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Abstract: This work is linked to the future Indian–French high spatio-temporal TRISHNA (Thermal
infraRed Imaging Satellite for High-resolution natural resource Assessment) mission, which includes
shortwave and thermal infrared bands, and is devoted amongst other things to the monitoring
of urban heat island events. In this article, the performance of seven empirical thermal unmixing
techniques applied on simulated TRISHNA satellite images of an urban scenario is studied across
spatial resolutions. For this purpose, Top Of Atmosphere (TOA) images in the shortwave and
Thermal InfraRed (TIR) ranges are constructed at different resolutions (20 m, 40 m, 60 m, 80 m, and
100 m) and according to TRISHNA specifications (spectral bands and sensor properties). These
images are synthesized by correcting and undersampling DESIREX 2008 Airborne Hyperspectral
Scanner (AHS) images of Madrid at 4 m resolution. This allows to compare the Land Surface
Temperature (LST) retrieval of several unmixing techniques applied on different resolution images,
as well as to characterize the evolution of the performance of each technique across resolutions.
The seven unmixing techniques are: Disaggregation of radiometric surface Temperature (DisTrad),
Thermal imagery sHARPening (TsHARP), Area-To-Point Regression Kriging (ATPRK), Adaptive
Area-To-Point Regression Kriging (AATPRK), Urban Thermal Sharpener (HUTS), Multiple Linear
Regressions (MLR), and two combinations of ground classification (index-based classification and
K-means classification) with DisTrad. Studying these unmixing techniques across resolutions also
allows to validate the scale invariance hypotheses on which the techniques hinge. Each thermal
unmixing technique has been tested with several shortwave indices, in order to choose the best
one. It is shown that (i) ATPRK outperforms the other compared techniques when characterizing
the LST of Madrid, (ii) the unmixing performance of any technique is degraded when the coarse
spatial resolution increases, (iii) the used shortwave index does not strongly influence the unmixing
performance, and (iv) even if the scale-invariant hypotheses behind these techniques remain empirical,
this does not affect the unmixing performances within this range of resolutions.

Keywords: thermal unmixing; urban environment; land surface temperature; TRISHNA mission

1. Introduction

In the context of urban spread, 68% of the world population is projected to live in urban areas by
2050 according to the United Nations, and climate change is very likely to increase both the frequency
and intensity of heat waves, hence the need for methodologies to monitor urban climates and UHI
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(urban heat islands) becomes critical. Remotely sensed data from space in the thermal infrared (TIR) is
quite well adapted for this purpose, but systems combining both high spatial resolution and revisit
capacities are still missing. Different projects are currently under study such as TRISHNA (Thermal
infraRed Imaging Satellite for High-resolution natural resource Assessment) developed in cooperation
between French CNES (Centre National d’Etudes Spatiales) and Indian ISRO (Indian Space Research
organisation) space agencies [1], LSTM (Land Surface Temperature Mission) at ESA [2] (European
Space Agency), and HyspIRI (Hyperspectral InfraRed Imager) in NASA/JPL (National Aeronautics
and Space Administration/Jet Propulsion Laboratory) (https://hyspiri.jpl.nasa.gov/) [3]. All of them
are aiming at spatial resolutions in the Thermal InfraRed (TIR) close to 50 m. Nevertheless, the extreme
fragmentation of the city structures with small size elements (such as buildings, streets, etc. . . ) and the
variability of artificial materials used makes accessing information at smaller scale mandatory—a few
meters or tens of meters.

During recent decades, disaggregation methods based on combining low resolution TIR data
with high resolution data in the Visible and Near InfraRed (VNIR) domain have been developed to
derive high resolution products in the TIR [4–6]. All these methodologies rely on the hypothesis of
conservation at finer resolution of relationships established at coarser resolution between temperature
and a feature estimated using the VNIR bands. Different refinements on features and relationships
were then brought, making a number of unmixing methods now available [7]. Thus, Disaggregation
of radiometric surface Temperature (DisTrad), which was first presented to study agricultural
landscapes [8], supposes a second order polynomial behavior (which can be reduced to linear) between
Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Thermal
imagery sHARPening (TsHARP), introduced by Agam et al. 2007 for the study of different types of
crops [4,9,10], supposes both linear and polynomial behavior between NDVI and LST and a non-linear
relationship between Fractional Cover (FC) and LST. Wang et al. 2015 presented Area-To-Point
Regression Kriging (ATPRK) and Adaptive Area-To-Point Regression Kriging (AATPRK), which
assume a linear behavior between fine resolution observables (in our case shortwave features) and
coarse resolution observables (in our case LST) in both urban and rural scenarios [6,11]. Other
techniques have been developed in the last years, such as Urban Thermal Sharpener (HUTS)
hypothesizing polynomial behavior between NDVI, albedo and LST [5], or Multiple Linear Regressions
(MLR) assuming linear behavior between LST and multiple Land-Use/Land-Cover (LULC) types [12].
Despite the huge work developed in the last years, the performances of many of these methods
have never been studied across spatial resolutions and the scale hypotheses on which they rely have
been studied superficially for DisTrad and in the case of MODIS (MODerate-resolution Imaging
Spectroradiometer) satellite [13,14]. In addition, from the best of our knowledge, the group of
techniques analyzed in this article has not been compared before, even if some of them have
been compared between them. The behavior of the unmixing performances in function of the
used shortwave features has already been studied for DisTrad in Essa et al. 2012 [15]. However,
from our knowledge this study has not been performed for the other empirical techniques used in the
present work.

This paper focusses on urban areas, which present a more difficult case of study due to the high
diversity of materials and structures, leading to highly heterogeneous situations. It first proposes
a comprehensive literature review of seven thermal unmixing methods based on the TIR-VNIR
combination. Their performances are then compared in the case of Madrid city in Spain when
retrieving fine resolution LST from different coarse resolutions. The TIR image resolutions (coarse
resolutions), from which the unmixing is performed, are: 40 m, 60 m, 80 m, and 100 m and the
fine resolution of the VISible-Near InfraRed (VIS-NIR) image is 20 m. These images are obtained
by applying atmospheric correction and spatial aggregation to DESIREX 2008 AHS data at 4 m
resolution [16], and by selecting only the spectral bands needed to model TRISHNA. The spatial
aggregation used to synthesize the satellite images takes into account the Signal to Noise Ratios
(SNR) and the Modulation Transfer Functions (MTF) modelling TRISHNA. Each thermal unmixing
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technique has been tested with several shortwave features, in order to choose the most performant.
Once the index has been chosen, the unmixing performances of the techniques are compared at each
resolution. The evolution of the performances across resolutions is also studied, as well as the validity
of the hypotheses behind each technique. The evaluation of the unmixing methods is conducted over
different districts in Madrid to characterize the impact of the urban structure on their performances.

In Section 2, the theoretical aspects, hypotheses, and application methodology of the seven
unmixing techniques compared along the article are presented. In Section 3, a brief description of
DESIREX 2008 AHS data is given (Section 3.1), the configuration of the modelled satellites is outlined
(Section 3.2), and the processing theory and methodology from AHS to multispectral satellite data
are also explained (Section 3.3). In Section 4, the evaluation criteria used to compare the unmixing
performances are presented. In Section 5, the unmixing results for the different empirical techniques
and for the different synthetic satellite images at different coarse resolutions are shown. First, the LST
characterization of the city is shown from the simulated satellite images at different resolutions without
unmixing (Section 5.1). Second, the LST characterization of the city is shown for several unmixing
tehcniques applied on the different satellite resolutions (Section 5.2). In Section 6, the validity of the
unmixing techniques hypotheses is discussed together with the obtained unmixing performances
and the best choice of the shortwave index used to perform the unmixing. Finally, in Section 7,
the conclusions and future perspectives are presented.

2. Temperature Unmixing Procedures

All the unmixing procedures presented in this section rely on the base that shortwave optical
domain images are acquired at a better resolution than TIR domain ones, and consequently, the finer
information present in the shortwave domain can be used to unmix the TIR images. To this end,
the methods below express the surface temperature as a function of a given shortwave feature,
T = f (I). These features can be reflectance or radiance measures at a given wavelength or indices
mixing measures at different wavelengths. Throughout this article only indices are used as shortwave
features. Depending on the nature of the function f , two main kinds of methods can be distinguished:
those where f is linear, and those where f is not.

2.1. Linear Relationship between Temperature and Shortwave Feature

2.1.1. Theoretical Aspects

This family of thermal unmixing techniques, among which the most famous are: DisTrad [8],
TsHARP [4,10], and more recently, ATPRK [11] and AATPRK [6], are based on the hypothesis that LST
at a given resolution is linearly related with a given feature extracted from the shortwave optical range
at the same resolution. Following this hypothesis, we can express the LST at a generic resolution l as:

Tl = al + bl Il (1)

where Tl is the LST and Il is a feature obtained from the shortwave wavelengths, both at resolution l.
The second hypothesis is that the linear relationship between the surface temperature and the

shortwave feature is the same at any resolution, i.e., surface temperature behaves, in function of this
feature, identically across different resolutions. Then, the linear parameters al (intercept) and bl (slope)
do not depend on the scale and they can be noted a and b. Equation (1) becomes:

Tl = a + bIl ∀l (2)

where l indicates a generic resolution l. This hypothesis represents the scale invariance of the linear
relationship [5,6].

This family of unmixing procedures presents four different steps in its application.
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• First, using the TIR spectral bands of the image, the LST TL(xL) is obtained at a given coarse
resolution L. At the same time, using the shortwave spectral bands, a feature I is obtained at a
finer resolution η (Iη(xη)). By aggregating (spatially averaging) the shortwave spectral bands, this
feature is also obtained at the coarse resolution L (IL(xL)). Both, LST and shortwave features are
functions of the pixel locations x (xL at the coarse scale and xη at the fine scale).

• Second, the linear parameters a and b are obtained by linear regression at the coarse resolution L
(Figure 1a)).

TL(xL) = a + bIL(xL) (3)

• Third, this linear relationship is applied pixel by pixel to deduce the temperature T̃η at the fine
scale (Figure 1b)).

T̃η(xη) = a + bIη(xη) (4)

• Fourth, the residuals ∆Tη of the unmixed LST (Tη) are estimated and used to correct T̃η (Figure 1c)).

Tη(xη) = T̃η(xη) + ∆Tη(xη) (5)

The sharpening procedures belonging to this family mainly differ on the shortwave feature used,
or in the residuals estimation. We classify the main methods of this family in three groups depending
on the residuals estimation and the locality of the linear parameters estimation.
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Figure 1. Main unmixing steps of the seven empirical techniques presented in this work (Linear case
exemple). (a) Linear regression (red line) at the coarse scale L and coarse residuals estimation ∆TL.
(b) Unmixed Land Surface Temperature (LST) estimation without residual correction T̃η . (c) Residual
correction of T̃η with the fine scale residuals ∆Tη .

2.1.2. DisTrad, TsHARP, and Variations

In this group, a third hypothesis appears concerning the residuals ∆Tη estimation. The residual
estimated for a coarse pixel at resolution L is supposed to be the residual for all the fine pixels at
resolution η within this coarse pixel [13]:

∆Tη(xη) = ∆TL(xL) ∀xη ∈ xL (6)

This hypothesis is called scale invariance of the residuals [13].
Once, Equations (3) and (4) have been used to obtain the unmixed temperature T̃η . The LST

residuals can be estimated pixel by pixel at the coarse scale using two different methods. On one
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hand, the coarse residuals are defined, pixel by pixel, as the measured temperature minus the linear
regression predicted temperature [15]:

∆TL(xL) = TL(xL)− (a + bIL(xL)) (7)

On the other hand, the residual of each coarse pixel is estimated as the difference between the
measured temperature at coarse resolution and the mean of the unmixed LSTs inside the pixel [5]:

∆TL(xL) = TL(xL)−
1

Nη
∑

xη∈xL

T̃η(xη) (8)

where Nη is the number of fine pixels within a coarse pixel.
The application procedure for all this group of techniques is the same, being the only difference

between the techniques the shortwave feature used. Classically, DisTrad uses NDVI [8,13] and TsHARP
uses FC [4,13]. In general, this procedure can be applied with a generic feature. The two conditions for
the feature are:

• the feature must be obtained at a finer resolution η in order to be able to perform the unmixing,
• at the different resolutions between L and η, the temperature should behave “linearly” in function

of the feature.

Essa et al. 2012 presented some studies on the unmixing performance of these methods for
different features [15], showing that for Dublin in spring from 60 m to 30 m resolution the most
performant feature is impervious percentage, followed by some vegetation indices such as NDVI
and FC.

2.1.3. ATPRK

The first steps of this technique are exactly the same as those of the DisTrad family procedure:
Equations (3)–(5), respectively. However, Area-To-Point Regression Kriging [6,11] presents a new
residuals estimation methodology based on the area-to-point spatial interpolation of Kyriakidis [17].
The residuals at the coarse resolution are estimated following Equation (7). From these coarse resolution
residuals, the residual of each fine pixel xη is obtained by:

∆Tη(xη) =
N

∑
i=1

λi∆TL(xL,i) (9)

where N is the number of coarse pixels (xL,i) surrounding the fine pixel (xη) and taken into account in
the estimation (see Figure 2), λi is the weight of the coarse pixel xL,i in the residual estimation of fine
pixel xη , and ∆TL(xL,i) is the residual of the coarse pixel xL,i.

This residual estimation at the fine resolution, as a weighted linear combination of the coarse
residuals around, can be interpreted as a smoothing of the fine residual function ∆Tη(xη), i.e., a
weighted mean filtering that smooths the possible aberrant values of the fine residuals.

In order to estimate the λi values, two constraints are imposed: the bias has to be zero (under
spatial stationarity hypothesis), i.e., the sum of the weights must be normalised to one:

N

∑
i=1

λi = 1 (10)

and the variance of the estimator has to be minimal. Thus, solving the optimization problem, by using
Lagrange multipliers method, results in the Kriging system:
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γLL(xL,1, xL,1) γLL(xL,1, xL,2) · · · γLL(xL,1, xL,N) 1
γLL(xL,2, xL,1) γLL(xL,2, xL,2) · · · γLL(xL,2, xL,N) 1

...
...

. . .
...

γLL(xL,N , xL,1) γLL(xL,N , xL,2) · · · γLL(xL,N , xL,N) 1
1 1 · · · 1 0




λ1

λ2
...

λN
θ

 =


γηL(xη , xL,1)

γηL(xη , xL,2)
...

γηL(xη , xL,N)

1

 (11)

where θ is the Lagrange multiplier used in the error minimization, γLL(xL,i, xL,j) is the coarse-to-coarse
semivariogram between coarse pixels xL,i and xL,j and γηL(xη , xL,j) is the fine-to-coarse semivariogram
between fine pixel xη and coarse pixel xL,j.

xL,i

xη

Figure 2. Gray pixels are the N pixels xL,i used to compute the residual of green pixel xη . The number
of coarse pixels N can vary (in this exemple N = 25). The same N coarse pixels are used to compute
the residuals of all the fine pixels within the center coarse one (gridded in the exemple). However,
the weights (λi) can be different for each fine pixel, as the distances vary.

Before obtaining γLL and γηL semivariograms, the coarse residual semivariogram at Euclidean
distance s is estimated as:

γL(s) =
1

2Ns

Ns

∑
i=1

(∆TL(xL,0)− ∆TL(xL,i))
2 ∀xL,i ∈ ||xL,0 − xL,i|| = s (12)

with Ns the number of pixels at a distance s from xL,0.
This coarse residual semivariogram is then deconvoluted to obtain the fine-to-fine semivariogram

γηη(s), with s being now the distance between two fine pixels. Then, from this fine-to-fine
semivariogram, the fine-to-coarse and the coarse-to-coarse semivariograms are respectively:

γηL(xη , xL,j) =
1
σ

σ

∑
m=1

γηη(sm) (13)

γLL(xL,i, xL,j) =
1
σ2

σ

∑
m=1

σ

∑
m′=1

γηη(smm′) (14)

with sm the distance between fine pixel xη and any fine pixel within the coarse pixel xL,j, smm′ the
distance between any fine pixel within the coarse pixel xL,i and any fine pixel within the coarse pixel
xL,j and σ the pixel size ratio between fine and coarse resolutions. Equations (13) and (14) are obtained
by assuming that the coarse pixel value is the average of the fine pixel values within it [6]. Finally,
these fine-to-coarse and coarse-to-coarse semivariograms are injected in Equation (11).

To obtain the fine-to-fine semivariogram γηη which allows to obtain γηL and γLL, Wang et al. [6,11]
propose an empirical approach. First, they suppose that γηη depends only on two parameters: sill
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and range, with the nugget being equal to zero [18]. Then, they suppose γηη to have the same shape
as γL but with different sill and range parameters. In this article, γηη(s) has been chosen to behave
exponentially on the distance s. Finally, they search the sill and range parameters of γηη by minimizing
γL(s)− γR

L (s). Where γR
L (s) is the regularized semivariogram defined as γR

L (s) = γLL(s)− γLL(0),
with γLL defined in Equation (14) which depends on γηη . The equation to minimize is then:

min
sill, range∈R

[
γL(s)−

1
σ2

(
σ

∑
m=1

σ

∑
m′=1

γ
(sill, range)
ηη (s(s)

mm′)−
σ

∑
m=1

σ

∑
m′=1

γ
(sill, range)
ηη (s(0)

mm′)

)]
(15)

with γ
(sill, range)
ηη the fine-to-fine semivariogram we want to estimate and s(s)

mm′ and s(0)
mm′ the distances

between any couple of fine pixels within coarse pixels xL,i and xL,j at distance s (||xL,i − xL,j|| = s)
and 0 (||xL,i − xL,j|| = 0), respectively. Once sill and range are obtained via the minimization of
Equation (15), γηη is defined and Equations (13) and (14) can be used to obtain the fine-to-caorse and
coarse-to-coarse semivariograms.

2.1.4. AATPRK

Adaptive Area-To-Point Regression Kriging was presented by Wang et al. [6] to take into account
the non spatial stationarity of the image. The global linear regression of Equation (3) cannot take
into account local variations of the image, which can lead to different regression values for different
sites. In order to consider the effect of local variations, AATPRK estimates the linear regression of
Equation (3) for the pixels inside a sliding window of size N × N, and assigns the obtained values to
the center pixel (xL,0) of the window. The residual estimation procedure of this methodology is the
same as the ATPRK one. Consequently, the procedure steps are:

First, linear regressions at the coarse resolution are achieved inside a moving window of size
N × N to obtain the linear parameters a(xL,0) and b(xL,0):

TL(xL) = a(xL,0) + b(xL,0)IL(xL) ∀xL ∈ N × N (16)

Second, the linear relationship is applied pixel by pixel to obtain the temperature T̃η at the
fine scale.

T̃η(xη) = a(xL,0) + b(xL,0)Iη(xη) ∀xη ∈ xL,0 (17)

where xη refers to the fine pixels inside xL,0.
Third, the residual of each coarse pixel is estimated as the difference between the measured

temperature at coarse resolution and the linear regression predicted temperature:

∆TL(xL,0) = TL(xL,0)− (a(xL,0) + b(xL,0)IL(xL,0)) (18)

Fourth, the residuals ∆Tη of the unmixed temperature (Tη) are estimated using Equation (9) and
used to correct T̃η .

Tη(xη) = T̃η(xη) + ∆Tη(xη) (19)

2.2. More Complex Relationships Between Temperature and Shortwave Features

All the above presented methods suppose linear behavior of LST on a given shortwave feature,
at least within a spatial window. However, other procedures not assuming this linear behavior have
been recently developed.
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2.2.1. Bi-Linear

This technique, called bi-linear in this work (simplest version of MLR [12]), supposes that the LST
behaves linearly in two different shortwave features I(1) and I(2):

Tl = a0 + a1 I(1)l + a2 I(2)l (20)

In addition, this technique supposes the scale invariance of the regression parameters a0, a1, and
a2. The steps of this method are the same as those of the DisTrad family techniques by substituting the
linear behavior of that family by the bi-linear relation of Equation (20).

2.2.2. HUTS

The original version of High-resolution Urban Thermal Sharpener [5] considers that land surface
temperature behaves as a fourth order polynomial of NDVI and albedo. It is well known that NDVI
and albedo are strongly correlated quantities [19–21], and therefore redundant information will be
provided to the relationship. In order to study other possible shortwave combinations, a generic fourth
order polynomial relationship between LST and a given couple, feature I (that can be NDVI or another)
and albedo (α), is written:

Tl =p1 I4
l + p2 I3

l αl + p3 I2
l α2

l + p4 Ilα
3
l + p5α4

l +

+ p6 I3
l + p7 I2

l αl + p8 Ilα
2
l + p9α3

l + p10 I2
l +

+ p11 Ilαl + p12α2
l + p13 Il + p14αl + p15 (21)

HUTS also supposes that the parameters pi (with i ∈ [1, 15]) on the expression remain constant
across resolutions. The fundaments of HUTS are the same as those of the DisTrad family procedure.
First, a regression is performed at the coarse resolution to obtain the parameters pi. Then, the regression
parameters are injected in Equation (21) at scale η (where the albedo and the shortwave feature have
been measured) to obtain the land surface temperature T̃η . The residuals at the coarse scale can be
obtained by using the HUTS version (the linear regression is replaced by the polynomial one) of
Equation (7) or Equation (8). These residuals at the coarse scale are newly supposed to be constant
across resolutions (Equation (6)) and are used to correct the LST estimation.

Due to the complex polynomial relationship between LST and shortwave features, some unmixed
temperatures can have aberrant values, specially in the regions of the temperature-features space with
a low density of data points. For this reason, HUTS procedure includes a quality control for the final
land surface temperature [5]. The lower limit for acceptable unmixed temperatures is fixed at the
water surface temperature and the upper limit is fixed to be 5 K higher than the highest value of the
coarse measured temperature. If any unmixed pixel temperature is out of these limits, the surface
temperature of the pixel is obtained as the distance-weighted mean value of the 5× 5 pixel block
surrounding this aberrant pixel.

2.3. Classification-Unmixing Techniques

Classification-unmixing techniques are based on the possibility of combining a ground
classification of the image with the above unmixing methods. Thus, the unmixing can be performed
on each different class separately [15]. This combination of classification-unmixing assumes that
the pixels of the same class (ci) present LSTs that behave following a given function fci (I), which is
different than the functions of the other classes fcj(I) with j 6= i. Consequently, this approach supposes
that the unmixed methodologies can achieve better performances being applied separately on the
diffferent classes.

Two different pixel classifications have been performed, both of them followed by DisTrad
unmixing applied on the different classes separately. The two classifications used in this article are:
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• classical K-means classification with 4 different classes,
• index based classification using NDVI and NDBI (Normalized Difference Built-up Index) to

differenciate vegetation from impervious surfaces, and albedo to differenciate high albedo
impervious surfaces from low albedo impervious surfaces. A NDVI higher than 0.15 and a
NDBI lower than −0.15 allow to select vegetation pixels. Those pixels with NDVI ≤ 0.15 and
NDBI ≥ −0.15 are differenciated between low albedo (α < 0.2) and high albedo (α > 0.2)
impervious surfaces.

3. Datasets and Preprocessing

In this section, the Aircraft Hyperspectral Scanner (AHS) data used to model satellite images are
presented (Section 3.1). Then, the different modelled satellite configurations are introduced (Section 3.2).
Finally, the AHS image processing used to obtain shortwave indices and LSTs at different spatial
resolutions is explained (Section 3.3).

3.1. DESIREX Dataset

Airborne hyperspectral scanner data taken over the city of Madrid, during the DESIREX campaign
2008 [16,22–24] (summer), at 4 m resolution over 80 spectral channels (0.443–13.4 µm) is used. The data
correspond to three urban and suburban images of Madrid from Getafe to Universidad Autónoma
(see Figure 3) obtained at 2497 m altitude from:

• the 11:53 flight line of 28th June. No wind and clear sky.
• the 11:44 flight line of 1st July. Moderate south-west wind and hazy atmosphere.
• the 11:32 flight line of 4th July. Moderate north-east wind and some high clouds.

Together with these aircraft hyperspectral images, atmospheric characterizations were performed
each day. On one hand, temperature profiles from ground level to 25 Km altitude, and atmospheric
water vapor content were measured with soundings several times a day at three different emplacements.
On the other hand, relative himidity and air temperature evolution were measured in 6 fixed masts
located in rural, urban-medium and urban-dense spots. During the DESIREX campaign LST and
emissivity ground measurements were also acquired. LST was measured every five minutes in the
same 6 fixed masts as air temperature, and thermal images were acquired at different emplacements
and simultaneously with the AHS flights. A spectral characterization, reflectivity and emissivity
measures, of urban surfaces was also done during the DESIREX campaign. The complete description
of the dataset can be found in the DESIREX 2008 final report [16,22–24].

3.2. Simulated Satellite Configurations

From these hyperspectral images at 4 m pixel resolution, the images of 4 multispectral satellites
with 40 m, 60 m, 80 m, and 100 m pixel resolutions in the TIR bands respectively, and 20 m pixel
resolution in the shortwave bands are synthesized. All the modelled satellites present the same spectral
configuration with five bands in the VNIR-SWIR domain and four bands in the TIR domain. The used
AHS bands are those closer to the present set-up (pending resolution) of the future french-indian
mission TRISHNA [1], see Table 1.

3.3. Satellite Multispectral Modelling

From AHS radiance measures, satellite radiance images at different resolutions are synthesized
by using direct and inverse radiative transfer solutions COCHISE and COMANCHE [25] and
next applying a spatial undersampling. The preprocessing from the initial AHS data to the final
multispectral satellite images is different for the shortwave bands and for the thermal bands as the
radiative transfer equation and the TRISHNA sensors specifications (SNR and MTF) are different,
see Figure 4. In this work, to complete the DESIREX atmospheric description, the mid-latitude
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summer temperature profile of MODTRAN is used from 25 Km to the top of atmosphere. In addition,
the MODTRAN urban aerosols model is used with a visibility of 23 Km, as indicated in the DESIREX
technical report for those days.

Table 1. Spectral and spatial characterization of the four modelled multispectral satellites.

TRISHNA Band Wavelength Center FWHM Resolution AHS Connection

Band 1—Blue 485 nm 70 nm

20 m

AHS band 2

Band 2—Green 555 nm 70 nm AHS band 4

Band 3—Red 670 nm 60 nm AHS band 8

Band 4—NIR 860 nm 40 nm AHS band 15

Band 5—SWIR 1610 nm 150 nm AHS band 21

Band 6—TIR 1 8660 nm 390 nm
40 m
60 m
80 m
100 m

AHS band 72

Band 7—TIR 2 9150 nm 410 nm AHS band 73

Band 8—TIR 3 10590 nm 550 nm AHS band 76

Band 9—TIR 4 11780 nm 560 nm AHS band 78

3.3.1. Shortwave Processing: Indices

In the shortwave optical domain (0.4–2.5 µm) the radiance measured by a given sensor aiming at
nadir at wavelength λ is:

Rλs = τ
(atm,s)
λ RλBOA + R(atm↑,s)

λ + R(envi↑,s)
λ (22)

where Rλs is the radiance at the sensor level, RλBOA is the radiance at ground level, τ
(atm,s)
λ is the total

atmospheric transmission between ground and sensor (in shortwave optical range, direct and diffuse
transmission are taken into account), R(atm↑,s)

λ is the upwelling atmospheric radiance between ground

and sensor, and R(envi↑,s)
λ is the upwelling environment radiance.

Due to environment terms and diffuse transmission, which are important in the shortwave range,
a direct estimation of Top Of Atmosphere (TOA) radiance from AHS radiance is not desirable at these
wavelengths. As an alternative, first the Bottom Of Atmosphere (BOA) reflectance is estimated from
AHS radiance using COCHISE:

RAHS
λBOA

=
RλAHS − R(atm↑,AHS)

λ − R(envi↑,AHS)
λ

τ
(atm,AHS)
λ

(23)

to consecutively obtain the TOA radiance (COMANCHE), see green lines of Figure 4:

RλTOA = τ
(atm,TOA)
λ RAHS

λBOA
+ R(atm↑,TOA)

λ + R(envi↑,TOA)
λ (24)

Once RλTOA images have been obtained, they are spatially aggregated. The spatial aggregation
procedure aims at decreasing the resolution by increasing the pixel size, but taking also into account
the TRISHNA sensor parameters to model the satellite measures, see Figure 4. These parameters are
the modulation transfert function and the signal to noise ratio. Both the MTF and the SNR have been
defined according to the first evaluations of the TRISHNA instrument characteristics.

The bottom of atmosphere reflectances ρλ on the VNIR-SWIR bands can be obtained by applying
COCHISE on the TOA radiance satellite data. With the multispectral satellite configuration described
in Table 1, several different indices are selected (see Table 2).
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3.3.2. TIR Processing: Land Surface Temperature

In the thermal infrared domain (8.0–12.0 µm), the radiance measured by a given sensor at nadir
and wavelength λ is:

Rλs = τ
(atm,s)
λ RλBOA + R(atm↑,s)

λ (25)

where Rλs is the radiance at the sensor level, RλBOA is the radiance at ground level, τ
(atm,s)
λ is the direct

atmospheric transmission between ground and sensor (in thermal infrared range, diffuse tansmission
is negligible), and R(atm↑,s)

λ is the upwelling atmospheric radiance between ground and sensor.
Equation (25) is valid for aircraft (Rλs = RλAHS ) and satellites (Rλs = RλTOA ). Being RλBOA the

same for both sensors, it is possible to write:

RλTOA =
τ
(atm,TOA)
λ

τ
(atm,AHS)
λ

RλAHS −
τ
(atm,TOA)
λ

τ
(atm,AHS)
λ

R(atm↑,AHS)
λ + R(atm↑,TOA)

λ (26)

which is related to a linear behaviour of RλTOA in function of RλAHS with slope τ
(atm,TOA)
λ

τ
(atm,AHS)
λ

and

intercept R(atm↑,TOA)
λ − τ

(atm,TOA)
λ

τ
(atm,AHS)
λ

R(atm↑,AHS)
λ . These slope and intercept only depend on the atmosphere

conditions and the observation angle (here near nadir).
For a given atmosphere (characterized by the DESIREX campaign measures together with

MODTRAN models), RλTOA and RλAHS are computed using COMANCHE [25] for 75 different
emissivity spectra at 6 different temperatures. Thus, it is possible to obtain 75× 6 = 450 radiances at
each altitude (aircraft and satellite) from emissivities going from very weak values to almost 1 and for
temperatures going from 0 ◦C to 60 ◦C. These ranges of emissivities and temperatures are supposed to
be representative of the DESIREX urban scenario, and 450 radiances are supposed to be enough to
define the linear behavior of Equation (26) well. The intercept and slope parameters of Equation (26)
for a given atmosphere can be then computed by performing a least square estimation. Finally, using
Equation (26), the obtained slope and intercept are applied to the radiance AHS images to model the
TOA data. The spatial aggregation procedure is the same for shortwave and thermal ranges, and only
differs on the used parameters.

For the temperature estimation, Temperature and Emissivity Separation (TES) methodology [26]
is used, which has been presented as the most convenient during the DESIREX campaign, with robust
LST estimations and without the need of shortwave information, previous emissivity knowledge,
or day-night acquisitions [16,22,23]. In addition, the convenience of TES for both LST and emissivity
retrieval was studied in Oltra-Carrio 2013 [24] when processing AHS data of Madrid acquired during
the DESIREX campaign. DESIREX ground measurements were used in [24] to characterize the TES
performances. Furthermore, TES performances when retrieving LST and emissivity has been also
studied in A. Michel et al. 2019 for simulated TRISHNA data of Madrid [27]. Both works show that
TES outperforms other methods such as Split-Window.

Before applying the TES methodology to obtain the land surface temperature, Equation (25) is
used to perform an atmospheric correction and obtain, from the satellite radiance measure RλTOA ,
the ground radiance RλBOA , see Figure 4. TES method presents three steps:

• First, temperature is estimated at each sensor wavelength by considering the emissivity to be
constant and equal to a reference value (εre f = 0.99 [26]).

• Second, the Maximum Minimum Difference (MMD) value of the emissivities is calculated.
• Third, the minimum value of the emissivity is estimated following:

εmin = α1 + α2MMD(ε)α3 (27)
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where the three parameters α1, α2 and α3 depend on the sensor. Next, the emissivity value is
redefined to have the minimal emissivity estimated in the last step.

Second and third steps, should be repeated several times to ensure convergence. α1, α2, and
α3 parameters are calibrated using 267 spectra from ASTER, MODIS, IPGP, SLUM, CAPITOUL, and
MEMOIRES libraries [28–33], and 255 atmospheric conditions obtained from TIGR-3 [34] library and
DESIREX radiosounding [16,22–24]. For the anticipated bands of TRISHNA satellite: α1 = 0.974,
α2 = −0.944, and α3 = 0.965.

N

Figure 3. Madrid Airborne Hyperspectral Scanner (AHS) RGB image from Getafe to Universidad
Autónoma at 4 m resolution. The red rectangles correspond to the regions shown in the results section
for visual analysis.

Aircraft

Satellite

Ground

RλAHS

COCHISE

COMANCHE

RλBOA

RλTOA

COMANCHE COCHISE
Atmospheric
Correction

ρλ RλBOA

Index

TES

TS, TB, ε

TIRReflective

       Noise 
          + 
Undersampling

AHS

Figure 4. Preprocessing procedures to obtain, from AHS radiances, satellite reflectances in the
shortwave range and land surface temperatures in the Thermal InfraRed (TIR). Green lines correspond
to the shortwave processing and red lines to the thermal one.

4. Evaluation Criteria

Land surface temperature measured at 20 m resolution using TES (T20m) is used as reference along
the article. Then, to quantitatively compare the different unmixing techniques, root mean square error
(RMSE, Equation (28)), mean bias error (MBE, Equation (29)), and cross correlation (R, Equation (30))
are computed for the unmixed LSTs at 20 m resolution (T̂20m) obtained from each different coarse
resolution and for each shortwave index.
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RMSE(T20m, T̂20m) =

√√√√ 1
N

N

∑
i=1

[
T20m(x20m,i)− T̂20m(x20m,i)

]2 (28)

MBE(T20m, T̂20m) =
1
N

N

∑
i=1

[
T20m(x20m,i)− T̂20m(x20m,i)

]
(29)

R(T20m, T̂20m) =
∑N

i=1
[
T20m(x20m,i)T̂20m(x20m,i)

]√
∑N

i=1 T2
20m(x20m,i)∑N

i=1 T̂2
20m(x20m,i)

(30)

where T20m(x20m,i) is the reference temperature at 20 m resolution of pixel i, T̂20m(x20m,i) is the unmixed
temperature at 20 m resolution for the same pixel and N is the number of pixels.

Finally, in order to compare the similarity between reference LST and unmixed LST images,
Structural Similarity Index (SSIM, Equation (31)) [35] between reference LST and the unmixed LSTs at
20 m resolution is also computed.

SSIM(T20m, T̂20m) =
( 2µTµT̂ + C1

µ2
T + µ2

T̂
+ C1

)( 2σTσT̂ + C2

σ2
T + σ2

T̂
+ C2

)( σT,T̂ + C3

σTσT̂ + C3

)
(31)

where µT and µT̂ are the local sample means of T20m and T̂20m respectively, σT and σT̂ are the local
sample standard deviations of T20m and T̂20m respectively, and σT,T̂ is the sample cross correlation of
T20m and T̂20m. C1, C2, and C3 are small positive constants to stabilize each term. In this article, local
means, standard deviations, and correlations are computed within a sliding Gaussian Kernel with
standard deviation equal to 1.5 pixels.

Hence, to quantify the performance of the LST unmixing, three classical statistical tools are used,
RMSE, MBE and R, together with an image similarity measure, SSIM. These image comparisons support
the visual analysis. Table 3 summarizes the different compared techniques and evaluation criteria.

Table 2. Selected Indices.

Index Definition Parameters Reference

NDVI ρnir−ρred
ρnir+ρred

[14,36–38]

NDBI ρswir−ρnir
ρswir+ρnir

[14,36–38]

FC 1− ( NDVImax−NDVI
NDVImax−NDVImin

)0.625 [4]
SR ρnir

ρred
[39,40]

MSR
ρnir
ρred
−1

(
ρnir
ρred

)0.5+1
[41]

RDVI ρnir−ρred
(ρnir+ρred)2 [42]

NBI ρredρswir
ρnir

[43]

BRBA ρred
ρswir

[43]

EVI G ρnir−ρred
ρnir+C1ρred−C2ρblue+L G = 2.5, L = 1, C1 = 6, C2 = 7.5 [44]

EVI 2 bands G ρnir−ρred
ρnir+C1ρred+L G = 2.5, L = 1, C1 = 6 [45]

SAVI (1 + L) ρnir−ρred
ρnir+ρred+L L = 1 [38,40]

VC a + bNDVI + cNDVI2 a = −4.3, b = −3.7, c = 161.9 [36]

WDRVI aρnir−ρred
aρnir+ρred

a < 1 [46]

PISI aρblue + bρnir + c a = 0.8192, b = −0.5735, c = 0.0750 [47]
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Table 3. Summary of unmixing techniques, shortwave features used for each technique, scales used in
the performance estimation, and performance evaluation criteria.

Unmixing Technique Shortwave Features Coarse Scales Fine Scale Evaluation Criteria

DisTrad

Indices of Table 2
40 m
60 m
80 m

100 m
20 m

ATPRK

AATPRK RMSE, MBE, R

K-means + DisTrad SSIM, Visual

Index Classif + DisTrad

Bi-linear NDVI-NDBI and NDBI-FC

HUTS Albedo and Indices of Table 2

5. Results: Comparative Study of Performances

In this section, the LST unmixing performances of DisTrad, ATPRK, AATPRK, Bi-linear, and
HUTS methodologies (Section 2) are compared for different coarse resolutions and with different
shortwave indices. Classification-unmixing method has been also tested with two different ground
classifications and DisTrad applied on each class. First, the LST is estimated from the satellite TIR
images without unmixing (Section 5.1). This analysis will allow us to later compare the thermal
unmixing improvements. Next, 7 different unmixing techniques are applied to the 4 coarse resolution
TIR images. The technique performances are compared for a given resolution and the evolution of the
performances across resolutions is also studied (Section 5.2). In this section, only the results for the
June 28th noon image are shown. However, the July 1st and 4th noon images have been also studied
leading to very similar quantitative results, see Appendix A.

5.1. LST Retrieval from Simulated Satellite Data

A decrease in the quality of the LST characterization when the resolution decreases is illustrated
in Figure 5, which shows Madrid city center LST at different resolutions, and Figure 6, which shows
Atocha train station and Gran Via avenue LSTs, both at different resolutions. The increase of the ground
sample distance leads to a loss of detail in the visual inspection: the Atocha train station roof begins to
dissapear between 40 m and 60 m resolution (Figure 6) and the Gran Via Avenue–Ricardo Leon Street
discrimination is impossible at 40 m resolution (Figure 6). This decrease in the quality of the LST
characterization is quantified in Table 4, which shows RMSE, MBE, R and SSIM estimated between
the 20 m LST reference and the uniformly disaggregated (UniTrad) [5,13] versions of the coarser
images. RMSE, R, and SSIM show a decrease in the LST characterization performance when the
resolution decreases.

Table 4. Root mean square error (RMSE), mean bias error (MBE), cross correlation (R), and Structural
Similarity Index (SSIM) between 20 m LST reference and UniTrad versions of LST satellite images from
40 m, 60 m, 80 m, and 100 m resolutions.

28/06/2008

Pixel Resolution RMSE (K) MBE (K) R SSIM

40 m 2.02 −0.01 0.93 0.62

60 m 2.65 −0.01 0.88 0.34

80 m 3.00 −0.02 0.84 0.20

100 m 3.22 −0.03 0.81 0.13
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Reference 20m Reference 40m Reference 60m Reference 80m Reference 100m

280
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320

330

340

Madrid City Center Surface Temperature

Figure 5. Madrid city center land surface temperature. From left to right at 20 m, 40 m, 60 m, 80 m, 100
m resolutions.

Reference 20m Reference 40m Reference 60m

Gran Via Surface Temperature

Reference 80m Reference 100m

280

290

300

310

320

330

340

Atocha Surface Temperature

Figure 6. Atocha train station and Gran Via avenue land surface temperature. From left to right at 20
m, 40 m, 60 m, 80 m, 100 m resolutions.

5.2. LST Retrieval from Unmixing

Each unmixing technique has been tested with 14 different shortwave indices, see Table 2. In this
section, only the results obtained with the most performant index are presented. This index can be
different depending on the unmixing procedure. The comparison of the 7 unmixing methods at 4
different resolutions leads to 2 main conclusions: one on the best technique for a given resolution,
and another, on the evolution of each technique’s performance across resolutions.
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Quantitative and visual analysis have been performed for the 4 different coarse resolutions 40
m, 60 m, 80 m, and 100 m. However due to the constant dynamic across resolutions of the unmixing
performances, which decrease when the resolution decreases, and to avoid redundancies in the article,
only unmixed LST images for 60 m and 100 m coarse resolutions are shown.

Figures 7 and 8 show the unmixed LST of Madrid city center obtained with different unmixing
techniques from 60 m and 100 m resolution respectively. Visual analysis corroborates that LST
unmixing allows to discriminate the fine structure of the city (Figures 7 and 8), which was indiscernible
in the initial coarse resolution images (Figure 5). The net of small streets in the neighborhood at north
of the Retiro park can be observed, and Madrid old town (red region at west of Retiro Park) can be
differenciated from the larger avenues at north and south. Visual analysis also shows a smoothing
of the temperature values, i.e., the maximal (minimal) values of the unmixed temperature are lower
(higher) than the maximal (minimal) values of the reference temperature. In addition, a spatial blurring
of the unmixed temperatures, for regions with small scale objects such as narrow streets, is observed
with AATPRK. This effect is specially evident for the 100 m coarse resolution.

Figures 9 and 10 zoom around Atocha train station, Figures 11 and 12 around Madrid old town,
and Figures 13 and 14 around Gran Via avenue. These zooms allow a finer visual inspection of
the unmixing performance of each technique. In Figures 9 and 10 the train station structure is
better conserved by AATPRK and ATPRK methods. However, the small streets near the train
station are almost lost with AATPRK due to the observed spatial blurring. In the old town images
(Figures 11 and 12), it is difficult to visually state which method performs the better, with ATPRK and
DisTrad giving results that are more similar to the reference image, but closely followed by other
techniques such as HUTS or AATPRK. The spatial blurring found with AATPRK, for regions composed
of small scale objects, is highlighted in these images. In the Gran Via images (Figures 13 and 14), ATPRK
and AATPRK are the methods that better delineate the large avenues. Nevertheless, this time other
techniques such as HUTS, or DisTrad also have good performances.

Figure 15a,b shows the 7 boxplots (one for each unmixing technique) of the 20 m unmixed LST
(T̂20m) together with the boxplot of the measured LST at 20 m (T20m), used as reference. Figure 15c,d
shows the boxplots of the difference ∆T = T20m − T̂20m. Boxplots are calculated taking into account
the pixels of the whole image. As the visual study, this statistical analysis is shown for 60 m to 20 m
unmixing (Figure 15a,c) and 100m→ 20 m unmixing (Figure 15b,d). For a given unmixing resolution,
the statistical differences between methods are small. The best methods ATPRK and AATPRK present
temperature boxplots closer to the reference LST one, and consequently narrower differences (∆T)
around zero. The smoothing of the temperature values observed visually, is also shown by the boxplots:
T̂20m boxplots are always narrower than T20m one. The boxplots of the LST difference ∆T for 100 m→
20m unmixing are wider than those of the 60 m→ 20 m unmixing, showing a worse performance in
the unmixing from 100 m, as expected.

Finally, RMSE, MBE, R, and SSIM for the 7 unmixing techniques are calculated. Table 5 shows
this quantities calculated on the whole image and for the 4 coarse resolutions. Table 6 shows the
results obtained on Atocha (Figures 9 and 10), Madrid old town (Figures 11 and 12), and Gran Via
(Figures 13 and 14) for 60 m and 100 m coarse resolutions. For each unmixing technique and resolution,
the most performant index is also indicated. The results shown in these tables support the statistical
and the visual analysis. SSIM, R, and RMSE show that ATPRK is the most performant procedure at
any tested coarse resolution, followed by AATPRK and DisTrad (all the three estimated with NDBI
index) and Bi-linear (with FC and NDBI). In addition, the performances of the different methodologies
(as shown by RMSE, MBE, R, and SSIM) degrade similarly across resolutions.

The comparison between the results of Tables 5 and 6, and the results obtained without unmixing
in Table 4, leads to conclude that applying ATPRK (the most performant unmixing technique) improves
the resolution of the image.
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Table 5. RMSE, MBE, R, and SSIM for LST images unmixed from 40 m, 60 m, 80 m, and 100 m resolutions with different unmixing techniques: by taking the regression
parameters obtained at the coarse resolution (Unmixing Columns) and by taking the regression parameters obtained at 20 m (Scale-invariance hypothesis Columns).
For each technique and coarse resolution, these mathematical quantities are estimated for the most performant shortwave feature, which is also indicated. A 20 m LST
image is used as reference.

28/06/2008

Unmixing Scale-invariance Hypothesis

Unmixing Resolutions Technique Index RMSE (K) MBE (K) R SSIM RMSE (K) MBE (K) R SSIM

40 m→20 m

DisTrad NDBI 1.79 −0.02 0.94 0.73 1.79 −0.02 0.94 0.71

ATPRK NDBI 1.50 0.05 0.96 0.79 1.50 0.05 0.96 0.79

AATPRK NDBI 1.55 0.03 0.96 0.76 — — — —

K-means + DisTrad FC 1.87 0.42 0.94 0.70 1.87 0.00 0.94 0.71

Index Classif + DisTrad FC 1.84 −0.01 0.94 0.70 1.84 −0.01 0.94 0.70

Bi-linear FC-NDBI 1.78 −0.01 0.94 0.72 1.77 −0.02 0.94 0.72

HUTS SAVI 1.84 −0.01 0.94 0.70 1.81 −0.01 0.94 0.71

60 m→20 m

DisTrad NDBI 2.32 −0.02 0.90 0.58 2.32 −0.02 0.90 0.55

ATPRK NDBI 2.08 0.07 0.92 0.62 2.08 0.07 0.92 0.62

AATPRK NDBI 2.13 0.04 0.92 0.58 — — — —

K-means + DisTrad NDVI 2.44 0.03 0.90 0.54 2.43 −0.01 0.90 0.55

Index Classif + DisTrad FC 2.36 −0.01 0.90 0.52 2.37 −0.02 0.90 0.53

Bi-linear FC-NDBI 2.30 −0.02 0.91 0.55 2.30 −0.02 0.91 0.55

HUTS FC 2.40 −0.01 0.90 0.53 2.36 −0.02 0.90 0.54
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Table 5. Cont.

28/06/2008

Unmixing Scale-invariance Hypothesis

Unmixing Resolutions Technique Index RMSE (K) MBE (K) R SSIM RMSE (K) MBE (K) R SSIM

80 m→20 m

DisTrad NDBI 2.62 −0.04 0.88 0.50 2.62 −0.04 0.88 0.47

ATPRK NDBI 2.42 0.07 0.90 0.53 2.42 0.07 0.90 0.53

AATPRK NDBI 2.48 0.04 0.893 0.48 — — — —

K-means + DisTrad NDBI 2.77 0.12 0.86 0.45 2.75 −0.01 0.86 0.47

Index Classif + DisTrad FC 2.68 −0.01 0.87 0.43 2.69 −0.04 0.87 0.45

Bi-linear FC-NDBI 2.60 −0.02 0.88 0.47 2.30 −0.02 0.91 0.48

HUTS SAVI 2.78 −0.01 0.86 0.43 2.65 −0.04 0.87 0.47

100 m→20 m

DisTrad NDBI 2.79 −0.05 0.86 0.47 2.79 −0.05 0.86 0.45

ATPRK NDBI 2.66 0.06 0.87 0.49 2.65 0.05 0.87 0.49

AATPRK NDBI 2.73 0.03 0.87 0.43 — — — —

K-means + DisTrad NDBI 2.96 0.14 0.84 0.42 2.93 −0.01 0.84 0.44

Index Classif + DisTrad FC 2.88 −0.02 0.85 0.39 2.87 −0.05 0.85 0.41

Bi-linear FC-NDBI 2.78 −0.03 0.86 0.43 2.78 −0.05 0.86 0.45

HUTS FC 3.11 −0.01 0.82 0.40 2.83 −0.05 0.85 0.44
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Table 6. RMSE, MBE, R, and SSIM for LST images of Atocha, Gran Via, and Madrid old town at 20 m
unmixed from 40 m, 60 m, 80 m, and 100 m resolutions with different unmixing techniques. For each
technique and coarse resolution, these mathematical quantities are estimated for the most performant
shortwave feature, which is also indicated. A 20 m LST image is used as reference.

28/06/2008

Unmixing Resolutions Technique Index RMSE (K) MBE (K) R SSIM

A
TO

C
H

A

60 m→20 m

DisTrad NDBI 3.52 −0.01 0.77 0.50

ATPRK NDBI 2.92 0.04 0.85 0.60

AATPRK NDBI 2.70 −0.04 0.87 0.60

K-means + DisTrad NDVI 3.50 0.30 0.77 0.48

Index Classif + DisTrad FC 3.37 −0.02 0.79 0.50

Bi-linear FC-NDBI 3.35 −0.02 0.80 0.53

HUTS FC 3.48 −0.02 0.77 0.48

100 m→20 m

DisTrad NDBI 4.33 0.04 0.61 0.32

ATPRK NDBI 3.97 0.10 0.70 0.38

AATPRK NDBI 3.76 0.00 0.73 0.36

K-means + DisTrad NDBI 4.31 0.43 0.62 0.31

Index Classif + DisTrad FC 4.09 0.04 0.67 0.29

Bi-linear FC-NDBI 4.05 0.04 0.68 0.34

HUTS FC 4.23 0.04 0.64 0.28

G
R

A
N

V
IA

60 m→20 m

DisTrad NDBI 2.00 −0.06 0.76 0.45

ATPRK NDBI 1.86 0.11 0.80 0.51

AATPRK NDBI 1.86 0.10 0.80 0.49

K-means + DisTrad NDVI 2.11 0.11 0.73 0.34

Index Classif + DisTrad FC 2.02 −0.04 0.76 0.32

Bi-linear FC-NDBI 1.95 −0.05 0.78 0.39

HUTS FC 2.10 −0.04 0.75 0.36

100 m→20 m

DisTrad NDBI 2.31 −0.05 0.68 0.31

ATPRK NDBI 2.19 0.12 0.71 0.35

AATPRK NDBI 2.23 0.12 0.70 0.33

K-means + DisTrad NDBI 2.50 0.24 0.60 0.15

Index Classif + DisTrad FC 2.41 −0.05 0.63 0.08

Bi-linear FC-NDBI 2.28 −0.05 0.68 0.18

HUTS FC 2.43 −0.05 0.64 0.18

O
LD

TO
W

N

60 m→20 m

DisTrad NDBI 2.05 −0.04 0.72 0.42

ATPRK NDBI 1.93 0.12 0.76 0.48

AATPRK NDBI 1.92 0.04 0.76 0.42

K-means + DisTrad NDVI 2.16 0.15 0.69 0.34

Index Classif + DisTrad FC 2.05 −0.03 0.72 0.31

Bi-linear FC-NDBI 1.98 −0.03 0.72 0.37

HUTS FC 2.11 −0.03 0.70 0.36

100 m→20 m

DisTrad NDBI 2.31 −0.04 0.64 0.33

ATPRK NDBI 2.26 0.14 0.66 0.35

AATPRK NDBI 2.20 0.07 0.67 0.30

K-means + DisTrad NDBI 2.48 0.21 0.57 0.19

Index Classif + DisTrad FC 2.35 −0.05 0.61 0.13

Bi-linear FC-NDBI 2.23 −0.05 0.66 0.22

HUTS FC 2.40 −0.04 0.60 0.21
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Figure 7. Madrid city center surface temperature at 20 m resolution. For the unmixed temperatures the
initial coarse scale was 60 m.
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Figure 8. Madrid city center surface temperature at 20 m resolution. For the unmixed temperatures the
initial coarse scale was 100 m.
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Figure 9. Madrid Atocha train station surface temperature at 20 m resolution. For the unmixed
temperatures the initial coarse scale was 60 m.
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Figure 10. Madrid Atocha train station surface temperature at 20 m resolution. For the unmixed
temperatures the initial coarse scale was 100 m.
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Figure 11. Madrid old town surface temperature at 20 m resolution. For the unmixed temperatures the
initial coarse scale was 60 m.

Reference DisTrad ATPRK AATPRK

K-means Ind Class Bi-li HUTS

300

305

310

315

320

325

330

335

340

Figure 12. Madrid old town surface temperature at 20 m resolution. For the unmixed temperatures the
initial coarse scale was 100 m.
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Figure 13. Gran Via Avenue surface temperature at 20 m resolution. For the unmixed temperatures the
initial coarse scale was 60 m.
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Figure 14. Gran Via Avenue surface temperature at 20 m resolution. For the unmixed temperatures the
initial coarse scale was 100 m.
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Figure 15. Top: Boxplot of temperature distribution at 20 m resolution for several unmixing techniques
(T̂20m) and reference (T20m). (a) unmixing from 60 m→ 20 m and (b) unmixing from from 100 m→ 20
m. Bottom: Boxplot of T20m − T̂20m. (c) unmixing from 60 m→ 20 m and (d) unmixing from from 100
m→ 20 m. For all the figures the boxplots correspond from left to right to: Reference temperature at 20
m, DisTrad, Area-To-Point Regression Kriging (ATPRK), Adaptive Area-To-Point Regression Kriging
(AATPRK), K-means and DisTrad, Index classification and DisTrad, Bi-linear and HUTS.

6. Discussion

6.1. Limits of the Validity of the Hypotheses

Unmixing methods of Section 2 are based on the hypothesis that LST can be expressed as a
function of a shortwave index, T = f (I). In the case of linear behavior (T = a + bI), Figure 16 shows
this relationship at 20 m resolution for any of the 14 tested indices. The linear relationship is most of
the time hard to observe with R2 < 0.5 for any index. However, some indices such as FC (f), NDVI
(i) or NDBI (e) present a behavior closer to linear than others such as PISI (l), BRBA (n), or NBI (m).
The validity of this hypothesis is studied in [14] for different indices and resolutions, showing that
both NDVI and NDBI are strongly correlated with LST for resolutions ranging from 30 m to 960 m
when studying the urban scenario of Nanjing city.

All the unmixing methods used along this article present a second common hypothesis: the
regression parameters obtained at the coarse scale are supposed to be the same at any resolution.
For the simplest case of a linear relationship between temperature and shortwave feature (Equation (2)),
Figure 17 (for NDVI), Figure 18 (for NDBI), and Figure 19 (for FC) show that this independance of the
regression parameters (intercept and slope) on the resolution is false for the range of scales studied
here. Variations on the regression parameters across resolutions can be shown for any of the 14 tested
shortwave indices. These variations are more or less important depending on the index.
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To test the error in the LST unmixing due to the non validity of this last hypothesis, the unmixing
is performed by taking the regression parameters obtained at 20 m (finer scale) and arguing that they
are constant across resolutions, as the hypothesis states. The performances of the different techniques
and for the different coarse resolutions are shown in the “scale-invariance hypothesis” columns of
Table 5. In the case of linear regression (DisTrad, ATPRK, or classification-DisTrad) the obtained
performances are almost the same. The hypothesis is then considered good enough. For the case of
more complex relationships between temperature and index (HUTS) when the ratio between coarse
and fine resolutions increases (80 m and 100 m coarse resolutions), the unmixing performances are
slightly degraded due to the non-validity of the hypothesis. Taking the regression parameters obtained
at 20 m results in a more performant unmixing, because the regression parameters across resolutions
are different enough.

All the unmixing methods include a third hypothesis in the residuals estimation step. This
hypothesis varies from one method to another, see Section 2. Figures 20 and 21 show the LST obtained
without residuals correction ( ˆ̃T) for the 7 different unmixing techniques and for coarse scales of 60 m
and 100 m respectively. In addition, Table 7 shows the RMSE, MBE, R and SSIM calculated between
the 20 m reference LST and ˆ̃T obtained from 60 m and 100 m coarse scales. Both, the figures and the
table show the importance of the residual correction step, and consequently the importance of the
adopted hipothesis. The performances of the unmixing techniques drastically deteriorate if no residual
correction is done. Furthermore, the choosen residual correction hypothesis strongly influences the
unmixing performance. The linear regression case (DisTrad and ATPRK) is specially interesting, since
both have the same ˆ̃T but very different residual hypotheses, leading to very different final unmixing
performances (Table 5). These differences between DisTrad and ATPRK unmixing performances are
also shown in Table 6 for different subsets: Atocha, Madrid old town and Gran Via Avenue. It can
be seen that ATPRK always outperforms DisTrad. Nevertheless, the performance differences are
weaker when the analyzed region is more homogeneous (Madrid old town) and when the coarse
TIR scale is larger (100 m). In this linear case, Figure 22 shows the boxplot of the residuals at 20 m
measured at this scale (used as reference), and the boxplots of the residuals at 20 m obtained during
the unmixing process with Equation (8) (DisTrad1), Equations (7) (DisTrad2) and (9) (ATPRK) from
coarse scales 40 m, 60 m, 80 m, and 100 m. All the boxplots take into account the pixels of the whole
image. Equation (8), Equations (7) and (9) present very similar residuals distribution, which are close
to the reference one. However, the residuals distributions obtained during the unmixing are always
narrower than the reference. The residuals obtained with Equations (8) and (7) show also a small shift
on the mean and median that does not appear in Equation (9) residuals. The mean and median of
the reference residuals at 20 m are 0 K and −0.06 K respectively. The mean and median of DisTrad1
residuals obtained in the unmixing from 60 m are 0.12 K and 0.15 K. The mean and median of DisTrad2
residuals obtained in the unmixing from 60 m are 0.01 K and 0.02 K. While the mean and median of the
residuals obtained with ATPRK from the same coarse resolution are 0.01 K and 0 K, being thus closer
to the reference ones. The only difference between DisTrad and ATPRK is the residuals estimation,
and then the differences in performances are only due to these residuals differences. We can conclude
that the ATPRK hypothesis for residuals estimation is better than DisTrad hypothesis. It is important
to note that the DisTrad residual hypothesis (Equation (6)) is included in the area-to point possibilities
(Equation 9) when λi for the coarse pixel containing the fine pixel is equal to 1 (and consequently the
other λi are equal to 0, see Equation (10)).

Table 7 also shows that for AATPRK, with local linear regressions, the residuals correction
leads to less important improvements of the unmixing performances. However, even in this case,
the performances are improved. This supports the importance of the residuals correction and the
convenience of area-to-point residuals correction methods.
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Figure 16. LST vs shortwave index for the 14 tested indices at 20 m resolution. Red lines are the linear
regression of the point clouds. (a) EVI: R2 = 0.36, (b) EVI2: R2 = 0.40, (c) NDVI: R2 = 0.42, (d) SAVI:
R2 = 0.36, (e) NDBI: R2 = 0.37, (f) FC: R2 = 0.42, (g) VC: R2 = 0.41, (h) MSR: R2 = 0.41, (i) RDVI:
R2 = 0.39, (j) WDRVI: R2 = 0.42, (k) SR: R2 = 0.37, (l) PISI: R2 = 0.23, (m) NBI: R2 = 0.27, (n) BRBA:
R2 = 0.14.
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Figure 17. Evolution across scales of linear regression parameters for the LST-NDVI relationship.
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Figure 18. Evolution across scales of linear regression parameters for the LST-NDBI relationship.
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Table 7. RMSE, MBE, R, and SSIM for T̃ (LST without residuals correction) images at 20 m unmixed
from 40 m, 60 m, 80 m, and 100 m resolutions with different unmixing techniques. For each technique
and coarse resolution, these mathematical quantities are estimated for the most performant shortwave
feature, which is also indicated. A 20 m LST image is used as reference.

28/06/2008

Unmixing Resolutions Technique Index RMSE (K) MBE (K) R SSIM

60 m→20 m

DisTrad NDBI 3.74 0.05 0.61 0.42

ATPRK NDBI 3.74 0.05 0.61 0.42

AATPRK NDBI 2.99 0.00 0.84 0.38

K-means + DisTrad NDVI 3.51 0.04 0.67 0.38

Index Classif + DisTrad FC 3.65 1.27 0.66 0.36

Bi-linear FC-NDBI 3.55 1.10 0.68 0.41

HUTS FC 3.64 1.58 0.67 0.40

100 m→20 m

DisTrad NDBI 3.74 0.06 0.61 0.43

ATPRK NDBI 3.74 0.06 0.61 0.43

AATPRK NDBI 3.34 −0.01 0.79 0.36

K-means + DisTrad NDBI 3.61 0.10 0.64 0.37

Index Classif + DisTrad FC 3.86 2.18 0.65 0.34

Bi-linear FC-NDBI 3.70 1.89 0.67 0.40

HUTS FC 4.01 2.61 0.64 0.36
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Figure 19. Evolution across scales of linear regression parameters for the LST-FC relationship.
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Figure 20. Madrid city center T̃ (LST without residuals correction) at 20 m resolution. For the unmixed
temperatures the initial coarse scale was 60 m.
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Reference DisTrad ATPRK AATPRK

K-means Ind Class Bi-li HUTS
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Figure 21. Madrid city center T̃ (LST without residuals correction) at 20 m resolution. For the unmixed
temperatures the initial coarse scale was 100 m.



Remote Sens. 2019, 11, 1251 31 of 37

Re
fe

re
nc

e

Di
sT

ra
d1

Di
sT

ra
d2

AT
PR

K

-10

-5

0

5

10
Re

sid
ua

ls
(a)

40m 20m

Re
fe

re
nc

e

Di
sT

ra
d1

Di
sT

ra
d2

AT
PR

K

(b)
60m 20m

Re
fe

re
nc

e

Di
sT

ra
d1

Di
sT

ra
d2

AT
PR

K

(c)
80m 20m

Re
fe

re
nc

e

Di
sT

ra
d1

Di
sT

ra
d2

AT
PR

K

(d)
100m 20m

Figure 22. Boxplot of residuals of the linear regression T vs Normalized Difference Built-up Index
(NDBI). From left to right the coarse scale of the unmixing is 40 m (a), 60 m (b), 80 m (c), 100 m (d)
and the fine scale is always 20 m. The left boxplot of each figure characterizes the distribution of the
residuals measured at 20 m without unmixing, and is considered the reference. DisTrad1 correspond to
the residuals obtained using Equation (8), DisTrad2 to the residuals obtained with Equation (7), and
ATPRK with those obtained with Equation (9).

6.2. Assessment of the Best Index

The validity of the first and second hypotheses, linear behavior of T vs I and scale invariance
of the regression parameters respectively, will define the best index for unmixing. Figure 16 shows
that the first hypothesis is, in the best-case, poorly respected by some indices with R2 values between
0.36 and 0.42. Consequently, this first hypothesis does not make the difference between indices.
However, NDBI is, amongst the 14 tested indices, one of those that more respect the second hypothesis,
with variations fewer than 2 K in the slope and a constant behavior for the intercept between 20 m
and 100 m resolutions (Figure 18). This “agreement” of NDBI with the invariance hypothesis for
the regression parameters can explain why NDBI is the most performant index for the unmixing
procedures supposing linear regression. We can also see that FC, despite presenting the best R2 value
for the linear regression, does not respect the second hypothesis (Figure 19).

6.3. Evaluation of the Unmixing Performance

The unmixing performances obtained through these empirical approaches indicate that shortwave
ground characterization and LST are related and that the first can be used to unmix the second.

Amongst the tested unmixed techniques, ATPRK presents the best performances. In the residual
estimation, it takes into account the close environment of the fine pixel and not only the coarse pixel in
wich the fine one is contained, and consequently it allows a larger domain of variation of the LST and
a higher heterogeneity of the area. This result shows the importance of the residuals estimation step
and the convenience of the area-to-point residuals estimation.

The LST spatial blurring produced by AATPRK when the unmixed region is close to homogeneous
is due to the chosen window size in the method (in this article 5× 5 coarse pixels). AATPRK estimates
the regression parameters within this window, and when the LST values inside the window are close,
but not equal, this method tends to “average” them, as the slope of the temperature-index relationship
is close to zero (Figures 11 and 12). On the opposite, when the values of LST within the window
are different enough, this method leads to a high slope in the temperature-index relationship of the
window’s pixels and consequently to a more important contrast between unmixed pixels, as it can be
seen in the Atocha train station images (Figures 9 and 10).
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The used classification-unmixing techniques do not lead to better results, indicating either that
LST does not present different linear behaviors on the index for the different defined classes, or that
more adequated ground classifications should be tested, i.e., classifications defining classes containing
pixels with the same temperature behavior.

7. Conclusions

In this work, we modelled, from AHS data of Madrid at 4 m resolution obtained during the
DESIREX 2008 campaign, the corresponding data as would be obtained by four different multispectral
satellites with the same spectral configuration and spatial resolution in the shortwave optical domain
and different resolution in the TIR range. The TIR resolution of each modelled satellite is 40 m, 60 m,
80 m, and 100 m, while the shortwave resolution is 20 m. From these satellite data, we estimate the LST
at the TIR resolution and shortwave indices characterizing the ground use at the shortwave resolution.

Then, seven empirical unmixing techniques were selected, each one with 14 different indices,
to obtain the LST at 20 m resolution from the estimated LST at TIR resolution. The unmixing
performances of each technique applied on the different TIR resolutions were compared, and also the
evolution of these performances across resolutions. ATPRK with NDBI as shortwave feature appears
as the best LST unmixing technique for any tested resolution, with performances which are slightly
better than those of AATPRK and DisTrad. Furthermore, visually ATPRK gives images that are closer
to the reference LST than AATPRK, which presents a spatial blurring of the LST in near (but not)
homogeneous regions. AATPRK being created to face spatial non-stationarities discriminates better the
shape of objects with a special temperature behavior as the Atocha train station but homogenize regions
with a behavior close to, but not, homogeneous. Other techniques, such as HUTS, K-means-DisTrad, or
index-classification-DisTrad with a more complex hypotheses on the LST-Index relationship, present
worse performances. This can indicate the relative validity of the linear LST-Index relationship
approach. The combination of two indices in the regression (Bi-linear technique) does not improve
the unmixing performances either. However, Bi-linear methodology can be generalized to n features
(MLR) [12]:

Tl = a0 + a1 I(1)l + a2 I(2)l + ... + an I(n)l (32)

The choice of the features should be adequate to not incorporate redundant information in the
equation. The more the number of features does not mean the better the unmixing. So, finding a good
index combination to improve the unmixing performance should be studied in the future.

The shortwave and TIR data used throughout this paper were acquired at the same time and by
the same sensor (AHS, 4 m resolution). Consequently, shortwave and TIR pixel locations matched
perfectly. However, the use of different satellites, or the use of different aquisition times for shortwave
and TIR ranges can be envisaged, leading to new error sources in the unmixing. These error sources
merit future study.

Finally, the validity of the hypotheses of the unmixing methods was studied, determining that
even if the hypotheses are not completely matched, in the case of linear models the impact on the
technique performances is not important.

We can conclude that, in the LST characterization of a mid-latitude city during summer (Madrid,
end of June beggining of July), ATPRK is the best performing unmixing technique. This result indicates
that the linear behavior of LST on NDBI together with the area-to-point residuals estimation configure
the best hypotheses for the unmixing. Performances of ATPRK with NDVI are close to those with
NDBI, indicating the needless of a SWIR band to study urban LST.

The performances of the above unmixing techniques have also been studied for DESIREX 2008
data from July the first and July the fourth leading to equivalent results and then supporting the
above conclusions.

Despite the agreement of the results obtained for the city of Madrid at three different dates of summer
2008, unmixing performances could be dependent of season and climatological parameters as well as
urban structure and urban material differences. So, unmixing performance differences could be found
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for heterogeneous cases. A generalization for arbitrary urban areas appears as an interesting issue for
future research.

Author Contributions: Conceptualization, C.G.-B., A.M. and X.B.; methodology, C.G.-B., A.M. and X.B.; software,
C.G.-B. and A.M.; validation, C.G.-B. and A.M; formal analysis, C.G.-B. and X.B.; investigation, C.G.-B. and X.B.;
resources, J.A.S.; writing—original draft preparation, C.G.-B.; writing—review and editing, C.G.-B., J.-P.L., J.A.S.
and X.B.; funding acquisition, X.B., J.-P.L. and J.A.S.

Funding: This research was funded by C.N.E.S in the A.P.R CATUT framework. The data has been collected
under E.S.A contract number 21717/08/I-LG. The APC was funded by ONERA-DOTA.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Results for 01-07-2008 and 04-07-2008

Table A1. RMSE, MBE, R, and SSIM between 20 m LST reference and UniTrad versions of LST satellite
images from 40 m, 60 m, 80 m, and 100 m resolutions. Results for 01-07-2008 and 04-07-2008.

Pixel Resolution RMSE (K) MBE (K) R SSIM

01/07/2008

40 m 2.00 0.00 0.93 0.62

60 m 2.62 0.00 0.88 0.35

80 m 2.97 0.01 0.85 0.20

100 m 3.18 0.01 0.82 0.13

04/07/2008

40 m 2.03 −0.00 0.93 0.61

60 m 2.66 −0.00 0.88 0.34

80 m 3.01 −0.01 0.84 0.20

100 m 3.22 −0.01 0.81 0.13

Table A2. RMSE, MBE, R, and SSIM for LST images unmixed from 40 m, 60 m, 80 m, and 100 m
resolutions with different unmixing techniques. For each technique and coarse resolution, these
mathematical quantities are estimated for the most performant shortwave feature, which is also
indicated. A 20 m LST image is used as reference. Results for 01-07-2008.

01/07/2008

Unmixing Resolutions Technique Index RMSE (K) MBE (K) R SSIM

40 m→ 20 m

DisTrad NDBI 1.81 −0.01 0.94 0.72

ATPRK NDBI 1.49 0.06 0.96 0.77

AATPRK NDBI 1.54 0.04 0.96 0.75

K-means + DisTrad NBI 1.91 0.08 0.94 0.68

Index Classif + DisTrad FC 1.87 −0.00 0.94 0.68

Bi-linear FC-NDBI 1.80 −0.00 0.94 0.71

HUTS SAVI 1.88 0.00 0.94 0.68

60 m→ 20 m

DisTrad NDBI 2.33 −0.05 0.91 0.55

ATPRK NDBI 2.07 0.09 0.93 0.60

AATPRK NDBI 2.11 0.06 0.92 0.56

K-means + DisTrad NDVI 2.51 0.07 0.89 0.50

Index Classif + DisTrad FC 2.40 −0.00 0.90 0.49

Bi-linear FC-NDBI 2.31 0.00 0.91 0.53

HUTS SAVI 2.47 0.00 0.90 0.50
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Table A2. Cont.

01/07/2008

Unmixing Resolutions Technique Index RMSE (K) MBE (K) R SSIM

80 m→ 20 m

DisTrad NDBI 2.63 −0.01 0.88 0.47

ATPRK NDBI 2.40 0.11 0.90 0.50

AATPRK NDBI 2.46 0.07 0.90 0.45

K-means + DisTrad NBI 2.83 0.14 0.86 0.41

Index Classif + DisTrad NDBI 2.71 0.01 0.87 0.42

Bi-linear FC-NDBI 2.60 0.01 0.88 0.45

HUTS SAVI 2.84 0.00 0.86 0.38

100 m→ 20 m

DisTrad NDBI 2.80 −0.00 0.86 0.44

ATPRK NDBI 2.63 0.12 0.88 0.46

AATPRK NDBI 2.69 0.09 0.87 0.41

K-means + DisTrad NDBI 3.05 0.14 0.84 0.37

Index Classif + DisTrad NDBI 2.94 0.02 0.85 0.40

Bi-linear FC-NDBI 2.78 0.01 0.87 0.41

HUTS FC 3.04 0.02 0.84 0.36

Table A3. RMSE, MBE, R, and SSIM for LST images unmixed from 40 m, 60 m, 80 m, and 100 m
resolutions with different unmixing techniques. For each technique and coarse resolution, these
mathematical quantities are estimated for the most performant shortwave feature, which is also
indicated. A 20 m LST image is used as reference. Results for 04-07-2008.

04/07/2008

Unmixing Resolutions Technique Index RMSE (K) MBE (K) R SSIM

40 m→ 20 m

DisTrad NDBI 1.84 −0.01 0.94 0.72

ATPRK NDBI 1.51 0.06 0.96 0.78

AATPRK NDBI 1.56 0.04 0.96 0.76

K-means + DisTrad NBI 1.93 0.08 0.93 0.69

Index Classif + DisTrad NDBI 1.90 -0.01 0.94 0.68

Bi-linear FC-NDBI 1.82 −0.00 0.94 0.70

HUTS SAVI 1.88 −0.00 0.94 0.68

60 m→ 20 m

DisTrad NDBI 2.35 -0.01 0.90 0.55

ATPRK NDBI 2.08 0.09 0.93 0.60

AATPRK NDBI 2.14 0.06 0.92 0.56

K-means + DisTrad NDBI 2.50 0.10 0.89 0.51

Index Classif + DisTrad NDBI 2.43 −0.01 0.90 0.50

Bi-linear FC-NDBI 2.33 −0.00 0.90 0.53

HUTS SAVI 2.47 0.00 0.89 0.49



Remote Sens. 2019, 11, 1251 35 of 37

Table A3. Cont.

04/07/2008

Unmixing Resolutions Technique Index RMSE (K) MBE (K) R SSIM

80 m→ 20 m

DisTrad NDBI 2.65 −0.02 0.88 0.48

ATPRK NDBI 2.44 0.10 0.90 0.51

AATPRK NDBI 2.50 0.07 0.89 0.46

K-means + DisTrad NDBI 2.82 0.13 0.86 0.43

Index Classif + DisTrad NDBI 2.74 −0.01 0.87 0.42

Bi-linear FC-NDBI 2.64 0.00 0.88 0.45

HUTS SAVI 2.84 0.00 0.85 0.40

100 m→ 20 m

DisTrad NDBI 2.82 −0.02 0.86 0.44

ATPRK NDBI 2.67 0.10 0.88 0.47

AATPRK NDBI 2.73 0.07 0.87 0.41

K-means + DisTrad NDBI 3.00 0.16 0.84 0.40

Index Classif + DisTrad NDBI 2.93 −0.01 0.85 0.40

Bi-linear FC-NDBI 2.81 0.00 0.86 0.42

HUTS FC 3.04 0.02 0.82 0.36
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