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ABSTRACT
In this paper we focus on airborne hyperspectral imaging
methodology to characterize PM (Particulate Matter) near
industrial emission sources. Two short-term intensive
campaigns were carried out in the vicinity of a refinery in
the South of France, in September 2015 and February 2016.
Different protocols of in-situ PM measurements were
performed, at stack measurements (flow rate and offline
chemical analysis) and on-line measurement at the refinery
border (size distribution, concentration and chemistry of
aerosols). A multi temporal methodology to retrieve aerosol
type, to map the aerosol concentration and to quantify mass
flow rate from airborne hyperspectral data is described in
this paper. This method applied to the refinery detected
plume from the main stack yields a black carbon to sulfate
ratio of 10/90 in mass inside the plume, with an average size
distribution smaller than 100 nm. These results are in a good
agreement with on-line analysis of aerosols at refinery
border. The resulting quantitative map with a metric spatial
resolution leads to a flow rate estimated of about 1g/s and is
in a good agreement with in-situ stack measurements and
modelling.

Index Terms— Hyperspectral, multi-
temporal, airborne, model

aerosols,

1. INTRODUCTION

It is well known that particles suspended in the atmosphere
have a major role in the Earth’s global radiation budget, as
reported by the IPCC (Intergovernmental Panel on Climate
Change) and are involved in several pollution events. Their
study is essential for a better comprehension of climate
change and in term of public health. In particular,
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anthropogenic aerosols contribute to 10% of the total mass
of pollutants (gases and aerosols) rejected into the
atmosphere and their corresponding cost terms of public
health is estimated to be about 200 billion € per year in 2000
for the 25 countries of Europe [4].

For these reasons, remote sensing tools are widely used to
study aerosols and to provide a quantitative characterization
of aerosols distribution at a global or regional scale
[13][11][9][10][3]. Most of the existing sensors enabling to
characterize aerosols from space have spatial resolutions
range from 100 m to 1 km but their associated products are
not suited to study industrial aerosols close to their emission
points. A finer spatial resolution can be obtained by using
airborne sensors as their metric to decametric resolutions are
adapted to the spatial extents of industrial plumes, or for
urban area studies. Hyperspectral sensors thus have an
interesting potential for the characterization of industrial
aerosols. The hundreds of spectral bands from 0.4 to 2.5 pm
can provide spectral information related to the PM2.5 size
and composition (particles with a diameter less than 2.5um)
mostly associated to pollutant of anthropogenic origins.
Hyperspectral methods have been developed in these way in
order to study aerosols [1][2][5][6][16] but there is still a
lack of sensitivity for thin anthropogenic plumes, mainly
due to the high heterogeneity of the background in urban or
industrial areas. However multi-temporal analysis is a key
benefit from spatial data to extract background variability
from atmospheric aerosols radiative impacts [8]. In this way,
this paper plans to use both multi-temporal benefit and high
spectral and spatial resolution from hyperspectral data to
detect and characterize thin aerosols plumes near
anthropogenic sources. The main point presented here is the
use of both spatial and temporal analysis to separate soil and
aerosols spectral signatures using dedicated multi-temporal
airborne hyperspectral imaging data.

In the context of the TEMMAS (TEledetection, Measure,
Modeling of Atmospheric pollutants on industrial Sites)



project, supported by the French environment agency
(ADEME), of gaseous and
particulate pollutants were conducted in the vicinity of a
TOTAL's refinery in September 2015 and February 2016
[7]. The aim of these campaigns was to study the refinery
Particulate Matter (PM) microphysical signatures and their
evolution with distance to the source in the first kilometers.
Considering the large sources of uncertainties in air quality
models, both in the used input data (meteorology,
emissions...) and in the model formulations, high resolution
measurements, associated with a complete characterization
of PM size and composition, is a promising approach to
better understand those uncertainties, and to improve the
representation of PM in the vicinity of industrial sites.

In this paper we focus on results from TEMMAS airborne
hyperspectral imaging data to characterize PM composition
and size near the plume emission source (first hundred
meters). Hyperspectral results are then compared to in-situ
measurements (in stack measurements and on-line analysis
at refinery border) and to plumes simulated with the
Polyphemus Plume-in-Grid model (PinG) [12][17], applied
at the regional scale, and by the Lagrangian model SLAM
(Safety Lagrangian Atmospheric Model [19]), applied at the
refinery scale.

intensive measurements

2. AIRBORNE
TEMPORAL DATA

HYPERSPECTRAL MULTI-

The site of TEMMAS experiments was a TOTAL's refinery
in South of France where several flights have been carried
out from the 7" and 8™ of September 2015. A picture of the
refinery is shown in Figure 1, the two main aerosol sources
correspond to the boiler CH11 and flare T2. Figure 2 shows
the entire area covered by the different flights. The refinery
appears as the bright part near the Berre Pound coast in the
northern part of the mosaic

Figure 1 : Locations of different exhaust stack in the refinery.
Main aerosols exhaust stack are the boiler CH11 and flare T2.
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The onboard optronic sensors are composed of two
HySpex VNIR1600 and SWIR320m-e hyperspectral
cameras built by NEO (Norsk Elektro Optikk). VNIR1600
covers the full range of 410 to 996 nm with 160 spectral
bands with a spectral sampling of 3.6 nm while the
SWIR320m-¢ based on a MCT FPA (Focal Plane Array)
covers the extended domain of 970 to 2500 nm with a
spectral sampling of 6 nm. They offer a total of 410
different spectral bands providing a high spectral resolution
of the scene. The cameras acquire the data synchronously on
both spectral domains but considering the instantaneous
field of view (iFOV) along track and across track of the
VNIR, 0.37 x 0.185 mrad, and the SWIR, 0.75 x 0.75 mrad,
pixels of the SWIR camera are twice larger along track and
four times larger across track than the VNIR ones. With
1600 pixels for the VNIR camera and 320 pixels for the
SWIR one, the resulting field of view, across track, is about
17° and 14° respectively for the VNIR and SWIR sensor.
The main parameters of optical sensors operated during the
TEMMAS campaign are resumed in the table 1.

Figure 2: Mosaic of hyperspectral acquisitions above the refinery
area using Hyspex hyperspectral instrument. The refinery appears
as the bright part near the coastal area (Berre Pound).

These cameras were installed inside an ATR42 belonging to
the SAFIRE fleet (French facility for airborne research).
More than 10 flight lines have been carried out from § am to
3 pm (local time) for each day. Thanks to inertial
measurements we were able to produce ortho-rectified
images using a process based on PARGE software [18].
Atmospheric correction with the COCHISE algorithm [15]
was applied to estimate atmospheric and solar radiative
contribution to hyperspectral data and then provide
reflectance images. COCHISE is the reciprocal code of
COMANCHE [15], this algorithm computes the incoming
spectral radiance at the sensor level, for an instrument
operating in the VIS - LWIR spectral range and observing a
target over a background. COMANCHE uses an analytical
formulation of the upwelling radiance at the sensor level in



which the atmospheric parameters are independent of the
ground parameters. The formulation includes the
environmental effects due to scattering (trapping effects and
diffuse transmission). The atmospheric parameters are
extracted from MODTRAN computations and the
environment functions are obtained using two Monte-Carlo
codes. COCHISE retrieves the 2D ground spectral

reflectance from a calibrated hyperspectral image.

Transect above CH11 boiler roof c)

Radiance

6
Pixel index

Figure 3 : Example of the main exhaust stack (Boiler CH11
corresponding to the blue points) plume acquisition in “real
color” (RGB : 750, 550 and 450 nm) from two different flights the
same day, a) :before (top image) and b) after (bottom image) the
wind direction change from S-O to N-E (red arrows). In the first
image the plume might only be seen on the roof of the boiler in the
white dashed transect area. Figure c) corresponds to radiance
values along the transect for each channel (red : 750nm, blue :
550nm, green :450nm) in the case of figure a) and figure b)

(dashed lines). The plume is “seen” in the green and the blue
channel over the roof

The main plume of the refinery is optically very
thin. Figure 3 shows nearly real color (RGB : 750, 550 and
450nm) image of the CH11 boiler (blue point). In the first
case when wind comes from the North (Figure 3a) the
plume is slightly “seen” when passing above the dark roof
(corresponding to the white dashed transect in the figures).
When wind comes from the South (bottom figure), the
plume completely disappears in the image due to soil
heterogeneity and quite high reflectance. Figure 3¢ shows
that the plume radiance impact is the most important at
450nm (maximum relative increases of 40%) and weak at
750nm (maximum relative increases of 10%). But it is true
that the plume remains still very difficult to be detected.
However we have seen that plume impact is spectrally
dependent. The aim of the multi-temporal analysis is to
extract reflectance signatures from the plume “free” image.
In this case for example, the bottom image 3b will give us a
reference for the roof. During this campaign we use the
temporal variations of the plume direction with in a day
corresponding to different wind directions. Indeed, in the
coastal Berre Pound area during summer typical winds are
from the Sea (South) but in the early morning (around 8am)
a continental wind appears (from the North) still 12am or
Ipm. This situation occurred from the 8" to the 10™ of
September. For these reasons our analysis will focus on the
temporal changes that occurred from 9am to 1pm the 8" of
September.



Table 1: Airborne Hyperspectral data main characteristics

Characteristics HySpex VNIR [HySpex SWIR
Type of acquisition  [Push-broom Push-broom
[Number of pixels 1600 320

Field of view 17° 14°

Spectral Interval 0,4-1 pm 1-2,5 pm
[Number of spectral 160 b6

bands

Spectral sampling 3,7 nm 6 Nnm

step on the ground (@

2667m) pérper.ldlcular 0,50 m b 00 m

to the direction of]

flight

step on the ground (@

2667m) parallel to the|1,00 m 2,00 m
direction of flight

Sw?th at  2667m 300 m 640m
(height / ground)

In this way, each line of flight corresponding to different
wind direction has been proceed using GEFOLKI tool [14]
to ensure subpixel spatial co-registration between the ortho-
rectified images. Figure 4 shows an example of result above
the refinery. In this figure each color corresponds to a
specific line of flight at 450nm wave length. The central part
of the image (intersection of line of flights) is mostly well
registered (black and white image). However specific points
or area near edge of tanks in particular are seen in a specific
color (and no more in black and white). It could means that
the registration error is important for at least one image.
However these artefacts are mostly due to non lambertian
effects (change of solar position introduces a natural
temporal shift of the nadir reflectance for metallic surfaces)
and moreover to shadows extensions changes from a flight
to another. These specifics pixels will be rejected in the
retrieval method.

Another key point is the need to correct cirrus or thin clouds
effects. Temporal change of clouds or cirrus coverage
creates intense temporal change unlinked to aerosol plumes.
These effects are corrected assuming that cirrus or thin
cloud transmissions are spectrally flat in the considered
solar domain. In this way, Clouds or cirrus transmissions
can be estimated at Ilum spectral wavelength (where
aerosols signature can be neglected). In a second step,
clouds or cirrus estimated transmission are applied to all
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VNIR spectral range. Figure 5a shows clouds temporal
change impact on the differential image for an entire line of
flight at 450nm. The temporal change of clouds or cirrus has
an impact of 0.1 in reflectance magnitude. Figure 5b is the
same as Figure 5a but focused on the refinery area using a
new scale range [-0.05:0.05]. Figure 5c shows the same area
using the same scale after cloud and cirrus correction. The
standard deviation of clouds temporal changes effects on the
reflectance is around 0.05 which corresponds to the
maximum change of reflectance seen in the aerosol plume.
After clouds correction industrial main exhaust stack are
enhanced (the boiler CH11 and the flare T2) and the
standard deviation of the differential image in reflectance is
around 0.01 (excluding high values from shadows or non
lambertian materials).

At this stage, after all corrections, we can provide
differential product in term of reflectance or radiance above
the industrial site and particularly around the boiler CH11for
the time period of this study: between 9am to 1pm (local
time) the 8" of September. Figure 6 shows the reference
reflectance image (6a) and the temporal reflectance
differential image (6b) at 450nm above the main source of
the refinery corresponding to the boiler CHI11. The
measured plume impact on the differential is between -0.05
(plume has disappears) and +0.05 (plume appears), the
standard deviation of the differential measure is around
0.01. Particulars points at borders (in particular for tanks)
corresponding to very high differential value (larger than
0.1) are rejected and arbitrary put to null value. Aerosols
plume nearly invisible for the single acquisition is enhanced
thanks to the temporal differential method. The wind change
between the two images from S-O to N-E makes a positive
differential (brighter area) in the Northern area of the boiler
linked to the apparition of the aerosols plume and negative
in the southern part (plume has disappeared). Figure 7
shows similar results when looking at the flare T2.



Figure 4 : Registration of 3 different lines of flight acquired during
the 8th of September at different time. Registration of ortho-
rectified images is processed using GEfolki tool. Each color (red,
green and blue) correspond to the channel at 450nm of each line of
flight.

Figure 5 Top (a): Example of temporal differential at 450 nm for
line of flight after ortho-rectification and registration (variation
range scale [-0.1:0.1]). Bottom left(b) : Zoom of the top blue
square image (variation range scale [-0.05:0.05]). Bottom right
(c): same as left but corrected from cirrus effects: boiler CH11
plume corresponds is enhanced from the background (variation
range scale [-0.05 : 0.05]).

Figure 6 : Top (a): Extract of a single reflectance image at 440nm
above the Boiler CH11 at 440nm (scale range [0:0.3]). Bottom
(b): Same extract for the same spectral channel but in differential
(scale range [0.05:0.05]).

From Figure 6b) we can extract differential signatures in
term of reflectance for a pixel inside the CH11 boiler plume.
We show an example in figure 8 for a pixel in the center of
the plume (not the maxima). The maximum relative
difference for this pixel is around 35% below 500nm and is
null after 850nm. The mean reflectance value for this pixel
is 0.15. This first result is in coherence with the single
image analysis (plume impact at 750nm on the roof was
very small in comparison with shorter wavelength). It



suggests that plume is mostly composed of fine mode (size
less than 0.5pum) scattering aerosols. In the next part we
explain how this differential signature can be related to
aerosol properties (size and composition) and its
corresponding concentration pixel by pixel.

Figure 7: Same as Figure 6 for the Flare T2. The differential
image is surimposed in the single image.

Reflectance differential inside the CH11 boiler plume
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Figure 8: Temporal reflectance relative difference (%) in the
boiler CH11 plume in the VNIR spectral domain.

3. AEROSOL
HYPERSPECTRAL DATA

RETRIEVAL FROM

Assuming a homogeneous, flat and Lambertien ground, the
radiance acquired by an hyperspectral sensor L¥¢"°T(Q) is
given in the reflective domain by:

Esurf(;‘)‘Tatm O\)'psoilo‘)

LSEHSOI‘ }\ — Latm }\ +
@ @ T (1-pson(W)-S2M ()

> (D

where A stands for the wavelength, LA™ (}) is the upwelling
atmospheric radiance between the surface and the sensor,
ESYf(}) is the total down welling irradiance at the surface,
Tatm(}) is the total upward transmittance of the atmosphere,
Psoif(d) is the ground reflectance and S3™(A) is the
spherical albedo of the atmosphere. All these terms are
estimated from the COMANCHE and COCHISE algorithms
using MODTRAN computations.

And a differential model can be expressed as follows:

sensor (/‘l)

plume

Lytume (1) — Lygr™" () 2

Psoit(A) AL?J}Z"{I @
7(1-psoit M-S M) )

ALyaes (M) = ALGZ, (A) + 3)

where AL™ (1) is the atmospheric radiance variation due
to aerosols and ALZZ?’; (1) is the variation of the product of
the down welling radiance and the upward atmospheric
transmission. These two terms do not depend on the soil
reflectance and are related to aerosol characteristics (size
distribution, chemical composition and concentration). We
then assume a local linearity in this model between
Radiance differential signature and aerosol optical thickness

(AOT) [16]:

550
A 0™ = T - AL (L erey O
where 550 is the AOT at 550nm which is linked using the

Mie theory to the number of aerosols per volume unit inside
the plume. In the case of a plume containing N different
types of aerosols we then assume that:

A0, T59) = SN0 gL AL (L) (5)
550

q' == (6)
Tref

Where AL{¥™°7(2,7750) is the normalized differential
radiance due the aerosol i and 77°° is the AOT at 550nm due
to the aerosol i. Using the Mie theory aerosol optical
properties (spectral extinction k.., scattering coefficients
kscqr and phase function P) are estimated as a function of
refractive index, size distribution.



Aerosol retrieval from multi-temporal Hyperspectral analysis

| Hyperspectral data #1 | |

Hyperspectral data #2
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Mie Computation for specific
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type and size)
Relative abundance and total AOT.

Figure 9 : Aerosol retrieval algorithm flow chart

Computations of “on” and “off” scenarios are carried out
using COMANCHE algorithm to estimate AL$7, . and
ALETS for a wide set of aerosols at 7757 equal to 0.2. This
set of aerosols corresponds to organic, sulfate, black carbon
(soot) and brown carbon types, for different size distribution
(from 50nm to 1pm). The impact of an aerosol plume on the

hme i estimated for each pixel using

reflectance (firstly estimated from COCHISE algorithm) and
aerosols properties. One can notice that the reflectance

variation due to aerosol plume can be estimated, when
psoil(}\) : Satm(}\) «K1,as:

radiance AL

sensor
‘plume

AL

- Esurf()\) .Tatm (}\)

(7

Applume

The differential term (in radiance or in reflectance) is
computed for each pixel depending on the reflectance value.
In the next part we use only radiance differential form as
Psoil(D) - SAM(Q) term can not be neglected due to quite
high level of reflectance in this image (most of reflectance
are higher than 0.1). For each pixel, we then estimate the
spectral correlation between the measured differential
signature and each spectra simulated for each
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type of aerosols (and their combinations). From this point
the most probable types of aerosols (type, size distribution)
in the plume are selected.

The total AOT and relative contribution of each type of
aerosols are estimated from the measured signatures pixel
by pixel using a positive linear retrieval algorithm to
retrieve the scalar q' described in Equation 6. Figure 9
summarizes the flow chart of the retrieval algorithm.

To illustrate the global retrieval scheme, figure 10 shows an
example of a single measured differential radiance spectrum
inside the plume, and the optimal spectral for this pixel.
Different cases are considered in this example: (i) only
Sulfate fine mode selected (green), (ii) only brown Carbon
fine mode selected (blue), (iii), coupling sulfate fine mode
and soot (black carbon) mode (purple). The best fit
correspond to a mixing between sulfate (90%) and black
carbon (10%) for the boiler CH11 plume and a total AOT of
0.3 for this pixel. The choice of aerosols is a key point, if a
wrong choice is done the method will still retrieve AOT
value but associated to a bad aerosol mixture.

For all the plumes form the CH11 boiler, two fine mode of
aerosols (from 50nm to 100nm), one for sulfate type and



one for black carbon type have been selected by the method
with a ratio of Sulfate of 90% (+/- 5%). This result is very
consistent with in situ measurements from the TEMMAS
project [7] summarized in part 4.1.
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Figure 10 : Differential radiance measured (red), estimated

differential for the 50nm size mode sulfate aerosol (green), for the
50nm size mode of brown carbon aerosols, and the best fit in
purple : 90% of 50nm size mode sulfate and 10% of 50nm size
mode Black carbon.

4. QUANTITATIVE ANALYSIS
4.1 In Situ measurements
In situ online measurements were performed by the

Massalya Platform as described in the table 2. A detailed
description of the platform can be found elsewhere [20].

Table 2:Massalya Platform online instruments

Instrument Measured Parameter
Aerosol mass Chemical composition (Sulfate, nitrate, ammonium,
spectrometer organic matter (particles of diameter lower than 450
(AMS) nm)
Scanning Mobility Number of particles of diameters between 15 to 650
Particle Sizer nm
(SMPS)
Optical Particle Number of particles of diameters between 0.265 to
Counter (OPC) 34 pm
Multi-Angle Black carbon (particles of diameter lower than
Absorption 450nm)
Photometer
(MAAP)

The Massalya Platform was located in the southern part of
the refinery 1km away from the source. The time series of
PM1 and PM2.5 mass concentrations, as well as

submicrometer size distributions and chemical compositions
are shown in Figure 10. Figure 10 shows that particles
emitted by the refinery are mainly composed of sulfate and
black carbon with a mean percentage ratio of 90/10. The
refinery particles size distribution centers around 50nm
(range 15 — 150 nm). These results are very consistent with
hyperspectral analysis discussed in part 3.

Black carbon
Matiére organique
Sulfate

Nitrate
Ammonium
Chiorure

Concentration (pg/m?)
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Figure 11: Time series of of PM1 and PM2.5 mass concentrations,
submicrometer size distribution and chemical composition 3
different North wind events are represented by dashed lines

The 8" of September emission measurements at boiler
CHI11 stack exit were performed: several PM sample
collections from the main stack were analyzed based on the
normative European protocol for filterable PM and
condensable PM (EPA Method 202), with complete
chemical analysis of the different PM fractions. These
measurements lead to a flow rate of 0.5 g/s for filterable
aerosols and 1.25 g/s for filterable plus condensable
aerosols. This result is coherent with an emission factor of
0.9 g/s for the CH11 boiler provided by the refinery. From
chemical analysis, black carbon versus sulfate ratio is
estimated to be of about 5 to 10%. These measurements are

o0 oE00 4



consistent with MPP measurements and are used as input for
PinG model computations.

4.2 AOT Map Estimation from Hyperspectral data

Assuming that the plume is dominated by fine aerosol (50
nm mode) composed of 90% sulfates and 10% carbon soot
(black carbon) and using the linear model for aerosol
signatures described in section 3, we can estimate the total
corresponding AOT pixel by pixel in the scene.. A first
result is shown in Figure 12 corresponding to 1.5 m/s wind
speed from the North. In the top of the figure, the boiler
CHI11 is seen in the center of the image. In this case,
maximum of AOT is close to 0.5 and the mean value around
0.15. The AOT detection limit is around 0.05 (standard
deviation of the AOT map).

Figure 12: AOT estimation at 550nm sur imposed on the 550nm

hyperspectral image band. Top for the all refinery, bottom: Zoom
on the main source.
We observe that some high AOT values are not linked with
the plume in particular in areas where signature should not
be analyzed in term of aerosol (shadow and non lambertian
material in particular). A threshold on the AOT (typically
1.0) is used to reject very high values of AOT.

In a second step, we use a growing detection algorithm. It
estimates a first detection threshold (3x the standard
deviation seen in the image) to isolate pixels with the
highest AOT value. Then looking in the neighborhood of
theses firstly detected pixels we confirm or not if the pixel
may be in a plume. If this condition is fulfilled we spread
the detection map (using a 5x5 kernel) up to another
threshold (1x standard deviation of AOT seen in the image).
Finally a 3 by 3 Gaussian kernel is used to smooth images
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and spread the plume. Examples of detection result are
shown in Figure 14 and Figure 16. The plume is associated
to a spatial cluster and a quantitative analysis is computed.

4.3 Quantitative Estimation

Here we discuss about two different events of wind change
from 10am to 12am the 8th of September. From differential
images AOT are computed and transformed in mass using
aerosol density and pixel ground size (2meters in this case).
Flow rate is then estimated by calculation of the total mass
corresponding to a one meter slice of the plume at different
distances from the source using wind speed measurement
from the meteorological station available during the
TEMMAS campaign. Figure 13 shows the differential in
mass (g) at 10am with a “positive” and a “negative” plume
before the detection process detailed in section 4.2. Figure
14 and Figure 15 correspond respectively to the detected
“positive” plume and mass flow rate estimation at different
distance from the source. Flow rate estimated from
hyperspectral data near the source increases up to lg/s at
45m and then decreases. This decrease is due to the fact that
hyperspectral measurement are not sensitive to lower
concentrations, we lose a large part of the plume. Same
results are presented Figure 16 and Figure 17 for the
“negative” plume corresponding to the 12am wind change.
The mean maximum flow rate is 1.3 g/s corresponding to a
distance of about 30m from the stack, and then decreases up
to 100m. These results are coherent with flow rate provided
from stack measurement (0.5 g/s using only filterable
aerosols and 1.25g/s using filterable and condensable
aerosols).



Figure 13 : Extract of the 10am differential image (first change of
wind direction in the morning) in mass (g) above CH11 boiler
(scale range [-0.05: 0.05]).
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Figure 14: PM detection map of the “positive” plume at 10am
(local time) expressed in mass (g) from hyperspectral data.
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Figure 15 : Flow rate estimation of PM (g/s) from hyperspectral
data using 1m slice at different distance from the source (m) for
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the “positive plume” at 10am the 8th of September. Wind speed is
estimated at 1m/s.
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Figure 16 : PM detection map of the "negative” plume at 12am
(local time) expressed in mass (g) from hyperspectral data.
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Figure 17 : Flow rate estimation (g/s) of PM from hyperspectral
data using 1m slice at different distance from the source for the
“negative plume” at 12am the 8th of September. Wind speed is
assumed to be 1.5 m/s.

Then, the Safety Lagrangian Atmospheric Model
(SLAM)[19] and Polyphemus Plume-in-Grid (PinG) were
used. PinG model represents background pollutant
concentrations in an Eulerian approach, and the refinery is
represented with a Gaussian Puff model. SLAM is a
Larangian non-reactive dispersion model using pre
calculated CFD winds fields. The fine resolution (meter)
allows reproducing complex flows in industrial installation.

Given the short distance at which the onboard camera can
follow the plumes (less than 100 meters), local modeling is
better fitted to represent the location and the physical
extension of the plumes at this range than the PinG
representation. The dispersion of the primary particles with
SLAM allows to refine the estimation of the emission flux
from airborne hyperspectral measurements, by extrapolating
the hyperspectral data using the SLAM spatial dispersion, as



hyperspectral measurement are less sensitive to low
concentrations (decreases of flow rate estimation). With this
approach, both the wind speed at the location of the
observed plumes and the fraction of the plume observed by
the camera can be corrected. For boiler CH11, the SLAM
correction of the raw emission rates estimated with the
camera leads to a coherent PM evolution. These emission
rates are comparable to the PinG simulation results that
consider the physics and chemistry of atmospheric aerosols.
Figure 18 shows comparison between estimated flow rate at
the stack from measurement (0.5 g/s using only filterable
aerosols and 1.25g/s using filterable and condensable
aerosols), the PinG simulation results (blue line),
hyperspectral estimations (crosses), and hyperspectral
corrected using SLAM (circles). These results show a good
agreement between the three flow rate estimation methods.
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Figure 18: Evolution of the boiler CH11 particles flow rate as a
function of the distance from the source. Polyphemus-PinG
simulation and flow rate estimated from hyperspectral data
(crosses) and corrected using spatial spread modeled by SLAM
(circles).

5. CONCLUSION

A multi temporal approach from hyperspectral data to detect
and analyses optically thin aerosol plumes is described in
this paper. This methodology characterizes aerosols in terms
of type and size, AOT, mass and flow rate estimation. The
retrieved maps have a metric spatial resolution. This
methodology was applied to a refinery plume (unseen from
a single acquisition) corresponding to a very thin aerosol
plumes (AOT estimated in the 0.05 - 0.5 range) over
heterogeneous ground. It yields a black carbon to sulfate
ratio of 10/90 in mass inside the plume, with an average size
distribution smaller than 100 nm and provides a mean flow
rate estimation close to 1g/s. These results are in very good
agreement with online in situ measurement performed on
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the ground and samples collected at stack level. The
retrieved aerosols concentrations spatial evolution near the
source is in good agreement with modelling applied to the
refinery main exhaust stack.

Using Hyperspectral data concentration map near the
sources could be a great benefit for modelling at regional
scale when emissions rates are not well known in term of
intensity or location. We assume then that this method can
be applied to future hyperspectral satellite measurements
with metric or decametric spatial resolution.
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