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ABSTRACT 
In this paper we focus on airborne hyperspectral imaging 
methodology to characterize PM (Particulate Matter) near 
industrial emission sources. Two short-term intensive 
campaigns were carried out in the vicinity of a refinery in 
the South of France, in September 2015 and February 2016. 
Different protocols of in-situ PM measurements were 
performed, at stack measurements (flow rate and offline 
chemical analysis) and on-line measurement at the refinery 
border (size distribution, concentration and chemistry of 
aerosols). A multi temporal methodology to retrieve aerosol 
type, to map the aerosol concentration and to quantify mass 
flow rate from airborne hyperspectral data is described in 
this paper. This method applied to the refinery detected 
plume from the main stack yields a black carbon to sulfate 
ratio of 10/90 in mass inside the plume, with an average size 
distribution smaller than 100 nm. These results are in a good 
agreement with on-line analysis of aerosols at refinery 
border. The resulting quantitative map with a metric spatial 
resolution leads to a flow rate estimated of about 1g/s and is 
in a good agreement with in-situ stack measurements and 
modelling. 
  

Index Terms— Hyperspectral, aerosols, multi-
temporal, airborne, model 
 
1. INTRODUCTION 
 
It is well known that particles suspended in the atmosphere 
have a major role in the Earth’s global radiation budget, as 
reported by the IPCC (Intergovernmental Panel on Climate 
Change) and are involved in several pollution events. Their 
study is essential for a better comprehension of climate 
change and in term of public health. In particular, 

anthropogenic aerosols contribute to 10% of the total mass 
of pollutants (gases and aerosols) rejected into the 
atmosphere and their corresponding cost terms of public 
health is estimated to be about 200 billion € per year in 2000 
for the 25 countries of Europe [4].  
For these reasons, remote sensing tools are widely used to 
study aerosols and to provide a quantitative characterization 
of aerosols distribution at a global or regional scale 
[13][11][9][10][3]. Most of the existing sensors enabling to 
characterize aerosols from space have spatial resolutions 
range from 100 m to 1 km but their associated products are 
not suited to study industrial aerosols close to their emission 
points. A finer spatial resolution can be obtained by using 
airborne sensors as their metric to decametric resolutions are 
adapted to the spatial extents of industrial plumes, or for 
urban area studies. Hyperspectral sensors thus have an 
interesting potential for the characterization of industrial 
aerosols. The hundreds of spectral bands from 0.4 to 2.5 μm 
can provide spectral information related to the PM2.5 size 
and composition (particles with a diameter less than 2.5µm) 
mostly associated to pollutant of anthropogenic origins. 
Hyperspectral methods have been developed in these way in 
order  to study aerosols [1][2][5][6][16] but there is still a 
lack of sensitivity for thin anthropogenic plumes, mainly 
due to the high heterogeneity of the background in urban or 
industrial areas. However multi-temporal analysis is a key 
benefit from spatial data to extract background variability 
from atmospheric aerosols radiative impacts [8]. In this way, 
this paper plans to use both multi-temporal benefit and high 
spectral and spatial resolution from hyperspectral data to 
detect and characterize thin aerosols plumes near 
anthropogenic sources. The main point presented here is the 
use of both spatial and temporal analysis to separate soil and 
aerosols spectral signatures using dedicated multi-temporal 
airborne hyperspectral imaging data. 
In the context of the TEMMAS (TEledetection, Measure, 
Modeling of Atmospheric pollutants on industrial Sites) 
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project, supported by the French environment agency 
(ADEME), intensive measurements of gaseous and 
particulate pollutants were conducted in the vicinity of a 
TOTAL's refinery in September 2015 and February 2016 
[7]. The aim of these campaigns was to study the refinery 
Particulate Matter (PM) microphysical signatures and their 
evolution with distance to the source in the first kilometers. 
Considering the large sources of uncertainties in air quality 
models, both in the used input data (meteorology, 
emissions...) and in the model formulations, high resolution 
measurements, associated with a complete characterization 
of PM size and composition, is a promising approach to 
better understand those uncertainties, and to improve the 
representation of PM in the vicinity of industrial sites.  
In this paper we focus on results from TEMMAS airborne 
hyperspectral imaging data to characterize PM composition 
and size near the plume emission source (first hundred 
meters). Hyperspectral results are then compared to in-situ 
measurements (in stack measurements and on-line analysis 
at refinery border) and to plumes simulated with the 
Polyphemus Plume-in-Grid model (PinG) [12][17], applied 
at the regional  scale, and by the Lagrangian model SLAM 
(Safety Lagrangian Atmospheric Model [19]), applied at the 
refinery scale. 
 
2. AIRBORNE HYPERSPECTRAL MULTI-
TEMPORAL DATA 
 
The site of TEMMAS experiments was a TOTAL's refinery 
in South of France where several flights have been carried 
out from the 7th and 8th of September 2015. A picture of the 
refinery is shown in Figure 1, the two main aerosol sources 
correspond to the boiler CH11 and flare T2. Figure 2 shows 
the entire area covered by the different flights. The refinery 
appears as the bright part near the Berre Pound coast in the 
northern part of the mosaic 
 
  

 

Figure 1 : Locations of different exhaust stack in the refinery. 

Main aerosols exhaust stack are the boiler CH11 and flare T2.   

The onboard optronic sensors are composed of two 
HySpex VNIR1600 and SWIR320m-e hyperspectral 
cameras built by NEO (Norsk Elektro Optikk). VNIR1600 
covers the full range of 410 to 996 nm with 160 spectral 
bands with a spectral sampling of 3.6 nm while the 
SWIR320m-e based on a MCT FPA (Focal Plane Array) 
covers the extended domain of 970 to 2500 nm with a 
spectral sampling of 6 nm. They offer a total of 410 
different spectral bands providing a high spectral resolution 
of the scene. The cameras acquire the data synchronously on 
both spectral domains but considering the instantaneous 
field of view (iFOV) along track and across track of the 
VNIR, 0.37 x 0.185 mrad, and the SWIR, 0.75 x 0.75 mrad, 
pixels of the SWIR camera are twice larger along track and 
four times larger across track than the VNIR ones. With 
1600 pixels for the VNIR camera and 320 pixels for the 
SWIR one, the resulting field of view, across track, is about 
17° and 14° respectively for the VNIR and SWIR sensor. 
The main parameters of optical sensors operated during the 
TEMMAS campaign are resumed in the table 1. 
 

 

 

Figure 2:  Mosaic of hyperspectral acquisitions above  the refinery 

area using Hyspex hyperspectral instrument. The refinery appears 

as the bright part near the coastal area (Berre Pound). 

These cameras were installed inside an ATR42 belonging to 
the SAFIRE fleet (French facility for airborne research). 
More than 10 flight lines have been carried out from 8 am to 
3 pm (local time) for each day. Thanks to inertial 
measurements we were able to produce ortho-rectified 
images using a process based on PARGE software [18]. 
Atmospheric correction with the COCHISE algorithm [15] 
was applied to estimate atmospheric and solar radiative 
contribution to hyperspectral data and then provide 
reflectance images. COCHISE is the reciprocal code of 
COMANCHE [15], this algorithm computes the incoming 
spectral radiance at the sensor level, for an instrument 
operating in the VIS - LWIR spectral range and observing a 
target over a background. COMANCHE uses an analytical 
formulation of the upwelling radiance at the sensor level in 
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Table 1: Airborne Hyperspectral data main characteristics 

Characteristics HySpex VNIR HySpex SWIR 

Type of acquisition Push-broom Push-broom 

Number of pixels 1600 320 

Field of view 17° 14° 

Spectral Interval 0,4-1 µm 1-2,5 µm 

Number of spectral 
bands 

160  256 

Spectral sampling  3,7 nm  6 nm 

step on the ground (@ 
2667m) perpendicular 
to the direction of 
flight 

0,50 m  2,00 m 

step on the ground (@ 
2667m) parallel to the 
direction of flight 

1,00 m  2,00 m 

Swath at 2667m 
(height / ground) 

800 m  640m 

 
 
In this way, each line of  flight corresponding to different 
wind direction has been proceed using GEFOLKI tool [14] 
to ensure subpixel spatial co-registration between the ortho-
rectified images.  Figure 4 shows an example of result above 
the refinery. In this figure each color corresponds to a 
specific line of flight at 450nm wave length. The central part 
of the image (intersection of line of flights) is mostly well 
registered (black and white image). However specific points 
or area near edge of tanks in particular are seen in a specific 
color (and no more in black and white). It could means that 
the registration error is important for at least one image. 
However these artefacts are mostly due to non lambertian 
effects (change of solar position introduces a natural 
temporal shift of the nadir reflectance for metallic surfaces) 
and moreover to shadows extensions changes from a flight 
to another. These specifics pixels will be rejected in the 
retrieval method.  
Another key point is the need to correct cirrus or thin clouds 
effects. Temporal change of clouds or cirrus coverage 
creates intense temporal change unlinked to aerosol plumes. 
These effects are corrected assuming that cirrus or thin 
cloud transmissions are spectrally flat in the considered 
solar domain. In this way, Clouds or cirrus transmissions 
can be estimated at 1µm spectral wavelength (where 
aerosols signature can be neglected). In a second step, 
clouds or cirrus estimated transmission are applied to all 

VNIR spectral range. Figure 5a shows clouds temporal 
change impact on the differential image for an entire line of  
flight at 450nm. The temporal change of clouds or cirrus has 
an impact of 0.1 in reflectance magnitude. Figure 5b is the 
same as Figure 5a but focused on the refinery area using a 
new scale range [-0.05:0.05]. Figure 5c shows the same area 
using the same scale after cloud and cirrus correction. The 
standard deviation of clouds temporal changes effects on the 
reflectance is around 0.05 which corresponds to the 
maximum change of reflectance seen in the aerosol plume. 
After clouds correction industrial main exhaust stack are 
enhanced (the boiler CH11 and the flare T2) and the 
standard deviation of the differential image in reflectance is 
around 0.01 (excluding high values from shadows or non 
lambertian materials).  

At this stage, after all corrections, we can provide 
differential product in term of reflectance or radiance above 
the industrial site and particularly around the boiler CH11for 
the time period of this study: between 9am to 1pm (local 
time) the 8th of September. Figure 6 shows the reference 
reflectance image (6a) and the temporal reflectance 
differential image (6b) at 450nm above the main source of 
the refinery corresponding to the boiler CH11. The 
measured plume impact on the differential is between -0.05 
(plume has disappears) and +0.05 (plume appears), the 
standard deviation of the differential measure is around 
0.01. Particulars points at borders (in particular for tanks) 
corresponding to very high differential value (larger than 
0.1) are rejected and arbitrary put to null value. Aerosols 
plume nearly invisible for the single acquisition is enhanced 
thanks to the temporal differential method. The wind change 
between the two images from S-O to N-E makes a positive 
differential (brighter area) in the Northern area of the boiler 
linked to the apparition of the aerosols plume and negative 
in the southern part (plume has disappeared). Figure 7 
shows similar results when looking at the flare T2. 
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suggests that plume is mostly composed of fine mode (size 
less than 0.5µm) scattering aerosols. In the next part we 
explain how this differential signature can be related to 
aerosol properties (size and composition) and its 
corresponding concentration pixel by pixel. 
 

 

Figure 7: Same as Figure 6 for the Flare T2. The differential 

image is surimposed in the single image. 

 
 

 

Figure 8: Temporal reflectance relative difference (%) in the 

boiler CH11 plume in the VNIR spectral domain. 

 
3. AEROSOL RETRIEVAL FROM 
HYPERSPECTRAL DATA 
 
Assuming a homogeneous, flat and Lambertien ground, the 
radiance acquired by an hyperspectral sensor Lୱୣ୬ୱ୭୰ሺλሻ is 
given in the reflective domain by: 
 

Lୱୣ୬ୱ୭୰ሺλሻ ൌ Lୟ୲୫ሺλሻ  ౩౫౨ሺሻ⋅౪ౣሺሻ⋅౩ౢሺሻ

⋅ቀଵି౩ౢሺሻ⋅ୗ౪ౣሺሻቁ
,  (1) 

 
where λ stands for the wavelength, Lୟ୲୫ሺλሻ is the upwelling 
atmospheric radiance between the surface and the sensor, 
Eୱ୳୰ሺλሻ is the total down welling  irradiance at the surface, 
Tୟ୲୫ሺλሻ is the total upward transmittance of the atmosphere, 
ρୱ୭୧୪ሺλሻ is the ground reflectance and Sୟ୲୫ሺλሻ is the 
spherical albedo of the atmosphere. All these terms are 
estimated from the COMANCHE and COCHISE algorithms 
using MODTRAN computations. 
 
And a differential model can be expressed as follows: 
 

௨ܮ߂
௦௦ሺߣሻ ൌ 	 ௨ܮ

௦௦ሺߣሻ െ ܮ
௦௦ሺߣሻ	      (2) 

 

௨ܮ߂
௦௦ሺߣሻ ൌ ௧ܮ߂ ሺߣሻ 

ఘೞሺఒሻ	௱ೌೝ
ೞೠೝሺఒሻ

గ.⋅ቀଵି౩ౢሺሻ⋅ୗ౪ౣሺሻቁ
  (3) 

 
where ܮ߂௧ ሺߣሻ is the atmospheric radiance variation due 
to aerosols and ܮ߂

௦௨ሺߣሻ is the variation of the product of 
the down welling radiance and the upward atmospheric 
transmission. These two terms do not depend on the soil 
reflectance and are related to aerosol characteristics (size 
distribution, chemical composition and concentration). We 
then assume a local linearity in this model between 
Radiance differential signature and aerosol optical thickness 
(AOT) [16]: 
 

݁݉ݑ݈ܮ߂
,ߣሺݎݏ݊݁ݏ ߬550ሻ ൌ

߬550

݂݁ݎ߬
550 ⋅ ݁݉ݑ݈ܮ߂

,ߣ൫ݎݏ݊݁ݏ  550൯   (4)݂݁ݎ߬

 
where τହହ is the AOT at 550nm which is linked using the 
Mie theory to the number of aerosols per volume unit inside 
the plume. In the case of a plume containing N different 
types of aerosols we then assume that: 
 
ΔL୮୪୳୫ୣ

ୱୣ୬ୱ୭୰ሺλ, τହହሻ ൌ ∑ q୧
୧ୀ . ΔL୧

ୱୣ୬ୱ୭୰൫λ, τ୰ୣ
ହହ൯ (5)	

ݍ ൌ
ఛ
ఱఱబ

ఛೝ
ఱఱబ     (6) 

 
Where ܮ߂

௦௦൫ߣ, ߬
ହହ൯ is the normalized differential 

radiance due the aerosol i and ߬
ହହ is the AOT at 550nm due 

to the aerosol i. Using the Mie theory aerosol optical 
properties (spectral extinction ݇௫௧, scattering coefficients 
݇௦௧ and phase function ܲ) are estimated as a function of 
refractive index, size distribution.  
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