn(p− FX(0))× lim
n→∞

Cor

(
log|q̂n|,

√
D̂i,n

)
.

Hence, in the following we will always provide results for the asymptotic covariance/correlation between
the quantile estimator q̂n and the measure of dispersion estimator D̂i itself, as the other cases can be
deduced from this proposition. Note also that the asymptotic linear correlation does not change (up to
its sign) under non-linear transformation - although the linear correlation is known to be invariant only
under linear transformations. This is due to the fact that, asymptotically, all terms of higher order than
the linear approximation in the Taylor series are negligible.

Remark 9 In some cases, e.g. when using the logarithm, some care has to be taken when applying
the Delta method, as the conditions will not always be satisfied: For p = FX(0), the quantity 1/qX(p)
is not defined. In such cases, if the left-sided and right-sided limit (for the asymptotic covariance and
variance respectively) coincide, we simply set the value at the point itself, by continuity of the limit, to
be the left-sided limit.

Methods - Let us now comment on the proofs, given in detail in the Appendix A, of the main results
presented.

For the proofs involving the sample quantile, the main approach in proving Theorem 1 and Proposition 3
relies on the Bahadur representation of the sample quantile ([5]). Note that already in [29] the asymptotic
distribution of sample quantile and sample mean was computed using this representation. This was
subsequently used in [8] (see Theorem A.1) to obtain the asymptotic distribution of sample quantiles
with r-th absolute sample moments, in the case of an iid Gaussian sample with known mean µ. We will
show that the extension of their result to the general iid case is straightforward. Then, when considering
the sample variance and sample MAD, we extend the corresponding results to the case of an unknown,
hence estimated, mean for any underlying iid distribution (with respective moment and smoothness
conditions). Analogously, we show further that it is also possible to use the Bahadur representation for
the sample MedianAD to obtain Proposition 3. The proof is presented separately as it cannot be included
in the above framework.

Note that an alternative approach is possible to prove Theorem 1; it is based on a Taylor expansion
of the sample variance (or sample MAD respectively) and the sample quantile, and has more restrictive
smoothness conditions on the underlying distribution. We present it in the Appendix too, as it is a natural
extension and adaption of the techniques developed in [17] by Ferguson, who considered the asymptotic
joint distribution of the sample mean with the sample quantile.

In contrast to the work with the sample quantile the proofs involving the parametric location-scale quan-
tile estimator are direct computations. Thus, no specific comments on the procedure are given here.

2.4 The Effect of Sample Size in Estimation

We conclude this section by analysing the two impacts of the sample size n. The first one is of asymptotic
nature and simply considers the situation when using different sample sizes (in an asymptotic sense)
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for the measure of dispersion estimator and the quantile estimator respectively. Second, we evaluate
empirically how well the finite sample results approximate the theoretical asymptotics.

Asymptotic Scaling Law - We want to understand how the dependence effects of the quantile es-
timator with the measures of dispersion estimator (sample MAD, sample standard deviation, sample
MedianAD) depend on the chosen (asymptotic) sample size n.

Instead of looking separately at all the different cases when using either the historical estimation of the
quantile or the location scale model, and one of the three measures of dispersion, we consider a unified
approach. This is motivated by the fact that we are more interested in seeing how the values change
with different sample sizes, than presenting formulae for each of the sub-cases, which, anyway, can
be deduced from the results. Further, we will observe the same scaling property for each measure of
dispersion; thus, a unified approach seems appropriate.

We consider sample sizes, say nv = vn and nw = wn for integers v, w > 0, so that they are asymptot-
ically multiples of each other, i.e. lim

n→∞
nv/nw = v/w. This way we can introduce ‘different’ sample

sizes into an asymptotic framework. With the above notations, we can show the following result.

Theorem 10 (Asymptotic Scaling Law) Let v, w be positive integers and consider an iid sample with
parent rv X with, if defined, mean µ and variance σ2. Under appropriate moment and continuity
conditions for X (i.e. (C1) − (C3), (Mk), depending on the estimators), the asymptotic covariance
between functionals of a quantile estimator with sample size vn, h1(q̂vn), and functionals of the measure
of dispersion estimator for i ∈ {1, 2, 3} with sample size wn, h2(D̂i,wn), satisfies

lim
n→∞

Cov
(√

nh1(q̂vn),
√
nh2(D̂i,wn)

)
=

1

max (v, w)
lim
n→∞

Cov
(√

nh1(q̂n),
√
nh2(D̂i,n)

)
. (33)

Accordingly, one can show for the asymptotic correlation that

lim
n→∞

Cor
(
h1(q̂vn), h2(D̂i,wn)

)
=

√
min (v, w)

max (v, w)
lim
n→∞

Cor
(
h1(q̂n), h2(D̂i,n)

)
. (34)

Note that the conditions of applicability (i.e. moment and continuity conditions on rv X) of this propo-
sition depend on the chosen estimators (qn,t or qn,µ̂,σ̂, qn,σ̂,t as well as D̂i,n,t for i = 1, 2, 3) and are
the same as in the corresponding cases for equal sample sizes n. An application of this result will be
discussed in Section 4.

Finite sample performance - So far, we have presented asymptotic results for the joint distribution of
the quantile and dispersion measure estimators, given a sample of size n, with n→∞.

In practice, we need to estimate the quantile and measure of dispersion estimators on a finite sample
of size n, as well their corresponding covariance and correlation. It means we need a time-series of
quantile estimates and measure of dispersion estimates which we use to then empirically compute the
sample covariance and correlation.

Thus, by qn,t, qn,µ̂,σ̂,t, and qn,σ̂,t respectively, we denote the quantile estimators (depending on the
chosen estimation method) at time t over the last n observations before time t. Accordingly we introduce
the time t for our different measures of dispersion. For notational convenience, we use a framework that
incorporates all different cases (already introduced in Section 1): Denote the quantile estimator simply
by q̂n,t for a quantile estimated at time t over a sample of size n (it could be either the sample quantile
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qn,t or the location-scale quantile model qn,µ̂,σ̂,t, qn,σ̂,t respectively). By D̂i,n,t, for i = 1, 2, 3, we
denote the measure of dispersion of sample size n (and by Di its theoretical counterpart), referring with

D̂1,n,t = σ̂2
n,t or

√
D̂1,n,t = σ̂n,t to the sample variance or sample standard deviation respectively, with

D̂2,n,t = θ̂n,t to the sample MAD, and with D̂3,n,t = ξ̂n,t to the sample MedianAD.

To assess the finite sample performance, we conduct a simulation study in the following way: We simu-
late an iid sample with mean µ = 0 from three different distributions each: Either a Gaussian distribution
or Student distributions with 3 and 5 degrees of freedom, respectively. The sample is of varying size N .
The overall sample size is determined by the fact that we use different sample sizes n for the estimation
of either the quantile or the dispersion measure, with n = 126, 252, 504, 1008 (being multiples or frac-
tions of one year of data, i.e. 252 data points), and different lengths of time-series l. In each of the cases,
the overall sample size needed is N = nl. We compute the time series of quantile estimates q̂n,t(p) on
disjoint samples for quantiles of order p = 0.95 and p = 0.99 each, and accordingly the time series of
measure of dispersion estimates D̂i,n,t too. Recalling the correlation of interest, Cor

(
q̂n,t(p), D̂i,n,t

)
,

we then estimate the linear Pearson correlation using these two time series of l estimates. This procedure
is repeated 1’000-fold in each case. Then, we report the averages of the 1’000-fold repetition with, into
brackets, the corresponding empirical 95% confidence interval. Further, we provide as benchmark the
theoretical asymptotic value of the correlation in the last column. Also, we provide confidence intervals
for the sample Pearson linear correlation coefficient (using the classical variance-stabilizing Fisher trans-
form of the correlation coefficient for a bivariate normal distribution to compute the confidence intervals
-see the original paper [18] or e.g. a standard encyclopedia entry [37]). Note that those confidence inter-
val values have to be considered with care. Recall that the bivariate normality of the quantile estimator
and measure of dispersion estimator holds asymptotically. Hence, it is not clear if for the sample sizes n
considered, we can assume bivariate normality (this could be tested). Still, we provide those theoretical
confidence intervals as approximate guidance.

The full results of the simulation study are available in the Appendix D.2. In Table 2 we focus on
the approximation of the joint asymptotic correlation as a function of the sample size n, the different
dispersion estimators and the three different distributions considered. Thus, we only consider the sample
quantile (and not the location-scale quantile) and fix the length of the sample correlation time series to
l = 50 (from the simulations in Appendix D.2, one can see that such a time series is long enough for a
good estimation of the correlation). Also, here we focus on p = 0.95. Clearly, for a higher quantile, as
e.g. p = 0.99, using the same sample size n for the estimation of the quantile and the sample correlation
will be less precise.

The explicit expressions in the case of a Gaussian or Student distribution of the asymptotic correlation
used to calculate the theoretical values in Table 2 will be shown in Section 3 (but could be already
derived from the theorems presented). Similarly, in Section 3 we will see that the correlation results
for location-scale distributions are independent of its parameters, hence the specification of µ, σ2 is not
needed.

We recall that when working with the sample standard deviation, the existence of the fourth moment is
a necessary condition, also when working with the location-scale quantile. Thus, as they do not exist for
a Student distribution with 3 degrees of freedom, we simply write ‘NA’ as theoretical value instead.

Let us look at the results in Table 2. First we consider the Gaussian case. For the three dispersion
measures, the behaviour is equal: We see that a sample size of n = 126 suffices to estimate on average
the asymptotic correlation well enough. Also, the theoretical confidence intervals coming from a sample
correlation of size l = 50 are captured well by the empirical confidence intervals. Moving to the
Student(5) distribution, the picture changes a bit. The sample correlation with the sample variance does

17



Table 2: Average values from a 1’000-fold repetition. Comparing the sample correlation of the sample measure
of dispersion with the sample quantile, as a function of the sample size n on which the quantile is estimated
(fixed length l = 50 of the time-series used to estimate the correlation). Underlying samples are simulated from a
Gaussian, Student(5) and Student(3) distributions. Average empirical values are written first (with empirical 95%
confidence interval in brackets). The corresponding theoretical values, mean and 95% confidence interval, are
provided in the last column. We consider the threshold p = 0.95.

p = 0.95 n = 126 n = 252 n = 504 n = 1008 theoretical value

Gaussian distr.

Ĉor(σ̂2
n, q̂n(p)) 55 (33,71) 55 (34,73) 55 (34,73) 55 (34,71) 55 (32,72)

Ĉor(θ̂n, q̂n(p)) 48 (26,66) 48 (26,69) 48 (25,69) 48 (26,66) 48 (23,67)

Ĉor(ξ̂n, q̂n(p)) 23 (-4,48) 23 (-3,48) 23 (-4,49) 23 (-4,45) 23 (-5,48)

Student(5) distr.

Ĉor(σ̂2
n, q̂n(p)) 51 (19,75) 49 (19,71) 47 (19,68) 46 (20,67) 43 (17,63)

Ĉor(θ̂n, q̂n(p)) 50 (27,71) 50 (27,69) 50 (27,70) 51 (27,69) 51 (27,69)

Ĉor(ξ̂n, q̂n(p)) 23 (-6,50) 23 (-6,47) 23 (-6,47) 23 (-6,48) 23 (-5,48)

Student(3) distr.

Ĉor(σ̂2
n, q̂n(p)) 25 (-8,55) 22 (-9,52) 19 (-9,47) 17 (-14,44) NA

Ĉor(θ̂n, q̂n(p)) 48 (21,68) 47 (23,67) 47 (20,68) 47 (23,67) 48 (23,67)

Ĉor(ξ̂n, q̂n(p)) 23 (-4,49) 22 (-7,48) 22 (-7,47) 23 (-7,49) 23 (-5,48)

not estimate on average accurately the theoretical value. For increasing n, it approaches the theoretical
value. This can be explained by the fact that the theoretical correlation values come from the underlying
asymptotic bivariate normal distribution. Hence, for a small n the corresponding sample quantities are
not yet bivariate normally distributed and one would need a larger sample for this. Correspondingly,
the confidence intervals (whose theoretical values, again, are based on a bivariate normal sample) are
not that exact. This different behaviour is not observed for the MAD or MedianAD with more accurate
results, as in the Gaussian case. While the average with the MAD is slightly (one percent point) below
the theoretical value for most values of n (which is acceptable), it equals the theoretical value exactly
in the case of the MedianAD. In both cases, the sample confidence intervals correspond quite well
to the theoretical ones, potentially indicating that the sample quantities converge faster to a bivariate
normal distribution. The case of the Student(3) distribution is as the Student(5) distribution, the only
difference being that the theoretical correlation values with the sample variance are not defined (as the
fourth moment does not exist). However, the behaviour of the sample correlation with the MAD and
MedianAD does not change.

3 Case of Location-Scale Distributions

We presented in Section 2 the general results about the joint asymptotic distributions for the functionals
of measure of dispersion estimators with functionals of either the sample quantile or the location-scale
quantile estimator. While the results for the former hold for all underlying distributions (with some
smoothness conditions and restrictions on the existence of its moments), the location-scale quantile
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can be built only for location-scale distributions. Thus, to be able to compare the behaviour with both
quantile estimators, we will assume in this section that the rvX comes from a location-scale distribution
FX with finite mean µ and finite variance σ2. Such distributions appear often in financial applications.
Standard examples of location-scale distributions are the elliptical distributions such as the Gaussian and
the Student. For instance, if X ∼ N (µ, σ2), then

qX(p) = µ+ σΦ−1(p),

whereas, if X is Student distributed rv (also referred to as t-distributed or Student t-distributed) with ν
degrees of freedom, mean µ and variance σ2, then

qX(p) = µ+ σqY (p) = µ+
σ√
ν
ν−2

qỸ (p)

where Y ∼ t(0, ν−2
ν , ν) and the standard Student rv Ỹ ∼ t (0, 1, ν). Note that we follow the usual

convention to denote a Student rv with mean µ and variance σ2 by X ∼ t(µ, σ2(ν − 2)/ν, ν), the
second parameter being the scale parameter (and not the variance).

Consequently, we have two different ways of estimating the quantile, either via the sample quantile, or
via the given quantile relation for location-scale distributions. Although both estimators converge to the
same quantity, the theoretical quantile, they do not have the same rate of convergence. This has some
impact on their asymptotic covariance and correlation with the corresponding measure of dispersion
(sample variance, sample MAD or sample MedianAD), thus in practice too. Using the location-scale
quantile, we obtain a better rate of convergence than with the historical estimation, as expected. Hence
our interest of investigating this second way of estimation, as it provides a benchmark in comparison
to the convergence with the historical estimation. Still, the location-scale quantile is not often used in
practice, as one does not generally know the underlying distribution, so using it could add model risk to
the estimation.

In the following, we consider both estimators of the quantile, starting with the historical one, then using
the location-scale formula. In each case, we look at the covariance and correlation with the sample vari-
ance, sample MAD and sample MedianAD separately and apply it to our two exemplary distributions,
the Gaussian and the Student distributions. In the examples it would suffice to consider either the case
of the estimated quantile or its logarithm (recall Proposition 8) but we provide both for the convenience
of the reader. In the third and last part, we bring together the results of the historical estimation and the
usage of the location-scale quantile model. Using the location-scale quantile as benchmark, we can state
the difference in speed of convergence when using the two estimators by considering the ratio of speeds
of convergence (again separately for the three measures of dispersion considered in this paper). We do
so by looking at the two main examples used in this paper, the Gaussian and the Student distributions.

3.1 Historical Estimation

We start with the version of Theorem 1 using the sample quantile for location-scale distributions, then
consider separately the cases of sample variance and sample MAD. For location-scale distributions,
using the notations above, Theorem 1 simplifies as follows:

Proposition 11 Consider an iid sample with parent rv X from a location-scale distribution having
mean µ, variance σ2, and corresponding rv Y with standardised distribution. Under the conditions
(C1), (C3) in a neighbourhood of qX(p), for r = 1, 2 (Mr) respectively and, additionally, (C2) at µ,
the joint behaviour of the functionals h1 of the sample quantile qn(p) (for p ∈ (0, 1)) and h2 of the
measure of dispersion m̂(X,n, r) (defined in (1)) is asymptotically normal (via Theorem 1), satisfying
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(5) where the asymptotic covariance Σ
(r)
12 = lim

n→∞
Cov

(√
nh1(qn(p)),

√
nh2(m̂(X,n, r))

)
simplifies

to:

Σ
(r)
12 =

σr+1
(
τr(|Y |, p) + (2− r)(2FY (0)− 1)τ1(Y, p)

)
fY (qY (p))

h′1(qX(p))h′2(m(X, r)), (35)

and the asymptotic correlation to:

lim
n→∞

Cor (h1(qn(p)), h2(m̂(X,n, r))) = a± ×
τr(|Y |, p) + (2− r)(2FY (0)− 1)τ1(Y, p)√
p(1− p) Var(|Y |r + (2− r)(2FY (0)− 1)Y )

(36)

with a± = sgn(h′1(qX(p))× h′2(m(X, r))), and τr defined in (3).

Further, if we assume the location-scale distribution to be symmetric, then the asymptotic correlation
between the sample quantile and the measure of dispersion estimator can be proved to have its minimum
absolute correlation (value of 0) for p = 0.5 and to be (point-)symmetric with respect to p = 0.5.

Note that the asymptotic correlation (36) is not only independent - up to the sign - of the specific choice
of h1, h2, but also does not depend on the mean µ and the variance σ2 of the underlying location-scale
distribution.

We now look at the specific choices of r = 2 (sample variance) and r = 1 (MAD) separately, to obtain
specific explicit expressions for the covariance Σ

(r)
12 or corresponding correlation.

Dependence with Sample Variance - When choosing r = 2 in Proposition 11, we are in the case
of dependence with the sample variance, which requires the existence of the fourth moment of the
underlying distribution.

Corollary 12 Consider an iid sample with parent rv X following a location-scale distribution under
conditions (C1), (C3) in a neighbourhood of qX(p) and (M2). Let Y be the corresponding rv with stan-
dardised distribution. Then the asymptotic covariance of the sample quantile and the sample variance
satisfies, for p ∈ (0, 1),

lim
n→∞

Cov(
√
nqn(p),

√
nσ̂2

n) =
p σ3

(
1− E[Y 2|Y ≤ qY (p)]

)
fY (qY (p))

, (37)

from which we deduce the asymptotic correlation:

lim
n→∞

Cor(qn(p), σ̂2
n) =

√
p

1− p
× 1− E[Y 2|Y ≤ qY (p)]√

E[Y 4]− 1
, (38)

which can be rewritten to better show the dependence of the truncated moments on both, the upper and
lower tails, as

lim
n→∞

Cor(qn(p), σ̂2
n) =

√
p(1− p)

(
E[Y 2|Y > qY (p)]− E[Y 2|Y ≤ qY (p)]

)√
E[Y 4]− 1

. (39)

As an application of Corollary 12, let us consider the two elliptical examples of the Gaussian and Student
distributions, for which we can get explicit expressions. The conditions of Corollary 12 are clearly
met: Both distributions are absolutely continuous and strictly monotonically increasing, i.e. (C1), and
have bounded second derivative, i.e. (C3). For the Gaussian distribution the condition (M2) is always
satisfied whereas for the Student distribution we need a degree of freedom ν > 4. For p ∈ (0, 1), we
have:
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Example 13 (i) In the case of a Gaussian distribution with mean µ and variance σ2:

lim
n→∞

Cov(
√
n qn(p),

√
n σ̂2

n) = σ3Φ−1(p) =
(
µ+ σΦ−1(p)

)
× lim
n→∞

Cov(
√
n log|qn(p)|,

√
n σ̂2

n), (40)

whereas all the correlations are identical - up to the sign- and equal to:

lim
n→∞

Cor(qn(p), σ̂2
n) =

φ(Φ−1(p))Φ−1(p)√
2p(1− p)

= sgn

(
p− Φ

(
−µ
σ

))
× lim
n→∞

Cor(log|qn(p)|, σ̂2
n).

(41)

(ii) In the case of a Student distribution with mean µ, variance σ2 and ν > 4 degrees of freedom,

lim
n→∞

Cov(
√
n qn(p),

√
n σ̂2

n) = σ3

√
ν − 2

ν
qỸ (p)

(
1 +

q2
Ỹ

(p)

ν

)
=

√
ν − 2

ν

(√
ν

ν − 2
µ+ σqỸ (p)

)
× lim
n→∞

Cov(
√
n log(|qn(p)|),

√
n σ̂2

n),

(42)
whereas, as before, the correlations are up to their sign all identical in the different cases:

lim
n→∞

Cor(qn(p), σ̂2
n) =

fỸ (qỸ (p)) qỸ (p)
(

1 +
q2
Ỹ

(p)

ν

)
√

ν−1
ν−4 2 p(1− p)

= sgn

(
p− FỸ

(
−µ
σ

√
ν

ν − 2

))
× lim
n→∞

Cor(log|qn(p)|.σ̂2
n)

(43)
As expected, letting ν →∞ gives back the results for the Gaussian distribution given in (i).

Dependence with Sample Mean Absolute Deviation - We have seen, when using the sample variance
as measure of dispersion, that we are restricted for the results of asymptotic normality to distributions
with finite fourth moment. If we choose r = 1 in Proposition 11, i.e. when considering the dependence
between functionals of the sample quantile and functionals of the sample MAD, it allows us to relax this
strong moment condition (only a finite second moment is required). Such a less restrictive condition is
needed for most financial applications, when using for instance Student distributions with 2 < ν < 4.

Corollary 14 Consider an iid sample with parent rv X following a location-scale distribution continu-
ous at µ and fulfilling conditions (C1), (C2) at µ, (C3) in a neighbourhood of qX(p) and (M1). Then,
the asymptotic covariance of the sample quantile and sample MAD satisfies, for p ∈ (0, 1),

lim
n→∞

Cov(
√
nqn(p),

√
nθ̂n) =

σ2 p

fY (qY (p))

(
θ/σ − E[|Y ||Y ≤ qY (p)]− (2FY (0)− 1)E[Y |Y ≤ qY (p)]

)
(44)

from which we deduce the asymptotic correlation:

lim
n→∞

Cor(qn(p), θ̂n) =
θ/σ − E[|Y ||Y ≤ qY (p)]− (2FY (0)− 1)E[Y |Y ≤ qY (p)]√

p(1− p) Var(|Y |+ (2FY (0)− 1)Y )
. (45)

Let us quickly look at how these formulae simplify for a Gaussian and a Student distributions (since
both distributions are symmetric around the mean). For this, recall that Var(|X − µ|) = σ2 − θ2 where
θ is defined in Table 1 and the values of θ are tabulated for many of the well-known distributions. Note
that we present the expressions only for p ≥ 0.5, the case p < 0.5 being deduced by symmetry. For
p < 0.5,

lim
n→∞

Cov(
√
nqn(p),

√
nθ̂n) = − lim

n→∞
Cov(

√
nqn(1− p),

√
nθ̂n)
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or, in the case involving the logarithm (and assuming µ = 0),

lim
n→∞

Cov(
√
n log|qn(p)|,

√
nθ̂n) = lim

n→∞
Cov(

√
n log|qn(1− p)|,

√
nθ̂n),

and accordingly for the correlations. Also, we already discussed before Example 13 why conditions
(C1) and (C3) are met for the Gaussian and Student distributions. Further, for the dependence with the
sample MAD, we only require (M1), i.e. finite variance, as mentioned before. While this is fulfilled for
the Gaussian distribution, we need ν > 2 for the Student case. Thus, we only need to argue why (C2) is
fulfilled: As both distributions are continuously differentiable, they are also Hölder continuous.

Example 15 (i) In the case of a Gaussian distribution we have, for p ≥ 0.5,

lim
n→∞

Cov(
√
nqn(p),

√
nθ̂n) =

σ2

φ(Φ−1(p))

(
φ(Φ−1(p))− 1− p

√
2

π

)
=
(
µ+ σΦ−1(p)

)
× lim
n→∞

Cov(
√
n log|qn(p)|,

√
nθ̂n), (46)

whereas the correlation is -up to the sign - identical in the two different cases

lim
n→∞

Cor(qn(p), θ̂n) = sgn

(
p− FY

(
−µ
σ

))
× lim
n→∞

Cor(log|qn(p)|, θ̂n) =
φ(Φ−1(p))− (1− p)

√
2/π√

p(1− p)
√

1− 2/π
.

(47)

(ii) For the case of a Student distribution with ν > 2 degrees of freedom, for p ≥ 0.5,

lim
n→∞

Cov(
√
nqn(p),

√
nθ̂n) =

σ2(ν − 2)

fỸ (qỸ (p))

(
fỸ (qỸ (p))

ν − 1

(
1 +

q2
Ỹ

(p)

ν

)
−

Γ(ν−1
2 )

√
πν Γ(ν2 )

(1− p)

)
(48)

and for the case involving the logarithm,

lim
n→∞

Cov(
√
n log|qn(p)|,

√
nθ̂n) =

σ2(ν − 2)

(
1

ν−1

(
1 +

q2
Ỹ

(p)

ν

)
− Γ( ν−1

2
)√

πν Γ( ν
2

)
(1−p)

fỸ (qỸ (p))

)
µ+ σ

√
ν−2
ν qỸ (p)

(49)

and lim
n→∞

Cor(qn(p), θ̂n) = sgn

(
p− FỸ

(
−µ
σ

√
ν

ν − 2

))
× lim
n→∞

Cor(log|qn(p)|, θ̂n)

=

√
ν(ν−2)

ν−1 fỸ (qỸ (p))

(
1 +

q2
Ỹ

(p)

ν

)
− (1− p)

√
ν−2
π

Γ( ν−1
2

)

Γ(ν/2)√
p(1− p)

√
1− ν−2

π

Γ2( ν−1
2

)

Γ2(ν/2)

.

(50)

As expected, letting ν → ∞ provides the results for the Gaussian distribution given in (i). This
might be not as obvious as in Example 13, and one might need to recall the asymptotic property

of the Gamma function lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1 that we need to use here with n = να and α = 1/2.

Dependence with Sample Median Absolute Deviation - As in Section 2, we treat the case of depen-
dence with the sample MedianAD separately. We start by presenting the dependence of functionals of
the sample quantile and the sample MedianAD in the case of general location-scale distributions.
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Proposition 16 Consider an iid sample with parent rv X from a location-scale distribution fulfilling
conditions (M1), (C1) and (C3) in neighbourhoods of qX(p), ν, ν ± ξ. Then, the joint behaviour of the
functionals h1 of the sample quantile qn(p) (for p ∈ (0, 1)) and h2 of the sample MedianAD ξ̂n (defined
in Table 1) is asymptotically normal (via Proposition 3) and (10) rewrites as:

lim
n→∞

Cov
(√

nh1(qn(p)),
√
nh2(ξ̂n)

)
= h′1(qX(p))h′2(ξ)×

σ2

fY (qY (p))
(
fY ( ν+ξ−µ

σ
) + fY ( ν−ξ−µ

σ
)
)×


(
fY ( ν+ξ−µ

σ
)− fY ( ν−ξ−µ

σ
)
)

max
(
− p

2
, p−1

2

)
fY

(
ν−µ
σ

) −max

(
0, FY (

ν + ξ − µ
σ

)−max

(
FY (

ν − ξ − µ
σ

), p

))
+

1− p
2

 . (51)

The asymptotic correlation is - up to the sign - independent of the specific choice of h1, h2. Introducing

γ̃ =

(
fY

(
ν + ξ − µ

σ

)
− fY

(
ν − ξ − µ

σ

))(
fY

(
ν + ξ − µ

σ

)
− fY

(
ν − ξ − µ

σ

)
− fY

(
ν − µ
σ

))(
1− FY

(
ν − ξ − µ

σ

)
− FY

(
ν + ξ − µ

σ

))
,

and with a± = sgn (h′1(qX(p))h′2(ξ)), we have lim
n→∞

Cor
(
h1(qn(p)), h2(ξ̂n)

)
= a±×

2
(
fY ( ν+ξ−µσ )−fY ( ν−ξ−µσ )

fY ( ν−µσ )
max

(
−p2 ,

p−1
2

)
+ 1−p

2 −max
(

0, FY (ν+ξ−µ
σ )−max

(
FY (ν−ξ−µσ ), p

)))
√
p(1− p)

√
1 + γ̃

f2
Y ( ν−µσ )

. (52)

We observe that, in the case of the sample MedianAD, the formulae for asymptotic covariance and
correlation do not simplify for general location-scale distributions (compare (51), (52) with those for
general distributions in Proposition 3), contrarily to the case of the sample variance and the sample
MAD. Nevertheless, when assuming additionally the distribution to be symmetric, which covers a big
part of the location-scale distributions (as e.g. the Gaussian and Student distributions), those expressions
simplify a lot, as can be seen in the next proposition.

Proposition 17 Consider an iid sample with parent rv X from a symmetric location-scale distribu-
tion having mean µ, variance σ2 and fulfilling conditions (M1), (C1) and (C3) in neighbourhoods
of qX(p), ν, ν ± ξ. Then, the joint behaviour of the functionals h1 of the sample quantile qn(p) (for
p ∈ (0, 1)) and h2 of the sample MedianAD ξ̂n (defined in Table 1) is asymptotically normal (via Propo-
sition 3) and (10) rewrites as:

lim
n→∞

Cov(
√
nh1(qn(p)),

√
nh2(ξ̂n)) =

σ2 (1− p− 2 max (0, 3/4−max (1/4, p)))

4 fY (qY (p)) fY (qY (3/4))
h′1(qX(p))h′2(ξ).

(53)

The asymptotic correlation, independent - up to its sign - of the specific choice of h1, h2, satisfies:

lim
n→∞

Cor(h1(qn(p)), h2(ξ̂n)) =
1− p− 2 max (3/4−max (1/4, p), 0)√

p(1− p)
× sgn(h′1(qX(p))h′2(ξ))

(54)
and does not depend on the underlying symmetric location-scale distribution at all.

Also, the asymptotic correlation between the sample quantile and the sample MedianAD can be proved
to have its minimum absolute correlation (value of 0) for p = 0.5 and to be (point-)symmetric with
respect to p = 0.5.

The fact that the correlation above is completely independent of the underlying distribution is some-
thing to point out! As an application of Proposition 17, let us consider the two elliptical examples of
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the Gaussian and Student distributions, for which we can get explicit expressions. Again, we already
discussed before Example 13, why conditions (C1), (C3) are met in general for the Gaussian and Stu-
dent distribution. Because of the location-scale distributions, we need condition (M1) (finite variance)
to be fulfilled, thus need ν > 2 in the case of the Student distribution (although the asymptotics with
the sample MedianAD do not need a finite variance of the underlying distribution in general). As we
already know that the asymptotic correlation will be the same for the two distributions, we present the
example in a more compact form. We can show that, for p ∈ (0, 1), we have

Example 18

lim
n→∞

Cov(
√
n qn(p),

√
n ξ̂n) =

σ2

4
(1− p− 2 max (3/4−max (1/4, p), 0))×

{
1

φ(Φ−1(p))φ(Φ−1(3/4))
if X ∼ N (µ, σ2)

fỸ (qỸ (p))fỸ (qỸ (3/4)) ν
ν−2

if X ∼ t(µ, (ν − 2)σ2/ν, ν)

= lim
n→∞

Cov(
√
n log|qn(p)|,

√
n ξ̂n)×

µ+ σΦ−1(p) if X ∼ N (µ, σ2),

µ+
σq
Ỹ√
ν
ν−2

) if X ∼ t(µ, (ν − 2)σ2/ν, ν).
(55)

As expected, if we let ν → ∞ in the Student case, we get back the results for the covariance of
the Gaussian distribution. For both distributions, the correlations are identical - up to its sign when
considering the log-quantile:

lim
n→∞

Cor(qn(p), ξ̂n) = aX × lim
n→∞

Cor(log|qn(p)|, ξ̂n) =
1− p− 2 max (3/4−max (1/4, p), 0)√

p(1− p)
, (56)

where aX =

{
sgn(p− Φ(−µ/σ)) if X ∼ N (µ, σ2),

sgn
(
p− FỸ

(
−µ
σ

√
ν
ν−2

))
if X ∼ t(µ, (ν − 2)σ2/ν, ν).

3.2 Location-scale Quantile

Recall that, already in Subsection 2.2, we presented results for the location-scale quantile, namely the
unified result for the dependence of the location-scale quantile with the sample variance or sample MAD
(Proposition 4, Corollary 5) as well as the corresponding results when using the sample MedianAD
(Proposition 6, Corollary 7).

Hence, while keeping the same structure as in Subsection 3.1, the presentation differs a bit: We directly
start by looking separately at the covariance and correlation of the location-scale quantile with the sample
variance (r = 2) and sample MAD (r = 1). In the case of the sample MedianAD we present the case
for symmetric location-scale distributions. Since we distinguish the cases µ unknown from known, we
present the more general case first (µ unknown), and then comment on the case with known mean µ. As
before, we present explicit expressions for the covariance and correlation in the case of the Gaussian and
Student distributions for all three cases of measures of dispersion. Last but not least, recall that using
the asymptotics with the location-scale quantile model implies assuming the existence of a finite fourth
moment - this is in contrast to the historical estimation with the sample quantile (where we do not need
a finite fourth moment when considering the dependence with the sample MAD or MedianAD).

Dependence with Sample Variance - Let us start with the dependence of the sample variance and a
location-scale quantile model and state the result that follows from Proposition 4 when choosing r = 2.

Proposition 19 Consider an iid sample with parent rv X following a location-scale distribution. Then,
under (C1), (M2), the asymptotic covariance and correlation of the location-scale quantile qn,µ̂,σ̂ and
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sample variance σ̂2
n satisfy, respectively for p ∈ (0, 1),

lim
n→∞

Cov
(√
n qn,µ̂,σ̂(p),

√
n σ̂2

n

)
= µ3 + qY (p)

µ4 − σ4

2σ
(57)

and lim
n→∞

Cor
(
qn,µ̂,σ̂(p), σ̂2

n

)
=

sgn(p− FY (0))√
1 + 4(1+E[Y 3]qY (p))

(E[Y 4]−1)q2
Y (p)

×
(

1 +
2E[Y 3]

(E[Y 4]− 1)qY (p)

)
. (58)

Note that those expressions (57) and (58) simplify quite a lot when assuming zero third centred mo-
ment (µ3 = 0 = E[Y 3]), as e.g. for elliptical distributions, or when the mean is known, giving in
this latter case that the asymptotic correlation of the considered estimators is always 1 (up to its sign),
irrespective of the underlying parameters or the distribution itself; indeed, in such a case (58) becomes
lim
n→∞

Cor
(
qn,σ̂(p), σ̂2

n

)
= sgn(p− FY (0)).

Applying Proposition 19 to the cases of a Gaussian and a Student distributions, we need those distri-
butions to fulfil (C1) (fulfilled, as discussed for Example 13) and (M2) (because of the location-scale
quantile), hence need ν > 4 for the Student distribution. As before, we assume e.g. that the mean µ is
known, which provides:

Example 20 (i) For the Gaussian distribution N (µ, σ2):

lim
n→∞

Cov
(√
n qn,σ̂(p),

√
n σ̂2

n

)
= σ3Φ−1(p) = (µ+ σΦ−1(p))× lim

n→∞
Cov

(√
n log|qn,σ̂(p)|,

√
n σ̂2

n

)
,

(59)

lim
n→∞

Cor
(
qn,σ̂(p), σ̂2

n

)
= sgn(p− 1/2) = sgn(p− Φ(µ/σ))× lim

n→∞
Cor

(
log|qn,σ̂(p)|, σ̂2

n

)
.

(60)

(ii) For the Student distribution t(µ, (ν − 2)σ2/ν, ν) with ν > 4,

lim
n→∞

Cov
(√
n qn,σ̂(p),

√
n σ̂2

n

)
= σ3qỸ (p)

ν − 1

ν − 4

√
ν − 2

ν
(61)

=
(
µ+ σqỸ (p)

√
1− 2/ν

)
× lim
n→∞

Cov
(√
n log|qn,σ̂(p)|,

√
n σ̂2

n

)
,

lim
n→∞

Cor
(
qn,σ̂(p), σ̂2

n

)
= sgn(p− 1/2) = sgn

(
p− FỸ

(
−µ
σ

√
ν

ν − 2

))
× lim
n→∞

Cor
(
log|qn,σ̂(p)|, σ̂2

n

)
.

(62)

While the correlations are already the same - up to a sign - for the Gaussian and Student distributions,
we can also check that taking ν → ∞ in (ii) gives back the result for the asymptotic covariance in the
Gaussian case.

Dependence with Sample Mean Absolute Deviation - We continue with the dependence of func-
tionals of the sample MAD and a location-scale quantile model - which corresponds to the case when
choosing r = 1 in Proposition 4.

Proposition 21 Consider an iid sample with parent rv X following a location-scale distribution fulfilling
conditions (C1), (M2) and (C2) at µ. Then, the asymptotic covariance and correlation, respectively, of
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the following functionals of the location-scale quantile qn,µ̂,σ̂ and sample MAD θ̂n satisfy, for p ∈ (0, 1),

lim
n→∞

Cov
(√

n qn,µ̂,σ̂(p),
√
n θ̂n

)
= σ2

(
2FY (0)− 2E[Y 21I(Y <0)] +

qY (p)

2

(
E[|Y |3]− θ/σ + (2FY (0)− 1)E[Y 3]

))
,

lim
n→∞

Cor
(
qn,µ̂,σ̂(p), θ̂n

)
=

2FY (0)− 2E[Y 21I(Y <0)] + qY (p)
2

(
E[|Y |3]− θ/σ + (2FY (0)− 1)E[Y 3]

)√(
1 + q2

Y (p)E[Y 4]−1
4 + qY (p)E[Y 3]

)
Var (|Y |+ (2FY (0)− 1)Y )

.

Once again, those expressions clearly simplify when assuming zero third centred moment (µ3 = 0 =
E[Y 3]), as e.g. for elliptical distributions, or when the mean is known. For instance, in this latter case,
we obtain:

lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n θ̂n

)
= σ2 qY (p)

2

(
E[|Y |3]− θ/σ + (2FY (0)− 1)E[Y 3]

)
, (63)

and lim
n→∞

Cor
(
qn,σ̂(p), θ̂n

)
= sgn(p− FY (0)) × E[|Y |3]− θ/σ + (2FY (0)− 1)E[Y 3]√

(E[Y 4]− 1) Var(|Y |+ (2FY (0)− 1)Y )
.

(64)

Revisiting the two examples of the Gaussian and Student distributions, the same remarks as for Exam-
ple 15 apply here: The case p < 0.5 is deduced by symmetry, and we need to use the property of the
Gamma function to recover the Gaussian expression in the case ν →∞. Further, we discussed already
for example 15 that (C1) and (C2) are met; contrary to the case with the sample quantile, the condition
ν > 4 cannot be dropped because of the use of a location-scale quantile. The results of Proposition 21
become, assuming e.g. that the mean µ is known:

Example 22 For p ≥ 0.5, we have:
(i) For the Gaussian distribution N (µ, σ2)

lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n θ̂n

)
=
σ2Φ−1(p)√

2π
= (µ+ σΦ−1(p))× lim

n→∞
Cov

(√
n log|qn,σ̂(p)|,

√
n θ̂n

)
(65)

and lim
n→∞

Cor
(
qn,σ̂(p), θ̂n

)
=

sgn(p− 1/2)√
π − 2

= sgn(p− Φ(µ/σ))× lim
n→∞

Cor
(

log|qn,σ̂(p)|, θ̂n
)
.

(66)

(ii) For the Student distribution t(µ, (ν − 2)σ2/ν, ν) with ν > 4 degrees of freedom:

lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n θ̂n

)
=
σ2(ν − 1)(ν − 2)Γ(ν−1

2 )qỸ (p)

2(ν − 3)
√
νπ Γ(ν/2)

= (µ+ σqỸ (p)
√

1− 2/ν)× Cov
(√

n log|qn,σ̂(p)|,
√
n θ̂n

)
,

(67)

and lim
n→∞

Cor
(
qn,σ̂(p), θ̂n

)
=

sgn(p− 1/2)
√

(ν − 1)(ν − 2)

(ν − 3)
√

πΓ2(ν/2)

Γ2( ν−1
2 )
− (ν − 2)

√
2

ν−4

= sgn

(
p− FỸ

(
−µ
σ

√
ν

ν − 2

))
× lim
n→∞

Cor
(

log|qn,σ̂(p)|, θ̂n
)
.

(68)

Dependence with Sample Median Absolute Deviation - As mentioned, we already presented the
asymptotic distribution of the location-scale quantile with the MedianAD (Proposition 6, Corollary 7).
Therein we saw that the general expressions for the covariance and correlation are very long and tedious.
Thus, we consider separately the case of symmetric location-scale distributions, where expressions sim-
plify: As before, we then apply those results to the case of the Gaussian and Student distributions.
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Proposition 23 Consider an iid sample with parent rv X from a symmetric location-scale distribution
having mean µ, variance σ2. Then, under (C1), (M2) and (C3) in neighbourhoods of ν, ν ± ξ, the joint
behaviour of the functionals h1 of the quantile from a location-scale model qn,µ̂,σ̂(p), qn,σ̂(p) respec-
tively (for p ∈ (0, 1)) and h2 of the sample MedianAD ξ̂n (defined in Table 1) is asymptotically normal
and we have:
(i) when µ is unknown

lim
n→∞

Cov
(√

nh1(qn,µ̂,σ̂(p)),
√
nh2(ξ̂n)

)
=
σ2 h′1(qX(p))h′2(ξ)

4 fY (qY (3/4))
× qY (p)

(
1

2
− 2E[Y 21I(0<Y≤qY (3/4))]

)
,

(69)

lim
n→∞

Cor
(
h1(qn,µ̂,σ̂(p)), h2(ξ̂n)

)
= sgn

(
h′1(qX(p))h′2(ξ)

)
×
qY (p)/2− 2E[qY (p)Y 21I(0<Y≤qY (3/4))]√

1 + q2
Y (p)E[Y 4]−1

4

,

(70)

(ii) when µ is known

lim
n→∞

Cov
(√

nh1(qn,σ̂(p)),
√
nh2(ξ̂n)

)
=
σ2 h′1(qX(p))h′2(ξ)

4 fY (qY (3/4))
× qY (p)

(
1

2
− 2E[Y 21I(0<Y≤qY (3/4))]

)
,

(71)

lim
n→∞

Cor
(
h1(qn,σ̂(p)), h2(ξ̂n)

)
= sgn

(
h′1(qX(p))h′2(ξ)

)
× sgn

(
p− 1

2

)
×

1− 4E[Y 21I(0<Y≤qY (3/4))]√
E[Y 4]− 1

.

(72)

We observe once again that the asymptotic correlation does not depend on the mean µ and the variance
σ2 of the underlying location-scale distribution, even if the two expressions differ depending on if µ is
known or not. Further, the correlation is also constant (in p) up to its sign.

Let us go back to our main examples of elliptical distributions, the Gaussian and Student distributions,
to see how those results apply, when assuming e.g. that the mean µ is known. We already discussed
for Example 18 that (C1) and (C3) are met. Again, as we are working with the location-scale quantile
the condition ν > 4 is necessary. We also get back from the Student case for ν → ∞ the Gaussian
expressions.

Example 24 (i) For the Gaussian distribution N (µ, σ2), we have:

lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n ξ̂n

)
=
σ2Φ−1(3/4)

2
Φ−1(p) = (µ+σqY (p))× lim

n→∞
Cov

(√
n log |qn,σ̂(p)|,

√
n ξ̂n

)
,

(73)

lim
n→∞

Cor
(
qn,σ̂(p), ξ̂n

)
= 2
√

2Φ−1

(
3

4

)
φ

(
Φ−1

(
3

4

))
sgn

(
p− 1

2

)
= sgn

(
p− Φ−1

(
−µ
σ

))
lim
n→∞

Cor
(

log|qn,σ̂(p)|, ξ̂n
)
.

(74)
(ii) For the Student distribution t(µ, σ2(ν − 2)/ν, ν) with ν > 4,

lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n ξ̂n

)
= qỸ (p)

σ2qỸ (3/4)

(
1 +

q2
Ỹ

(3/4)

ν

)
2 ν
ν−2

=

(
µ+ σ

√
ν − 2

ν
qY (p)

)
lim
n→∞

Cov
(√

n log|qn,σ̂(p)|,
√
n ξ̂n

)
, (75)
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and lim
n→∞

Cor
(
qn,σ̂(p), ξ̂n

)
= sgn(p− 1/2)×

2
√

2(ν − 4) fỸ (qỸ (3/4)) qỸ (3/4)

(
1 +

q2
Ỹ

(3/4)

ν

)
√
ν − 1

(76)

= sgn

(
p− FỸ

(
−µ
σ

√
ν

ν − 2

))
× lim
n→∞

Cor
(

log|qn,σ̂(p)|, ξ̂n
)
. (77)

3.3 The Impact of the Choice of the Quantile Estimator for Elliptical Distributions

In the previous two subsections 3.1 and 3.2, we have explicitly computed the different asymptotic cor-
relation and covariance values in the Gaussian and Student cases when using either the sample quantile
qn, or the quantile estimators obtained via the location-scale model qn,σ̂ with known µ.

We observe that those expressions differ depending on the choice of the quantile estimator. To better
point out this difference in convergence speed, we consider the ratios of asymptotic covariances or
correlations when using the two different quantile estimators. We will not provide those ratios in the
general case, since, from a mathematical perspective, this would be redundant, all the quantities we
want to put into relation being readily available from the last two subsections. Instead, we will focus on
the analysis of the two examples, the Gaussian and the Student distributions. We provide not only the
theoretical expressions, but also plots, to compare the rate of convergence.

As the ratios do not depend on the functionals h1, h2 of the corresponding quantities, we can focus on the
case where h1, h2 are the identity functions to build the ratios of asymptotic covariances and correlations
respectively. This will make the results more traceable.

Further, recall that the expressions containing the sample MAD are valid only for p ≥ 0.5, the case of
p < 0.5 being deduced by the corresponding symmetry around p = 0.5. In general, by the symmetry
around p = 0.5 in all cases, we will focus on p ≥ 0.5.

For the ease of readibility, by abuse of notation, the term ‘sample’ in the context of estimators might
be omitted in this section as we will be exclusively referring to sample quantities throughout: We will
use variance, MAD and MedianAD synonimously for sample variance, sample MAD and sample Medi-
anAD, respectively.

3.3.1 Gaussian Distribution

In the case of a Gaussian distribution N (µ, σ2) with known µ, we first look at the ratio of asymptotic
covariances in the three cases (sample variance, sample MAD, sample MedianAD).

For the sample variance one needs equations (40) and (59), for the expressions involving the sample
MAD equations (46), (65), and finally for the sample MedianAD equations (55) and (73).
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lim
n→∞

Cov
(√
n qn(p),

√
n σ̂2

n

)
lim
n→∞

Cov
(√
n qn,σ̂(p),

√
n σ̂2

n

) =
lim
n→∞

Cov
(√
nh1(qn(p)),

√
nh2(σ̂2

n)
)

lim
n→∞

Cov
(√
nh1(qn,σ̂(p)),

√
nh2(σ̂2

n)
) = 1 ,

lim
n→∞

Cov
(√

n qn(p),
√
n θ̂n

)
lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n θ̂n

) =
lim
n→∞

Cov
(√

nh1(qn(p)),
√
nh2(θ̂n)

)
lim
n→∞

Cov
(√

nh1(qn,σ̂(p)),
√
nh2(θ̂n)

) =

√
2π
(
φ(Φ−1(p))− (1− p)

√
2
π

)
φ(Φ−1(p))Φ−1(p)

,

lim
n→∞

Cov
(√

n qn(p),
√
n ξ̂n

)
lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n ξ̂n

) =
lim
n→∞

Cov
(√

nh1(qn(p)),
√
nh2(ξ̂n)

)
lim
n→∞

Cov
(√

nh1(qn,σ̂(p)),
√
nh2(ξ̂n)

) =
1− p− 2 max (0, 3/4−max (1/4, p))

2φ(Φ−1(p))Φ−1(p)Φ−1(3/4)φ(Φ−1(3/4))
.

We have depicted the three cases in the left plot of Figure 1. In the case with the sample variance, the
speed of convergence is identical for the covariances for all values of p (in the case of comparing the
sample quantile with the location-scale quantile with known µ), leading to a constant ratio equal to 1.
For the sample MAD the behaviour of the ratio of asymptotic covariances is different. First, the ratio
is always positive meaning that both covariances have always the same tendencies. Also, it is bigger
than 1, i.e. the asymptotic covariance with qn is bigger than with qn,σ̂ (up to a factor of 2 for p = 0.5),
except for the following values of p, p < 0.07 and p > 0.93, where the ratio goes below 1 and drops
near to 0.6 (i.e. the asymptotic covariance with qn,σ̂ is up to 1.5 times bigger than with qn). Recalling
Remark 9, the value is not defined for p = 0.5, thus we simply set the value by continuity. In the case
of the sample MedianAD, the ratio of asymptotic covariances is, in contrast to the case with the sample
variance or sample MAD, bi-modal (with maxima at p = 0.25, 0.75). Otherwise it follows the same
tendencies, the values going below 1 (to values as low as 0.2) for boundary values of p, here p < 0.09
and p > 0.91. The other values further in the ‘interior’ of (0, 1) are above 1 and reach values up to 2.72
at their maxima.

Comparing the asymptotic covariance-ratios for the three measures of dispersion, we see that the speed
of convergence for qn, qn,σ̂ is similar for p around their intersection points (i.e. around 0.1 or 0.9). For
p near to the extremes, the variance and MAD seem somewhat similar, while the covariance-ratio for
the MedianAD is a lot lower in this cases (approximately half the value of the MAD and one fourth of
the variance). For p-values in the interior of (0, 1), the difference between the measures of dispersion
increases (the difference between MedianAD and MAD or variance respectively is the highest around p
= 0.25 or 0.75, while between MAD and standard deviation for p around 0.5).

Subsequently, let us turn to the ratio of the correlations in the Gaussian case, using Equations (41, 60),
(47, 66) and (56, 74) for the ratios with the sample variance, the sample MAD and the sample MedianAD
respectively:

lim
n→∞

Cor
(
qn(p), σ̂2

n

)
lim
n→∞

Cor
(
qn,σ̂(p), σ̂2

n

) =
lim
n→∞

Cor
(
h1(qn(p)), h2(σ̂2

n)
)

lim
n→∞

Cor
(
h1(qn,σ̂(p)), h2(σ̂2

n)
) =

|Φ−1(p)|φ(Φ−1(p))√
2p(1− p)

= | lim
n→∞

Cor
(
qn(p), σ̂2

n

)
|,

lim
n→∞

Cor
(
qn(p), θ̂n

)
lim
n→∞

Cor
(
qn,σ̂(p), θ̂n

) =
lim
n→∞

Cor
(
h1(qn(p)), h2(θ̂n)

)
lim
n→∞

Cor
(
h1(qn,σ̂(p)), h2(θ̂n)

) =
|
√
πφ(Φ−1(p))− (1− p)

√
2|√

p(1− p)
=
√
π − 2| lim

n→∞
Cor

(
qn(p), θ̂n

)
|,

lim
n→∞

Cor
(
qn(p), ξ̂n

)
lim
n→∞

Cor
(
qn,σ̂(p), ξ̂n

) =
lim
n→∞

Cor
(
h1(qn(p)), h2(ξ̂n)

)
lim
n→∞

Cor
(
h1(qn,σ̂(p)), h2(ξ̂n)

) =

√
2 |1− p− 2 max (0, 3/4−max (1/4, p))|

4Φ−1(3/4)φ(Φ−1(3/4))
√
p(1− p)

.

Again, we depict the results in Figure 1 (the middle plot has the same scale as the covariance plot, the
right plot an absolute scale): We see that the tendencies are the same for all three measures of dispersion
considered: The ratio is symmetric around the axis p = 0.5, always below 1 meaning that the asymptotic
correlation is bigger for qn,σ̂ than qn and equal to 0 for p = 0.5. For the sample variance, the result is
due to the fact that lim

n→∞
Cor

(
qn,σ̂(p), σ̂2

n

)
= 1.
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Figure 1: Ratio of asymptotic covariances (left) and correlations (in the middle on same
scale as covariance, on the right on absolute scale) between the quantile estimator with
the measure of dispersion estimator, when using qn versus qn,σ̂, considering three different
measures of dispersion each (sample variance, sample MAD, sample MedianAD) in the
case of a Gaussian underlying distribution.

For the sample MAD, as noticed, it is structurally similar. The ratio equals
√
π − 2× lim

n→∞
Cor

(
qn(p), θ̂n

)
,

i.e. it is multiplied by a factor bigger than 1. The overall amplitude is slightly bigger than in the case for
the sample variance. With the sample MedianAD, the ratio of asymptotic correlations behaves as for the
sample variance and sample MAD, and has a similar shape. But the amplitude is different and is clearly
the biggest in this case. Also, from all three measures of dispersion, it is the nearest to 1 at their maxima
(value of 0.95 at p = 0.25, 0.75), i.e. there the asymptotic correlation is similar for qn and qn,σ̂.

Again, we compare the ratios for the three measures of dispersion and look only at the behaviour for
p ≥ 0.5 as, by symmetry around p = 0.5, we can observe the same behaviour for values of p < 0.5. We
see that for values of p around 0.91, the ratios behave similarly in all three cases, while they are most
different around p=0.75 (the maximum of the MedianAD correlation-ratio). For p > 0.91, standard
deviation and MAD look very similar, while MedianAD only for values very near to 1.

3.3.2 Student Distribution

Let us now consider the case of a Student distribution t(µ, σ2(ν − 2)/ν, ν) with known µ and ν > 4
degrees of freedom (to have all quantities well-defined). To compare the behaviour also to the Gaussian
distribution (as we know that we get back the Gaussian expressions for ν → ∞), we consider three
different degrees of freedom in the plots: ν = 5, 10, 40.

Referring to Equations (42, 61), (48, 67) and (55, 75) for the three dispersion measures, respectively, we
get for the ratio of asymptotic covariances:
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Ỹ

(p)

ν

)
,

lim
n→∞

Cov
(√

n qn(p),
√
n θ̂n

)
lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n θ̂n

) =
lim
n→∞

Cov
(√

nh1(qn(p)),
√
nh2(θ̂n)

)
lim
n→∞

Cov
(√

nh1(qn,σ̂(p)),
√
nh2(θ̂n)

) =

√
νπ

ν−1
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Cov
(√

nh1(qn(p)),
√
nh2(ξ̂n)

)
lim
n→∞

Cov
(√

nh1(qn,σ̂(p)),
√
nh2(ξ̂n)

) =
1− p− 2 max (0, 3/4−max (1/4, p))

2fỸ (qỸ (p))qỸ (p)fỸ (qỸ (3/4))qỸ (3/4)(1 +
q2
Ỹ

(3/4)

ν
)

.

Let us have a look at these behaviours in the first row of Figure 2, where the cases of ν = 5, 10, 40 are
presented in separate plots. We first consider the left plot for ν = 5. For the sample variance, recalling
the case of the ratio for the Gaussian distribution (= 1, ∀p ∈ (0, 1)), it is interesting to see how it
behaves for finite ν: The ratio values are below 1 for pthresh < p < 1 − ptresh where pthresh ≈ 0.01.
The lowest value is 0.25 meaning that the asymptotic covariance with qn,σ̂ is four times as big as with
qn. For p < ptresh, p > 1− ptresh the ratios are above 1 with exploding growth for p tending to 0 or 1.

In the case of the sample MAD and for ν = 5, we see a somewhat similar behaviour as for the asymptotic
covariance with the sample variance. The ratio is below 1 for 0.01 < p < 0.99 and within this range,
also reasonably close to 1, especially for p near 0.5. As for the sample variance, the ratio seems to
explode for p tending to 0 or 1. With increasing ν, the behaviour where ratios are below and above 1
swaps, which we look at in more detail in the second row of Figure 2.

The ratios of asymptotic covariances for the sample MedianAD behave as in the case of the Gaussian
distribution (with values being a little bit different for small ν). It means that the ratio of asymptotic
covariances is bi-modal and above (below, respectively) 1 for values of p in (outside of, respectively) the
interval (0.07,0.93). Its maxima are at 0.25 and 0.75 where the ratio reaches a value of 2.71. It is clearly
the ratio with the largest amplitude.

Comparing the three measures of dispersion, we see, for ν = 5, that their ratio is similar for values
around the interval (0.96,0.99), while very different otherwise (mostly a factor of 2 or more). We also
see that for the extreme values of p, the covariance ratio behaves very similar for the variance and the
MAD. Interestingly, the relation between the covariance of the three measures of dispersion changes for
increasing ν. While they still behave similarly around (0.96,0.99), we can see that MAD and MedianAD
get closer to each other around p ≈ 0.5, whereas in the limit p → 1, the MAD and the variance do not
show the same behaviour anymore (they are rather divergent).

In the second row of Figure 2, we present the ratios of the asymptotic covariances again, but in a different
way. For each given measure of dispersion we have a plot on its own, showing the cases of different
Student distributions as well as the Gaussian distribution in order to compare how big the differences
between those two elliptical distributions are. As we already could see from the first row of Figure 2,
the difference between the Student and Gaussian cases is clearly visible for the sample variance and
the sample MAD - while it is small for the sample MedianAD. With the sample variance, we see that
the covariance ratio for values near p = 0 or 1, is clearly distinct from the Gaussian case for small
values of ν. Even for ν = 40, we still see the difference. Also, for increasing ν, the value of ptresh is
decreasing (but only minimally), but all the values are getting nearer to 1 (as expected). In the case of
the sample MAD, we see that the behaviour of the ratio of covariances is, for small degrees of freedom,
quite different from the Gaussian case. The shape of the covariance ratio for p near 0 or 1 changes from
small values for ν (ratio above 1) to bigger values of ν (ratio below 1). For values in the interior of (0, 1),
we see the reverse behaviour. For ν = 5, the values are below and, for p = 0.5, very near to 1, while for
increasing ν, those values are clearly above 1. For the covariance ratio with the sample MedianAD, we
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observe, as already remarked, that for any degree of freedom considered, the values are very close to the
Gaussian case.

Figure 2: Ratio of asymptotic covariances between the quantile estimator with the measure of dis-
persion estimator, when using qn versus qn,σ̂, considering three different measures of dispersion each
(sample variance, sample MAD, sample MedianAD) in the case of a Student distribution. First row: As
a function of the measure of dispersion with 5, 10 and 40 degrees of freedom (from left to right). Second
row: As a function of the degrees of freedom for each measure of dispersion (sample variance, sample
MAD, sample MedianAD -from left to right).

Finally, let us look at the ratio of asymptotic correlations for the Student distribution. Using the pairs of
equations (43, 62), (50, 68) and (56, 76) respectively, the ratios are as follows:
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We compare the three different measures of dispersion in the first row of Figure 3, again, separately for
ν = 5, 10, 40. The general tendencies for all three measures of dispersion (sample variance, sample
MAD, sample MedianAD), even for different degrees of freedom, are as in the Gaussian case: The ratio
is symmetric around p = 0.5, tends to small values for p tending to 0 or 1 and equals 0 for p = 0.5.
Let us look at the case ν = 5 (left plot). The correlation-ratio with the sample variance is below 0.5
for all values of p. Starting from p = 0.5 (with a value of 0), it is increasing in p until its maximum of
0.43 at 0.99, afterwards it decreases. The MAD behaves as the variance, only that the values increase
from 0 at p = 0.5 much faster and reach a maximum of 0.68 at p = 0.92. Also, the decrease afterwards
is quicker, as one can see from the fact that, for p → 1, the values seem lower than for the variance.
Again, the MedianAD has the largest amplitude, its maximum of 1.81 is achieved at p = 0.75, i.e., in
contrast to the other measures of dispersion, it has ratio values above 1 (in the interval (0.65, 0.91)). As
the decrease was the largest compared to the two other measures of dispersion, the increase too. The
ratio for p → 1 has values around 0.2 meaning that the asymptotic correlation with qn,σ̂ is five times
bigger than with qn.

Comparing the three measures of dispersion, we can make similar comments as in the Gaussian case.
The ratio values are similar in a (very small) neighbourhood of p = 0.5 and between the maximum for
the MAD and the variance (i.e. in the interval (0.96, 0.996)). The biggest difference between the ratios
is for the values around the maximum for the MedianAD ratio (p = 0.75).

Then, in the second row of Figure 3, we compare the correlation-ratios for each measure of dispersion
separately, as a function of the degrees of freedom of the underlying Student distribution. We see a
behaviour that is different to the case of the covariance-ratios in the second row of Figure 2. For the
sample variance, we can clearly see the different correlation-ratios for the different values of ν. Around
p = 0.5, the values are close in the different cases, also somewhat in the very tails (but not the limit).
The difference is the largest around the values of the maximum of the Gaussian correlation-ratio (i.e.
p ≈ 0.94). In the case of the sample MAD, we do not have a change in behaviour of the correlation-
ratio (i.e. being below or above 1 in dependence of ν), as we had for the covariance-ratio. We see a
smooth convergence in ν towards the Gaussian case. For most values of p, there is little difference of the
correlation-ratio values as a function of ν. Only around the maximum for ν = 5 (p = 0.92), we have a
relatively slow convergence in ν to the Gaussian case. While for the sample MedianAD covariance-ratio
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the difference between the different Student cases and the case of the Gaussian distribution was very
small, the difference is pronounced for the correlation ratio: Apart from p around 0, 0.5 and 1, we can
clearly see the difference of the correlation-ratios for ν = 5, 10, 40 and the Gaussian case. As for the
MAD, the difference is the biggest around the correlation-ratio maximum for ν = 5 (p = 0.75). But
overall, we have a smooth convergence with increasing degrees of freedom to the Gaussian case.

Figure 3: Ratio of asymptotic correlations between the quantile estimator with the measure of dis-
persion estimator, when using qn versus qn,σ̂, considering three different measures of dispersion each
(sample variance, sample MAD, sample MedianAD) in the case of a Student distribution. First row: As
a function of the measure of dispersion with 5, 10 and 40 degrees of freedom (from left to right). Second
row: As a function of the degrees of freedom for each measure of dispersion (sample variance, sample
MAD, sample MedianAD -from left to right).

4 Application to Quantitative Risk Management

Based on the previous results of this paper, we can now draw a statistical framework for applications in
quantitative risk management. We start by giving a brief overview of some well-known risk measures
(Value-at-Risk, Expected Shortfall and expectile) and discuss the dispersion measures in the context of
quantitative risk management. Using the theoretical asymptotic results from the previous sections, we
give corresponding results for the asymptotic dependence between risk measure estimators and measure
of dispersion estimators; they might add another layer to the discussion of which risk measure might be
best to use (from a theoretical as well as practical point of view). As before, we give explicit formulae
in the cases of the Gaussian and Student distribution.
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We then turn to an example from finance, which initially raised the general question treated in this
study. We relate our theoretical work to empirical findings in the literature as e.g. in [9],[43] (and the
related Section 3.6 in Zumbach’s book [44]). To do so, we assume to have an underlying iid distribution
and present the explicit asymptotics for the two distributions considered throughout, the Gaussian and
Student distributions, using the results from the previous sections. We then look at how the sample
size influences the dependence results for this specific example and discuss theoretically the changes
observed when considering longer sample sizes in an asymptotic sense. We conclude by discussing
the usefulness of these theoretical results for finite sample applications: We compare, for the differ-
ent risk and dispersion measure estimators, the values provided through the analytical formulae with
those obtained via simulated iid samples for the two main elliptical examples of this paper in a setting
corresponding to the empirical analysis performed in [9].

4.1 Estimation with Various Risk and Dispersion Measures

While we already introduced the dispersion measures and their estimators in Section 1, we have a closer
look how they are used in the context of quantitative risk management. Also, we briefly introduce the
three risk measures considered and link their estimators to the quantile estimators. Finally, we provide
explicit formulae for asymptotic correlations of the estimators of those risk and dispersion measures,
and plot them in the case of the Gaussian and Student distribution.

4.1.1 Dispersion Measures

When talking about dispersion measures, we focus on those used in this note: The standard deviation
(or equivalently the variance), the mean absolute deviation and the median absolute deviation.

While the standard deviation is the most popular measure of spread/dispersion, there are different reasons
for considering alternatives in some situations. From a statistical as well as applied point of view,
one of them is the theoretical moment condition the sample estimators might require. This we have
commented on, throughout the paper, and we summarise it again in Table 3: The variance and MAD
only exist for a distribution with finite variance, in contrast to the MedianAD, which exists even for an
infinite-mean distribution, and the estimation of such quantities only makes sense if the true parameter
exists (in finance, such observations date back to Fama’s analysis of stock-market prices, see [16]). To
work with the asymptotic normality of the estimators, we have more restrictive moment conditions:
For the sample variance we need the fourth moment to exist, whereas for the sample MAD only the
second moment, and for the sample MedianAD no moment condition is necessary. Also, from the so-
called Bahadur representations of the sample MAD and sample MedianAD ([4], [31] respectively), one
can see that neither of the two estimators is unbiased (although they are asymptotically unbiased, i.e.
lim
n→∞

E[λ̂n−λ] = 0 for an estimator λ̂n of the parameter λ). As the three estimators have non-degenerate
asymptotic distribution functions (when the conditions on the underlying distribution are met), they are
all three consistent.
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Table 3: Overview of moment conditions related to statistical properties of the measure of dispersion estimators

Estimator
Existence of theoretical

counterpart
Consistency /
Unbiasedness

Moment condition for
asymptotic normality

Sample
Variance (σ̂2

n)
E[X2] <∞ Yes/Yes E[X4] <∞

Sample MAD
(θ̂n)

E[|X|] <∞ Yes/No E[X2] <∞

Sample
MedianAD (ξ̂n)

no moment condition Yes/No none

Also, clearly, the choice of dispersion measure depends on the objective of the estimation. Without
doubt, the sample MedianAD is the most robust estimator with respect to outliers, whereas the sample
variance is very sensitive to such and the sample MAD being in between the two (see [20] for someone
advocating the MAD; also [28], for a discussion about outlier detection from an applied point of view).
For a good overview over advantages and properties of these three different measures of dispersion, see
[20] and [34] and the references therein.

The discussion about which measure of dispersion to use, also takes place in areas of QRM. For in-
stance, in [13], this is addressed for the so-called ‘realised volatility’ in financial markets (considering
a generalization of the concepts of sample standard deviation and sample MAD), saying that the choice
(most often either sample standard deviation or sample MAD) should be made taking into account the
existence of the moments of the underlying distribution. For premium calculation in insurance, [14]
advocates for the MedianAD instead of the standard deviation (as the risk functionals corresponding to
the former are comonotonic additive, whereas the ones corresponding to the latter not). In the context of
portfolio optimization, [26] propose a portfolio choice based on the mean absolute deviation instead of
the variance minimization as in the classic approach of Markowitz ([30]); but the advantages gained in
computational feasibility, so they claim in [41], can be lost again by the higher estimation error. Also,
in the context of regression, alternatives to least squares are proposed in the spirit of the dispersion
measures we consider: Least absolute deviations regression (see e.g. [7]) trying to remedy the fact that
least-squares regression gives single ‘outliers’, in their opinion, a too high weight in the fitting proce-
dure. Or, the least median of squares regression, [38], which has superior ‘breakdown point’ (i.e. ’the
smallest percentage of contaminated data that can cause the estimator to take on arbitrarily large aber-
rant values’, [38]) in comparison to least squares or least absolute deviation regression. As they use the
median of the squares in [38], this is different to the use of the median in our case - but it still illustrates
the idea of using the median.

4.1.2 Risk Measures

In contrast to the dispersion measures, risk measures have not appeared explicitly in the previous sec-
tions. Nevertheless, one of the most used risk measures, Value-at-Risk (VaR), is simply a quantile at a
certain level of the underlying distribution and thus, the results presented directly relate to risk estima-
tion. The VaR for risk management was popularised by JP Morgan in 1996 (see [32]) and is defined
as follows: If we assume a loss random variable L having a continuous, strictly increasing distribution
function FL, the VaR at level α of L is simply the quantile of order α of L:

VaRα(L) = inf
{
x : P [L ≤ x] ≥ α

}
= F−1

L (α). (78)

The VaR is generally estimated on historical data, using the empirical quantile V̂aRn(α) = qn(α) asso-
ciated to a n-loss sample (L1, . . . , Ln) with α ∈ (0, 1) - hence the direct connection to the theoretical
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results presented previously.

The use of VaR has been reinforced by regulators even if it has been shown not to be a coherent measure,
[3], contrary to Expected Shortfall (ES). ES is defined as follows (e.g. [1]) for a loss random variable L
and a level α ∈ (0, 1) :

ESα(L) =
1

1− α

∫ 1

α
qL(u)du = E[L|L ≥ qL(α)]. (79)

While the first equality in (79) is the definition of ES, the second holds only if L is continuous (that
we assume throughout the paper). There are different ways of estimating ES, we consider the two most
direct ones when using historical estimation. First, simply estimate the quantile by the sample quantile,
leading to ẼSn(α) := 1

1−α
∫ 1
α qn(u)du, which can be seen as the limit (k →∞) of the following second

ES estimator ÊSn,k(α) := 1
k

∑k
i=1 qn(pi) for α = p1 < p2 < ... < pk < 1. As in the context of

regulation the level of α is high, in practice it is sufficient for k to be small, [12] claim. The question
of the appropriateness of the risk measure to use for evaluating the risk of financial institutions has been
heavily debated especially after the financial crisis of 2008/2009. For a review of the arguments on this
subject, we refer e.g. to [10], [15] and the references therein.

In these discussions, as a third risk measure the expectile is considered (introduced in the context of
least-squares estimation by [33], as a risk measure in [27]). It is defined, for a square-integrable random
variable and level α ∈ (0, 1), by the following minimiser

eα(L) = argmin
x∈R

αE[max(L− x, 0)2] + (1− α)E[max(x− L, 0)2]. (80)

While a natural estimator for the expectile is the empirical argmax of (80), there exists another way to
define an estimator of eα, when recalling the relation between an expectile and quantile, see [42]: Let
qX(α) be the quantile at level α ∈ (0, 1), then there exists a bijection κ : (0, 1) 7→ (0, 1) such that
eκ(α)(X) = qX(α) with

κ(α) =
αqX(α)−

∫ qX(α)
−∞ xdFX(x)

E[X]− 2
∫ qX(α)
−∞ xdFX(x)− (1− 2α)qX(α)

. (81)

Thus, we define a sample estimator for the expectile at level α to be en(α) := qn(κ−1(α)).

Having presented the three most popular risk measures in quantitative risk management, let us see how
they relate to the theoretical findings in this paper.

4.1.3 Implications of the Theoretical Results

As mentioned, the consequences for the VaR are direct. Recall that we presented asymptotic distributions
for a quantile estimator with any of the three measures of dispersion (Theorem 1, Proposition 3). Hence,
if we estimate the VaR at threshold p as V̂aRn(p), the results directly hold for the VaR: We can say
how any functional of the VaR estimator V̂aRn(p) is correlated with any functional of a measure of
dispersion estimator.

For the case of the ES, the results with the sample quantile are directly applicable for ẼSn(p) (using
Fubini theorem and dominated convergence, we can simply interchange limit and integral). Hence, we
obtain the following asymptotic dependence between ẼSn(p) and either the sample variance or sample
MAD:
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Corollary 25 Consider an iid sample with parent rvX having mean µ, variance σ2. Assume conditions
(C1), (C3) in each neighbourhood of qX(u), u ∈ (p, 1), and (Mr) for r = 1, 2, respectively, as well as
C2 at µ for r = 1. Then the joint asymptotic behaviour of the historically estimated expected shortfall
ẼSn(p), for p ∈ (0, 1), and the measure of dispersion estimator m̂(X,n, r) is normal with the following
asymptotic covariance:

lim
n→∞

Cov(
√
nẼSn(p),

√
nm̂(X,n, r)) =

1

1− p

∫ 1

p
lim
n→∞

Cov(
√
nqn(u),

√
nm̂(X,n, r))du

=
1

1− p

∫ 1

p

τr(|X − µ|, u) + (2− r)(2FX(µ)− 1)τ1(u)

fX(qX(u))
du,

with τr defined in (3). Accordingly the asymptotic correlation is:

lim
n→∞

Cor(ẼSn(p), m̂(X,n, r)) =

∫ 1
p
τr(|X−µ|,u)+(2−r)(2FX(µ)−1)τ1(u)

fX(qX(u)) du√
2
∫ 1
p

∫ 1
v

v(1−u)
fX(qX(v))fX(qX(u))dudv

√
Var(|X − µ|r + (2− r)(2FX(µ)− 1)X)

.

(82)

For the dependence of the ES estimator with the MedianAD estimator, we obtain analogously:

Corollary 26 Consider an iid sample with parent rv X with, if defined, mean µ and variance σ2. Un-
der conditions (C1) and (C3) in the neighbourhoods of ν, ν ± ξ as well as in each neighbourhood
of qX(u), u ∈ (p, 1), the joint asymptotic behaviour of the historically estimated expected shortfall
ẼSn(p), for p ∈ (0, 1), and the sample MedianAD ξ̂n (defined in Table 1) is normal with the following
asymptotic covariance:

lim
n→∞

Cov(
√
nẼSn(p),

√
nξ̂n) =

1

1− p

∫ 1

p
lim
n→∞

Cov(
√
nqn(u),

√
nξ̂n)du

=
1

1− p

∫ 1

p

−max (0, FX(ν + ξ)−max (FX(ν − ξ), u)) + 1−u
2 + fX(ν+ξ)−fX(ν−ξ)

fX(ν) max
(
−p

2 ,
p−1

2

)
fX(qX(u)) (fX(ν + ξ) + fX(ν − ξ))

du

where ν denotes the the median of the sample (see Table 1). The asymptotic correlation equals, if we de-
note, as before, γ = (fX(ν + ξ)− fX(ν − ξ)) fX(ν) (fX(ν + ξ)− fX(ν − ξ)− 4) (1− FX(ν − ξ)− FX(ν + ξ)):

lim
n→∞

Cor
(

ẼSn(p)), ξ̂n

)
=

∫ 1
p

−max (0, FX(ν+ξ)−max (FX(ν−ξ),u))+ 1−u
2

+
fX (ν+ξ)−fX (ν−ξ)

fX (ν)
max (− p2 ,

p−1
2 )

fX(qX(u)) (fX(ν+ξ)+fX(ν−ξ)) du√
2
∫ 1
p

∫ 1
v

v(1−u)
fX(qX(v))fX(qX(u))dudv

√
1 + γ

f2
X(ν)

.

(83)

Note, that we can replace ẼSn(p) by its sum-approximation ÊSn,k(p) for fixed k. Then, clearly, the
above results in Corollaries 25 and 26 hold with the integrals replaced by the corresponding sums. In
such a case, we can also consider the limit when both, n, k, tend to infinity, giving us as result of this
double-limit the asymptotics as stated in the Corollaries. For the expectile, with the definition of the
estimator en(α) as sample quantile at level κ−1(α), we can use the results for the dependence in the
case of the VaR and the measure of dispersion estimators (only that we consider the level κ−1(α)).

We use these results to display the correlation between the estimators of the three risk measures con-
sidered and the measure of dispersion estimators σ̂2

n, θ̂n, ξ̂n. We provide explicit expressions for the
Gaussian and Student distribution in Example 27.
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Example 27
Table 4: Asymptotic correlations between the three risk measure estimators and the three measure of disper-
sion estimator in the case of a Gaussian distribution or Student distribution respectively

Correlation Gaussian Distribution Student(ν) distribution

...with σ̂2
n

lim
n→∞

Cor(VaRn(p), σ̂2
n)

φ(Φ−1(p))Φ−1(p)√
2p(1− p)

(84)
fỸ (qỸ (p)) qỸ (p)

(
1 +

q2
Ỹ

(p)

ν

)
√

ν−1
ν−4

2 p(1− p)
(85)

lim
n,k→∞

Cor(ÊSn,k(p), σ̂2
n)

∫ 1

p
Φ−1(u)du

2
√∫ 1

p

∫ 1

v

v(1−u)

φ(Φ−1(u))φ(Φ−1(v))
dudv

(86)
∫ 1

p
qỸ (u)

(
1 +

q2
Ỹ

(u)

ν

)
du

2
√

ν−1
ν−4

∫ 1

p

∫ 1

v

v(1−u)
f
Ỹ

(q
Ỹ

(v))f
Ỹ

(q
Ỹ

(u))
dudv

(87)

lim
n→∞

Cor(en(p), σ̂2
n)

φ(Φ−1(κ−1(p)))Φ−1(κ−1(p))√
2κ−1(p)(1− κ−1(p))

(88)
fỸ (qỸ (κ−1(p))) qỸ (κ−1(p))

(
1 +

q2
Ỹ

(κ−1(p))

ν

)
√

ν−1
ν−4

2κ−1(p)(1− κ−1(p))

(89)

...with θ̂n:

lim
n→∞

Cor(VaRn(p), θ̂n)
φ(Φ−1(p))− (1− p)

√
2/π√

p(1− p)
√

1− 2/π
(90)

√
ν(ν−2)

ν−1
fỸ (qỸ (p))

(
1 +

q2
Ỹ

(p)

ν

)
− (1− p)

√
ν−2
π

Γ( ν−1
2

)

Γ(ν/2)√
p(1− p)

√
1− ν−2

π

Γ2( ν−1
2

)

Γ2(ν/2)

(91)

lim
n,k→∞

Cor(ÊSn,k(p), θ̂n)

1− p−
∫ 1

p
1−u

φ(Φ−1(u))
√

2/π
du

2
√(

1
2
− 1

π

) ∫ 1

p

∫ 1

v

v(1−u)

φ(Φ−1(v))φ(Φ−1(u))
dudv

(92)

∫ 1

p

√
ν − 2

(
√
ν

ν−1

(
1 +

q2
Ỹ

(u)

ν

)
− Γ( ν−1

2
)

Γ( ν
2

)
(1−u)√

π f
Ỹ

(q
Ỹ

(u))

)
√

2
∫ 1

p

∫ 1

v

v(1−u)
f
Ỹ

(q
Ỹ

(v))f
Ỹ

(q
Ỹ

(u))
dudv

√
1− ν−2

π
Γ((ν−1)/2)2

Γ(ν/2)2

(93)

lim
n→∞

Cor(en(p), θ̂n)
φ(Φ−1(κ−1(p)))− (1− κ−1(p))

√
2/π√

κ−1(p)(1− κ−1(p))
√

1− 2/π
(94)

√
ν(ν−2)

ν−1
fỸ (qỸ (κ−1(p)))

(
1 +

q2
Ỹ

(κ−1(p))

ν

)
− (1− κ−1(p))

√
ν−2
π

Γ( ν−1
2

)

Γ(ν/2)√
κ−1(p)(1− κ−1(p))

√
1− ν−2

π

Γ2( ν−1
2

)

Γ2(ν/2)

(95)

...with ξ̂n:

lim
n→∞

Cor(VaRn(p), ξ̂n)
1− p− 2 max (3/4−max (1/4, p), 0)√

p(1− p)
(96)

1− p− 2 max (3/4−max (1/4, p), 0)√
p(1− p)

(97)

lim
n,k→∞

Cor(ÊSn,k(p), ξ̂n)

∫ 1

p

1−u−2 max (3/4−max (1/4,u),0)

φ(Φ−1(u))
du√

2
∫ 1

p

∫ 1

v

v(1−u)

φ(Φ−1(v))φ(Φ−1(u))
dudv

(98)

∫ 1

p

1−u−2 max (3/4−max (1/4,u),0)
f
Ỹ

(q
Ỹ

(u))
du√

2
∫ 1

p

∫ 1

v

v(1−u)
f
Ỹ

(q
Ỹ

(v))f
Ỹ

(q
Ỹ

(u))
dudv

(99)

lim
n→∞

Cor(en(p), ξ̂n)
1− κ−1(p)− 2 max

(
3/4−max

(
1/4, κ−1(p)

)
, 0
)√

κ−1(p)(1− κ−1(p))
(100)

1− κ−1(p)− 2 max
(
3/4−max

(
1/4, κ−1(p)

)
, 0
)√

κ−1(p)(1− κ−1(p))
(101)
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where the function κ(p) differs for the Gaussian and Student distribution:

κ(p) =


φ(Φ−1(p))+pΦ−1(p)

2φ(Φ−1(p))−(1−2p)Φ−1(p)
if X ∼ N (µ, σ2),

ν
ν−1

fỸ (qỸ (p))(1+q2
Ỹ

(p)/ν)+pqỸ (p)

2 ν
ν−1

fỸ (qỸ (p))(1+q2
Ỹ

(p)/ν)−(1−2p)qỸ (p)
if X ∼ t(µ, (ν − 2)σ2/ν, ν).

After having presenting these results, note the following four remarks with respect to Example 27. First,
the expressions of the correlation with the ES involve integrals which can be solved analytically. As
this makes the formulae very lengthy, we defer these solved integral expressions to the Appendix C.
Second, an alternative way of presenting the asymptotic correlations in Equations (84)-(101) would be
in terms of the risk measures itself instead of the quantiles and densities. For this, simply recall that e.g.
in the Gaussian case VaRα(Y ) = Φ−1(p) and ESα(Y ) = φ(Φ−1(p))

1−α . Third, the asymptotic correlations
in Equations (84)-(101) do not depend on the mean and variance of the underlying distribution (we
have seen this being valid for all the asymptotic correlations in the case of location-scale distributions).
Fourth, we could use the parametric location-scale quantile as the VaR estimator (for location-scale
distributions), applying the results of Section 3, and extend the results to the ES and expectile too.

To conclude this part on the correlation between risk measures and measure of dispersion estimators, we
show the asymptotic correlations in the case of the Gaussian and Student(5) distributions in Figure 4.
We have separate plots for the asymptotic correlation with each measure of dispersion. In each plot we
show the asymptotic correlation with the sample VaR, the sample ES (evaluated in three possible ways:
the sum approximation using 4 or 50 summands and the explicit solution of the integral - corresponding
to infinite summands) as well as with the expectile. In the first row we show the case of the Gaussian
distribution, then, in the second row, we zoom into the tail. The third and fourth row are accordingly for
the Student(5) distribution.

Looking at the plots in the first row, we see that, for the Gaussian distribution, we have the same tendend-
cies of the asymptotic correlation (for VaR, ES and expectile respectively) irrespective of the dispersion
measure. The behaviour is more similar with the sample variance and sample MAD and a bit different
for the sample MedianAD: For p ≥ 0.5, the ES has clearly higher asymptotic correlation than the VaR
(except in the tail where they are similar for sample variance and sample MAD, but lower for the ES in
the case of the MedianAD). The asymptotic correlation of the expectile is lower than with VaR and ES,
except in the tail where it is highest (the point where this behaviour changes is furthest in the tail with
the sample variance, and least with the sample MedianAD).

In the case of the Student(5) distribution, we see the same trends as in the Gaussian case with one
exception: For p ≥ 0.5, the asymptotic correlation of the sample variance with the ES is always higher
than with VaR and with VaR always higher than with the expectile, see the first plot in the third and
fourth row (in contrast to the first plot in the first and second row).
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Figure 4: Asymptotic correlations between a risk measure estimator with the measure of dispersion
estimator, considering on each plot three different risk measures (VaR, ES, evaluated in 3 possible ways,
and expectile). On each row in each plot a different measure of dispersion is considered (from left to
right: sample variance, sample MAD, sample MedianAD). First two rows: The case of an underlying
Gaussian distribution, third and fourth row: A Student distribution with 5 degrees of freedom.
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4.2 Example in Finance: Explaining Procyclicality in Risk Measurements

Having made clear the connection of the theoretical results and risk measures in the previous subsection,
we can now look at an example in finance and draw a statistical framework in this case. We proceed in
different steps. As in the general case for risk and dispersion measures, we relate the theoretical work
to empirical findings in the examples we want to consider ([9],[43], Section 3.6 in [44]), and present
the theoretical asymptotics - assuming an underlying iid distribution and focussing, as before, on the
Gaussian and Student distributions as main examples. Subsequently, we discuss theoretically which
changes can be observed in the specific covariances and correlations of risk and dispersion measures,
when considering longer sample sizes (in an asymptotic sense we will precise). Finally, we discus the
usefulness of these theoretical results in view of those finite sample applications. We compare, for
the different quantile and dispersion estimators considered, the values provided through the analytical
formulae with those obtained via simulated iid samples.

We use the time-series notation already introduced in Subsection 2.4.

Setup - Considering the example of [9], a measure of interest is the linear correlation of the logarithm
of a ratio of sample quantiles (named ‘look-forward ratio’, which measures the predictive quality of the
VaR) with the sample standard deviation (used there as a marker of the market state), namely

Cor

(
log

∣∣∣∣ q̂n,t+1y(p)

q̂n,t(p)

∣∣∣∣ , σ̂n,t) . (102)

This quantity is introduced in [9] to measure the pro-cyclicality of the VaR. Similarly in construction
but in another context, Zumbach, in [43]/[44], is interested in the correlation of ‘the realized volatilities
with the centred volatility increment’, which in our notation can be translated as

Cor

(
log

∣∣∣∣ q̂a·n,σ̂,t+a·1y(p)q̂a·n,σ̂,t(p)

∣∣∣∣ , σ̂a·n,t+a·1y) , (103)

for a an integer multiple of 1/252. Note that in (102), (103) the quantile estimators in the logarithm are
computed on subsequent samples which are disjoint by construction: Choosing the points in time t and
t plus one year, t+ 1y, in (102) and a sample size of n = 252 (which corresponds to one year of data),
the samples do not overlap (and accordingly in (103)).

Note that, in [9], the authors look at this empirical measure of procyclicality/dependence (102) when
using data from stock indices, realizations from a GARCH(1,1) model or simulated iid rv’s, while [43]
considers currency exchange rates as well as simulated realizations from different stochastic models.
Here our goal is to analyse it theoretically when assuming an iid model.

As throughout this paper, in more generality than (102) and (103), we want to consider any quantile
estimator q̂n,t and any measure of dispersion estimator D̂i,n,t. By abuse of notation we refer in this
section to D̂1,n,t as the sample standard deviation σ̂n,t and not the sample variance (as we only use the
former as a marker of the market state).

As mentioned, the sample used for the quantile estimator at time t+ 1y, q̂n,t+1y(p), is disjoint from the
sample used at time t and will thus be uncorrelated with the sample standard deviation σ̂n,t, or more
generally the measure of dispersion estimator D̂i,n,t, at time t.

Hence, we can summarise our equations of interest as follows (for i ∈ {1, 2, 3}):

Cov

(
log

∣∣∣∣ q̂n,t+1y(p)

q̂n,t(p)

∣∣∣∣ , D̂i,n,t) = − Cov
(

log|q̂n,t(p)|, D̂i,n,t
)

; Cor

(
log

∣∣∣∣ q̂n,t+1y(p)

q̂n,t(p)

∣∣∣∣ , D̂i,n,t) = − 1√
2

Cor
(

log|q̂n,t(p)|, D̂i,n,t
)
.

(104)
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Very importantly, note that the quantities computed in [9], [43]/[44] and more generally in any appli-
cation are for finite sample size (e.g. n = 252 for [9]) while our theoretical results are the asymptotic
expressions for equations (104).

We want to compute all asymptotic cases of equations (104) when considering the two standard elliptical
cases, namely the GaussianN (0, σ2) and Student t(0, σ2(ν − 2)/ν, ν) distributions. As our application
concerns the modelling of financial log-returns, we can assume µ = 0 to be known (otherwise one
could exploit this for arbitrage). Thus, our location-scale estimator simplifies to qn,σ̂,t(p) = σ̂n,t qY (p).
Hence, the computation is a straightforward application of the results obtained in the previous sections
(noting that additionally we have µ = 0, such that we can simplify some results further). To enhance
comparability, we present the results in a table. Recall, that the expressions involving the sample MAD
are always only valid for p ≥ 0.5; the case for p < 0.5 can be recovered by the corresponding symmetry
(in the case involving the logarithm of the absolute value, this is the symmetry around the p = 0.5-
axis), e.g. lim

n→∞
Cov(

√
n log|q̂n,t(p)|,

√
nθ̂n,t) = lim

n→∞
Cov(

√
n log|q̂n,t(1 − p)|,

√
nθ̂n,t). Besides, we plot

the covariances and correlations using the different measures of dispersion as a function of the quantile
parameter p.

4.2.1 Gaussian Distribution

Before presenting and comparing the different covariances and correlations in Table 5, let us refer to the
equations needed to derive the expressions.
For the covariances with the sample quantile and the parametric location-scale quantile, we use equa-
tions (40) and (59) for the sample standard deviation, (46) and (65) for the sample MAD, and (55) and
(73) for the sample MedianAD. When turning to the case of the asymptotic correlations, we use equa-
tions (41), (60) in the case of the sample standard deviation, (47), (66) when computing the correlation
with the sample MAD, and (56), (74) for the case with the sample MedianAD.

Table 5: All different cases considered for the covariance (first three rows), then the correlation (last three
rows), between the log-ratio of quantile estimators and three measure of dispersion estimators D̂i,n,t (i =
1, 2, 3) each, for a Gaussian distribution.

Cov
(
log

∣∣∣qn,t+1y(p)

qn,t(p)

∣∣∣ , D̂i,n,t

)
Cov

(
log

∣∣∣qn,σ̂,t+1y(p)

qn,σ̂,t(p)

∣∣∣ , D̂i,n,t

)
D̂1,n,t = sample s.d. σ̂n,t −σ

2
−σ

2

D̂2,n,t = sample MAD θ̂n,t −
σ
(
φ(Φ−1(p))−(1−p)

√
2
π

)
φ(Φ−1(p)) Φ−1(p)

− σ√
2π

D̂3,n,t = sample MedianAD ξ̂n,t −σ(1−p−2 max (0,3/4−max (1/4,p)))
4φ(Φ−1(p))φ(Φ−1(3/4)) Φ−1(p)

−σΦ−1(3/4)
2

Cor
(
log

∣∣∣qn,t+1y(p)

qn,t(p)

∣∣∣ , D̂i,n,t

)
Cor

(
log

∣∣∣qn,σ̂,t+1y(p)

qn,σ̂,t(p)

∣∣∣ , D̂i,n,t

)
D̂1,n,t = sample s.d. σ̂n,t − 1√

2

φ(Φ−1(p))|Φ−1(p)|√
2p(1−p)

− 1√
2
≈ −0.71

D̂2,n,t = sample MAD θ̂n,t − 1√
2

|φ(Φ−1(p))−(1−p)
√

2
π
|√

p(1−p)
√

1− 2
π

− 1√
2

√
1

π−2
≈ −0.66

D̂3,n,t = sample MedianAD ξ̂n,t − 1√
2

|1−p−2 max (0,3/4−max (1/4,p))|√
p(1−p)

− 1√
2

4Φ−1(3/4)φ(Φ−1(3/4))√
2

≈ −0.43

In Table 5, we observe that in the case of using the sample standard deviation, the covariance is the
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same when using the sample quantile or the location-scale quantile with known mean µ = 0 (first row).
Further, we see that all different covariances with the location-scale quantile are constant (independent
of p) and thus can be written as a multiple of each other (second column).

In the fourth row of Table 5, we can see that, in contrast to the covariances, the correlation with qn,σ̂ is
not equal to the one with qn in the case of the sample standard deviation: The former is constant, whereas
the one with the sample quantile is a function of p. This remark holds for all dispersion measures, i.e.
the correlation with the location-scale quantile are constant (and negative) while it is a function of p for
the sample quantile.

To further understand those quantities, we plot them in Figure 5.

Figure 5: Comparison of the covariances (first row) and correlations (2nd row) between log-ratios of
quantile estimators and each of three measure of dispersion estimators in the same plot, in the case
of a Gaussian distribution. Left: Using the sample quantile, Middle: Zoomed into the right tail (p ≥ 0.8)
using the sample quantile, Right: Using the location-scale quantile with known mean µ = 0

In Figure 5, we see in the left column the two plots of covariances and correlations when using the
sample quantile and in the right column the two plots, when using the location-scale quantile - in the
middle column we zoomed into the tail values (p ≥ 0.8) in the case with the sample quantile, as those are
especially of interest in applications to quantitative risk management. When looking at the covariance
with the sample quantile (first row, left plot), we see for all three measures of dispersion the symmetry
around the p = 0.5-axis, and that all values are negative. The covariance is constant (i.e. independent of
p) for the sample standard deviation with a value of -0.5, bi-modal for the sample MedianAD (minimum
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of -0.92 at p = 0.75) and uni-modal for the sample MAD (having its minimum of -0.8 at p = 0.5).
For intermediate values of p, say 0.2 < p < 0.8, the covariance is the biggest in absolute terms for
the sample MedianAD. In this interval, the difference between MedianAD and MAD/standard deviation
is the highest around the minimum of the MedianAD. For all values in this interval, the difference
between standard deviation and MedianAD is large. An exception to the MedianAD having the biggest
value in absolute terms is for values near p = 0.5 where it is larger for the sample MAD - but in
this neighbourhood MAD and MedianAD are very close (and it is the smallest for the sample standard
deviation). If we focus on tail-values, i.e. high values of p, the behaviour changes (by symmetry this
applies also for small values of p). This can be seen well in the middle plot. Therein the covariance is
the highest (in absolute terms) for the sample standard deviation: It is higher than the sample MAD for
p > 0.81 and for p > 0.85 in the case of the sample MedianAD. From p > 0.86 on, the covariance is the
lowest for the sample MedianAD. For values of p around (0.81, 0.86) we can say that the covariance is
similar for all three measures of dispersion, while the difference between them increases for increasing
p > 0.86. Looking at the covariance using the location-scale quantile (right plot), we can make the
same comments as those of Table 5. The values are constant for all three measures of dispersion and
hence independent of p. The values for the sample standard deviation are the same with both quantile
estimators. In absolute terms, the covariance with the sample standard deviation is the highest, and the
one with the sample MedianAD, the lowest in the right plot. The values of MAD and MedianAD are
more similar than with the standard deviation. Comparing both quantile estimators, we can say for the
sample MAD and sample MedianAD that, for p > 0.93 and p > 0.90 respectively, the covariance is
lower (in absolute terms) with the sample quantile, while, for smaller values, this behaviour reverses.
Also, we see that the covariance values for those two measures of dispersion can be, depending on p,
quite different with respect to the chosen quantile estimator.

When turning to the correlations (2nd row of Figure 5), we see that, in the case of the correlation with
the sample quantile (left plot), all three measures of dispersion have the same tendencies. They are
symmetric around the axis p = 0.5, have low values for p around 0.5 and p → 0 and 1 while being bi-
modal and having two minima (one between (0, 0.5) and one between (0.5, 1) by symmetry). Further,
all values are negative, while for p = 0.5, the correlation is undefined and set by continuity equal to
0. Also, their range of values is very similar. Thus, the maximum in absolute terms is only a little bit
bigger for the sample MedianAD (-0.41 at p = 0.75) than for the sample standard deviation (-0.39 at
p = 0.94) and is the smallest for the sample MAD (-0.38 at p = 0.89). Looking at intermediate values
of p, say 0.2 < p < 0.8, we see that the values for all three measures of dispersion are similar around
p = 0.5, while, in absolute terms, from this point to the respective maxima, the correlation increases for
all measures of dispersion. The maximum in absolute terms of the sample MedianAD correlation falls in
this interval and is achieved for p = 0.75. Around that point, the difference between the three measures
of dispersion is the biggest, the correlation with the sample standard deviation being the smallest. If
we focus again on tail values, as in the middle plot, we see how the behaviour changes. Already from
p = 0.8, the MAD is bigger than the MedianAD, and, from p > 0.83 on, the sample standard devia-
tions correlation is bigger than the sample MedianAD. The MAD reaches its maximum value of -0.38
at p = 0.88. Consequently, from p > 0.90, the standard deviation is bigger than the sample MAD (note
that those thresholds are different than in the case of the covariance). The maximum in absolute terms
for the sample standard deviation correlation, -0.39, is near p = 0.94. From this point on, it decreases
again but still being bigger than the two other measures of dispersion. We can also see that, around this
last maximum, the difference between the three measures of dispersion is the highest (pronounced with
the MedianAD, rather small between standard deviation and MAD). They are the most similar around
their intersection points, i.e. in the range of (0.8,0.83) and, additionally, in the case of standard deviation
and MAD, also around 0.9 where the two latter intersect. Getting back from the tails to the general be-
haviour and looking now at the correlations with the location-scale quantile (right plot), we see that each
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of them is bigger than the ones with the sample quantile. Comparing the three (constant) correlations
using the location-scale quantile, we note it is the biggest in absolute terms with the sample standard
deviation (-0.71), intermediate for the MAD (-0.66) and the smallest with the sample MedianAD (-0.43).
In contrast to the covariance, the correlations for the MAD and standard deviation are now similar, while
quite different for the MedianAD.

4.2.2 Student Distribution

Again, we start by presenting and comparing the different covariances and correlations. Before we do
so in Table 6, we want to refer to the equations needed for the calculation. For the covariances we use
equations (42) and (61) for the sample standard deviation, (49), and (67) for the sample MAD, and (55),
and (75) for the sample MedianAD. For the asymptotic correlations correspondingly, equations (43) and
(62) in the case of the sample standard deviation, (50) and (68) with the sample MAD, and (56), (77) for
the case with the sample MedianAD.

Table 6: All different cases considered for the covariance (three first rows), then the correlation (three last rows), between
the log-ratio of quantile estimators and three measure of dispersion estimators D̂i,n,t (i = 1, 2, 3) each, for a Student
distribution with ν degrees of freedom (restrictions on ν depending on the choice of estimator as before)

Cov
(
log

∣∣∣qn,t+1y(p)

qn,t(p)

∣∣∣ , D̂i,n,t

)
Cov

(
log

∣∣∣qn,σ̂,t+1y(p)

qn,σ̂,t(p)

∣∣∣ , D̂i,n,t

)
D̂1,n,t = sample s.d. σ̂n,t −σ

2
(1 +

q2
Ỹ

(p)

ν
) −σ

2
ν−1
ν−4

D̂2,n,t = sample MAD θ̂n,t −
σ

(√
ν(ν−2)

ν−1
fỸ (qỸ (p))(1+

q2
Ỹ

(p)

ν
)−(1−p)

√
ν−2
π

Γ( ν−1
2 )

Γ(ν/2)

)
fỸ (qỸ (p))qỸ (p)

−σ
2
ν−1
ν−3

(ν − 2)
Γ( ν−1

2
)

Γ(ν/2)

√
1
νπ

D̂3,n,t = sample MedianAD ξ̂n,t −σ 1−p−2 max (0,3/4−max (1/4,p))

4fỸ (qỸ (p))fỸ (qỸ (3/4))
√

ν
ν−2

qỸ (p)
−σ

2

qỸ (3/4)(1+
q2
Ỹ

(3/4)

ν
)√

ν
ν−2

Cor
(
log

∣∣∣qn,t+1y(p)

qn,t(p)

∣∣∣ , D̂i,n,t

)
Cor

(
log

∣∣∣qn,σ̂,t+1y(p)

qn,σ̂,t(p)

∣∣∣ , D̂i,n,t

)
D̂1,n,t = sample s.d. σ̂n,t −fν(qỸ (p))|qỸ (p)|(1+

q2
Ỹ

(p)

ν
)

2
√
ν−1
ν−4

p(1−p)
− 1√

2
≈ −0.71

D̂2,n,t = sample MAD θ̂n,t −

∣∣∣∣∣
√
ν(ν−2)

ν−1
fỸ (qỸ (p))(1+

q2
Ỹ

(p)

ν
)−(1−p)

√
ν−2
π

Γ( ν−1
2 )

Γ(ν/2)

∣∣∣∣∣
√

2
√
p(1−p)

√
1− ν−2

π

Γ2( ν−1
2 )

Γ2(ν/2)

−
√
ν−1
ν−3

√
ν−2
ν

Γ( ν−1
2 )

Γ(ν/2)

√
ν
π

2

√
1−Γ2( ν−1

2 )

Γ2(ν/2)

ν−2
π

√
1

ν−4

≈ −0.54

D̂3,n,t = sample MedianAD ξ̂n,t − |1−p−2 max (0,3/4−max (1/4,p))|
√

2
√
p(1−p)

−4fỸ (qỸ (3/4))(1+
q2
Ỹ

(3/4)

ν
)qỸ (3/4)

2
√
ν−1
ν−4

≈ −0.23

Again, the values are summarised in Table 6. Apart from the correlation of the sample standard deviation
in the case of the location-scale quantile, which equals − 1√

2
≈ −0.71, the expressions look more

complex than in the case with the Gaussian distribution. In contrast to the Gaussian case, we can observe
in Table 6 that, when using the sample standard deviation, the covariance is not the same when using the
sample quantile or the location-scale quantile with known mean µ = 0 (first column). But again, we see
that all different covariances with the location-scale quantile are constant (i.e. independent of p), hence
also multiple of each other (last column), although this multiple depends on the degrees of freedom ν.
To further understand the quantities, we plot them. We start by considering the case ν = 5 in Figure 6
since we need ν ≥ 4 for (M2) to hold (as we also consider the location-scale quantile qn,σ̂). As the
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behaviour changes with ν, in a second step, we look in Figure 7 at the covariances and correlations as a
function of ν by comparing the cases ν = 3, 4, 5, 10, 40 with the Gaussian limiting case.

Figure 6: Comparison of the covariances (first row) and correlations (second row) between log-ratios of quantile
estimators and each of three measure of dispersion estimators in the same plot, in the case of a Student distribution
with ν = 5 degrees of freedom. Left: Using the sample quantile, Middle: Zoomed into the right tail (p ≥ 0.8) using
the sample quantile, Right: Using the location-scale quantile with known mean µ = 0

Let us start with the first row of Figure 6. Therein we see in the left two plots the covariances when
using the sample quantile and in the right plot when using the location-scale quantile. When looking
at the covariance with the sample quantile (left plot), we see that the behaviour is as with the Gaussian
distribution: In all cases, the value is negative and symmetric around the p = 0.5-axis. The sample
MedianAD is still bi-modal and for intermediate values of p, i.e. 0.2 < p < 0.8, the sample MAD has
its maximum, in absolute terms, of 0.73 at p = 0.5. Apart from this maximum, the sample MedianAD
has the highest (up to -0.84) and the sample standard deviation the lowest (minimum of -0.5) covariance
values in this interval in absolute terms. The three measures of dispersion are similar in values in a
very small neighbourhood around their intersection points (between 0.77 and 0.81) and the MedianAD
with the MAD also around p = 0.5. Around its two maxima and especially in the limit p → 0 and 1
the MedianAD is very different from the standard deviation and the MAD, whereas the latter two are
rather similar (with their biggest difference being around p = 0.5). If we turn to the middle plot, we
can observe the behaviour for tail values of p. We see that the MedianAD and the standard deviation
intersect at p = 0.81 with a value of -0.59 and the MedianAD with MAD at 0.82 (value of −0.55). As
noticed before, this is the region the three measures of dispersion are the most similar. While we see that
for p < 0.81, the MedianAD is the biggest in absolute terms, from p > 0.81 on, the standard deviation
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is bigger than the MedianAD (for p > 0.8, the standard deviation is all the time bigger than the sample
MAD anyway). Further, from p > 0.82 on, the covariance with the sample MAD is larger in absolute
terms than the sample MedianAD.

A difference to the Gaussian distribution is, as already pointed out, that the covariance is not constant
with the sample standard deviation. Also, the range of values for the sample MAD, and especially for
the sample standard deviation, is bigger than in the Gaussian case (the covariances seem to explode near
the boundary). We also see now in the limit p → 0 and 1 the MedianAD increases, whereas MAD and
standard deviation decrease, i.e. they have opposite trends.

We consider now the covariance when using the location-scale quantile (right plot). The same comments
as those already made for Table 6 hold. The values are constant, i.e. independent of p. In absolute
terms, the covariance with the sample standard deviation is the highest (-2), and the one with the sample
MedianAD (-0.24) the lowest, while -0.57 for the MAD, i.e same ordering as in the Gaussian case, but
here the difference between the MAD and the standard deviation is much more pronounced.

When comparing the covariances with respect to the quantile estimators, we can say that in the case of
the sample MedianAD for p near the boundary of (0, 1), p > 0.97, the covariance is lower (in absolute
terms) with the sample quantile, while this behaviour reverses for all the other values of p more in the
interior of (0, 1). For the sample standard deviation, the covariance is always higher in absolute terms
for the location-scale quantile (except for p limiting to the boundary, i.e. p > 0.99). For the sample
MAD, it is higher for the sample quantile, except between 0.76 < p < 0.94.

Let us turn to the correlations in the second row of Figure 6. We see that, in the case of the correlation
with the sample quantile (left plot), all three measures of dispersion have the same tendencies, they are
negative and symmetric around the axis p = 0.5, with their smallest values in absolute terms being
around p = 0.5. They also all have two minima and comparable range of values. In short, the behaviour
is very similar to the Gaussian case (recall Figure 5). The minimum is a little bit bigger for the sample
MedianAD (-0.41 at p = 0.75) than for the sample MAD (-0.37 at 0.92) and is the smallest for the
sample standard deviation (-0.30 at 0.99). Then, we focus again on tail values, as in the middle plot.
We see that, for p < 0.82, the MedianAD is the largest, from p = 0.82 on, the MAD correlation is
then the largest and, only from p > 0.99, the standard deviation (note that those thresholds are different
than in the case of the covariance and also a bit different to the Gaussian case). The maximum in
absolute terms for the sample standard deviation correlation is near p = 0.99 with a value of −0.30, for
the MAD it is around p = 0.92 with a value of −0.37. All three measures of dispersion do not have
very similar values in the tail. Looking at the right plot we can say that, measured in absolute terms,
the correlations with the location-scale quantile are bigger than the ones with the sample quantile (for
all p) for the sample standard deviation (-0.71) and the sample MAD (-0.54), but not for the sample
MedianAD where the covariance with qn,σ̂ is very low (-0.23) and the correlation is bigger in absolute
terms except in the intervals (0.10,0.35) and (0.65,0.90). Comparing the three (constant) correlations
using the location-scale quantile, it is the biggest with the sample standard deviation and the smallest
with the sample MedianAD. Again, as in the Gaussian case, the difference between MAD and standard
deviation is smaller, whereas it is big to the MedianAD (differently than for the covariance).

As mentioned, we also want to study the convergence of the Student covariance and correlation to the
Gaussian case with respect to the degrees of freedom ν. Thus, we look in Figure 7 at the covariance and
correlation for each measure separately but showing the cases ν = 3, 4, 5, 10, 40 and∞ (Gaussian case)
in the same plot. As before, we first look at the covariance. In the first row we show the covariances
when using the sample quantile. There are three plots, one for each measure of dispersion. In the case
with the sample standard deviation (left plot), we see that the convergence for intermediate values of p
is quick and slows down significantly the further the values are near the boundary p→ 0 and 1.
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Figure 7: Asymptotic covariances (first two rows) and correlations (last two rows) between the sample quantile
or the location-scale quantile respectively and three different measure of dispersion estimators each (from left
to right: sample standard deviation, sample MAD, sample MedianAD) in the case of a Student distribution -with
ν = 3, 4, 5, 10 and 40 degrees of freedom as well as the Gaussian distribution as comparison
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For the MAD (middle plot), the convergence slows down in direction of the boundaries, but interestingly
it is quicker near the maxima of the covariance in the case ν = 3 (i.e p=0.26, p=0.74), while slower
in between. Further, we see a change in the shape of the covariance: For low degrees of freedom
(ν = 3, 4, 5), the maximum value in absolute terms is at the boundaries, whereas, for ν = 10, 40
and the Gaussian case, this maximum is near p = 0.5. Also, for ν = 3, 4, 5, 10, the covariance has
inflection points near the boundary; this is not the case for ν = 40 and the Gaussian distribution.
Contrary to the MAD, the convergence for the MedianAD is quick on the boundary but slower in the
interval (0.25, 0.75). Comparing the three plots, the convergence is slower at the boundaries for the
sample standard deviation and MAD, whereas quicker for the sample MedianAD. For interior values,
say 0.2 < p < 0.8, we see the opposite behaviour, the convergence is quick for standard deviation and
MAD, but slow for the MedianAD.

In the second row of Figure 7, we see the convergence for the case of using the location-scale quantile.
Note that for some covariances, we cannot compute the quantities for ν = 3, 4 (because of the necessary
moment conditions). While the values are always constant for all p, one can point out that the con-
vergence with the sample standard deviation is the slowest and with the sample MedianAD the fastest.
Also, for the sample standard deviation and sample MAD the values for the Student distribution are
more negative than for the Gaussian distribution. This is the contrary for the sample MedianAD. Thus,
one can say that the convergence to the Gaussian case is ‘from the left’ (coming from more negative
values), while it is the reverse for the sample MedianAD.

Finally, as for the covariance, we want to look at the convergence behaviour of the correlation with an
underlying Student distribution to the Gaussian case. This is done as a function of the degrees of freedom
ν in the last two rows of Figure 7 for each of the three different measures of dispersion separately. First,
we look at the case with the sample quantile. For the sample standard deviation (left plot), we see that
the convergence, for values near the boundaries and p = 0.5, is quicker as for the other intermediate
values. This is something we observe also with the sample MAD (middle plot). Also, the behaviour of
the convergence with p is similar in both cases. These two findings are contrary to what we observed
for the standard deviation and MAD for the covariance. Still, comparing it to the case with the sample
MAD, the convergence of the correlation for the standard deviation is slower - we observed this ordering
in the speed of convergence already for the covariances. Further, the convergence with the sample MAD
is smoother than with the sample standard deviation. E.g. the shape and values from ν = 5 to ν = 10
change more than with the sample MAD. Comparing the three plots, we see that the convergence is
the quickest for the sample MedianAD (right plot). The values for the Student and Gaussian cases are
equal (thus one sees only one function in the plot). This was due to the fact that the correlation does not
depend on the underlying distribution for symmetric location-scale distributions!

In the last row of Figure 7, we see the convergence for the case of using the location-scale quantile.
Again, this is in all three cases only well-defined for ν ≥ 5. We see that the correlation with the sample
standard deviation (left plot) is constant and equal to the Gaussian case for all the well-defined Student
cases. For the sample MAD (middle plot), we see that the convergence is quicker than for the sam-
ple MedianAD (right plot). Also, the convergence to the Gaussian case is, for both, sample MAD and
sample MedianAD ‘from the right’ (i.e. coming from less negative values) - for the covariance we had
observed different behaviours for MAD and MedianAD respectively.

4.2.3 Impact of Using Longer Samples

We want to understand how this effect of negative correlation for the log-ratio of sample quantiles with
the measures of dispersion (sample MAD, sample standard deviation, sample MedianAD) depends on
the chosen sample size. To do so, we analyse what happens to the correlation (and also covariance) when
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using longer sample sizes than one year of observations (i.e. n = 252). [43] looked at this empirically for
some cases, and in Proposition 10 we already looked at the scaling behaviour in general, the difference
here being that we analyse a specific setting. For simplicity, we restrict ourselves to multiples of the
base sample size n = 252 and denote them by un for an integer-valued u.

Again, instead of looking separately at all the different cases when either using historical estimation
of the quantile or the location scale model, and one of the three measures of dispersion, we consider a
unified approach.

The only condition we require for this analysis with longer sample sizes, is that neither the measure of
dispersion estimator D̂i,n,t at time t, nor the quantile prediction q̂n,t(p) computed at time t, overlaps
(with respect to the sample they are computed on) with the other quantile estimator q̂n,t+wy (usually
computed at time t+ 1y, here in more generality at time t plus w years), hence we choose q̂wn,t+wy in a
way such that this is fulfilled by construction. It means that, in most generality, we consider for positive
integers w, u, v the following covariance and correlation - in analogy to equation (104):

Cov

(
log

∣∣∣∣ q̂wn,t+wy(p)q̂un,t(p)

∣∣∣∣ , D̂i,vn,t

)
= −Cov

(
log|q̂un,t(p)|, D̂i,vn,t

)
(105)

Cor

(
log

∣∣∣∣ q̂wn,t+wy(p)q̂un,t(p)

∣∣∣∣ , D̂i,vn,t

)
=

−Cov
(

log|q̂un,t(p)|, D̂i,vn,t

)
√

Var (log|q̂wn,t+wy(p)|) + Var (log|q̂un,t(p)|)
√

Var(D̂i,vn,t)

(106)

As in Subsection 4.2, note that equations (105), (106) are for finite sample sizes while the theoretical
results hold asymptotically.

From Proposition 10, it follows in this case (given the respective conditions on the underlying distribu-
tion):

lim
n→∞

Cov

(√
n log

∣∣∣∣ q̂wn,t+wy(p)q̂un,t(p)

∣∣∣∣ ,√nD̂i,vn,t

)
=

1

max (u, v)
lim
n→∞

Cov

(√
n log

∣∣∣∣ q̂n,t+1y(p)

q̂n,t(p)

∣∣∣∣ ,√nD̂i,n,t

)
.

(107)

This means that the choice of w does not play a role at all (as the quantile estimator at time t+wy is by
construction disjoint from the other quantities) and the exact values of u, v itself neither, but only their
maximum! Accordingly, one can show for the correlation that

lim
n→∞

Cor

(
log

∣∣∣∣ q̂wn,t+wy(p)q̂un,t(p)

∣∣∣∣ , D̂i,vn,t

)
=

−1√
1 + u

w
max (u,v)
min (u,v)

lim
n→∞

Cor(log|q̂n,t(p)|, D̂i,n,t). (108)

Exemplary Discussion on Sample Size - Let us discuss what we can deduce from the two equations,
(107) and (108), focusing on the correlation (108). As we are interested in the change of the value of the
correlation for different sample sizes (and not the value itself), for illustration, let us simply consider the
case of the location-scale quantile model with known mean µ = 0 and the sample standard deviation as
measure of dispersion, as in this case (108) simplifies to:

lim
n→∞

Cor

(
log

∣∣∣∣qwn,σ̂,t+wy(p)qun,σ̂,t(p)

∣∣∣∣ , σ̂vn,t) = −1/

√
1 +

u

w
× max (u, v)

min (u, v)

since the correlation between the logarithm of the quantile estimator and the standard deviation is equal
to 1, as one can deduce from (60).
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Recall that in the case of using equal sample size n, i.e. w = u = v = 1, we have a correlation value of
−1/
√

2. Thus we compare this latter value (named base value) to the values obtained with other choices
for w, u, v, for samples of size nw, nu, nv respectively. We give an overview of the different cases in
Table 7.

Table 7: Correlation values (using the location-scale quantile model with known mean µ = 0) for
different sample sizes nw, nu, nv depending on the choice of w, u, v in comparison to the standard
choice of w = u = v = 1.

w = u = v w = 1

w = u = v = 1 w = u = v > 1 u = v > 1 1 ≤ u < v u > v ≥ 1

lim
n→∞

Cor

(
log

∣∣∣∣ q̂wn,σ̂,t+wy(p)

q̂un,σ̂,t(p)

∣∣∣∣ , σ̂vn,t) −1√
2

−1√
2

−1√
1+u

−1√
1+v

−1√
1+u2/v

We observe that, when all sample sizes are equal, taking the size larger than 1 (second column) does
not have any impact on the value of the correlation, which remains −1/

√
2. This is something one

can e.g. observe also from the plots in [43]. If we set w = 1 which is usual in regulation, see [11],
we consider three different choices. If u = v > 1, the correlation depends only on the value of u
(third column) and will be smaller (in absolute values) than the base value. A similar behaviour holds if
1 ≤ u < v, although not a realistic case in view of applications (as one wants σ̂vn,t to be a marker of
qun,σ̂,t - thus they should be computed over the same sample). Moreover the correlation only depends
on v in such a case (fourth column). In the last case, where u > v ≥ 1, the correlation depends on the
factor u2/v > k, so is the smallest (in absolute values) of all observed cases (but depends on both, u
and v, see last column). Note that this last case also incorporates w = v = 1, which is a realistic setting,
as developed e.g. in [9]. We see that, in such a case, the correlation depends only on u, and will be
−1/
√

1 + u2.

4.2.4 Comparison with Empirical Work

As final part, we want to assess the finite sample performance of the theoretical results: While we already
presented a more general finite sample performance analysis in Subsection 2.4, here we want to evaluate
the adequateness of a framework which exactly is the same setup as in [9]. Thus, we simulate an iid
sample with mean µ = 0 of sizeN = 7562. Then, using a sample size of n = 252 (corresponding to one
year of data), we compute with a monthly rolling-window the time series of quantile estimates q̂n,t(p)
for quantiles of order p = 0.95 and p = 0.99 each, and a monthly time series of measure of dispersion
estimates D̂i,n,t. q̂n,t is either the sample quantile time series q̂n,t or the location-scale quantile time
series with known µ = 0 time series qn,σ̂,t, D̂i,n,t can be either the sample standard deviation, the sample
MAD, or the sample MedianAD. This gives a time series of 349 values each for the quantile estimators
and measure of dispersion estimators. Recalling the correlation of interest, Cor

(
log| q̂n,t+1y(p)

q̂n,t(p)
|, D̂i,n,t

)
in (104), we see that for every time point t, we have to build the ratio of quantile estimates q̂n,t+1y(p)

q̂n,t(p)
.

As we are using a monthly rolling-window, we cannot build this ratio for the last twelve points in the
time series (as we do not have further points in the future q̂n,t+1y(p)). Thus, the time series of log-
ratios consists of 337 observations and correspondingly we reduce the time series of dispersion measure
estimates to 337. With those m = 337 observations, we then estimate the correlation of interest. This
procedure is repeated 100’000-fold.

We consider iid samples coming from three different distributions: From a Gaussian distribution and
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from two Student distributions with 3 and 5 degrees of freedom, respectively. Note, that the specifica-
tion of µ, σ2 is not needed as the correlation results for location-scale distributions are independent of
its parameters. Then, we report in Table 8 the averages of the 100’000-fold repetition with, in brackets,
the corresponding empirical 95% confidence interval values. Further, we provide the theoretical value
below the estimated value. Also, we provide confidence intervals for the sample Pearson linear corre-
lation coefficient (using the classical variance-stabilizing Fisher transform of the correlation coefficient
for a bivariate normal distribution to compute the confidence intervals -see the original paper [18] or e.g.
a standard encyclopedia entry [37]). Note, that those confidence interval values have to be considered
with care. Firstly, recall that the bivariate normality of our quantile estimator and measure of dispersion
estimator hold asymptotically. Hence, it is not clear if for the sample size n = 252 considered we can as-
sume bivariate normality (this could be tested). Secondly, the procedure in [18] assumes an independent
sample for the correlation estimation while our sample of m = 337 pairs is clearly dependent (because
we computed it with a monthly rolling window giving us overlapping samples). This would reduce the
sample size on which to compute the confidence intervals to an effective sample size meff < m. Still,
we provide those theoretical confidence intervals as approximate guidance.

We recall that when working with the sample standard deviation, the existence of the fourth moment is
a condition we require, also when working with the location-scale quantile. Thus, as they do not exist
for a Student distribution with 3 degrees of freedom, we simply write ‘NA’ as theoretical value instead.

Table 8: Average values from a 100’000-fold repetition. Comparing the correlation for our three mea-
sures of dispersion and two different quantile estimators. Average empirical values are written first
(with empirical 95% confidence interval in brackets), the corresponding theoretical values, mean and
95% confidence interval, being in the row below. We consider two thresholds p = 0.95, 0.99, overall
sample size N = 7562 and the time series of estimators computed each on a sample size of n = 252.

Gaussian distr. Student distr. (5df) Student distr. (3df)

Quantile estimator q̂n: qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95

Cor(log| q̂t+1

q̂t
|, σ̂t) -40 (-59,-18) -72 (-82,-61) -31 (-54,-6) -72 (-81,-61) -19 (-45,+8) -71 (-81,-60)

-39 (-48,-30) -71 (-76,-65) - 27 (-37, -17) -71 (-76,-65) NA NA
Cor(log| q̂t+1

q̂t
|, θ̂t) -34 (-55,-12) -67 (-79,-55) -37 (-57,-14) -62 (-75,-46) -35 (-56,-11) -60 (-74,-43)

-34 (-43,-24) -66 (-72,-60) -36 (-45,-26) -54 (-61,-46) -34 (-43,-24) NA
Cor(log| q̂t+1

q̂t
|, ξ̂t) -16 (-40,+8) -43 (-62,-23) -17 (-40,+8) -27 (-50,-2) -16 (-40,+8) -15 (-40,+11)

-16 (-26,-5) -43 (-51,-34) -16 (-26,-5) -23 (-33,-13) -16 (-26,-5) NA

p = 0.99

Cor(log| q̂t+1

q̂t
|, σ̂t) -32 (-53,-9) -72 (-82,-61) -36 (-57,-11) -72 (-81,-61) -29 (-54,0) -71 (-81,-60)

-31 (-40,-21) -71 (-76,-65) -30 (-39,-20) -71 (-76,-65) NA NA
Cor(log| q̂t+1

q̂t
|, θ̂t) -23 (-45,+1) -67 (-79,-55) -29 (-51,-6) -62 (-75,-46) -33 (-54,-9) -60 (-74,-43)

-22 (-32,-12) -66 (-72,-60) -28 (-38,-18) -54 (-61, -46) -31 (-40,-21) NA
Cor(log| q̂t+1

q̂t
|, ξ̂t) -8 (-32,+17) -43 (-62,-23) -7 (-32,+18) -27 (-50,-2) -7 (-32,+18) -15 (-40,+12)

-7 (-18, +4) -43 (-51,-34) -7 (-18, +4) -23 (-33,-13) -7 (-18, +4) NA

From Table 8 we see that the empirical averages and the theoretical values seem to agree well in general.
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Before going into detail, remember that in Table 2 in Subsection 2.4 we had a general extensive simula-
tion study on the effect of sample size. We can set the theoretical asymptotic covariance of the former
into relation to the present setting: E.g. when considering as dispersion measure the sample standard
deviation, we have

lim
n→∞

Cor

(
log

∣∣∣∣ q̂t+1

q̂t

∣∣∣∣, σ̂t) = − 1√
2

lim
n→∞

Cor(q̂t, σ̂t)

Meaning, all theoretical values in this Table 8 multiplied by −
√

2 give the theoretical values of Table 2.
Further, while the sample correlation in Table 2 was computed on disjoint samples, the setting here uses
a rolling-window which results in overlapping samples. Comparing the values in both tables, one can
see that this affects (to a varying and sometimes negligible extent) the quality of approximation of the
theoretical values.

Let us now examine the results in Table 8 closer.

We start by comparing again the behaviour between the two quantile estimators. It might seem obvious
by now, after having presented all the theoretical results, but in the table we can see that the correlation
of the same measure of dispersion with the different quantile estimators (comparing always the two
columns for each distribution) has different values (and the correlation is higher in absolute terms with
qn,σ̂ than with qn for such tail values - see also Figures 5, 6). Also, the confidence intervals are larger
(or at least not smaller) with qn in comparison with qn,σ̂, as expected.

Comparing the cases of p = 0.95 and p = 0.99, we can see that qn has usually higher correlation in
absolute terms with p = 0.95 (except for the Student distribution with 5 degrees of freedom). Recall
that qn,σ̂ does not depend on p (as we already saw in Tables 5, 6), thus one has the same values for
p = 0.95, 0.99. Further, the size of the empirical confidence intervals are similar for both values of p for
all measures of dispersion.

Comparing the behaviour for the three different distributions considered, we first recall that in the case
of a Student distribution with 3 degrees of freedom, we do not have all theoretical values because of
the moment conditions. Also, we know that the correlation of the MedianAD with the sample quantile
is independent of the distribution (follows from Proposition 17), which gives the same values for the
three different distributions (still, the values depend on p). Similarly, the correlation between the sample
standard deviation and the location-scale quantile is independent of the distribution (and even of p!). In
general, we can say that the empirical values behave as analysed in the theoretical formulae in Subsec-
tion 4.2: E.g. for the correlation between the sample quantile with the sample standard deviation, it is
clearly bigger in absolute terms for the Gaussian case than the Student distribution with 5 degrees of
freedom, and reverse (although similar values) for the sample quantile with the MAD (in that case also
the value for the Student distribution with 3 degrees of freedom is similar). The size of the confidence
intervals changes depending on the distribution: For the sample quantile, it increases with heavier tails
when considering the correlation with the sample standard deviation, while staying the same with the
MAD or MedianAD. For the location-scale quantile, it is the other way round. It increases with the
heaviness of the tail with the MAD and MedianAD, whereas staying constant with the sample standard
deviation.

We conclude these empirical observations comparing the behaviour of the three measures of dispersion
(the sample standard deviation σ̂t, the sample MAD θ̂t and the sample MedianAD ξ̂t). As already seen
in Subsection 4.2, for p = 0.95, 0.99, the correlation in absolute terms will be in the following order (for
all cases in which its theoretical counterpart is defined): The highest with σ̂t, then with θ̂t and the lowest
with ξ̂t. The only exception to this, is the case of the Student distribution with 5 degrees of freedom for
p = 0.95, recall Figure 6 (plots in second row). Also, the increasing size of the confidence intervals
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(for defined quantities) is in the same ordering, i.e. the one for σ̂t being the smallest and with ξ̂t the
biggest (the only exception being the sample quantile in the case of a Student distribution with 5 degrees
of freedom).

5 Concluding Remarks: Implications for Use in Practice

To recapitulate, we give a brief overview over the results presented: In this paper we showed the joint
asymptotic normality of functionals of two quantile estimators and three measure of dispersion estima-
tors each - for underlying iid models. Apart from providing explicit results and analyses in the cases of
the Gaussian and Student distributions, we also compared the difference in speed of convergence when
using either the sample quantile or the parametric location-scale quantile as quantile estimator. Further,
we applied the theoretical results in to risk measures as VaR, ES and expectile as well as to related em-
pirical work in the literature - [9], [44], [43]. Also we verified a good finite sample performance through
simulations. Keeping the focus on the practical applicability of the results, we conclude by summarising
and comparing the different theoretical properties and restrictions of the estimators and how this impacts
their use in applications.

While we specified in each theorem which moment and smoothness conditions the underlying parent
random variable has to fulfil (although we did not not assume minimal conditions, for simplicity), we
offer in Table 9 a complete overview which we analyse now.

Let us start with discussing the choice of the quantile estimator qn or qn,σ̂. We see that asymptotics
with qn do not give a restriction on the moments of its distribution (they will only be imposed by the
corresponding measure of dispersion estimator) and apart from the density needing to exist at qX(p)
(condition (H1)) we have some (not very restrictive) further smoothness and differentiability conditions,
(H3). In contrast to that, the location-scale quantile can only be used when assuming to have a location-
scale distribution with finite fourth moment and, as for any parametric estimator, assumic a specific
parametric family of (location-scale) distributions - which is a restrictive condition. In return, we have
seen in the finite sample analysis in Section 2 that the latter restriction results in narrower confidence
intervals - and a higher degree of correlation, as seen in the examples of Section 4, as expected (an
exception to this are intermediate values, around p = 0.25, 0.75 for the MedianAD). Also, it is useful
to understand the joint asymptotics with the location-scale quantile as it acts as a benchmark to measure
the efficiency of any other quantile estimator (recall Subsection 3.3).

With respect to the choice of the measure of dispersion estimator, we can observe similar trade-offs.
When using the sample standard deviation, we need a finite fourth moment of the distribution. But in
exchange, we usually have the best empirical confidence intervals and the strongest correlation when
considering tail values for p. A needed fourth moment discourages from using the sample standard
deviation, although it is the most popular measure of dispersion in finance. We have the options of using
the two other measures of dispersion that require at most a finite second moment: The sample MAD
requires finite variance and additionally continuity at FX(µ) for its asymptotics (condition (Q1) in the
table). If we want to use it in joint asymptotics with a quantile estimator, we additionally need FX to
be Hölder continuous at µ (which, for a continuously differentiable distribution function, is the case).
Going back to empirical observations, we can say that it has empirically the second best confidence
intervals and usually the second strongest correlation when considering tail values.

In the case of the sample MedianAD, we do not even need a finite mean (these are the least restrictive
moment conditions), but rather some continuity and differentiability conditions (see (Q2) in the table)!
For its joint asymptotics with a quantile estimator, we further need differentiability of the density at
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certain points (ν, ν ± ξ). But with this, comes the disadvantage of having the largest uncertainty in the
empirical confidence intervals and, in the examples considered, the weakest correlation when consider-
ing tail values of p. Worthwhile recalling is also the fact that its correlation with the sample quantile for
symmetric location-scale distributions will be independent of the distribution (but still a function of p),
meaning that one cannot infer on a possible underlying distribution based on its correlation value.

Overall it seems that using the asymptotics with the sample MAD (and the sample quantile as quantile
estimator) seem to be a good compromise between empirical performance and theoretical restrictions.

Table 9: Overview of minimal conditions the distribution have to fulfil for the different quantile (first part) and
measure of dispersion (second part) estimators. For each, we split the conditions into three categories: First,
the conditions needed for the asymptotics of each estimator. Second, for its representation as iid-sum (usually
Bahadur representation) and thirdly for its use in computation of asymptotic covariances and correlations (i.e.
joint asymptotics with a corresponding quantile or measure of dispersion estimator)

Quantile
Estimator

Asymptotic Normality
Bahadur

Representation
Joint asymptotics (with a measure of dispersion estimator)

qn(p) (H1): 0 < fX(qX(p)) <∞ (H1)

(H1),

(H3):


FX twice differentiable in neighbourhood of qX(p),

F
′′
Xbounded in that neighbourhood,
FX(qX(p)) = p

qn,µ̂,σ̂(p) (H2):

{
E[X4] <∞,
(X − µ)2 not constant

− (H2)

qn,σ̂(p) (H2) − (H2)

Measure of
Dispersion
Estimator

Asymptotic Normality
Bahadur

Representation
Joint asymptotics (with a quantile estimator)

σ̂2
n (H2) − (H2)

θ̂n (Q1):

{
E[X2] <∞,
FX continuous at µ

(Q1)

{
(Q1),
(Q3): FX Hölder-continuous at µ

ξ̂n (Q2):


FX continuous in
neighbourhood of ν ± ξ,
FX differentiable at ν, ν ± ξ
fX(ν) > 0, f|X−ν|(ξ) > 0,

(Q2)

{
(Q2),
(Q4): FX twice differentiable at ν, ν ± ξ
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APPENDIX

The appendix has four sections. The first three correspond each to one of the three main sections of the paper
and contain its proofs respectively. Of the biggest mathematical interest are the proofs of the main theorems
(asymptotic distributions of quantile estimators and measure of dispersion estimators) in Appendix A. As the
results in Section 3 are only special cases of the results in Section 2, the proofs in Appendix B are simply its
computations. Still, it is worthwhile pointing out that the computations of the examples throughout this Appendix
section can be of interest: To understand the examples better, but also as the quantities involved (truncated/absolute
moments of Gaussian and Student distribution) have been sometimes wrongly computed in the literature. Then,
Appendix C contains the explicit computations of asymptotic correlations between the measure of dispersion
estimators and the expected shortfall estimator which were not presented in Subsection 4.1 because of their length.
Finally, Appendix D presents extensions of the main asymptotic theorems, as well as some additional tables from
the simulation study in Section 2.4.

Appendix A Proofs of Section 2
In Appendix A.1 we cover the proofs of the asymptotics of the sample quantile with the three measure of dis-
persion estimators: We present the proofs of Theorem 1 (asymptotic distribution of sample quantile with either
sample variance or sample MAD) and Proposition 3 (asymptotic distribution of sample quantile with the sample
MedianAD). Both results will be proved using the Bahadur representation (Appendix A.1.1). But in the case
of Theorem 1, we also offer an alternative proof via Taylor expansion (Appendix A.1.2). Then, Appendix A.2
contains the corresponding proofs of the asymptotics when using the location-scale quantile estimator. In Ap-
pendix A.4 we do not present a proof of Proposition 8, as this is only an application of the Delta method, but the
proof of the scaling law (Proposition 10).

A.1 Proofs of Subsection 2.1

A.1.1 Bahadur’s Method

This approach is used to prove both, Theorem 1 and Proposition 3.

Proof of Theorem 1. It consists of two parts. In the first part, we assume the mean µ to be known. Using the
Bahadur representation, then the CLT, we show the asymptotic joint normality of the sample quantile and the
sample measure of dispersion with known mean, m̃(X,n, r) (recall Table 1), for any integer r > 0. Then, in a
second part, we use this result to show the asymptotic joint normality of the sample quantile with either the sample
variance or the sample MAD in the case of an unknown mean.

Part 1 - Known Mean -

• Bahadur representation
The Bahadur representation for sample quantiles from an iid sample is given in [5]:

qn(p) = qX(p) +
1− Fn(qX(p))− (1− p)

fX(qX(p))
+Rn,p, (109)

where Rn,p is a ‘rest’ of order O(n−3/4 log n) almost surely (which means that |Rn,p| ≤ Mn−3/4 log(n)
a.s. for all n ≥ n0 for some constants M,n0 < ∞). With this Bahadur representation we are able to use
the bivariate central limit theorem for the sample quantile qn(p) and the sample measure of dispersion with
known mean µ, m̃(X,n, r).

• Central Limit Theorem
Under condition (Mr), r > 0, we get

n−1/2
n∑
i=1

((
1I(Xi>qX(p))

|Xi − µ|r
)
−
(

1− p
m(X, r)

))
= n1/2

((
1− Fn(qX(p))
1
n

∑
|Xi − µ|r

)
−
(

1− p
m(X, r)

))
d→ N (0, Σ̂(r))),

(110)
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where Σ̂(r) =

(
Var(1I(Xi>qX(p))) Cov(1I(Xi>qX(p)), |X − µ|r)

Cov(1I(Xi>qX(p)), |X − µ|r) Var(|X − µ|r)

)
.

Then, we need to pre-multiply (i.e. from the left side) equation (110) by
[
1/(fX(qX(p))) 0

0 1

]
to use the

Bahadur representation (109) of the sample quantile. One gets (as in [8], just with a different notation),

n1/2

(
1−Fn(qX(p))−(1−p)

fX(qX(p))
1
n

∑
|Xi − µ|r −m(X, r)

)
= n1/2

(
qn(p)− qX(p)−Rn,p
m̃(X,n, r)−m(X, r)

)
d→ N (0, Σ̃(r)) (111)

where now

Σ̃(r) =

 Var(1I(Xi>qX (p)))

f2
X(qX(p))

Cov(1I(Xi>qX (p)),|X−µ|r)

fX(qX(p))

Cov(1I(Xi>qX (p)),|X−µ|r)

fX(qX(p)) Var(|X − µ|r)

 . (112)

Because of the fact thatRn,p has rateO(n−3/4 log(n)) a.s., we can ignore it in an asymptotic analysis (as it
follows from Popovicius inequality for variances, [35], that Var(

√
nRn,p) ≤M log(n)

n1/2 for some M <∞).

Now let us compute the asymptotic covariance matrix Σ̃(r). As we assumed (C1), we have FX(qX(p)) = p
and hence

E[1I(Xi>qX(p))] = 1− p, Var(1I(Xi>qX(p))) = p(1− p),

hence, we obtain, τk(η(X), p) being defined in(3),

Cov(1I(Xi>qX(p)), |Xi−µ|r) = (1−p)E[|Xi−µ|r|Xi > qX(p)]−(1−p)E[|Xi−µ|r] = τr(|Xi−µ|, p).
(113)

Thus, we arrive at the asymptotic joint distribution of the sample quantile and the sample measure of
dispersion with known µ for any integer r > 0.

Part 2 - Unknown Mean -

We analyse what happens with respect to the joint asymptotic distribution if we consider m̂(X,n, r) instead of
m̃(X,n, r). For this, we restrict the framework to r = 1, 2, and treat the two cases separately.

• Case r = 2. Note that we can write, using the sample variance σ̃2
n with known mean (µ),

σ̂2
n =

n

n− 1

(
1

n

n∑
i=1

(Xi − µ)2 − (X̄n − µ)2

)
=

n

n− 1

(
σ̃2
n − (X̄n − µ)2

)
. (114)

Since we know that (X̄n − µ)
P→ 0
n→∞

and
√
n(X̄n − µ)

d→
n→∞

N (0, σ2), we deduce by Slutsky’s theorem

√
n(X̄n − µ)2 d,P−→

n→∞
0. (115)

Thus, in our asymptotic analysis, we do not need any more to consider this term. Now, as we have

lim
n→∞

Cov(
√
nσ̂2

n,
√
nqn(p)) = lim

n→∞
Cov(

√
nσ̃2

n,
√
nqn(p)) + lim

n→∞
Cov(

√
n(X̄n − µ)2,

√
nqn(p)),

it follows, by Cauchy-Schwarz inequality,

lim
n→∞

|Cov(
√
n(X̄n−µ)2,

√
nqn(p))| ≤ lim

n→∞

√
Var(
√
n(X̄n − µ)2)

√
Var(
√
nqn(p)) = 0×

√
p(1− p)
f2
X(qX(p))

= 0.

We conclude that we can consider without loss of generality σ̃2
n instead of σ̂2

n for our asymptotic analysis.

• Case r = 1. In contrast to the case r = 2, the asymptotics of θ̂n = m̂(X,n, 1) and θ̃n := m̃(X,n, 1) are,
in general, not the same, as we are going to see.
From [4] - as also mentioned in [39] - we can see that for a distribution FX with finite second moment and

60



whose cdf is Hölder-continuous at µ, such that |FX(x)− FX(µ)| ≤ c|x− µ|β ∀x ∈ R, c > 1, 0 < β ≤ 1,
defining

Rn := 2

∫ 1

0

[
Fn(µ+ (X̄n − µ)y)− Fn(µ)− FX(µ+ (X̄n − µ)y) + FX(µ)

]
dy, (116)

it holds
√
n(θ̂n − θ) =

√
n(θ̃n − θ) +

√
n(2Fn(µ)− 1)(X̄n − µ) +

√
nLn, (117)

with Ln := (X̄n − µ)Rn +
√
n2(X̄n − µ)

∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy

and for some k > 0, again from [4],

P
(
|X̄n − µ| ≤ n−1/2 log n, |Rn| > k(log n)(1+β)/2n−(2+β)/4

)
= O(n−2). (118)

Further, [4] show that asymptotically
√
n(θ̃n − θ) + (2FX(µ)− 1)

√
n(X̄n − µ) +

√
nLn

d−→
n→∞

N (0, σ2
θ) (119)

with σ2
θ = Var(|X − µ|+ (2FX(µ)− 1)X). Those two relations (118) and (119) will be useful later on in

the computation. Note that we can write (117) as
√
n(θ̂n−θ) =

√
n(θ̃n−θ)+(2FX(µ)−1)

√
n(X̄n−µ)+(2Fn(µ)−2FX(µ))

√
n(X̄n−µ)+

√
nLn. (120)

Since Fn(µ)− FX(µ)
P−→

n→∞
0 and

√
n(X̄n − µ)

d−→
n→∞

N (0, σ2), hence by Slutsky Theorem

2Fn(µ)− 2FX(µ))
√
n(X̄n − µ)

d,P−→
n→∞

0 (121)

such that this term does not change the asymptotics of θn. But clearly, this impacts the following asymptotic
joint distribution:

√
n

(
qn(p)− qX(p)

θ̂n − θ

)
=
√
n

(
qn(p)− qX(p)

θ̃n − θ + (2FX(µ)− 1)(X̄n − µ) + 2(Fn(µ)− FX(µ))(X̄n − µ) + Ln

)
d−→

n→∞
N (0,Σ(r))

(122)
where we already know Σ

(r)
11 from (111)/ (112) and Σ

(r)
22 from (119), thus having

Σ(r) =

 p(1−p)
f2
X(qX(p))

lim
n→∞

Cov(
√
nq̂n(p),

√
nθ̂n)

lim
n→∞

Cov(
√
nq̂n(p),

√
nθ̂n) Var(|X − µ|+ (2FX(µ)− 1)X)

 .

We conclude with the computation of the asymptotic covariance: Using (120), then (111)/ (112)/ (113) for
the first part, and the expression of lim

n→∞
Cov(

√
nX̄n,

√
nqn(p)) given in [17] for the second part of the

covariance respectively, we obtain

lim
n→∞

Cov(
√
n(θ̂n),

√
nqn(p)) =

τ1(|X − µ|, p)
fX(qX(p))

+ (2FX(µ)− 1)
τ1(p)

fX(qX(p))

+ lim
n→∞

Cov(2(Fn(µ)− FX(µ))
√
n(X̄n − µ),

√
nqn(p)) + lim

n→∞
Cov(

√
nLn,

√
nqn(p)).

The last two covariance terms on the right hand side of this equality can be shown to be asymptotically
negligible, using Cauchy-Schwarz. We have, using (121),

lim
n→∞

|Cov(2(Fn(µ)−FX(µ))
√
n(X̄n−µ),

√
nqn(p))| ≤ lim

n→∞
|Var(2(Fn(µ)−FX(µ))

√
n(X̄n−µ)) Var(

√
nqn(p)) = 0.

The covariance with Ln requires more work:

lim
n→∞

|Cov(
√
nLn,

√
nqn(p))| =

≤ lim
n→∞

(
Var

(√
n(X̄n − µ)Rn

)
+ Var

(√
n2(X̄n − µ)

∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy

))
Var(
√
nqn(p)),

61



where we want to show that

lim
n→∞

Var
(√
n(X̄n − µ)Rn

)
= 0 (123)

lim
n→∞

Var

(√
n2(X̄n − µ)

∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy

)
= 0 (124)

Let us first consider (123). Clearly, E[
√
n(X̄n − µ)] = 0,Var(

√
n(X̄n − µ)) = σ2. If we go back to

the definition of Rn, (116), by the boundedness of the integral and integrand itself, we can interchange the
order of integration and then use the fact that E[Fn(x)] = F (x) for any x

E[Rn] = 2

∫ 1

0

E[Fn(µ+ (X̄n − µ)y)− Fn(µ)− FX(µ+ (X̄n − µ)y) + FX(µ)]dy = 0. (125)

By analogous arguments, we get

E[R2
n] = E

[(
2

∫ 1

0

[Fn(µ+ (X̄n − µ)y)− Fn(µ)− FX(µ+ (X̄n − µ)y) + FX(µ)]dy

)2
]

= 4

∫ 1

0

∫ 1

0

(
Var(Fn(µ))− Cov(Fn(µ), Fn(µ+ (X̄n − µ)y))− Cov(Fn(µ), Fn(µ+ (X̄n − µ)x))

+ Cov(Fn(µ+ (X̄n − µ)x), Fn(µ+ (X̄n − µ)y))
)
dxdy.

As we know that the variance of the empirical distribution function is of order n−1, using again the Cauchy-
Schwarz inequality, gives limn→∞ E[R2

n] = 0 Again by Cauchy-Schwarz,

lim
n→∞

|E[
√
n(X̄n − µ)Rn]| ≤ lim

n→∞

√
E[R2

n]

√
E[(
√
n(X̄n − µ))2] = 0,

thus, lim
n→∞

Var(
√
n(X̄n−µ)Rn) = lim

n→∞
E[(
√
n(X̄n−µ)Rn)2]. To evaluate this limit, we use the bound-

edness of Rn, i.e.

|Rn| ≤ 2

∫ 1

0

|Fn(µ+ (X̄n − µ)y)− Fn(µ)− F (µ+ (X̄n − µ)y) + F (µ)|dy

≤ 2

∫ 1

0

(
|Fn(µ+ (X̄n − µ)y)|+ |Fn(µ)|+ |F (µ+ (X̄n − µ)y)|+ |F (µ)|

)
dy ≤ 8.

For notational simplicity we writeX =
√
n(X̄n−µ), Y = Rn and denote by f the joint density of (X,Y ):

E[X2Y 2] =

∫
R2

x2y2f(x, y)d(x, y) =

∫ + log(n)

− log(n)

∫
y/∈[−k log(n)(1+β)/2

n(2+β)/4
,k

log(n)(1+β)/2

n(2+β)/4
]

x2y2f(x, y)d(x, y)

+

∫ + log(n)

− log(n)

∫
y∈[−k log(n)(1+β)/2

n(2+β)/4
,k

log(n)(1+β)/2

n(2+β)/4
]

x2y2f(x, y)d(x, y) +

∫
x/∈[− log(n),log(n)]

∫
R
x2y2f(x, y)d(x, y).

(126)

Using the bounds of the integral with respect to x and the boundedness of Y = Rn, we can write∫ + log(n)

− log(n)

∫
y/∈[−k log(n)(1+β)/2

n(2+β)/4
,k

log(n)(1+β)/2

n(2+β)/4
]

x2y2f(x, y)d(x, y)

≤ 64(2 log(n)) log(n)2

∫ + log(n)

− log(n)

∫
y/∈[−k log(n)(1+β)/2

n(2+β)/4
,k

log(n)(1+β)/2

n(2+β)/4
]

f(x, y)d(x, y)

= (128 log(n))3 P
(
|X̄n − µ| ≤ n−1/2 log n, |Rn| > k(log n)(1+β)/2n−(2+β)/4

)
= (128 log(n))3O(n−2)→ 0

where the last equality followed from (118). For the other two double-integrals in (126), we notice for each
of them (also, because by definition 0 < β ≤ 1), that, for n→∞, one of the integral limits collapses, thus
the integral itself too. Hence, (123) holds.
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Let us look at the second quantity, (124). We proceed in the same way, showing by Cauchy-Schwarz that

lim
n→∞

|E[
√
n2(X̄n−µ)

∫ 1

0

[FX(µ+(X̄n−µ)y)−FX(µ)]dy]| = 0 such that the variance is the expectation

of the square of the given quantity.
Hence, we first look at the integral part and use the Hölder continuity (with a constant c > 0):∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy ≤
∫ 1

0

|FX(µ+ (X̄n − µ)y)− FX(µ)|dy ≤
∫ 1

0

c|µ+ (X̄n − µ)y − µ|dy

=
c

2
|X̄n − µ|, (127)

from which we deduce that

E

[(∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy

)2
]
≤ E[c2(X̄n − µ)2/4] =

c2

4n
Var(X1)→ 0 as n→∞.

Thus, lim
n→∞

∣∣∣∣E [√n2(X̄n − µ)

∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy

]∣∣∣∣ = 0 follows by Cauchy-Schwarz,

as desired. We are left with showing that the variance, which is expressed as the expectation of the square
of the given quantity, vanishes:

lim
n→∞

E
[
(
√
n2(X̄n − µ)

∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy)2

]
= 0.

Using that |X̄n − µ| ≤ logn
n a.s. for large n (see Lemma A.4, [4]), we have for n ≥ n0:

E

[
(
√
n2(X̄n − µ))2

(∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy

)2
]
≤ E

[
(
√
n2(X̄n − µ))2 c

2

4
(
log n

n
)2

]
and hence, in the limit

lim
n→∞

E

[
(
√
n2(X̄n − µ))2

(∫ 1

0

[FX(µ+ (X̄n − µ)y)− FX(µ)]dy

)2
]
≤ lim
n→∞

(
c log n

n
)2 Var(

√
n(X̄n − µ)) = 0.

Putting both cases together, we arrive at

lim
n→∞

Cov(
√
nqn(p),

√
nm̂(X,n, r)) =

τr(|X − µ|, p) + (2− r)(2FX(µ)− 1)τ1(p)

fX(qX(p))
, (128)

lim
n→∞

Cor(qn(p), m̂(X,n, r)) =
τr(|X − µ|, p) + (2− r)(2FX(µ)− 1)τ1(p)√

p(1− p)
√

Var(|X − µ|r + (2− r)(2FX(µ)− 1)X)
. (129)

Getting the expressions involving the functionals h1, h2 is then only application of the Delta method. �

Proof of Proposition 3. Besides the Bahadur representation of the sample quantile, (109), we also use a Bahadur
representation for the sample MedianAD, shown in equation (7) of [31]:

ξ̂n − ξ =
1/2− (Fn(ν + ξ)− Fn(ν − ξ))

fX(ν + ξ) + fX(ν − ξ)
− fX(ν + ξ)− fX(ν − ξ)
fX(ν + ξ) + fX(ν − ξ)

1/2− Fn(ν)

fX(ν)
+ ∆n (130)

where ∆n = O(n−3/4 log(n)3/4) almost surely. Clearly, (130) can be rewritten in terms of an iid sum as

ξ̂n − ξ =
1
n

∑n
i=1

(
α1I(x≤ν) − fX(ν)1I(ν−ξ<x≤ν+ξ)

)
− 1

2 (α− fX(ν))

βfX(ν)
+ ∆n, (131)

where, for notational simplification, α := fX(ν + ξ)− fX(ν − ξ) andβ := fX(ν + ξ) + fX(ν − ξ) respectively.
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Using equations (109), (131), and the fact that, by definition of ν and ξ, P(X ≤ ν) = FX(ν) = 1/2 and
P(ν − ξ < X ≤ ν + ξ) = F|X−ν|(ξ) = 1/2, we apply the bivariate CLT and obtain:

n−1/2
n∑
i=1

((
1I(Xi>qX(p))

α1I(Xi≤ν) − fX(ν)1I(ν−ξ<Xi≤ν+ξ)

)
−
(

1− p
1/2(α− fX(ν))

))
= n1/2

((
1− Fn(qX(p))

1
n

∑
(α1I(X≤ν) − fX(ν)1I(ν−ξ<X≤ν+ξ))

)
−
(

1− p
1/2(α− fX(ν))

))
d→ N (0, Γ̃), (132)

where Γ̃ =

(
p(1− p) covind:qn,ξ̂n

covind:qn,ξ̂n
Var(α1I(Xi≤ν) − fX(ν)1I(ν−ξ<Xi≤ν+ξ))

)
with covind:qn,ξ̂n

:= αmax (0, p− 1/2)− fX(ν)
(

max (0, FX(ν + ξ)−max (FX(ν − ξ), p))− (1− p)/2
)
, as

we are going to prove below.

Then, we need to pre-multiply (i.e. from the left side) equation (132) by
[
1/(fX(qX(p))) 0

0 1/(βfX(ν))

]
to use

the Bahadur representation of the sample quantile and of the sample MedianAD (recall (109), (131)). We obtain:

n1/2

( 1−Fn(qX(p))−(1−p)
fX(qX(p))

1
n

∑
(α1I(X≤ν)−fX(ν)1I(ν−ξ<X≤ν+ξ))−1/2(α−fX(ν))

βfX(ν)

)
= n1/2

(
qn(p)− qX(p)−Rn,p

ξ̂n − ξ −∆n

)
d−→

n→∞
N (0,Γ)

(133)
where, ignoring Rn,p and ∆n since they are of order O(n−3/4 log(n)) a.s. (same argumentation as for Rn,p in the
Proof of Theorem 1, part 1),

Γ =


p(1− p)
f2
X(qX(p))

covind:qn,ξ̂n

βfX(ν)fX(qX(p))
covind:qn,ξ̂n

βfX(ν)fX(qX(p))

Var(α1I(Xi≤ν) − fX(ν)1I(ν−ξ<Xi≤ν+ξ))

β2f2
X(ν)

 .

We are left with computing the covariance covind:qn,ξ̂n
and the following variance:

Var(α1I(Xi≤ν) − fX(ν)1I(ν−ξ<Xi≤ν+ξ))

= α2 Var(1I(Xi≤ν)) + f2
X(ν) Var(1I(ν−ξ<Xi≤ν+ξ)) + 2αfX(ν) Cov(1I(Xi≤ν),−1I(ν−ξ<Xi≤ν+ξ))

=
1

4

(
α2 + f2

X(ν)− 8αfX(ν)(E[1I(ν−ξ<Xi≤ν)]−
1

4
)

)
=

1

4

(
α2 + f2

X(ν)− 4αfX(ν)(
1

2
− 2FX(ν − ξ)

)
=

1

4
(f2
X(ν) + γ)

where γ := α2 − 4αfX(ν)(1− FX(ν − ξ)− FX(ν + ξ)). Let us turn to the computation of covind:qn,ξ̂n
:

Cov(1I(Xi>qX(p)), α1I(Xi≤ν) − fX(ν)1I(ν−ξ<Xi≤ν+ξ)) =

αE[1I(Xi>qX(p))1I(Xi≤ν)]− fX(ν)E[1I(Xi>qX(p))1I(ν−ξ<Xi≤ν+ξ)]− (1− p)1

2
(α− fX(ν)). (134)

Let us consider one after the other the two expectations in (134). Note that we can write (using the definition of ν)

1I(Xi>qX(p))1I(Xi≤ν) =

{
0 if ν ≤ qX(p) (⇔ p ≥ 1/2)

1I(qX(p)<Xi≤ν) if ν > qX(p) (⇔ p < 1/2)
,

from which we deduce E[1I(Xi>qX(p))1I(Xi≤ν)] = max (1/2− p, 0). Analogously,

1I(Xi>qX(p))1I(ν−ξ<Xi≤ν+ξ) =


0 if qX(p) > ν + ξ (⇔ p > FX(ν + ξ)),

1I(qX(p)<Xi≤ν+ξ) if ν − ξ ≤ qX(p) ≤ ν + ξ (⇔ FX(ν − ξ) ≤ p ≤ FX(ν + ξ)),

1I(ν−ξ<Xi≤ν+ξ) if qX(p) < ν − ξ (⇔ p < FX(ν − ξ)).

Thus we have E[1I(Xi>qX(p))1I(ν−ξ<Xi≤ν+ξ)] = max (0, FX(ν + ξ)−max (FX(ν − ξ), p)).
Combining these two expressions in (134) provides:

covind:qn,ξ̂n
= αmax (1/2− p, 0)− fX(ν) max

(
0, FX(ν + ξ)−max (FX(ν − ξ), p)

)
− (1− p)1

2
(α− fX(ν))

= αmax (−p/2, (p− 1)/2)− fX(ν)
(

max (0, FX(ν + ξ)−max (FX(ν − ξ), p))− (1− p)/2
)
.
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This concludes the computations. Nevertheless, to be explicit, let us write out the overall asymptotic covariance
and correlation:

lim
n→∞

Cov(
√
nqn(p),

√
nξ̂n) =

covind:qn,ξ̂n

βfX(ν)fX(qX(p))

=
−max (0, FX(ν + ξ)−max (FX(ν − ξ), p)) + 1−p

2 + fX(ν+ξ)−fX(ν−ξ)
fX(ν) max

(
p− 1

2 , 0
)

(fX(ν + ξ) + fX(ν − ξ))fX(qX(p))

which is exactly the covariance in (10) for the case h1(x) = h2(x) = x (the case with general functionals h1, h2

follows directly by the application of the Delta method), whereas the correlation is as in (11):

lim
n→∞

Cor(qn(p), ξ̂n) =
−max (0, FX(ν + ξ)−max (FX(ν − ξ), p)) + 1−p

2 + fX(ν+ξ)−fX(ν−ξ)
fX(ν) max

(
−p2 ,

p−1
2

)√
p(1−p)

4

√
1 + γ

f2
X(ν)

.

As expected, the above computed asymptotic variance of the sample MedianAD, i.e.

lim
n→∞

Var(
√
nξ̂n) =

1 + γ/f2
X(ν)

4 (fX(ν + ξ) + fX(ν − ξ))2 , (135)

exactly equals the variance of the sample MedianAD as in equation (11) of [40] (while in [31] they seem to have
some typos in their definition of their quantity γ such that one does not get the same result). �

A.1.2 Taylor’s Method

As mentioned, we offer an additional proof for Theorem 1 which is based on a Taylor expansion and extends
the ideas of [17]. The proof consists of two parts. In the first and main part, we show the Taylor expansion
and asymptotic normality in the case of estimating the measures of dispersion with known mean µ for any integer
valued r (in analogy to the first part in the proof of Theorem 1). The second part consists of extending the previous
result to the case where we estimate the measures of dispersion in the case of an unknown mean µ for r = 1, 2
and is identical to Part 2 in the proof of Theorem 1. Hence we focus here only on the case where µ is known.

We start showing the asymptotic normality in the case of estimating the measure of dispersion by m̃(X,n, r) =
1
n

∑n
i=1|Xi − µ|r. This is done in three steps. The first step is to use a representation such that our quantities of

interest, the sample quantile and the measure of dispersion estimator, are functions of the uniform order statistics.
Then, we use the Taylor expansion to show the asymptotic normality of each of the estimators. Finally, in a third
step we compute the covariance (and then the correlation) between the measure of dispersion estimator and the
sample quantile.

Step 1: Functions of the uniform order statistics
Recall that for a standard exponentially distributed iid sample of size n+ 1, Z1, ..., Zn+1, we have

Uj :=

∑j
i=1 Zi∑n+1
k=1 Zk

, j = 1, ..., n

and (U1, ..., Un) has the same distribution as the order statistics from a sample of size n from a standard uni-
form distribution (see e.g. [36]). This allows us to express the sample quantile qn(p) and the sample measure of
dispersion m̃(X,n, r) as follows:

qn(p) = X(dnpe) = qX(Udnpe) (136)

m̃(X,n, r) =
1

n

n∑
i=1

|qX(Ui)− µ|r (137)

Step 2: Taylor expansions
Using this, we can proceed with the Taylor expansion. We start with m̃(X,n, r) and expand for each qX(Ui) in

65



(137) around i/(n+ 1), i = 1, ..., n: m̃(X,n, r) =
1

n

n∑
i=1

(∣∣∣∣qX ( i

n+ 1

)
− µ

∣∣∣∣r +

r

∣∣∣∣qX ( i

n+ 1

)
− µ

∣∣∣∣r−1

q′X

(
i

n+ 1

)
sgn

(
qX

(
i

n+ 1

)
− µ

)(
Ui −

i

n+ 1

)
+O(n−2)

)
The terms of order n−2 are negligible in the asymptotic analysis (i.e. will vanish asymptotically).

Then, in analogy to µn in [17], we define µn(X, r) :=
1

n

n∑
i=1

∣∣∣∣qX ( i

n+ 1

)
− µ

∣∣∣∣r. We can interpret it as the right

Riemann sum: µn(X, r) =
n+ 1

n
× 1

n+ 1

n∑
i=1

∣∣∣∣qX ( i

n+ 1

)
− µ

∣∣∣∣r →n→∞
∫ 1

0

|qX(t)− µ|rdt.

Using the transformation t = FX(x) (and dt = dFX(x)), we obtain:∫ 1

0

|qX(t)− µ|rdt =

∫ +∞

−∞
|qX(FX(x))− µ|rdFX(x) =

∫ +∞

−∞
|x− µ|rdFX(x) = m(X, r),

from which we conclude that lim
n→∞

µn(X, r) = m(X, r).

Also, by the order of the error term of the right Riemann sum approximation, O(n−1), we know that
lim
n→∞

√
n (µn(X, r)−m(X, r)) = 0. Hence, m(X, r) can be replaced by µn(X, r), even in asymptotics when

multiplied by
√
n, and we can write (with the notation an ∼

n→∞
bn whenever lim

n→∞
an/bn = 1):

√
n(m̃(X,n, r)− µn(X, r)) ∼

n→∞

√
n

(
1

n

n∑
i=1

r

∣∣∣∣qX ( i

n+ 1

)
− µ

∣∣∣∣r−1

q′X

(
i

n+ 1

)
sgn

(
qX

(
i

n+ 1

)
− µ

)(
Ui −

i

n+ 1

))
.

We can then conclude the following convergence in distribution, by using the asymptotics calculated in [17] (see
eq. (12),(14) and (16) therein),

√
n(m̃(X,n, r)− µn(X, r))

d→
∫ 1

0

r |qX(t)− µ|r−1q′X(t) sgn (qX(t)− µ)B(t)dt, (138)

where B(t) := W (t)− tW (1) is the Brownian bridge, W denoting the standard Wiener process.
Hence the asymptotic normality of the measure of dispersion.

For the sample quantile, we can copy the result from [17] one to one. We expand the sample quantile qn(p) =
qX(Udnpe) around p: qn(p) = qX(p) + q′X(p)(Udnpe − p) + O(n−2). As before, those higher order terms are
asymptotically negligible.

Thus, we get, following equations (11),(13) and (15) of [17],

√
n(qn − qX(p)) ∼

n→∞
q′X(p)

(∑dnpe
j=1 Zj∑n+1
k=1 Zk

− p

)
d−→

n→∞
q′X(p)B(p) (139)

Hence the asymptotic normality of the sample quantile.

We can now conclude the normal joint distribution by using the Cramer-Wold device (the increments of the
Brownian motion being independent and normally distributed).

Step 3: Asymptotic Covariance and Correlation. We have, using the first two moments of the Brownian bridge,

lim
n→∞

Cov
(√
n (qn(p)− qX(p)) ,

√
n (m̃(X,n, r)− µn(X, r))

)
=

Cov

(
q′X(p)B(p),

∫ 1

0

r|qX(t)− µ|r−1q′X(t) sgn(qX(t)− µ)B(t)dt

)
= q′X(p)

∫ 1

0

r|qX(t)− µ|r−1q′X(t) sgn(qX(t)− µ)E[B(p)B(t)]dt

= q′X(p)

∫ 1

0

r|qX(t)− µ|r−1q′X(t) sgn(qX(t)− µ)q′X(t)(min (p, t)− pt)dt.
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Hence, we are left with computing the integral:∫ 1

0

r|qX(t)− µ|r−1q′X(t) sgn(qX(t)− µ)q′X(t)(min (p, t)− pt)dt

=

∫ p

0

r|qX(t)− µ|r−1q′X(t) sgn(qX(t)− µ)q′X(t)t(1− p)dt+

∫ 1

p

r|qX(t)− µ|r−1q′X(t) sgn(qX(t)− µ)q′X(t)p(1− t)dt

= (1− p)
(

(|qX(t)− µ|rt)|p0 −
∫ p

0

|qX(t)− µ|rdt
)

+ p

(
(|qX(t)− µ|r(1− t))|1p +

∫ 1

p

|qX(t)− µ|rdt
)

= p

∫ 1

p

|qX(t)− µ|rdt− (1− p)
∫ p

0

|qX(t)− µ|rdt = p

∫ ∞
qX(p)

|x− µ|rdFX(x)− (1− p)
∫ qX(p)

−∞
|x− µ|rdFX(x)

using partial integration for each integral (with u′ = r|qX(t)− µ|rq′X(t) sgn(qX(t)− µ)q′X(t), i.e. u = |qX(t)−
µ|r and v being t or 1 − t respectively) for the second equality , and t = FX(x) (dt = dFX(x)) in the last one.
Thus, we have overall, recalling the definition of τr in (4),

lim
n→∞

Cov(
√
n(qn(p)−qX(p)),

√
n(m̃(X,n, r)−m(X, r)) = q′X(p)τr(|X−µ|, p) =

1

fX(qX(p))
τr(|X−µ|, p),

from which we can deduce the asymptotic correlation, namely

lim
n→∞

Cor(qn(p), m̃(X,n, r)) =
τr(|X − µ|, p)√

p(1− p)
√

Var(|X − µ|r)
.

A.2 Proofs of Subsection 2.2

In the following we present the analogous proofs to Appendix A.1 but with the location-scale quantile estimator.
The main task is to compute the asymptotic covariances of the respective joint asymptotic distributions.

Proof of Proposition 4. Let us recall two relations we can deduce about m̂(X,n, r) from the proof of Theorem 1:

m̂(X,n, 2) := σ̂2
n = σ̃2

n + oP (1) =: m̃(X,n, 2) + oP (1) (obtained from equations (114), and (115))

m̂(X,n, 1) := θ̂n = θ̃n+(2FX(µ)−µ)(X̄n−µ)+oP (1) =: m̃(X,n, 1)+(2FX(µ)−µ)(X̄n−µ)+oP (1)

(from equation (120) and what was shown in the following),

which can be rewritten, for any r = 1, 2, as:

m̂(X,n, r) = m̃(X,n, r) + (2− r)(2FX(µ)− 1)(X̄n − µ) + oP (1);

whereas the location-scale quantile, as:

qn,µ̂,σ̂(p) = X̄n + qY (p)σ̃n + oP (1).

Since we have iid sums (and finite fourth moment by assumption), we can apply the bivariate CLT:

n1/2

((
qn,µ̂,σ̂(p)
m̂(X,n, r)

)
−
(
qX(p)
m(X, r)

))
= n1/2

((
X̄n + qY (p)σ̃n + oP (1)

m̃(X,n, r) + (2FX(µ)− 1)(X̄n − µ) + oP (1)

)
−
(
qX(p)
m(X, r)

))
d−→

n→∞
N (0,Λ(r)) (140)

where the covariance matrix Λ(r) = (Λ
(r)
ij ), i, j = 1, 2 has to be determined. The component Λ

(r)
22 is already

known from equation (129) in the Proof of Theorem 1:

Λ
(r)
22 = lim

n→∞
Var(m̂(X,n, r)) = σ2r Var (|Y |r + (2− r)(2FY (0)− 1)Y ) .
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Let us compute the other components directly. We have

Λ
(r)
11 = lim

n→∞
Var(qn,µ̂,σ̂(p)) = lim

n→∞
Var(X̄n + qY (p)σ̂n) = lim

n→∞

(
Var(X̄n) + q2

Y (p) Var(σ̂n) + 2qY (p) Cov(X̄n, σ̂n)
)

= σ2 + q2
Y (p)

µ4 − σ4

(2σ)2
+ 2qY (p)

µ3

2σ
= σ2

(
1 + q2

Y (p)
E[Y 4]− 1

4
+ qY (p)E[Y 3]

)
(141)

where we used the Delta-method to derive the variance and covariance in the case of σ̂n, from Var(σ̂2
n) = µ4−σ4

and Cov(X̄n, σ̂
2
n) = µ3,

and Λ
(r)
12 = Λ

(r)
21 = lim

n→∞
Cov(

√
nqn,µ̂,σ̂(p),

√
nm̂(X,n, r))

= lim
n→∞

Cov
(√
n(X̄n + qY (p)σ̂n),

√
n
(
m̃(X,n, r) + (2− r)(2FX(µ)− 1)(X̄n − µ)

))
= lim
n→∞

Cov
(√
n(X̄n,

√
n
(
m̃(X,n, r) + (2− r)(2FX(µ)− 1)(X̄n − µ)

))
+ qY (p) lim

n→∞
Cov

(√
nσ̂n,

√
n
(
m̃(X,n, r) + (2− r)(2FX(µ)− 1)(X̄n − µ)

))
. (142)

We do this in two steps, considering separately the asymptotic covariance with the sample mean (first
covariance term in (142)) and that with the sample standard deviation (second covariance term of (142)).

In both steps we proceed with the same techniques as in the proof of Theorem 1, when using the bivariate
central limit theorem. This means, we compute the covariances by looking at the i-th element of the iid
sums:

Cov(Xi, |Xi−µ|r+(2−r)(2FX(µ)−1)(Xi−µ)) and Cov((Xi−µ)2, |Xi−µ|r+(2−r)(2FX(µ)−1)(Xi−µ)).

Step 1: Covariance with the sample mean

Cov(Xi, |Xi − µ|r + (2− r)(2FX(µ)− 1)(Xi − µ))

= E[Xi|Xi − µ|r]− µE[|Xi − µ|r] + (2− r)(2FX(µ)− 1) Var(Xi)

= E[(Xi − µ)|Xi − µ|r] + (2− r)(2FY (0)− 1)σ2

= E[|Xi − µ|r+11I(X>µ)]− E[|Xi − µ|r+11I(X<µ)] + (2− r)(2FY (0)− 1)σ2

= σr+1 E[|Yi|r+11I(Yi>0)]− σr+1 E[|Yi|r+11I(Yi<0)] + (2− r)(2FY (0)− 1)σ2

= σr+1 E[Y r+1
i ]− σr+1 E[Y r+1

i 1I(Yi<0)(1 + (−1)r+1)] + (2− r)(2FY (0)− 1)σr+1

= σr+1 E[Y r+1
i ]− σr+12(2− r)E[Y r+1

i 1I(Yi<0)] + (2− r)(2FY (0)− 1)σr+1

= σr+1
(
E[Y r+1

i ] + (2− r)
(
2FY (0)− 1− 2E[Y r+1

i 1I(Yi<0)]
))

where, for the transformation in the last three lines, we need to recall that, since we only consider
r = 1, 2, we can write (2− r)σ2 = (2− r)σr+1 and (1 + (−1)r+1) = 2(2− r).

Step 2: Covariance with the sample standard deviation

Considering the covariance with the sample variance, we can write

Cov
(
(Xi − µ)2, |Xi − µ|r + (2− r)(2FX(µ)− 1)(Xi − µ)

)
= E[|Xi − µ|r+2]− σ2 E[|Xi − µ|r] + (2− r)(2FX(µ)− 1)E[(Xi − µ)3]

= σr+2
(
E[|Yi|r+2]− E[|Yi|r] + (2− r)(2FY (0)− 1)E[Y 3

i ]
)

where we used in the last line the fact that (2− r)σ3 = (2− r)σr+2 for r = 1, 2.

Thus, lim
n→∞

Cov(
√
nσ̂2

n,
√
nm̂(X,n, r)) = σr+2

(
E[|Y |r+2]− E[|Y |r] + (2− r)(2FY (0)− 1)E[Y 3]

)
,

from which we obtain the covariance with the sample standard deviation, by applying the Delta-method:
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lim
n→∞

Cov(
√
nσ̂n,

√
nm̂(X,n, r)) =

σr+1

2

(
E[|Y |r+2]− E[|Y |r] + (2− r)(2FY (0)− 1)E[Y 3]

)
.

(143)
Putting together the results of both steps in equation (142) gives Λ

(r)
12 . The asymptotic correlation follows

by dividing by the asymptotic variances Λ
(r)
11 and Λ

(r)
22 computed before. The asymptotics involving

general functionals h1, h2 follows by applying the Delta method. To end, we point out the symmetry
of the asymptotic correlation around p with a value of 0 for p = 0.5 for a symmetric location-scale
distribution. For this it is simply enough to consider the numerator of the asymptotic correlation, as the
denominator is symmetric around p = 0.5 as in such a case E[Y 3] = 0, see (18):

E[Y r+1] + (2− r)
(
2FY (0)− 1− 2E[|Y |r+11I(Y <0)]

)
+
qY (p)

2

(
E[|Y |r+2]− E[|Y |r] + (2− r)(2FY (0)− 1)E[Y 3]

)
= E[Y r+1] + (2− r)

(
−2E[|Y |r+11I(Y <0)]

)
+
qY (p)

2

(
E[|Y |r+2]− E[|Y |r]

)
=

{
qY (p)

2 (E[|Y |3]− E[|Y |]) for r = 1,
qY (p)

2 Var(Y ) for r = 2.

Hence, we have shown the symmetry around p = 0.5 and that the correlation equals to zero for p =
0.5. �

Proof of Corollary 5. Note that this proof is one-to-one as the Proof of Proposition 4, only that we have qn,σ̂(p)
instead of qn,µ̂,σ̂(p). Thus, there is only little change. For the covariance note that, using (143) in the second
equality,

lim
n→∞

Cov(
√
nqn,σ̂(p),

√
nm̂(X,n, r)) = qY (p) lim

n→∞
Cov(

√
nσ̃n,

√
nm̂(X,n, r))

=
σr+1

2

(
E[|Y |r+2]− E[|Y |r] + (2− r)(2FY (0)− 1)E[Y 3]

)
,

and for the variances, lim
n→∞

Var(qn,σ̂(p) = q2
Y (p) lim

n→∞
Var(σ̂n)) = σ2q2

Y (p)
E[Y 4]− 1

4
, and lim

n→∞
Var(m̂(X,n, r))

is given in equation (129). �

Proof of Proposition 6. To use the bivariate CLT in this case, recall the Bahadur representation (131) for the
sample MedianAD, and the asymptotic equivalence of σ̂2

n and σ̃2
n (see (114) and (115)).

Thus, as we have iid sums (and finite fourth moment by assumption), we can apply the bivariate CLT and obtain:

n1/2

((
qn,µ̂,σ̂(p)

ξ̂n

)
−
(
qX(p)
ξ

))
= n1/2

((
X̄n + qY (p)σ̃ + oP (1)

1
n

∑n
i=1(α1I(x≤ν)−fX(ν)1I(ν−ξ<x≤ν+ξ))− 1

2 (α−fX(ν))

βfX(ν) + ∆n

)
−
(
qX(p)
ξ

))
d−→

n→∞
N (0,Π),

with α = fX(ν + ξ)− fX(ν − ξ), β = fX(ν + ξ) + fX(ν − ξ) and Π = (Πij), i, j = 1, 2, the covariance matrix
that we compute in the following.
Since Π11 and Π22 have been already evaluated in (141) and (135), respectively, in the proof of Proposition 3, we
are left with computing the asymptotic covariance Π12 = Π21 = lim

n→∞
Cov

(√
nqn,µ̂,σ̂,

√
nξ̂n

)
:

Π12 = Cov

(
√
n(X̄n + qY (p)σ̃n),

√
n

1
n

∑n
i=1

(
α1I(x≤ν) − fX(ν)1I(ν−ξ<x≤ν+ξ)

)
− 1

2 (α− fX(ν))

βfX(ν)

)
. (144)

We do this in two steps, looking separately at lim
n→∞

Cov(
√
nX̄n,

√
nξ̂n) and lim

n→∞
Cov(

√
nσ̃2

n,
√
nξ̂n). For the

latter, we then use the Delta-method to obtain lim
n→∞

Cov(
√
nσ̃n,

√
nξ̂n) instead.

Since we have iid sums, we are left with computing the covariance of the i-th element of their two sums each.
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Step 1: Covariance with the sample mean. Recall that P(X ≤ ν) = 1/2 and P(|X − ν| ≤ ξ) = 1/2. Then,

Cov

(
Xi,

α1I(x≤ν) − fX(ν)1I(ν−ξ<Xi≤ν+ξ)

βfX(ν)

)
=

1

βfX(ν)

(
αE[Xi1I(Xi≤ν)]− fX(ν)E[Xi1I(ν−ξ<Xi≤ν+ξ)]−

µ

2
(α− fX(ν))

)
=

σ

βfX(ν)

(
αE[Yi1I(Yi≤ ν−µσ )]− fX(ν)E[Yi1I( ν−ξ−µσ <Yi≤ ν+ξ−µσ )]

)
,

using Xi = µ+ σYi for the second equality. Therefrom we deduce,

lim
n→∞

Cov(
√
nX̄n,

√
nξ̂n) =

σ

β

(
α

fX(ν)
E[Y 1I(Y≤ ν−µσ )]− E[Y 1I( ν−ξ−µσ <Y≤ ν+ξ−µσ )]

)
. (145)

Step 2: Covariance with the sample variance. Analogously we can proceed for the covariance with the sample
variance:

Cov

(
(Xi − µ)2,

α1I(Xi≤ν) − fX(ν)1I(ν−ξ<Xi≤ν+ξ)

βfX(ν)

)
=

1

βfX(ν)

(
αE[(Xi − µ)21I(Xi≤ν)]− fX(ν)E[(Xi − µ)21I(ν−ξ<Xi≤ν+ξ)]−

σ2

2
(α− fX(ν))

)
=

σ2

βfX(ν)

(
αE[Y 2

i 1I(Yi≤ ν−µσ )]− fX(ν)E[Y 2
i 1I( ν−ξ−µσ <Yi≤ ν+ξ−µσ )]−

1

2
(α− fX(ν))

)
Hence,

lim
n→∞

Cov(
√
nσ̂2

n,
√
nξ̂n) =

σ2

β

(
α

fX(ν)
E[Y 21I(Y≤ ν−µσ )]− E[Y 21I( ν−ξ−µσ <Y≤ ν+ξ−µσ )]−

1

2

(
α

fX(ν)
− 1

))
and by the Delta-method

lim
n→∞

Cov(
√
nσ̂n,

√
nξ̂n) =

σ

2β

(
α

fX(ν)
E[Y 21I(Y≤ ν−µσ )]− E[Y 21I( ν−ξ−µσ <Y≤ ν+ξ−µσ )]−

1

2

(
α

fX(ν)
− 1

))
. (146)

Combining (144), (145) and (146) provides the desired asymptotic covariance:

lim
n→∞

Cov(
√
nqn,µ̂,σ̂,

√
nξ̂n) = lim

n→∞
Cov(

√
n(X̄n + qY (p)σ̂n),

√
nξ̂n)

=
σ

2β

(
α

fX(ν)
E[2Y 1I(Y≤ ν−µσ )]− E[2Y 1I( ν−ξ−µσ <Y≤ ν+ξ−µσ )]

+qY (p)

(
α

fX(ν)
E[Y 21I(Y≤ ν−µσ )]− E[Y 21I( ν−ξ−µσ <Y≤ ν+ξ−µσ )]−

1

2

(
α

fX(ν)
− 1

)))
from which (26) follows, by plugging in the explicit expressions for β, α, fX(ν) in terms of fY , e.g. fX(ν) =
1
σfY (ν−µσ ). The asymptotics involving general functionals h1, h2 follows by applying the Delta method. �

Proof of Corollary 7. This proof is one-to-one as the Proof of Proposition 6, replacing qn,µ̂,σ̂(p) by qn,σ̂(p), thus,
there is only little change. To get the covariance, (31), we use that lim

n→∞
Cov(

√
nqn,σ̂,

√
nξ̂n) = qY (p) lim

n→∞
Cov(

√
nσ̂n,

√
nξ̂n),

where the latter covariance has been computed in (146). Also, we use the expression in terms of Y for β, α, fX(ν).
Then, the correlation follows directly as the variance lim

n→∞
Var(
√
nξ̂n) is given in (135) and lim

n→∞
Var(qn,σ̂) =

q2
Y (p)(E[Y 4]− 1)σ2/4. �

A.3 Proofs of Subsection 2.3

Proof (Proposition 8) This proof applies simply the Delta method. �
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A.4 Proof of Subsection 2.4

The only proof in this subsection is Proposition 10. To better structure the proof, we formulate the first result of
Proposition 10, equation (33), as a lemma and prove it separately. Using this lemma, we then prove Proposition 10.

Lemma 28 Let k, l be positive integers and consider an iid sample with parent rv X (with mean µ and variance
σ2, if defined). Given the respective smoothness and moment conditions, the asymptotic covariance between func-
tionals of a quantile estimator q̂ln with sample size ln (be it h1(qln), h1(qln,µ̂,σ̂) or h1(qln,σ̂)) and the functional
of the measure of dispersion estimator with sample size kn, h2(D̂i,kn) for i ∈ {1, 2, 3}, simply is

lim
n→∞

Cov
(√

nh1(q̂ln),
√
nh2(D̂i,kn)

)
=

1

max (k, l)
lim
n→∞

Cov
(√

nh1(q̂n),
√
nh2(D̂i,n)

)
.

Note that by ‘the respective smoothness and moment conditions’ we refer to the corresponding cases in the results
of Subsection 3.1 and B.2.

Proof of Lemma 28. We want to proof the scaling law

lim
n→∞

Cov(
√
nh1(q̂ln),

√
nh2(D̂i,kn)) =

lim
n→∞

Cov(
√
nh1(q̂n),

√
nh2(D̂i,n))

max (k, l)

in the general case considering all three dispersion measure estimators (i = 1, 2, 3) and the three possible quantile
estimators. This gives us nine different cases to consider. But all the proofs in those different cases share a com-
mon approach that we present first (before considering each case).

General procedure - Consider two sequences of random variablesAn =
1

n

n∑
i=1

a(Xi)+ar,n andBn =
1

n

n∑
i=1

b(Xi)+

br,n, which are functionals of Xi and consist of a sum of two given parts: One linear part, an iid sum of functions
a and b, respectively, of Xi, denoted by a(Xi) or b(Xi), and a second part called the ‘rest’ denoted by ar,n and
br,n respectively.
Let us compute the asymptotic covariance lim

n→∞
Cov(

√
nAln,

√
nBkn) assuming k > l, the reverse case being

shown analogously. We proceed in two steps. The first step consists of splitting the longer sample asBkn = Bln+
‘rest’ to have a covariance of equal sample size that we already know how to handle, as lim

n→∞
Cov(

√
nAln,

√
nBln) =

1

l
lim
n→∞

Cov(
√
nAn,

√
nBn). The second step consists of showing why the ‘rest’, when splitting Bkn, is negligi-

ble in the calculation of the covariance. Assuming this second step, more precisely that

lim
n→∞

Cov(
√
nAln,

√
nbr,kn) = 0 and lim

n→∞
Cov(

√
nAln,

√
nbr,ln) = 0, (147)

and noticing that lim
n→∞

Cov

(
√
nAln,

√
n

kn

kn∑
i=ln+1

b(Xi)

)
= 0 because this is the covariance of iid random vari-

ables over disjoint samples, we can write

lim
n→∞

Cov(
√
nAln,

√
nBkn) = lim

n→∞
Cov

(
√
nAln,

√
n

(
1

kn

kn∑
i=1

b(Xi) + br,kn

))
= lim
n→∞

Cov

(
√
nAln,

√
n

1

kn

kn∑
i=1

b(Xi)

)

= lim
n→∞

Cov

(
√
nAln,

√
n× l

k

(
1

ln

ln∑
i=1

b(Xi) + br,ln

))
+ lim
n→∞

Cov

(
√
nAln,

√
n

(
1

kn

kn∑
i=ln+1

b(Xi)−
l

k
br,ln

))

= lim
n→∞

Cov

(√
nAln,

√
n× l

k
×Bln

)
=

lim
n→∞

Cov(
√
nAn,

√
nBn)

max (k, l)
.

By Cauchy-Schwarz, equations (147) will equal to zero if we have that lim
n→∞

Var(
√
nbr,n) = 0.

Thus, to show the scaling law for the quantile and measure of dispersion estimators, we will prove the follow-
ing: (i) We can express the quantile and measure of dispersion estimators in the form of An, Bn respectively; (ii)
lim
n→∞

Var(
√
nbr,n) = 0 (covers the case k > l); (iii) lim

n→∞
Var(
√
nar,n) = 0 (covers the case k < l). Let us finish

the proof commenting on why our six different estimators fulfil those properties. Meaning that for each estimator
we will show that the representation (i) is possible and that (ii) holds (which is equivalent to (iii)).
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• Sample Variance σ̂2
n. Recall from (114) that σ̂2

n =
n

n− 1
σ̃2
n +

n

n− 1
(X̄n − µ)2. Hence, we have

n−1
n An = σ̃2

n with ar,n = n
n−1 (X̄n − µ)2 (thus, (i) holds) and we know, by (115),

lim
n→∞

Var(
√
n(X̄n − µ)2) = 0 (i.e. (ii) holds).

• Sample MAD θ̂n. The calculations were done in Case r = 1 in Part 2 of the Proof of Theorem 1: From
(120) we know that θ̂n = θ̃n + (2FX(µ) − 1)(X̄n − µ) + (2Fn(µ) − 2FX(µ))(X̄n − µ) + Ln, where
recall that θ̃n is an iid sum. Hence, (i) is fulfilled. After, (120) we showed that lim

n→∞
Var(
√
n(2Fn(µ) −

2FX(µ))(X̄n − µ)) = 0. Further, following the proof of the claims (123), (124), we can conclude that

lim
n→∞

Var(
√
n
Ln√
n

) = 0. The two facts together meaning that (ii) holds.

• Sample MedianAD ξ̂n. The Bahadur for the sample MedianAD gives us directly (i) (see (131)):

ξ̂n − ξ̂ =
1
n

∑n
i=1

(
α1I(x≤ν) − fX(ν)1I(ν−ξ<x≤ν+ξ)

)
− 1

2 (α− fX(ν))

βfX(ν)
+ ∆n

As by this representation it also holds that ∆n
a.s.
= O(n−3/4(log(n))3/4, it follows from Popovicius in-

equality for variances, [35], that there exists M <∞ such that

Var(
√
n∆n) ≤M (log n)3/2

n1/2
, which converges to zero as n→∞ giving us (ii) as desired.

• Sample quantile qn. As for the Sample MedianAD, by the Bahadur representation we can show that (i)
and (ii) are fulfilled: We have from (109)

qn(p) = qX(p) +
1− Fn,X(qX(p))− (1− p)

fX(qX(p))
+Rn,p with Rn,p

a.s.
= O(n−3/4(log(n))3/4)

Thus, with Popoviciu’s inequality for variances again, we get for some M <∞

Var(
√
nRn,p) ≤M

(log n)3/2

n1/2
−→
n→∞

0.

• Location scale quantile (known mean) qn,σ̂ . This case can be seen as a functional of the sample variance:
qn,σ̂ = qY (p)

√
σ̂2
n. Thus, we simply apply the Delta method to the result from the case with σ̂2

n and we
are done (no need to verify (i) and (ii)).

• Location scale quantile (unknown mean) qn,µ̂,σ̂ . Recall, that qn,µ̂,σ̂ = X̄n + σ̂nqn,σ̂ and X̄n is already an
iid sum. Thus, in comparison with the case of qn,σ̂ nothing changes.

For general functions h1, h2, we simply need to use the first order of the Taylor expansion (and the shown argu-
mentation then holds for this linear approximation) -as higher orders are asymptotically negligible. �

Proof Proposition 10. Using the result from Lemma 28, it is straightforward to show the relation for the corre-
lation: We note that, by the asymptotic normality results for all the different quantile estimators and measure of
dispersion estimators, we obtain for a fixed integer k > 0

lim
n→∞

Var(qkn(p)) = lim
n→∞

Var(qn(p))

k
; lim

n→∞
Var(qkn,µ̂,σ̂(p)) = lim

n→∞

Var(qn,µ̂,σ̂(p))

k
; lim

n→∞
Var(qkn,σ̂(p)) = lim

n→∞

Var(qn,σ̂(p))

k
;

lim
n→∞

Var(σ̂kn) = lim
n→∞

Var(σ̂n)

k
; lim

n→∞
Var(θ̂kn) = lim

n→∞

Var(θ̂n)

k
; lim

n→∞
Var(ξ̂kn) = lim

n→∞

Var(ξ̂n)

k
.

Thus, directly

lim
n→∞

Cor
(√

nh1(q̂kn),
√
nh2(D̂i,ln)

)
= lim
n→∞

Cov
(√

nh1(q̂kn),
√
nh2(D̂i,ln)

)
√

Var(h1(q̂kn))
√

Var(h2(D̂i,ln,t))
= lim
n→∞

Cov(
√
nh1(q̂n),

√
nh2(D̂i,n))

max (k,l)√
Var(h1(q̂n))

k

√
Var(h2(D̂i,n,t))

l

=

√
kl

max2 (k, l)
× lim
n→∞

Cor
(√

nh1(q̂n),
√
nh2(D̂i,n)

)
=

√
min (k, l)

max (k, l)
× lim
n→∞

Cor
(√

nh1(q̂n),
√
nh2(D̂i,n)

)
where the second equality uses Lemma 28 and the aforementioned scaling of the asymptotic variances. �
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Appendix B Proofs of Section 3
The proofs in this Appendix B will be an application of Theorem 1 and Proposition 3 for Section 3.1 and Corol-
laries 5, 7 for Section 3.2 to more specific cases.

B.1 Proofs of Subsection 3.1

Proof of Proposition 11. We simply need to show how equations (6), (7) and (8) transform for location-scale
random variables, i.e. when X = µ + σY . Let us start with the covariance in equation (7), and observe, that by
definition, we have (for any integer r > 0)

τr(|X − µ|, p) = τr(|σY |, p) = (1− p) (E[(|σY |)r|X > qX(p)]− E[(|σY |)r])
= (1− p)σr (E[(|Y |)r|X > qX(p)]− E[(|Y |)r]) = σrτr(|Y |, p)

and besides, for r = 1, we can write

τ1(p) = τ1(X, p) = (1−p) (E[µ+ σY |X > qX(p)]− E[µ+ σY ]) = (1−p)σ (E[Y |X > qX(p)]− E[Y ]) = στ1(Y, p) = σrτ1(Y, p).

By the basic properties of a location-scale random variable, we have that FX(µ) = FY (0) and fX(qX(p)) =
1
σ fY (qY (p)). Hence, we get the desired covariance:

lim
n→∞

Cov(
√
nqn(p),

√
nm̂(X,n, r)) =

τr(|X − µ|, p) + (2− r)(2FX(µ)− 1)τ1(p)

fX(qX(p))

=
σr+1

(
τr(|Y |, p) + (2− r)(2FY (0)− 1)τ1(Y, p)

)
fY (qY (p))

.

The correlation follows directly as we can write, for r = 1, 2,

lim
n→∞

Var(
√
n qn(p)) =

p(1− p)
f2
X(qX(p))

= σ2 p(1− p)
f2
Y (qY (p))

and

lim
n→∞

Var(
√
nm̂(X,n, r)) = Var(|σY |r + (2− r)(2FY (0)− 1)(µ+ σY )) = Var(|σY |r + (2− r)(2FY (0)− 1)σY )

As we are considering r = 1, 2 we can write in the second part of the variance σ = σr such that we get

lim
n→∞

Var(
√
nm̂(X,n, r)) = σ2r Var(|Y |r + (2− r)(2FY (0)− 1)Y ). (148)

Thus, we deduce

lim
n→∞

Cor(qn(p), m̂(X,n, r)) =
τr(|Y |, p) + (2− r)(2FY (0)− 1)τ1(Y, p)√
p(1− p)

√
Var(|Y |r + (2− r)(2FY (0)− 1)Y )

. (149)

As a last step we verify the following two claims about the asymptotic correlation between the sample quantile
and the measure of dispersion estimator in the case of a underlying symmetric location-scale distribution:

• it has its minimum correlation value (in absolute terms) of 0 for p = 0.5

• it is point-symmetric with respect to p = 0.5

If we have a symmetric location scale distribution, the asymptotic correlation, (149), simplifies as follows:

lim
n→∞

Cor(qn(p), m̂(X,n, r)) =
τr(|Y |, p)√

p(1− p)
√

Var(|Y |r)
.

First let us show the value of zero correlation for p = 0.5. We have

τr(|Y |, p) = 0⇔ p(1− p)(E[|Y ||X > qX(p)]− E[|Y ||X ≤ qX(p)]) = 0

⇔ E[|Y ||Y > qY (p)] = E[|Y ||Y ≤ qY (p)]⇔ p = 0.5.

where the last equivalence follows by the symmetry of the underlying distribution.
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To show the point symmetry of the asymptotic correlation, we need to show that

lim
n→∞

Cor(qn(p), m̂(X,n, r)) = − lim
n→∞

Cor(qn(1− p), m̂(X,n, r)).

This follows by straightforward manipulation as, for a symmetric distribution, it holds E[|Y |r|X > qX(p)] =
E[|Y |r|X ≤ qX(1− p)]. Hence,

lim
n→∞

Cor(qn(p), m̂(X,n, r)) =
τr(|Y |, p)√

p(1− p)
√

Var(|Y |r)

=
p(1− p) (E[|Y |r|X ≤ qX(1− p)]− E[|Y |rX > qX(1− p)])√

p(1− p)
√

Var(|Y |r)

=
−τr(|Y |, 1− p)√
p(1− p)

√
Var(|Y |r)

= − lim
n→∞

Cor(qn(1− p), m̂(X,n, r)). �

Proof of Corollary 12. It is a direct consequence of Proposition 11, by plugging in r = 2. �

We think it is worth it to provide insight into the calculation of the two examples:

Proof of Example 13. We simply need to compute the quantities in (37), (38) for the two distributions explicitly
in the case of the dependence between the sample quantile and the sample variance. The related cases with the
logarithm follows directly from this by the Delta method.

(i) Looking at the Gaussian distribution, we can compute, using partial integration,

E[Y 2|Y ≤ qY (p)] =
1

p

∫ qY (p)

−∞
y2φ(y)dy =

1

p
(−φ(Φ−1(p))Φ−1(p) + p) (150)

and, as fY (qY (p)) = φ(Φ−1(p)) in this case, equation (37) becomes

lim
n→∞

Cov(
√
nσ̂2

n,
√
nqn(p)) = σ3Φ−1(p),

and accordingly, as E[Y 4] = 3 in the case of a standard Gaussian distribution, equation (38) becomes

lim
n→∞

Cor(σ̂2
n, qn(p)) =

φ(Φ−1(p))Φ−1(p)√
2p(1− p)

.

(ii) Note that the standard Student t-distribution has variance ν/(ν−2). Thus, while we would like to work with
the random variable Y that is standardised to have variance 1, we will stick to the standard Student random
variable Ỹ , which is more favourable from an implementation point of view. Thus, when considering
equations (37),(38), we need to be careful about this. Analogously to the Gaussian distribution, we look at

E[Y 2|Y ≤ qY (p)] =
1

p

∫ qY (p)

−∞
y2fY (y)dy =

1

p

ν − 2

ν

∫ qỸ (p)

−∞
z2fỸ (z)dz, (151)

which can be seen as the second moment of a truncated Student distribution. Results for this are readily
available. Unfortunately, the provided results are sometimes wrong (see e.g. [24] for the univariate case,
[2] for the multivariate case or [23] when using a truncated skew-Student distribution; the approach via
hypergeometric series in [19], in the case of truncated skew-t-distributions remains unchecked because it is
difficult to reduce it to the non-skewed case). So we turn to a correct derivation, found in [21], where we
have that, for real-valued truncation points −∞ < a < b <∞, ν > 2

1

FỸ (b)− FỸ (a)

∫ b

a

z2fỸ (x)dx =
ν(ν − 1)

ν − 2
×
FỸ ,ν−2

(
b
√

ν−2
ν

)
− FỸ ,ν−2

(
a
√

ν−2
ν

)
FỸ (b)− FỸ (a)

− ν (152)

where FỸ denotes the standard Student cdf with ν degrees of freedom and FỸ ,k the standard Student cdf
with k degrees of freedom. Note that the condition −∞ < a < b <∞ in [21] is actually not necessary for
their proof, i.e. we can have −∞ ≤ a < b ≤ ∞.
The above expression can be modified (which yields a simplification for our calculations) using a recurrence
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relation for the cummulative distribution function of the Student distribution (as presented e.g. in [22] in
the more general case of a skew-t distribution), here for ν > 2, a ∈ R:

FỸ ,ν−2

(
a

√
ν − 2

ν

)
= FỸ (a)−

Γ(ν−1
2 )ν

ν−2
2

2
√
πΓ(ν2 )

a(ν + a2)−
ν−1
2 ,

which for our purposes, is simplified in a form where we get the density involved:

FỸ ,ν−2

(
a

√
ν − 2

ν

)
= FỸ (a)−

Γ(ν+1
2 )

√
νπ Γ(ν2 )

(
1 +

a2

ν

)− ν+1
2 (1 + a2

ν )a

ν − 1
= FỸ (a)− 1

ν − 1
fỸ (a)

(
1 +

a2

ν

)
a.

(153)
Combining this latter equation and (152), taking a = −∞, b = qỸ (p), we obtain:

∫ qỸ (p)

−∞
y2fỸ (y)dy =

ν(ν − 1)

ν − 2

FỸ (qỸ (p))− fν(qỸ (p))
(1 +

q2
Ỹ

(p))

ν )qỸ (p)

ν + 1

−ν p =
ν

ν − 2

(
p−fỸ (qỸ (p))qỸ (p)(1+q2

Ỹ
(p)/ν)

)
,

(154)
or, equivalently,∫ ∞

qỸ (p)

y2fỸ (y)dy =
ν

ν − 2
− ν

ν − 2

(
p − fỸ (qỸ (p))qỸ (p)(1 + q2

Ỹ
(p)/ν)

)
. (155)

Hence, recalling (151), we can conclude that

E[Y 2|Y ≤ qY (p)] = 1− 1

p
fỸ (FỸ (p))qỸ (p)(1 + q2

Ỹ
(p)/ν), (156)

and, as fY (qY (p)) = cfỸ (qỸ (p)) in this case, we get from equation (37) that

lim
n→∞

Cov(
√
nσ̂2

n,
√
nqn(p)) =

σ3qỸ (p)(1 + q2
Ỹ

(p)/ν)√
ν
ν−2

.

For the correlation, one needs to recall that in the case of the Student distribution

µ4 = E[(σY )4] = σ4

(
ν − 2

ν

)2

E[Ỹ 4] = σ4

(
ν − 2

ν

)2
3 ν2

(ν − 2)(ν − 4)
= 3σ4 ν − 2

ν − 4
, (157)

i.e. E[Y 4] = 3
ν − 2

ν − 4
, which gives us, by (38), lim

n→∞
Cor(σ̂2

n, qn(p)) =
fỸ (qỸ (p))qỸ (p)(1 +

q2
Ỹ

(p)

ν )√
2ν−1
ν−4p(1− p)

. �

Proof of Corollary 14. It follows from Proposition 11 by plugging in r = 1. �

Proof of Example 15. As both distributions are symmetric around the mean, and are location-scale distributions,
the asymptotic covariance and correlation already simplify from (44) and (45) to:

lim
n→∞

Cov(
√
n(qn(p),

√
n(θ̂n)) =

pσ2

fY (qY (p))

(
θ

σ
− E[|Y ||Y ≤ qY (p)]

)
=

(1− p)σ2

fY (qY (p))
(E[|Y ||Y > qY (p)]− θ/σ),

lim
n→∞

Cor(qn(p), θ̂n) =
p( θσ − E[|Y ||Y ≤ qY (p)])√

p(1− p)
√

1− θ2/σ2
=

(1− p)(E[|Y ||Y > qY (p)]− θ/σ)√
p(1− p)

√
1− θ2/σ2

.

The main task is to find an explicit expression for either E[|Y ||Y ≤ qY (p)] or E[|Y ||Y > qY (p)]. The easiest
way to compute this is to restrict oneself to the case of p < 0.5 in the former or p ≥ 0.5 in the latter. As we know
that the correlation (and hence also the covariance) is point-symmetric, we can then deduce the case of p ≥ 0.5
or p < 0.5 respectively. As in applications we are usually interested in high values p of the quantile, we show the
expressions for p > 0.5:

As by construction, Y ≥ 0 a-s. for p ≥ 0.5, we have E[|Y ||Y > qY (p)] = E[Y |Y > qY (p)] =
E[Y 1I(Y >qY (p))]

1− p
,

which simply is the truncated first moment of the corresponding distribution.

75



(i) In the case of the Gaussian distribution, θ = E|X − µ| = σ
√

2
π . Hence E |Y | = θ/σ =

√
2
π and thus

Var(|Y |) = 1− θ2

σ2
= 1− 2

π
(158)

For p ≥ 0.5, we have by direct calculation that

E[|Y |1I(Y >qY (p))] = E[Y 1I(Y >qY (p))] = φ(Φ−1(p)). (159)

Hence, we have

lim
n→∞

Cov(
√
nqn,

√
nθ̂n) =

σ2
(
φ(Φ−1(p))− (1− p)

√
2
π

)
φ(Φ−1(p))

and lim
n→∞

Cor(qn, θ̂n) =
φ(Φ−1(p))− (1− p)

√
2
π√

p(1− p)
√

1− 2
π

.

(ii) For the case of a Student distribution, we need to pay attention as θ = E|X − µ| = σ E|Y | = σ√
ν
ν−2

E|Ỹ |.

Recall that E|Ỹ | =
√
ν

π

Γ(ν−1
2 )

Γ(ν/2)
, hence we have E|Y | = θ

σ
=

√
ν

π

Γ(ν−1
2 )

Γ(ν/2)

√
ν − 2

ν
and thus

Var(|Y |) = 1− θ2

σ2
= 1− ν − 2

π

Γ2(ν−1
2 )

Γ2(ν2 )
(160)

Finally, using the formula for the truncated moments from [21], we get

E[Ỹ 1I(Ỹ >qỸ (p))] =
Γ(ν+1

2 )

Γ(ν/2)
√
νπ

ν

ν − 1

(
1 +

q2
Ỹ

(p)

ν

)−(ν−1)/2

=
ν

ν − 1

Γ(ν+1
2 )

Γ(ν/2)
√
νπ

(
1 +

q2
Ỹ

(p)

ν

)(
1 +

q2
Ỹ

(p)

ν

)−(ν+1)/2

=
ν

ν − 1
fỸ (qỸ (p)) (1 + q2

Ỹ
(p)/ν). (161)

Hence, as E[Y 1I(Y >F−1
Y (p))] =

1√
ν
ν−2

E[Ỹ 1I(Ỹ >qỸ (p))], we conclude

lim
n→∞

Cov(
√
nqn,

√
nθ̂n) =

σ2

(√
ν(ν−2)

ν−1 fỸ (qỸ (p))(1 + q2
Ỹ

(p)/ν)− (1− p)
√

ν−2
π

Γ( ν−1
2 )

Γ(ν/2)

)
fỸ (qỸ (p))

√
ν/(ν − 2)

and lim
n→∞

Cor(qn, θ̂n) =

√
ν(ν−2)

ν−1 fỸ (qỸ (p))(1 + q2
Ỹ

(p)/ν)− (1− p)
√

ν−2
π

Γ( ν−1
2 )

Γ(ν/2)√
p(1− p)

√
1− ν−2

π

Γ2( ν−1
2 )

Γ2(ν/2)

. �

Proof of Proposition 16. We need to show how covariance and correlation transform from equations (9), (10)
and (11). For the covariance it suffices to notice the following - which comes from the definition of X and Y , i.e.
from X = µ+ σY :

FX(ν±ξ) = P (µ+σY ≤ ν±ξ) = FY

(
ν ± ξ − µ

σ

)
; fX(qX(p)) =

1

σ
fY (qY (p)); fX(ν±ξ) =

1

σ
fY

(
ν ± ξ − µ

σ

)
.

For the correlation we notice, additionally to the above, that γ = σ2γ̃ (with γ defined in Proposition 3, and γ̃ in

Proposition 16) and hence
γ

f2
X(ν)

=
γ̃

f2
Y (ν−µσ )

. �

Proof of Proposition 17. We will show how to transform the general location-scale equations (51), (52) for
covariance and correlation when assuming symmetry. For the MedianAD, we have

1/2 = P(|X − ν| ≤ ξ) = P(|X − µ| ≤ ξ) = P(|σY | ≤ ξ) = FY (ξ/σ)− FY (−ξ/σ).

76



By symmetry, we can write that FY (−x) = 1 − FY (x) and fY (x) = fY (−x), for any x ∈ R. So 3/4 =
FY (ξ/σ)⇔ ξ = qY (3/4)σ, and thus, as ν = µ and ξ = qY (3/4)σ, we have

FY (
ν + ξ − µ

σ
) = FY (qY (3/4)) = 3/4, FY (

ν − ξ − µ
σ

) = FY (−qY (3/4)) = 1− FY (qY (3/4)) = 1/4,

and fY (
ν ± ξ − µ

σ
) = fY (±qY (3/4)).

Therefore the covariance (51) simplifies as follows:

lim
n→∞

Cov
(√

nh1(qn(p)),
√
nh2(ξ̂n)

)
= σ2

(
−max (0, 3/4−max (1/4, p)) + 1−p

2

)
fY (qY (p))2fY (qY (3/4))

h′1(qX(p))h′2(ξ)

= σ2 1− p− 2 max (0, 3/4−max (1/4, p))

4fY (qY (p))fY (qY (3/4))
h′1(qX(p))h′2(ξ)

As for a symmetric distribution γ = γ̃ = 0, the correlation follows directly with the above from equation (52). �

Proof of Example 18. As the Gaussian and Student distribution are both symmetric, the correlation does not
depend on the underlying distribution and is equal to the one in equation (54). From equation (53) we straight-
forward compute the covariances. In the Student case, just recall that Y = Ỹ√

ν/(ν−2)
hence fY (qY (p)) =√

ν
ν−2fỸ (qỸ (p)). �

B.2 Proofs of Subsection 3.2
Proof of Proposition 19. From Proposition 4 by plugging in r = 2 and noticing that µi = σi E[Y i] and
E[Y 2] = E[|Y |2] = 1, the covariance follows directly from (17). For the correlation, we have from (18),

lim
n→∞

Cor(qn,µ̂,σ̂(p), σ̂2
n) =

E[Y 3] + qY (p)
2 (E[Y 4]− 1)√

1 + q2
Y (p)E[Y 4]−1

4 + qY (p)E[Y 3]
√

E[Y 4]− 1

=

(
2E[Y 3]

(E[Y 4]−1)qY (p) + 1
)
qY (p)

√
(E[Y 4]−1)

2

|qY (p)|
√

E[Y 4]−1
4

√
4

q2Y (p)(E[Y 4]−1)
+ 1 + 4E[Y 3]

qY (p)(E[Y 4]−1)

=
sgn(p− FY (0)√

1 + 4(1+E[Y 3]qY (p))
(E[Y 4]−1)q2Y (p)

(
1 +

2E[Y 3]

(E[Y 4]− 1)qY (p)

)
. �

Proof of Examples 20.
(i) The Gaussian case is direct from Proposition 19.

(ii) For the Student distribution, we just need to recall that for Ỹ ∼ t(0, 1, ν), E[Ỹ 4] =
3ν2

(ν − 2)(ν − 4)
, from

which we deduce µ4 = E[(X − µ)4] = E[σ4Y 4] = E

(σ Ỹ√
ν/(ν − 2)

)4
 = 3σ4 ν − 2

ν − 4
,

and, accordingly, µ4 − σ4 = σ4

(
3
ν − 2

ν − 4
− 1

)
= 2σ4 ν − 1

ν − 4
. �

Proof of Proposition 21. Direct by plugging in r = 1 in Proposition 4. �

Proof of Example 22.

(i) For the Gaussian distribution, we need to recall its absolute moments, namely E[|X|p] = σp
2p/2√
π

Γ

(
p+ 1

2

)
;

in particular E[|Y |3] = 2
√

2/π and E|Y | = θ/σ =
√

2/π. Hence, plugging into (63), (64) respectively

lim
n→∞

Cov(
√
nqn,σ̂(p),

√
nθ̂n) = σ2 qY (p)

2
(E[|Y |3]− θ/σ) = σ2 Φ−1(p)√

2π
and
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lim
n→∞

Cor(qn,σ̂(p), θ̂n) =
E[|Y |3]− θ

σ
µ4−σ4

σ4 Var(|Y |)
sgn(p−FY (0)) =

√
2/π√

2(1− 2
π )

sgn(p−1/2) =
1√
π − 2

sgn(p−1/2).

(ii) For the Student case, we first need to compute E[|Ỹ |3](=

(
ν

ν − 2

)3/2

E[|Y |3]). Notice that for any

symmetric distribution around its mean (which equals 0 in this case), we have

E[|Ỹ |3] =

∫ ∞
−∞
|y|3fỸ (y)dy = 2

∫ ∞
0

y3fỸ (y)dy

Truncated moments of a standard Student distribution being computed in Theorem 1 of [21], we apply their

result for a lower truncation point equal to 0 and obtain, keeping their notation κ =
2Γ(ν+1

2 )

Γ(ν/2)
√
νπ

,

E[|Ỹ |3] = 2

∫ ∞
0

y3fỸ (y)dy = κν2

(
−1

ν − 1
+

1

ν − 3

)
=

2κ ν2

(ν − 1)(ν − 3)
.

Thus,

E[|Y |3] =

(
ν − 2

ν

)3/2

E[|Ỹ |3] =

(
ν − 2

ν

)3/2
2κν2

(ν − 1)(ν − 3)
=

2κ(ν − 2)3/2
√
ν

(ν − 1)(ν − 3)
=

(ν − 2)3/2

ν − 3

2 Γ(ν−1
2 )

√
π Γ(ν/2)

and, as for a Student distribution (see e.g. [34]) we have for the absolute first moment E|Ỹ | =
√
ν

π

Γ(ν−1
2 )

Γ(ν/2)
,

we obtain for Y =
√

ν−2
ν Ỹ that

θ

σ
= E[|Y |] =

√
ν − 2

π

Γ(ν−1
2 )

Γ(ν/2)
. Hence, for the covariance, again

plugging into (63),

lim
n→∞

Cov(
√
nqn,σ̂(p),

√
nθ̂n) = σ2 qY (p)

2
(E[|Y |3]− θ/σ) = σ2 qY (p)

2

√
ν − 2

π

Γ(ν−1
2 )

Γ(ν/2)

(
2
ν − 2

ν − 3
− 1

)
= σ2 qY (p)

2

ν − 1

ν − 3

√
ν − 2

π

Γ(ν−1
2 )

Γ(ν/2)
= qỸ (p)

σ2

2
√
ν π

(ν − 1)(ν − 2)

ν − 3

Γ(ν−1
2 )

Γ(ν/2)
.

where for the last equality we used the relation between qY and qỸ in the case of a Student distribution.

Recalling that E[Ỹ 4] =
3ν2

(ν − 2)(ν − 4)
, we get for the fourth moment

µ4 = E[(X − µ)4] = E[σ4Y 4] = σ4

(
ν − 2

ν

)2

E[Ỹ 4] = 3σ4 ν − 2

ν − 4
, accordingly, µ4 − σ4 = 2σ4 ν − 1

ν − 4
,

hence we obtain for the correlation, from (64),

lim
n→∞

Cor(qn,σ̂(p), θ̂n) = sgn(p− FY (0))× E[|Y |3]− θ/σ√
µ4−σ4

σ4 Var(|Y |)
= sgn(p− 1/2)× E[|Y |3]− θ/σ√

µ4−σ4

σ4 (1− (θ/σ)2)

= sgn(p− 1/2)×
√

(ν − 1)(ν − 2)

(ν − 3)
√

πΓ2(ν/2)

Γ2( ν−1
2 )
− (ν − 2)

√
2

ν−4

. �

Proof of Proposition 23. This follows straightforward from Proposition 6 and Corollary 7. Starting from the
covariances (26) and (31) respectively, we simply note that, for a symmetric distribution, ν = µ and ξ =
qY (3/4)σ and α = fY (ν+ξ−µ

σ ) − fY (ν−ξ−µσ ) = fY (qY (3/4)) − fY (−qY (3/4)) = 0, β = 2fY (qY (3(4))
and E[Y 1I(−a<Y≤a)] = 0, E[Y 21I(−a<Y≤a)] = 2E[Y 1I(0<Y≤a)] for any a ∈ R. This gives us (69) and (71)
respectively.

Also, since for a symmetric distribution E[Y 3] = 0, the correlations in (70) and (72) follow from (27), (32) respec-

tively. For completeness, we can state that for a symmetric distribution lim
n→∞

Var(
√
nξ̂n) =

1

4(fX(ν + ξ) + fX(ν − ξ))2
,

and, as µ3 = 0, lim
n→∞

Var(qn,µ̂,σ̂(p)) = σ2

(
1 + q2

Y (p)
E[Y 4]− 1

4

)
, and lim

n→∞
Var(qn,σ̂(p)) = σ2q2

Y (p)
E[Y 4]− 1

4
.�
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Proof of Example 24.

(i) Gaussian distribution

By partial integration, for a > 0, we can write 2

∫ +a

0

x2e−x
2/2dx = −2aφ(a)− 1 + 2Φ(a), which value

is −2Φ−1(3/4)φ(Φ−1(3/4)) + 1/2 for a = Φ−1(3/4). Thus,we obtain, from equations (71) and (72),

lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n ξ̂n

)
=
σ2Φ−1(3/4)Φ−1(p)

2
and lim

n→∞
Cor(qn,σ̂(p), ξ̂n) = sgn(p−1/2)×2

√
2Φ−1(3/4)φ(Φ−1(3/4)).

(ii) Student-t distribution
Here we need once again the formula for the truncated second moment. A correct derivation can be found
in [21] where we have that for b > 0,

1

FỸ (b)− FỸ (−b)

∫ b

−b
z2fỸ (x)dx =

ν(ν − 1)

ν − 2

FỸ ,ν−2

(
b
√

ν−2
ν

)
− FỸ ,ν−2

(
−b
√

ν−2
ν

)
FỸ (b)− FỸ (−b)

− ν

⇔
∫ b

−b
z2fỸ (x)dx = ν

(
ν − 1

ν − 2

(
2FỸ ,ν−2

(
b

√
ν − 2

ν

)
− 1

)
− (2FỸ (b)− 1)

)
.

As shown in the proof of Example 13 in (153), it follows from [23] that we can write

FỸ ,ν−2

(
b

√
ν − 2

ν

)
= FỸ (b)− fỸ (b)

b(1 + b2/ν)

ν − 1
,

hence,
∫ b

−b
z2fỸ (x)dx =

ν

ν − 2

(
2FỸ (b)− 2fỸ (b) b (1 + b2/ν)− 1

)
.

Noticing that E[Y 2||Y | ≤ qY (3/4)] =
ν − 2

ν
E[Ỹ 2||Ỹ | ≤ qỸ (3/4)], we obtain

E[Y 2||Y | ≤ qY (3/4)] = 1/2− 2 fỸ (qỸ (3/4)) qỸ (3/4)
(
1 + q2

Ỹ
(3/4)/ν

)
and thus, in total, following equations (71) and (72),

lim
n→∞

Cov
(√

n qn,σ̂(p),
√
n ξ̂n

)
= σ2

qỸ (p)qỸ (3/4)(1 + q2
Ỹ

(3/4)/ν)

2 ν
ν−2

and lim
n→∞

Cor(qn,σ̂, ξ̂n) = sgn(p− 1/2)×
4fỸ (qỸ (3/4))(1 + q2

Ỹ
(3/4)/ν)qỸ (3/4)√

2ν−1
ν−4

. �

Appendix C Proofs of Section 4
Proof (Example 27) To show how we obtain the expressions in Example 27, we only need to focus on the quan-
tities with the sample ES.

Indeed, for the correlations including the sample VaR, i.e. with the sample variance ((84), (85)), the sample
MAD ((90), (91)) or the sample MedianAD ((96), (97)) there is nothing to do as they are simply the asymptotic
correlation of the sample quantile with the sample variance (see (41), (43)), the sample MAD (see (47), (50)) or
the sample MedianAD, respectively (see (56)).

The same remarks hold for the expectile estimator, as it is the sample quantile at level κ−1(p) with κ(α) being
defined in (81), which simplifies for location-scale distributions, as follows:

κ(α) =
αqY (α)−

∫ qY (α)

−∞ ydFY (y)

−2
∫ qY (α)

−∞ ydFY (y)− (1− 2α)qY (α)
.
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This gives us, in the case of the Gaussian distribution (recall the first truncated moment (159)),

κnorm(p) =
pΦ−1(p) + φ(Φ−1(p))

2φ(Φ−1(p))− (1− 2p)Φ−1(p)
.

For the Student distribution (assumed to be with mean 0, and recalling the first truncated moment computed in
(161)), we obtain

κstud(p) =
pqỸ (p) + ν

ν−1fỸ (qỸ (p))(1 + q2
Ỹ

(p)/ν)

2 ν
ν−1fỸ (qỸ (p))(1 + q2

Ỹ
(p)/ν)− (1− 2p)qỸ (p)

.

ES with Sample Variance or sample MAD - First, realise that for location-scale distributions we can rewrite
the asymptotic correlation of equation (82) independently of their mean µ and variance σ2, analogously to Propo-
sition 11.

lim
n→∞

Cor(ẼSn(p), m̂(X,n, r)) =

∫ 1

p
τr(|Y |,u)+(2−r)(2FY (0)−1)τ1(Y,u)

fY (qY (u)) du√
2(
∫ 1

p

∫ 1

v
v(1−u)

fY (qY (v))fY (qY (u))dudv)
√

Var(|Y |r + (2− r)(2FY (0)− 1)Y )
.

(162)

In a next step, we look separately at the sample variance (r = 2) and sample MAD (r = 1), each for the Gaussian
and Student distribution separately.

. ES with Sample Variance - Gaussian distribution. Recall from equation (40) the asymptotic covariance between
sample quantile and sample variance in the case of the Gaussian distribution (in this case of a standard normal
distribution with σ2 = 1). Thus, the numerator of (162) simplifies as

∫ 1

p
Φ−1(u)du, which we already solved by

change of variables before (truncated first moment, (159))∫ 1

p

Φ−1(u)du =

∫ ∞
Φ−1(v)

yφ(y)dy = φ(Φ−1(p))

More work is needed for the computation of the double-integral in the denominator of (162). We first consider the
inner integral,

∫ 1

v
1−u

φ(Φ−1(u))du. Again, change of variable and partial integration give the following:∫ 1

v

1− u
φ(Φ−1(u))

du =

∫ +∞

Φ−1(v)

(1− Φ(y)) dy = y(1−Φ(y))|∞Φ−1(v)+

∫ ∞
Φ−1(v)

yφ(y)dy = −(1−v)Φ−1(v)+φ(Φ−1(v)).

(163)
Thus, plugging this in, the double integral transforms to∫ 1

p

∫ 1

v

v(1− u)

fY (qY (v))fY (qY (u))
dudv = −

∫ 1

p

v
Φ−1(v)

φ(Φ−1(v))
dv +

∫ 1

p

v2 Φ−1(v)

φ(Φ−1(v))
+

1

2
v2|1p. (164)

We compute the two integrals of (164) one after the other, again using change of variables and partial integration
(with φ′(y) = −yφ(y)), obtaining:

∫ 1

p

v
Φ−1(v)

φ(Φ−1(v))
dv =

∫ ∞
Φ−1(p)

yΦ(y)dy =
1

2
y2Φ(y)|∞Φ−1(p) −

∫ ∞
Φ−1(p)

y2

2
φ(y)dy

=
1

2
y2Φ(y)|∞Φ−1(p) −

1

2
(y(−φ(y))|∞Φ−1(p) +

1

2

∫ +∞

Φ−1(p)

(−φ(y))dy

=
1

2
y2Φ(y)|∞Φ−1(p) −

1

2
Φ−1(p)φ(Φ−1(p))− 1

2
(1− p)

and
∫ 1

p

v2 Φ−1(v)

φ(Φ−1(v))
dv =

∫ ∞
Φ−1(p)

yΦ2(y)dy =
y2

2
Φ2(y)|∞Φ−1(p) −

∫ ∞
Φ−1(p)

y2φ(y)Φ(y)dy

=
1

2
y2Φ2(y)|∞Φ−1(p) + yΦ(y)φ(y)|∞Φ−1(p) −

∫ ∞
Φ−1(p)

φ(y) (Φ(y) + yφ(y)) dy

=
1

2
y2Φ2(y)|∞Φ−1(p) + yφ(y)Φ(y)|∞Φ−1(p) −

1

2
Φ2(y)|∞Φ−1(p) +

1

2
φ2(y)|∞Φ−1(p).
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Hence, putting this together gives

(164) =
1

2
Φ−1(p)2(p− p2) + Φ−1(p)φ(Φ−1(p))(

1

2
− p) +

1

2
(1− p)− 1

2
φ2(Φ−1(p)) (165)

and overall, for (162) in the case of correlation with the sample variance (as E[Y 4] = 3 for the Gaussian distribu-
tion, i.e. Var(Y 2) = 2),

lim
n→∞

Cor(ẼSn(p), σ2
n) =

φ(Φ−1(p))√
(Φ−1(p))

2
(p− p2)− φ2(Φ−1(p)) + Φ−1(p)φ(Φ−1(p))(1− 2p) + 1− p

√
2
.

. ES with Sample Variance - Student distribution. The case of the Student distribution works analogously, but
needs in some details more care. Recall from equation (42) the asymptotic covariance between sample quantile
and sample variance in the case of the Student distribution with ν > 3, thus the numerator of (162) equals to:∫ 1

p

√
ν − 2

ν
qỸ (u)

(
1 + q2

Ỹ
(u)/ν

)
du =

√
ν − 2

ν

(∫ ∞
qỸ (v)

yfỸ (y)dy +
1

ν

∫ ∞
qỸ (v)

y3fỸ (y)dy

)
(166)

where the equality follows by change of variables. This first truncated moment was computed already in equa-
tion (161). For the third truncated moment we, again, use and simplify the formula provided in [21], which gives
us:

E[Ỹ 31I(Ỹ >qỸ (p))] =

∫ ∞
qỸ (p)

y3fỸ (y)dy =
ν2

(ν − 1)(ν − 3)
fỸ (qỸ (p))

(
2 + q2

Ỹ
(p)

ν − 1

ν

)(
1 +

q2
Ỹ

(p)

ν

)
,

giving us for (166) (and hence the numerator of (162)):

(166) =

√
ν − 2

ν

∫ 1

p

qỸ (u)(1 + q2
Ỹ

(u)/ν)du =

√
ν(ν − 2)

ν − 3

(
1 + q2

Ỹ
(p)/ν

)2
fỸ (qỸ (p)).

We now turn to the double-integral in the denominator of (162), expressed as
ν − 2

ν

∫ 1

p

∫ 1

v

v(1− u)

fỸ (qỸ (v))fỸ (qỸ (u))
dudv.

The inner integral follows one-to-one from the Gaussian case above (as we already know the truncated first mo-
ment, see (161)):∫ 1

v

1− u
fỸ (qỸ (u))

du =

∫ +∞

qỸ (v)

(1− FỸ (y)) dy = −(1− v)qỸ (v) +
ν

ν − 1
fỸ (qỸ (v)))(1 + q2

Ỹ
(v)/ν). (167)

Plugging this in the double integral, transforms to∫ 1

p

∫ 1

v

v(1− u)

fỸ (qỸ (v))fỸ (qỸ (u))
dudv =

∫ 1

p

v(v − 1)
qỸ (v)

fỸ (qỸ (v))
dv +

ν

ν − 1

∫ 1

p

v
(
1 + q2

Ỹ
(v)/ν

)
dv. (168)

But, using change of variables, then partial integration and then the knowledge of the truncated second moment
(155), we obtain:∫ 1

p

(v2 − v)
qỸ (v)

fỸ (qỸ (v))
dv =

∫ ∞
qỸ (p)

(F 2
Ỹ

(y)− FỸ (y)) y dy

=
1

2
y2FỸ (y)(FỸ (y)− 1)|∞qỸ (p) −

∫ ∞
qỸ (p)

y2fỸ (y)FỸ (y)dy +
1

2

∫ ∞
qỸ (p)

y2fỸ (y)dy

=
1

2

(
ν

ν − 2
+ p

(
q2
Ỹ

(p)− ν

ν − 2

)
− q2

Ỹ
(p) p2 +

ν

ν − 2
fỸ (qỸ (p))qỸ (p)(1 + q2

Ỹ
(p)/ν)

)
−
∫ ∞
qỸ (p)

y2fỸ (y)FỸ (y)dy

and
∫ 1

p

vq2
Ỹ

(v)dv =

∫ ∞
qỸ (p)

FỸ (y)y2fỸ (y)dy,
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hence, (168) becomes:

1

2

(
ν(2 ν − 3)

(ν − 2)(ν − 1)
+ p

(
q2
Ỹ

(p)−
ν

ν − 2

)
− p2

(
q2
Ỹ

(p) +
ν

ν − 1

)
+

ν

ν − 2
fỸ (qỸ (p))qỸ (p)

(
1 +

q2
Ỹ

(p)

ν

))
−
ν − 2

ν − 1

∫ ∞
q
Ỹ

(p)
y2fỸ (y)FỸ (y)dy.

(169)

So, we are left with the integral of (169). Again, using partial integration with the fact that the anti-derivative∫
yfỸ (y)dy =

−ν
ν − 1

fỸ (y)(1 + y2/ν), we obtain∫ ∞
qỸ (p)

y2fỸ (y)FỸ (y)dy =
−ν
ν − 1

fỸ (y)(1 + y2/ν)yFỸ (y)|∞qỸ (p) +
ν

ν − 1

∫ ∞
qỸ (p)

fỸ (y)(1 + y2/ν)(FỸ (y) + yfỸ (y))dy

=
ν

ν − 1

{
p qỸ (p)

(
1 + q2

Ỹ
(p)/ν

)
fỸ (qỸ (p)) +

∫ ∞
qỸ (p)

(1 + y2/ν)FỸ (y)fỸ (y)dy +

∫ ∞
qỸ (p)

y(1 + y2/ν)f2
Ỹ

(y)dy

}
.

(170)

Since we have
(

1 +
y2

ν

)
fỸ (y) =

ν − 1√
ν(ν − 2)

fỸ ,ν−2

(
y

√
ν − 2

ν

)
(using the notation fỸ ,k introduced after

(152)), we can write, proceeding again with partial integration,∫ ∞
qỸ (p)

(1 + y2/ν)fỸ (y)FỸ (y)dy =
ν − 1√
ν(ν − 2)

∫ ∞
qỸ (p)

fỸ ,ν−2

(
y

√
ν − 2

ν

)
FỸ (y)dy

=
ν − 1

ν − 2

{
FỸ ,ν−2

(
y

√
ν − 2

ν

)
FỸ (y)|∞qỸ (p) −

∫ ∞
qỸ (p)

fỸ (y)FỸ ,ν−2

(
y

√
ν − 2

ν

)
dy

}
.

(171)

Now we use the recurrence relation (153) for the distribution functions, to evaluate the integral in (171), namely∫ ∞
qỸ (p)

fỸ (y)FỸ ,ν−2

(
y

√
ν − 2

ν

)
dy =

∫ ∞
qỸ (p)

fỸ (y)

(
FỸ (y)− 1

ν − 1
y (1 + y2/ν)fỸ (y)

)
dy

=
1

2
F 2
Ỹ

(y)|∞qỸ (p) −
1

ν − 1

∫ ∞
qỸ (p)

y (1 + y2/ν)f2
Ỹ

(y)dy. (172)

But, by partial integration and with the expression of the antiderivative
∫
yfỸ (y) from above, we can write the

integral of (172)∫ ∞
qỸ (p)

y(1 + y2/ν)f2
Ỹ

(y)dy = − ν

ν − 1
(1 + y2/ν)2f2

Ỹ
(y)|∞qỸ (p) −

∫ ∞
qỸ (p)

y(1 + y2/ν)f2
Ỹ

(y)dy,

which is equivalent to∫ ∞
qỸ (p)

y(1 + y2/ν)f2
Ỹ

(y)dy =
1

2

ν

ν − 1

(
1 + q2

Ỹ
(p)/ν

)2
f2
Ỹ

(qỸ (p)). (173)

Hence we obtain for (172)∫ ∞
qỸ (p)

fỸ (y)FỸ ,ν−2

(
y

√
ν − 2

ν

)
dy =

1

2
(1− p2)− 1

2

ν

(ν − 1)2

(
1 + q2

Ỹ
(p)/ν

)2
f2
Ỹ

(qỸ (p)),

so that (171) becomes (using again the recurrence relation (153))∫ ∞
qỸ (p)

(1 + y2/ν)fỸ (y)FỸ (y)dy =
1

2

ν − 1

ν − 2

(
1 + p2 − 2pFỸ ,ν−2

(
qỸ (p)

√
ν − 2

ν

)
+

ν

(ν − 1)2

(
1 + q2

Ỹ
(p)/ν

)2
f2
Ỹ

(qỸ (p))

)

=
1

2

ν − 1

ν − 2

(
1− p2 +

2

ν − 1
p qỸ (p)

(
1 + q2

Ỹ
(p)/ν

)
fỸ (qỸ (p)) +

ν

(ν − 1)2

(
1 + q2

Ỹ
(p)/ν

)2
f2
Ỹ

(qỸ (p))

)
(174)
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Combining (174) with (173) in (170) provides:∫ ∞
qỸ (p)

y2fỸ (y)FỸ (y)dy =
ν

ν − 1
p qỸ (p)

(
1 + q2

Ỹ
(p)/ν

)
fỸ (qỸ (p)) +

1

2

ν

ν − 2

(
1− p2 +

2p

ν − 1
qỸ (p)

(
1 + q2

Ỹ
(p)/ν

)
fỸ (qỸ (p))

)
+

1

2

ν2

(ν − 1)(ν − 2)

(
1 + q2

Ỹ
(p)/ν

)2
f2
Ỹ

(qỸ (p)). (175)

Now we are ready to look at the final expression for the double integral as shown in (168), using the results in
equations (169) and (175).∫ 1

p

∫ 1

v

v(1− u)

fỸ (qỸ (v))fỸ (qỸ (u))
dudv

=
1

2

ν

ν − 2

{
1 + qỸ (p)

(
1 + q2

Ỹ
(p)/ν

)
fỸ (qỸ (p))− ν(ν − 2)

(ν − 1)2

(
1 + q2

Ỹ
(p)/ν

)2
f2
Ỹ

(qỸ (p))

+p

(
ν − 2

ν
q2
Ỹ

(p)− 1− 2(ν − 2)

ν − 1
qỸ (p)

(
1 + q2

Ỹ
(p)/ν

)
fỸ (qỸ (p))

)
− ν − 2

ν
p2 q2

Ỹ
(p)

}
(176)

Recalling, E[Y 4] = 3ν−2
ν−4 , see (157) for the Student distribution (and hence Var(Y 2) = 2ν−1

ν−4 ), we get overall

limn→∞Cor(ẼSn(p), σ̂2
n) =

√
ν(ν−2)
ν−3

f
Ỹ

(q
Ỹ

(p))(1 + q2
Ỹ

(p)/ν)2√
1 + q

Ỹ
(p)

(
1 + q2

Ỹ
(p)/ν

)
f
Ỹ

(q
Ỹ

(p))− ν(ν−2)

(ν−1)2

(
1 + q2

Ỹ
(p)/ν

)2
f2
Ỹ

(q
Ỹ

(p)) + p
(
ν−2
ν
q2
Ỹ

(p)− 1− 2(ν−2)
ν−1

q
Ỹ

(p)
(
1 + q2

Ỹ
(p)/ν

)
f
Ỹ

(q
Ỹ

(p))
)
− ν−2

ν
p2 q2

Ỹ
(p)
√

2 ν−1
ν−4

and we get back the expression for the Gaussian distribution for ν →∞.

. ES with Sample MAD - Gaussian distribution. Recall that we computed asymptotic correlation and covariance
between the sample quantile and the sample MAD only for p ≥ 0.5, as the case p < 0.5 can be deduced using
the point-symmetry around p = 0.5. For ES, this argument converts to a symmetry around the p = 0.5-axis when
integrating over the asymptotic covariance, i.e. for any p ∈ (0, 1) we can write∫ 1

p

lim
n→∞

Cov(
√
nqn(u),

√
nθ̂n)du =

∫ 1

1−p
lim
n→∞

Cov(
√
nqn(u),

√
nθ̂n)du.

Clearly, this symmetry does not hold for the double-integral in the denominator of (162). Thus, the asymptotic cor-
relation with the sample ES, in contrast to the one with the sample VaR, is not symmetric around p = 0.5. Never-
theless, for the ease of presentation, we will only consider the case p ≥ 0.5. The only quantity we need to compute

of (162) is the integral over the covariance, which comes back, via (46), to evaluate
∫ 1

p

(
1− 1− u

φ(Φ−1(u))

√
2

π

)
du.

Using (163), we obtain∫ 1

p

(
1− 1− u

φ(Φ−1(u))

√
2/π

)
du = (1− p)

(
1 + Φ−1(p)

√
2/π

)
− φ(Φ−1(p))

√
2/π.

Recalling the asymptotic variance of the sample MAD, (158), and the solution of the double integral, (165), in the
Gaussian case, this gives overall:

lim
n→∞

Cor(ẼSn(p), θ̂n) =
(1− p)

(
1 + Φ−1(p)

√
2/π

)
− φ(Φ−1(p))

√
2/π√

Φ−1(p)2(p− p2)− φ(Φ−1(p))2 + Φ−1(p)φ(Φ−1(p))(1− 2p) + 1− p
√

1− 2/π

. ES with Sample MAD - Student distribution. The remarks made in the Gaussian case hold also for the Student
distribution. We proceed analogously. Again, we first compute the integral in the numerator of the asympyotic
covariance given in (48) (with σ2 = 1):∫ 1

p

lim
n→∞

Cov(
√
nqn(u),

√
nθ̂n(u))du = (ν − 2)

∫ 1

p

(
1

ν − 1

(
1 +

q2
Ỹ

(u)

ν

)
−

Γ(ν−1
2 )

√
πν Γ(ν2 )

1− u
fỸ (qỸ (u))

)
du

(177)
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Since by change of variables
∫ 1

p

q2
Ỹ

(u) du =

∫ ∞
qỸ (p)

y2 fỸ (u)du, using the knowledge of the second truncated

moment, (155), for the first integral of (177) and (167) for the second integral, provides∫ 1

p
lim
n→∞

Cov(
√
nqn(u),

√
nθ̂n(u))du

=
1

ν − 1

{
(ν − 2)(1− p) + 1− p+ fỸ (qỸ (p))qỸ (p)

(
1 + q2

Ỹ
(p)/ν

)}
+

(ν − 2)Γ( ν−1
2

)
√
νπΓ( ν

2
)

(
(1− p)qỸ (p)−

ν

ν − 1
fỸ (qỸ (p))(1 + q2

Ỹ
(p)/ν)

)

= 1 + qỸ (p)
Γ( ν−1

2
)

Γ( ν
2

)

ν − 2
√
πν

+
1

ν − 1

[(
1 +

q2
Ỹ

(p)

ν

)
fỸ (qỸ (p))

(
qỸ (p)−

Γ( ν−1
2

)

Γ( ν
2

)

(ν − 2)
√
ν

√
π

)]
− p

(
1 + qỸ (p)

Γ( ν−1
2

)

Γ( ν
2

)

ν − 2
√
πν

)

which gives us back the Gaussian case for ν → ∞, recalling an asymptotic property of the Gamma function

lim
n→∞

Γ(n+ α)

Γ(n)nα
= 1 that we need to use here with n = να and α = 1/2. Recalling the asymptotic variance

of the sample MAD in the Student case, (160), and the solution of the double integral, (176), this gives overall

lim
n→∞

Cor(ÊSn(p), θ̂n) =
1√

1− ν−2
π

Γ((ν−1)/2))2

Γ(ν/2)2

×

1 + qỸ (p)
Γ( ν−1

2
)

Γ( ν
2

)
ν−2√
πν

+ 1
ν−1

[(
1 +

q2
Ỹ

(p)

ν

)
fỸ (qỸ (p))

(
qỸ (p)− Γ( ν−1

2
)

Γ( ν
2

)
(ν−2)

√
ν√

π
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− p

(
1 + qỸ (p)

Γ( ν−1
2

)

Γ( ν
2

)
ν−2√
πν

)
√

1 + qỸ (p)
(

1 + q2
Ỹ

(p)/ν
)
fỸ (qỸ (p))− ν(ν−2)

(ν−1)2

(
1 + q2

Ỹ
(p)/ν

)2
f2
Ỹ

(qỸ (p)) + p
(
ν−2
ν
q2
Ỹ

(p)− 1− 2(ν−2)
ν−1

qỸ (p)
(

1 + q2
Ỹ

(p)/ν
)
fỸ (qỸ (p))

)
− ν−2

ν
p2 q2

Ỹ
(p)

and we get back the expression for the Gaussian distribution for ν →∞.

ES with Sample MedianAD - For the asymptotic correlation of the sample ES with the sample MedianAD, we
only need to compute the integral in the numerator, as the rest is known already.

Further, recall that for symmetric location-scale distributions we can rewrite the asymptotic correlation of equa-
tion (83) independently of their mean µ and variance σ2, and they simplify a lot analogously to Proposition 17.

lim
n→∞

Cor(ẼSn(p), ξ̂n) =

∫ 1

p
(1−u−2 max (0, 3/4−max (1/4,u)))

fY (qY (u)) du√
2
∫ 1

p

∫ 1

v
v(1−u)

fY (qY (v))fY (qY (u))dudv
. (178)

Also, as discussed in the case of the ES with the sample MAD, the asymptotic covariance with the ES and the
sample MedianAD is symmetric around the p = 0.5-axis, i.e., for any p ∈ (0, 1), we can write∫ 1

p

lim
n→∞

Cov(
√
nqn(u),

√
nξ̂n)du =

∫ 1

1−p
lim
n→∞

Cov(
√
nqn(u),

√
nξ̂n)du.

But again, the asymptotic correlation with the sample ES is not symmetric around p = 0.5 because of the double-
integral in the denominator. Thus, as previously, for the ease of presentation, we will only consider the case
p ≥ 0.5. For this, we split the covariance integral in the numerator as follows.
Introducing g(u) := 1− u− 2 max(3/4−max(1/4, u), 0), we can write, for any p ≥ 0.5,∫ 1

p

g(u)

fY (qy(u))
du =

{∫ 3/4

p
u−1/2

fY (qy(u))du+
∫ 1

3/4
1−u

fY (qy(u))du if 3/4 > p ≥ 1/2,∫ 1

p
1−u

fY (qy(u))du if p ≥ 3/4.
(179)

In the following we need to compute both integrals of (179). For this, we plug-in the explicit first moments in the
case of the Gaussian and Student distribution.

. ES with Sample MedianAD - Gaussian distribution. We have, via change of variables for the first integral and
usin (163) for the second,
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∫ 3/4

p

u− 1/2

φY (Φ−1(u))
du = yΦ(y)|Φ

−1(3/4)
Φ−1(p) − 1

2
y|Φ

−1(3/4)
Φ−1(p) −

∫ Φ−1(3/4)

Φ−1(p)

yφ(y)dy

=
1

4
Φ−1(3/4)− (p− 1/2)Φ−1(p) + φ(Φ−1(3/4))− φ(Φ−1(p))

and
∫ 1

p

1− u
φY (Φ−1(u))

du = −(1− p) Φ−1(p) + φ(Φ−1(p)),

giving, for (179),∫ 1

p

g(u)

fY (qy(u))
du =

{
−Φ−1(p)(p− 1/2) + 2φ(Φ−1(3/4))− φ(Φ−1(p)) if 3/4 > p ≥ 1/2,

−Φ−1(p)(1− p) + φ(Φ−1(p)) if p ≥ 3/4.

As the denominator of (178) was computed in (165), we are done: For 1/2 ≤ p < 3/4 we have,

lim
n→∞

Cor(ẼSn(p), ξ̂n) =
−Φ−1(p)(p− 1/2) + 2φ(Φ−1(3/4))− φ(Φ−1(p))√

1
2Φ−1(p)2(p− p2) + Φ−1(p)φ(Φ−1(p))( 1

2 − p) + 1
2 (1− p)− 1

2φ
2(Φ−1(p))

,

and for p ≥ 3/4

lim
n→∞

Cor(ẼSn(p), ξ̂n) =
−Φ−1(p)(1− p) + φ(Φ−1(p))√

1
2Φ−1(p)2(p− p2) + Φ−1(p)φ(Φ−1(p))( 1

2 − p) + 1
2 (1− p)− 1

2φ
2(Φ−1(p))

.

. ES with Sample MedianAD - Student distribution. Analogously, for the Student distribution, we can write, using
the expression of the anti-derative

∫
yfỸ (y)dy = −ν

ν−1fỸ (y)(1 + y2/ν) for the first integral,∫ 3/4

p

u− 1/2

fY (qY (u))
du =

√
ν − 2

ν

∫ 3/4

p

u− 1/2

fỸ (qỸ (u))
du =

√
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ν

(
yFỸ (y)|qỸ (3/4)

q
Ỹ

(p) − 1

2
y|qỸ (3/4)

q
Ỹ

(p) −
∫ q

Ỹ
(3/4)

q
Ỹ

(p)

yfỸ (y)dy

)

=

√
ν − 2

ν

(
1

4
qỸ (3/4)− (p− 1/2) qỸ (p) +

ν
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[(
1 +
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Ỹ

(3/4)

ν

)
fỸ (qỸ (3/4))−

(
1 +

q2
Ỹ

(p)

ν

)
fỸ (qỸ (p))
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and (167) for the second integral:

and
∫ 1

p

1− u
fY (qY (u))

du =

√
ν − 2

ν

∫ 1

p

1− u
fỸ (qỸ (u))
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√
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ν

(
−(1− p) qỸ (p) +

ν
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(
1 +

q2
Ỹ

(p)

ν

)
fỸ (qỸ (p))

)
,

giving, for (179),

∫ 1

p

g(u)

fY (qY (u))
du =

√
ν − 2

ν


(
−(p− 1/2) qỸ (p) + 2ν

ν−1

(
1 +
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Ỹ

(3/4)

ν

)
fỸ (qỸ (3/4))− ν
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Ỹ
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)
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if 3/4 > p ≥ 1/2,(

−(1− p) qỸ (p) + ν
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(
1 +

q2
Ỹ

(p)

ν

)
fỸ (qỸ (p))

)
, if p ≥ 3/4.

As the denominator of (178) was computed in (176), we are done: For 1/2 ≤ p < 3/4, we have, lim
n→∞

Cor(ẼSn(p), ξ̂n) =

√
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−(p− 1/2) q
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and for p ≥ 3/4, lim
n→∞
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Appendix D Miscellanea

D.1 Extensions of Theorem 1

As mentioned in Subsection 2.1, there are different direct extensions of Theorem 1 (note that we could also
provide in the same way extensions of Proposition 3, 4, 6). First, one can consider a more general function
h(x, y). Second, as in [8], we can look at the joint distribution of a vector of sample quantiles, instead of only
at one sample quantile. For this, denote by qX(p) the m-vector of quantiles evaluated at pi, i = 1, ...,m, where
0 < p1 < ... < pm < 1, and by qn(p) the corresponding m-vector of sample quantiles qn(pi), i = 1, ...,m. And,
one can also combine the two ideas and look at more general functions applied on a vector of sample quantiles:

Theorem 29 Consider an iid sample with parent rv X having mean µ, variance σ2. Further, consider a function

h : Rm+1 7→ Rm+1, i.e. h(x1, ..., xm, y) =

 h1(x1, ..., xm, y)
...

hm+1(x1, ..., xm, y)

 with continuous real-valued components

hi(x1, ..., xm, y), i = 1, ...,m, and existing partial derivatives denoted by ∂ihj , i, j ∈ {1, ...,m + 1}. Assume
conditions (C1), (C3) in each neighbourhood of qX(pi), i = 1, ...,m, and (Mr) for r = 1, 2 respectively as well
as (C2) at µ for r = 1. Then, the joint behaviour of the functional h of the sample quantile vector qn(p) and of
the measure of dispersion m̂(X,n, r) (defined in Table 1) is asymptotically normal:

√
nh

(
qn(p)

m̂(X,n, r)

)
− h

(
qX(p)
m(X, r)

)
d−→

n→∞
N (0, J(h(v))Σ(m,r)J(h(v))′), (180)

where the asymptotic covariance matrix Σ(m,r) of dimension (m+ 1)× (m+ 1) can be written as

Σ(m,r) =

[
Σ(m) s(m, r)

s(m, r)′ Var
(

(|X − µ|r + (2− r)(2FX(µ)− 1)X
)] (181)

with Σ
(m)
ij = Σ

(m)
ji =

pi(1−pj)
fX(qX(pi))fX(qX(pj))

for i, j ∈ {1, ...,m} and the i-th element of s(m,r) being
τr(|X−µ|,pi)+(2−r)(2FX(µ)−1)τ1(pi)

fX(qX(pi))
, i = 1, ...,m where τr is defined in (3), J(h(v)) is the Jacobian matrix of h(v),

and we denote with a ’ the transpose of a vector.

As a corollary of the theorem, we can state how the result explicitly looks like if we go back to the one-dimensional
sample quantile case (with a general function h(x, y)).

Corollary 30 Consider an iid sample with parent rv X having mean µ, variance σ2 and a function h(x, y) =(
h1(x, y)
h2(x, y)

)
with continuous real-valued components h1(x, y), h2(x, y) and existing partial derivatives denoted

by ∂ihj , i, j ∈ {1, 2}. Assume conditions (C1), (C3) in a neighbourhood of qX(p), (Mr) for r = 1, 2 respectively,
as well as (C2) at µ for r = 1. Then, the joint behaviour of the functional h of the sample quantile qn(p) (for
p ∈ (0, 1)) and of the measure of dispersion m̂(X,n, r) (defined in Table 1) is asymptotically normal:

√
nh

(
qn(p)

m̂(X,n, r)

)
− h

(
q̂X(p)
m(X, r)

)
d−→

n→∞
N (0,Σ(h,r)),

where the asymptotic covariance matrix Σ(h,r) = (Σ
(h,r)
ij , 1 ≤ i, j ≤ 2) satisfies, denoting by abuse of notation,

h1 = h1(qX(p),m(X, r)), and h2 = h2(qX(p),m(X, r)),

Σ
(h,r)
11 = Var(qn(p)) (∂1h1)

2
+ 2∂1h1∂2h1 Cov(qn(p), m̂(X,n, r)) + Var(m̂(X,n, r)) (∂2h1)

2
;

Σ
(h,r)
22 = Var(m̂(X,n, r)) (∂2h2)

2
+ 2∂1h2∂2h2 Cov(qn(p), m̂(X,n, r)) + Var(qn(p)) (∂1h2)

2
;

Σ
(h,r)
12 = Σ

(h,r)
21 = Cov(qn(p), m̂(X,n, r)) (∂1h1∂2h2 + ∂2h1∂1h2) + Var(qn(p)) ∂1h1∂1h2 + Var(m̂(X,n, r)) ∂2h1∂2h2,
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with

Var(qn(p)) =
p(1− p)
f2
X(qX(p))

, Var(m̂(X,n, r) = Var(|X − µ|r + (2− r)(2FX(µ)− 1)X),

Cov(qn(p), m̂(X,n, r)) =
τr(|X − µ|, p) + (2− r)(2FX(µ)− 1)τ1(p)

fX(qX(p))
.

The asymptotic correlation between the functional h of the measure of dispersion and the sample quantile can be
deduced from the above expressions. In the special case of having ∂2h1 = ∂1h2 = 0, it is identical -up to its sign
(and apart of the case that sgn(∂1h1∂2h2) = 0) - whatever the choice of h (under that restriction):

lim
n→∞

Cor (h (qn(p), m̂(X,n, r))) =
τr(|X − µ|, p) + (2− r)(2F (µ)− 1)τ1(p)√

Var(|X − µ|r)p(1− p)
× sgn(∂1h1∂2h2).

D.2 Tables of Finite Sample Size Simulation Study

For the Appendix to be self-contained, we present the procedure already explained in Subsection 2.4 again:

To assess the finite sample performance, we conduct a simulation study in the following way: We simulate an iid
sample with mean µ = 0 of varying sizeN . The overall sample size is determined by the fact that we use different
sample sizes n for the estimation of either the quantile or the dispersion measure, with n = 126, 252, 504, 1008
(being multiples or fractions of one year of data, i.e. 252 data points), and different lengths of time-series l
which we use to compute the sample correlation, l = 10, 25, 50, 100, 250, 500. In each of the cases, the overall
sample size needed is N = nl. We compute the time series of quantile estimates q̂n,t(p) on disjoint samples
for quantiles of order p = 0.95 and p = 0.99 each, and accordingly the time series of measure of dispersion
estimates D̂i,n,t too. Thus, q̂n,t is either the sample quantile time series qn,t or the location-scale quantile time
series with known µ = 0 qn,σ̂,t, D̂i,n,t can be either the sample standard deviation, the sample MAD, or the

sample MedianAD. Recalling the correlation of interest, Cor
(
q̂n,t(p), D̂i,n,t

)
, we then estimate the linear Pearson

correlation using these two time series of l estimates. This procedure is repeated 1’000-fold in each case. Then,
we report in Tables 10, 11, 12 the averages of the 1’000-fold repetition with, in brackets, the corresponding
empirical 95% confidence interval values. Further, we provide the theoretical asymptotic value in the last column.
Also, we provide confidence intervals for the sample Pearson linear correlation coefficient (using the classical
variance-stabilizing Fisher transform of the correlation coefficient for a bivariate normal distribution to compute
the confidence intervals -see the original paper [18] or e.g. a standard encyclopedia entry [37]). Note, that those
confidence interval values have to be considered with care. Recall that the bivariate normality of our quantile
estimator and measure of dispersion estimator holds asymptotically. Hence, it is not clear if for the sample sizes n
considered we can assume bivariate normality (this could be tested). Still, we provide those theoretical confidence
intervals as approximate guidance.

We consider iid samples coming from three different distributions: A Gaussian distribution and two Student
distributions with 3 and 5 degrees of freedom, respectively. Recall, the explicit expressions of the asymptotic
correlation used to calculate the theoretical values in the tables are presented in Section 3. Also, note that the
specification of µ, σ2 is not needed as the correlation results for location-scale distributions are independent of its
parameter (again, see Section 3).

We also recall that when working with the sample standard deviation, the existence of the fourth moment is a
condition we require, as well as when working with the location-scale quantile. Thus, as they do not exist for a
Student distribution with 3 degrees of freedom, we simply write ‘NA’ as theoretical value instead.
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Table 10: Average values from a 1’000-fold repetition. Comparing the correlation of the measure of dispersion
estimator with two different quantile estimators each, as a function of both, the sample size on which the quantile is
estimated n and the length of the time-series l used to estimate the correlation. Underlying samples are simulated
from a Gaussian distribution. Average empirical values are written first (with empirical 95% confidence interval
in brackets). The corresponding theoretical values, mean and 95% confidence interval, are provided in the last
column. We consider two thresholds p = 0.95, 0.99. The upper part of the table considers the sample variance as
measure of dispersion estimator, the middle part the sample MAD and the lower part the sample MedianAD.

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(σ̂2
n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 52 (-9,88) 100 (100,100) 52 (-11,89) 100 (100,100) 54 (-7,89) 100 (100,100) 53 (-5,89) 100 (100,100) 55 (-12,88) 100(100,100)
25 54 (22,79) 100 (100,100) 54 (23,79) 100 (100,100) 55 (24,79) 100 (100,100) 54 (22,78) 100 (100,100) 55 (20,78) 100(100,100)
50 55 (33,71) 100 (100,100) 55 (34,73) 100 (100,100) 55 (34,73) 100 (100,100) 55 (34,71) 100 (100,100) 55 (32,72) 100(100,100)
100 56 (41,68) 100 (100,100) 55 (41,67) 100 (100,100) 55 (41,68) 100 (100,100) 55 (40,67) 100 (100,100) 55 (40,67) 100(100,100)
250 56 (46,64) 100 (100,100) 55 (46,63) 100 (100,100) 55 (46,63) 100 (100,100) 55 (46,63) 100 (100,100) 55 (46,63) 100(100,100)
500 56 (49,61) 100 (100,100) 55 (49,61) 100 (100,100) 55 (49,61) 100 (100,100) 55 (49,61) 100 (100,100) 55 (49,61) 100(100,100)

p = 0.99
10 44 (-20,87) 100 (100,100) 42 (-22,83) 100 (100,100) 44 (-18,85) 100 (100,100) 42 (-20,86) 100 (100,100) 44 (-26,84) 100 (100,100)
25 47 (10,75) 100 (100,100) 43 (5,72) 100 (100,100) 44 (9,71) 100 (100,100) 44 (6,71) 100 (100,100) 44 (6,71) 100 (100,100)
50 47 (21,67) 100 (100,100) 44 (19,64) 100 (100,100) 45 (20,65) 100 (100,100) 44 (21,64) 100 (100,100) 44 (18,64) 100 (100,100)
100 47 (31,61) 100 (100,100) 44 (28,60) 100 (100,100) 45 (28,59) 100 (100,100) 44 (27,59) 100 (100,100) 44 (27,59) 100 (100,100)
250 47 (37,57) 100 (100,100) 45 (35,54) 100 (100,100) 45 (35,55) 100 (100,100) 44 (35,54) 100 (100,100) 44 (33,54) 100 (100,100)
500 47 (40,54) 100 (100,100) 45 (38,52) 100 (100,100) 45 (38,52) 100 (100,100) 45 (37,52) 100 (100,100) 44 (37,51) 100 (100,100)

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(θ̂n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 45 (-21,87) 93 (78,99) 44 (-16,84) 93 (77,99) 47 (-18,86) 93 (76,99) 47 (-17,86) 93 (81,98) 48(-21,85) 94(75,99)
25 47 (13,75) 93 (86,97) 47 (16,73) 94 (87,97) 48 (11,75) 93 (86,97) 48 (13,74) 93 (86,97) 48(11,74) 94(86,97)
50 48 (26,66) 94 (89,96) 48 (26,69) 94 (89,96) 48 (25,69) 94 (90,96) 48 (26,66) 94 (89,96) 48(23,67) 94(89,96)
100 49 (32,62) 94 (91,96) 48 (33,62) 94 (91,96) 48 (33,62) 94 (91,96) 48 (31,62) 94 (91,96) 48(31,62) 94(91,96)
250 49 (39,58) 94 (92,95) 48 (39,58) 94 (92,95) 48 (39,58) 94 (92,95) 48 (39,57) 94 (92,95) 48(38,57) 94(92,95)
500 49 (42,55) 94 (93,95) 48 (41,55) 94 (92,95) 48 (41,55) 94 (92,95) 48 (42,55) 94 (92,95) 48(41,45) 94(92,95)

p = 0.99
10 32 (-37,81) 93 (78,99) 29 (-39,78) 93 (77,99) 32 (-30,79) 93 (76,99) 30 (-36,80) 93 (81,98) 31(-40,79) 94(75,99)
25 34 (-3,66) 93 (86,97) 30 (-11,64) 94 (87,97) 32 (-8,65) 93 (86,97) 31 (-7,63) 93 (86,97) 31(-10,63) 94(86,97)
50 34 (8,57) 94 (89,96) 31 (5,55) 94 (89,96) 32 (5,56) 94 (90,96) 31 (3,54) 94 (89,96) 31(4,54) 94(89,96)
100 34 (17,51) 94 (91,96) 32 (14,50) 94 (91,96) 32 (14,49) 94 (91,96) 31 (13,48) 94 (91,96) 31(12,48) 94(91,96)
250 34 (22,45) 94 (92,95) 32 (21,42) 94 (92,95) 32 (22,44) 94 (92,95) 32 (21,42) 94 (92,95) 31(19,42) 94(92,95)
500 34 (26,41) 94 (93,95) 32 (24,40) 94 (92,95) 32 (25,40) 94 (92,95) 32 (24,39) 94 (92,95) 31(23,39) 94(92,95)

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(ξ̂n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 21 (-48,75) 59 (5,90) 20 (-42,73) 58 (3,90) 22 (-46,73) 58 (-4,91) 24 (-42,78) 60 (2,90) 23(-47,75) 61(-4,89)
25 22 (-18,60) 60 (29,81) 23 (-14,57) 60 (31,81) 23 (-18,60) 60 (28,82) 22 (-18,57) 60 (27,81) 23(-18,57) 61(28,81)
50 23 (-4,48) 61 (42,76) 23 (-3,48) 60 (40,76) 23 (-4,49) 61 (41,76) 23 (-4,45) 60 (39,76) 23(-5,48) 61(39,76)
100 24 (6,41) 61 (48,72) 23 (4,41) 61 (47,72) 23 (5,43) 61 (47,72) 23 (4,41) 60 (47,72) 23(3,41) 61(47,72)
250 24 (12,35) 61 (53,68) 23 (11,35) 61 (53,68) 23 (11,35) 61 (52,67) 23 (11,34) 61 (52,68) 23(11,34) 61(52,68)
500 24 (15,32) 61 (55,66) 23 (15,32) 61 (55,66) 23 (15,32) 61 (55,66) 23 (15,32) 61 (55,66) 23(14,31) 61(55,66)

p = 0.99
10 11 (-56,72) 59 (5,90) 8 (-57,69) 58 (3,90) 11 (-51,68) 58 (-4,91) 10 (-55,68) 60 (2,90) 10(-56,69) 61(-4,89)
25 12 (-30,49) 60 (29,81) 10 (-30,47) 60 (31,81) 11 (-29,49) 60 (28,82) 10 (-29,46) 60 (27,81) 10(-31,48) 61(28,81)
50 12 (-16,38) 61 (42,76) 10 (-18,37) 60 (40,76) 11 (-16,37) 61 (41,76) 10 (-19,37) 60 (39,76) 10(-18,37) 61(39,76)
100 12 (-8,30) 61 (48,72) 10 (-8,29) 61 (47,72) 11 (-9,29) 61 (47,72) 10 (-10,29) 60 (47,72) 10(-10,29) 61(47,72)
250 12 (-2,23) 61 (53,68) 10 (-2,22) 61 (53,68) 11 (-2,24) 61 (52,67) 10 (-2,22) 61 (52,68) 10(-2,22) 61(52,68)
500 12 (3,19) 61 (55,66) 10 (2,19) 61 (55,66) 11 (2,19) 61 (55,66) 11 (2,19) 61 (55,66) 10(1,19) 61(55,66)
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Table 11: Average values from a 1’000-fold repetition. Comparing the correlation of the measure of dispersion
estimator with two different quantile estimators each, as a function of both, the sample size on which the quantile is
estimated n and the length of the time-series l used to estimate the correlation. Underlying samples are simulated
from a Student distribution with 5 degrees of freedom. Average empirical values are written first (with empirical
95% confidence interval in brackets). The corresponding theoretical values, mean and 95% confidence interval,
are provided in the last column. We consider two thresholds p = 0.95, 0.99. The upper part of the table considers
the sample variance as measure of dispersion estimator, the middle part the sample MAD and the lower part the
sample MedianAD.

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(σ̂2
n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 43 (-20,87) 100 (100,100) 41 (-24,85) 100 (100,100) 41 (-23,83) 100 (100,100) 40 (-25,83) 100 (100,100) 38(-33,81) 100 (100,100)
25 42 (0,74) 100 (99,100) 42 (4,72) 100 (100,100) 41 (3,72) 100 (100,100) 40 (3,70) 100 (100,100) 38(-2,67) 100 (100,100)
50 42 (14,67) 100 (99,100) 42 (16,64) 100 (99,100) 41 (13,65) 100 (100,100) 40 (12,63) 100 (100,100) 38(11,59) 100 (100,100)
100 42 (21,59) 100 (98,100) 42 (22,59) 100 (99,100) 40 (20,57) 100 (99,100) 40 (20,56) 100 (100,100) 38(20,53) 100 (100,100)
250 42 (24,54) 99 (97,100) 41 (25,52) 100 (98,100) 40 (26,51) 100 (99,100) 40 (26,50) 100 (100,100) 38(27,48) 100 (100,100)
500 41 (26,51) 99 (96,100) 41 (28,49) 100 (98,100) 40 (28,49) 100 (99,100) 39 (29,48) 100 (99,100) 38(30,45) 100 (100,100)

p = 0.99
10 52 (-14,89) 100 (100,100) 49 (-17,89) 100 (100,100) 47 (-19,87) 100 (100,100) 46 (-21,86) 100 (100,100) 43(-28,83) 100 (100,100)
25 51 (11,81) 100 (99,100) 49 (9,79) 100 (100,100) 47 (8,75) 100 (100,100) 46 (9,75) 100 (100,100) 43(4,70) 100 (100,100)
50 51 (19,75) 100 (99,100) 49 (19,71) 100 (99,100) 47 (19,68) 100 (100,100) 46 (20,67) 100 (100,100) 43(17,63) 100 (100,100)
100 51 (26,69) 100 (98,100) 48 (27,66) 100 (99,100) 47 (25,63) 100 (99,100) 45 (26,61) 100 (100,100) 43(25,57) 100 (100,100)
250 50 (31,64) 99 (97,100) 48 (32,60) 100 (98,100) 46 (31,57) 100 (99,100) 45 (31,56) 100 (100,100) 43(32,52) 100 (100,100)
500 50 (34,60) 99 (96,100) 47 (34,56) 100 (98,100) 46 (34,54) 100 (99,100) 45 (35,53) 100 (99,100) 43(35,50) 100 (100,100)

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(θ̂n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 48 (-11,86) 86 (58,98) 48 (-16,87) 84 (49,97) 49 (-12,85) 83 (47,97) 49 (-11,86) 82 (46,97) 51(-18,86) 77(27,94)
25 49 (13,75) 87 (70,95) 50 (16,76) 85 (67,95) 50 (16,77) 83 (62,94) 50 (17,75) 82 (60,93) 51(14,75) 77(53,89)
50 50 (27,71) 86 (73,93) 50 (27,69) 84 (70,92) 50 (27,70) 83 (67,92) 51 (27,69) 82 (64,91) 51(27,69) 77(62,86)
100 51 (35,65) 86 (76,91) 51 (35,65) 84 (72,90) 51 (35,64) 82 (69,90) 51 (36,64) 81 (69,89) 51(35,64) 77(67,84)
250 51 (42,60) 85 (77,90) 51 (42,59) 84 (74,89) 51 (41,59) 82 (73,88) 51 (41,59) 81 (70,87) 51(41,60) 77(71,81)
500 51 (45,58) 85 (79,89) 51 (44,57) 83 (76,87) 51 (44,57) 82 (74,86) 51 (44,57) 81 (73,85) 51(44,57) 77(73,80)

p = 0.99
10 41 (-27,84) 86 (58,98) 40 (-32,84) 84 (49,97) 41 (-19,84) 83 (47,97) 39 (-28,84) 82 (46,97) 40(-30,82) 77(27,94)
25 42 (5,72) 87 (70,95) 41 (-2,73) 85 (67,95) 41 (3,70) 83 (62,94) 41 (5,69) 82 (60,93) 40(1,69) 77(53,89)
50 42 (16,65) 86 (73,93) 41 (13,64) 84 (70,92) 41 (17,62) 83 (67,92) 41 (15,62) 82 (64,91) 40(14,61) 77(62,86)
100 43 (24,59) 86 (76,91) 40 (23,56) 84 (72,90) 41 (25,57) 82 (69,90) 40 (23,55) 81 (69,89) 40(22,55) 77(67,84)
250 42 (31,52) 85 (77,90) 40 (30,51) 84 (74,89) 41 (30,52) 82 (73,88) 41 (30,50) 81 (70,87) 40(29,50) 77(71,81)
500 42 (34,49) 85 (79,89) 40 (33,47) 83 (76,87) 41 (34,48) 82 (74,86) 41 (34,47) 81 (73,85) 40(33,47) 77(73,80)

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(ξ̂n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 23 (-46,77) 38 (-33,83) 21 (-45,76) 36 (-30,81) 23 (-47,77) 34 (-36,82) 22 (-49,77) 33 (-38,82) 23(-47,75) 32(-39,79)
25 23 (-19,57) 38 (-3,71) 22 (-19,56) 36 (-3,69) 22 (-20,57) 35 (-4,67) 23 (-17,56) 34 (-5,66) 23(-18,57) 32(-9,63)
50 23 (-6,50) 38 (8,62) 23 (-6,47) 36 (7,59) 23 (-6,47) 35 (7,58) 23 (-6,48) 34 (7,58) 23(-5,48) 32(4,55)
100 23 (2,41) 38 (17,54) 23 (4,40) 36 (15,52) 23 (3,41) 35 (16,52) 23 (4,40) 34 (14,51) 23(3,41) 32(13,49)
250 23 (12,35) 37 (23,48) 23 (12,34) 36 (23,47) 23 (11,34) 35 (23,46) 23 (12,35) 34 (22,45) 23(11,34) 32(20,43)
500 24 (15,32) 37 (27,45) 23 (15,31) 36 (27,44) 23 (14,31) 35 (26,43) 23 (15,31) 34 (24,42) 23(14,31) 32(24,40)

p = 0.99
10 11 (-55,71) 38 (-33,83) 11 (-56,69) 36 (-30,81) 12 (-49,69) 34 (-36,82) 10 (-54,68) 33 (-38,82) 10(-56,69) 32(-39,79)
25 12 (-32,52) 38 (-3,71) 11 (-33,49) 36 (-3,69) 10 (-29,48) 35 (-4,67) 10 (-29,49) 34 (-5,66) 10(-31,48) 32(-9,63)
50 11 (-19,40) 38 (8,62) 10 (-19,38) 36 (7,59) 10 (-17,37) 35 (7,58) 10 (-16,38) 34 (7,58) 10(-18,37) 32(4,55)
100 11 (-10,31) 38 (17,54) 10 (-10,28) 36 (15,52) 11 (-8,29) 35 (16,52) 10 (-9,29) 34 (14,51) 10(-10,29) 32(13,49)
250 11 (-2,23) 37 (23,48) 10 (-2,22) 36 (23,47) 10 (-2,22) 35 (23,46) 10 (-2,23) 34 (22,45) 10(-2,22) 32(20,43)
500 11 (2,20) 37 (27,45) 10 (2,18) 36 (27,44) 10 (2,19) 35 (26,43) 10 (2,19) 34 (24,42) 10(1,19) 32(24,40)
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Table 12: Average values from a 1’000-fold repetition. Comparing the correlation of the measure of dispersion
estimator with two different quantile estimators each, as a function of both, the sample size on which the quantile is
estimated n and the length of the time-series l used to estimate the correlation. Underlying samples are simulated
from a Student distribution with 3 degrees of freedom. Average empirical values are written first (with empirical
95% confidence interval in brackets). The corresponding theoretical values, mean and 95% confidence interval,
are provided in the last column (if inexistent, we write ‘NA’). We consider two thresholds p = 0.95, 0.99. The
upper part of the table considers the sample variance as measure of dispersion estimator, the middle part the sample
MAD and the lower part the sample MedianAD.

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(σ̂2
n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 31 (-32,82) 100 (99,100) 27 (-40,80) 100 (99,100) 22 (-43,77) 100 (100,100) 21 (-45,74) 100 (100,100) NA NA
25 28 (-15,68) 99 (98,100) 24 (-18,64) 99 (99,100) 21 (-19,56) 100 (99,100) 19 (-24,56) 100 (99,100) NA NA
50 25 (-8,55) 99 (97,100) 22 (-9,52) 99 (98,100) 19 (-9,47) 99 (98,100) 17 (-14,44) 100 (99,100) NA NA
100 23 (-2,47) 98 (96,100) 20 (-4,42) 99 (97,100) 17 (-5,38) 99 (97,100) 15 (-7,37) 99 (98,100) NA NA
250 20 (0,37) 97 (94,99) 17 (-1,34) 97 (94,99) 15 (-2,31) 98 (96,100) 13 (-4,28) 98 (96,100) NA NA
500 18 (2,31) 95 (91,99) 16 (1,29) 96 (92,99) 13 (0,26) 97 (93,99) 12 (-1,23) 98 (94,99) NA NA

p = 0.99
10 45 (-27,93) 100 (99,100) 42 (-32,88) 100 (99,100) 35 (-33,84) 100 (100,100) 31 (-35,82) 100 (100,100) NA NA
25 43 (-2,82) 99 (98,100) 38 (-7,77) 99 (99,100) 31 (-14,70) 100 (99,100) 28 (-16,67) 100 (99,100) NA NA
50 40 (-1,76) 99 (97,100) 35 (0,70) 99 (98,100) 29 (-5,59) 99 (98,100) 26 (-7,57) 100 (99,100) NA NA
100 37 (4,69) 98 (96,100) 32 (2,59) 99 (97,100) 27 (0,50) 99 (97,100) 24 (-1,47) 99 (98,100) NA NA
250 33 (6,60) 97 (94,99) 28 (4,50) 97 (94,99) 23 (2,43) 98 (96,100) 20 (1,38) 98 (96,100) NA NA
500 30 (6,52) 95 (91,99) 26 (5,44) 96 (92,99) 21 (1,37) 97 (93,99) 18 (1,33) 98 (94,99) NA NA

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(θ̂n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 47 (-17,87) 84 (53,97) 45 (-19,87) 81 (46,97) 45 (-20,86) 77 (35,96) 45 (-26,87) 73 (29,95) 48(-22,85) NA
25 48 (10,76) 84 (66,95) 47 (10,74) 80 (57,92) 46 (8,73) 76 (53,91) 47 (13,75) 71 (44,89) 48(10,73) NA
50 48 (21,68) 83 (70,92) 47 (23,67) 78 (64,89) 47 (20,68) 74 (56,87) 47 (23,67) 70 (49,84) 48(23,67) NA
100 48 (29,62) 82 (73,90) 48 (30,62) 77 (66,87) 47 (29,62) 73 (60,83) 47 (31,61) 68 (53,80) 48(31,61) NA
250 48 (33,57) 81 (76,87) 47 (35,57) 76 (69,83) 47 (37,57) 71 (63,79) 47 (36,57) 66 (56,76) 48(37,57) NA
500 47 (37,55) 81 (77,86) 48 (38,55) 76 (70,82) 47 (39,55) 70 (64,77) 47 (40,54) 65 (57,72) 48(41,54) NA

p = 0.99
10 45 (-19,87) 84 (53,97) 43 (-19,85) 81 (46,97) 43 (-19,86) 77 (35,96) 44 (-23,85) 73 (29,95) 44(-26,84) NA
25 46 (11,76) 84 (66,95) 44 (5,74) 80 (57,92) 44 (6,73) 76 (53,91) 45 (9,71) 71 (44,89) 44(6,71) NA
50 46 (20,70) 83 (70,92) 45 (20,67) 78 (64,89) 45 (19,65) 74 (56,87) 45 (20,65) 70 (49,84) 44(19,64) NA
100 46 (27,64) 82 (73,90) 45 (27,61) 77 (66,87) 45 (28,59) 73 (60,83) 44 (27,59) 68 (53,80) 44(27,59) NA
250 46 (34,58) 81 (76,87) 45 (32,55) 76 (69,83) 45 (34,55) 71 (63,79) 45 (35,54) 66 (56,76) 44(34,54) NA
500 46 (36,55) 81 (77,86) 45 (36,53) 76 (70,82) 45 (37,52) 70 (64,77) 45 (37,52) 65 (57,72) 44(37,51) NA

n=126 n=252 n=504 n=1008 theoretical values

Ĉor(ξ̂n, q̂n) qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂ qn qn,σ̂

p = 0.95
10 22 (-48,76) 22 (-49,78) 20 (-51,75) 18 (-52,74) 21 (-46,76) 16 (-53,73) 21 (-42,74) 13 (-53,74) 23(-47,75) NA
25 23 (-15,58) 21 (-20,59) 22 (-21,59) 18 (-27,55) 21 (-20,58) 15 (-25,52) 22 (-20,57) 13 (-29,52) 23(-18,57) NA
50 23 (-4,49) 21 (-9,47) 22 (-7,48) 17 (-14,45) 22 (-7,47) 15 (-13,41) 23 (-7,49) 12 (-20,39) 23(-5,48) NA
100 23 (4,41) 20 (-2,40) 22 (2,40) 16 (-7,36) 23 (2,40) 14 (-8,34) 23 (2,41) 11 (-10,32) 23(3,41) NA
250 23 (11,35) 18 (4,31) 23 (10,34) 15 (1,28) 23 (10,34) 13 (-2,27) 23 (11,34) 11 (-3,25) 23(11,34) NA
500 23 (14,31) 18 (7,28) 23 (14,31) 15 (4,25) 23 (14,31) 13 (1,23) 23 (15,31) 11 (0,20) 23(14,31) NA

p = 0.99
10 11 (-53,71) 22 (-49,78) 7 (-58,71) 18 (-52,74) 9 (-58,74) 16 (-53,73) 9 (-59,70) 13 (-53,74) 10(-56,69) NA
25 10 (-29,51) 21 (-20,59) 9 (-31,48) 18 (-27,55) 10 (-32,47) 15 (-25,52) 10 (-29,48) 13 (-29,52) 10(-31,48) NA
50 10 (-19,38) 21 (-9,47) 9 (-20,35) 17 (-14,45) 10 (-20,39) 15 (-13,41) 10 (-19,38) 12 (-20,39) 10(-18,37) NA
100 10 (-11,30) 20 (-2,40) 9 (-11,28) 16 (-7,36) 10 (-10,31) 14 (-8,34) 10 (-9,29) 11 (-10,32) 10(-10,29) NA
250 10 (-2,22) 18 (4,31) 9 (-3,21) 15 (1,28) 10 (-3,22) 13 (-2,27) 10 (-2,22) 11 (-3,25) 10(-2,22) NA
500 10 (1,19) 18 (7,28) 9 (0,18) 15 (4,25) 10 (1,19) 13 (1,23) 10 (2,19) 11 (0,20) 10(1,19) NA

90



 

 

C ON T A C T

Centre de Recherche
Tel. +33 (0)1 34 43 30 91
research.center@essec.fr


	EssecWP1807.pdf
	Introduction and Notation
	Asymptotic Joint Properties of Quantile and Dispersion Estimators for iid rv's
	Historical Estimation
	Location-Scale Quantile
	Specific Cases and Methods
	The Effect of Sample Size in Estimation

	Case of Location-Scale Distributions
	Historical Estimation
	Location-scale Quantile
	The Impact of the Choice of the Quantile Estimator for Elliptical Distributions
	Gaussian Distribution
	Student Distribution


	Application to Quantitative Risk Management
	Estimation with Various Risk and Dispersion Measures
	Dispersion Measures
	Risk Measures
	Implications of the Theoretical Results

	Example in Finance: Explaining Procyclicality in Risk Measurements
	Gaussian Distribution
	Student Distribution
	Impact of Using Longer Samples
	Comparison with Empirical Work


	Concluding Remarks: Implications for Use in Practice
	Appendix Proofs of Section 2
	Proofs of Subsection 2.1
	Bahadur's Method
	Taylor's Method

	Proofs of Subsection 2.2
	Proofs of Subsection 2.3
	Proof of Subsection 2.4

	Appendix Proofs of Section 3
	Proofs of Subsection 3.1
	Proofs of Subsection 3.2

	Appendix Proofs of Section 4
	Appendix Miscellanea
	Extensions of Theorem 1
	Tables of Finite Sample Size Simulation Study



