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Tooth wear is an important feature for reconstructing diet, food processing and cultural habits of past human populations. In particular, occlusal wear facets can be extremely useful for detecting information about diet and non-masticatory behaviors. The aim of this study is to reconstruct the diet and cultural behavior of the Neanderthal specimen Regourdou 1 (Dordogne, Southern France) from the analysis of the macrowear pattern, using the occlusal fingerprint analysis method. In addition, we have also examined whether there is any association between the observed dental macrowear and mandibular bone distribution and root dentine thickness. The posterior dentition of Regourdou 1 is characterized by an asymmetric wear pattern, with the right side significantly more worn than the left. In contrast, the left lower P3 shows a more advanced wear than the right premolar, with unusual semicircular enamel wear facets. The results from occlusal fingerprint analysis of this unique pattern suggest tooth-tool uses for daily task activities. Moreover, the left buccal aspect of the mandibular cortical bone is thicker than its right counterpart, and the left P3 has a thicker radicular dentine layer its antimere. These results show a certain degree of asymmetry in cortical bone topography and dentine tissue that could be associated with the observed dental macrowear pattern. The molar macrowear pattern also suggests that Regourdou 1 had a mixed diet typical of those populations living in temperate deciduous woodlands and Mediterranean habitats, including animal and plant foods.

Although this study is limited to one Neanderthal individual, future analyses based on a larger sample may further assist us to better understand the existing relationship between mandibular architecture, occlusal wear and the masticatory apparatus in humans.

Introduction

Tooth wear analyses are important for reconstructing diet, food processing and cultural habits of recent and extinct hominins (e.g., [START_REF] Molnar | Tooth wear and culture: A survey of tooth functions among some prehistoric populations[END_REF][START_REF] Hinton | Differences in interproximal and occlusal tooth wear among prehistoric Tennessee Indians: Implications for masticatory function[END_REF][START_REF] Smith | Patterns of molar wear in hunter-gatherers and agriculturalists[END_REF][START_REF] Hillson | Dental Anthropology[END_REF][START_REF] Kaifu | Tooth wear and the "design" of the human dentition: A perspective from evolutionary medicine[END_REF]Fiorenza et al., 2015a;[START_REF] Ungar | Evolution's Bite. A Story of Teeth, Diet, and Human Origins[END_REF]. Dental wear is considered a natural physiological process that results in a gradual loss of the enamel layer and reduction in the height of the entire crown. It results from the combination of multiple mechanisms (attrition, abrasion and erosion), some more prominent than others, depending on biological and behavioral variation [START_REF] Addy | Interaction between attrition, abrasion and erosion in tooth wear[END_REF][START_REF] Kaidonis | Tooth wear: The view of the anthropologist[END_REF][START_REF] Burnett | Crown wear: Identification and categorization[END_REF]. In particular, wear facets (visible to the naked eye, and characterized by polished surfaces with well-delineated borders) are created by the contact of opposing teeth during mastication. They can be extremely useful for detecting information about diet and non-masticatory behaviors (Fiorenza et al., 2015a). Each of these facets are generated by specific occlusal movements that are closely related to diet and to the masticatory processes occurring during the chewing cycle [START_REF] Kay | Jaw movement and tooth use in recent and fossil primates[END_REF]. Thus, the information obtained from the analysis of the macrowear patterns can be used to reconstruct the chewing behavior and to infer diet in fossil and extant species [START_REF] Butler | The milk molars of Perissodactyla, with remarks on molar occlusion[END_REF][START_REF] Butler | Molar wear facets of Tertiary North American primates[END_REF][START_REF] Kay | The evolution of molar occlusion in the Cercopithecidae and early catarrhines[END_REF][START_REF] Janis | The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species[END_REF][START_REF] Ulhaas | Tooth wear diversity in early hominid molars: A case study[END_REF][START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF][START_REF] Kullmer | An experimental approach to evaluate the correspondence between wear facet position and occlusal movements[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF]Fiorenza et al., 2011a;[START_REF] Harvati | New Neanderthal remains from Mani peninsula, S. Greece: The Kalamakia Middle Palaeolithic cave site[END_REF]. The occlusal fingerprint analysis (OFA) is a well-established virtual method that uses three-dimensional (3D) digital models of tooth crowns to quantify structural parameters of wear facets, such as facet area, perimeter, occlusal relief, inclination and spatial orientation [START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF]. It has been successfully and extensively used to record information about diet in non-human primates, modern human hunter-gatherers, and Paleolithic human populations [START_REF] Ulhaas | A new 3-d approach to determine functional morphology of cercopithecoid molars[END_REF][START_REF] Ulhaas | Tooth wear diversity in early hominid molars: A case study[END_REF][START_REF] Benazzi | Quantitative assessment of interproximal wear facet outlines for the association of isolated molars[END_REF]Fiorenza et al., 2011aFiorenza et al., , b, 2015a, b;, b;[START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF][START_REF] Harvati | New Neanderthal remains from Mani peninsula, S. Greece: The Kalamakia Middle Palaeolithic cave site[END_REF][START_REF] Knight-Sadler | Tooth wear inclinations in great ape molars[END_REF][START_REF] Oxilia | The physiological linkage between molar inclination and dental macrowear pattern[END_REF][START_REF] Zanolli | Evidence for increased hominid diversity in the Early-Middle Pleistocene of Java, Indonesia[END_REF]. It has also been used to associate unique wear patterns with specific cultural habits in ancient and prehistoric populations (Fiorenza et al., 2011c[START_REF] Fiorenza | Functional relationship between dental macrowear and diet in Late Pleistocene and recent modern human populations[END_REF]Fiorenza andKullmer, 2013, 2015;[START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF], and to recognize oral pathological conditions [START_REF] Fiorenza | Occlusion in an adult male gorilla with a supernumerary maxillary premolar[END_REF] and early dental treatments [START_REF] Oxilia | Earliest evidence of dental treatment in the Late Upper Paleolithic[END_REF].

Regourdou 1 is a partial skeleton from a young adult, probably between 23-30 years old [START_REF] Volpato | Hand to mouth in a Neandertal: Right handedness in Regourdou 1[END_REF] but of indeterminate sex [START_REF] Vandermeersch | The postcranial remains of the Régourdou 1 Neandertal: The shoulder and arm remains[END_REF][START_REF] Plavcan | The Regourdou 1 Neandertal body size[END_REF], dated to Marine Isotope Stage (MIS) 4 [START_REF] Plavcan | The Regourdou 1 Neandertal body size[END_REF]. It was discovered in 1957 in a burial-like context associated with La Quina-type Mousterian lithics within the homonym karst cavity at Montignac-sur-Vézère, on top of the hill near Lascaux Cave, in Dordogne, France (for an historical review of the excavations and the context, see Maureille et al., 2015a;[START_REF] Pelletier | Rabbits in the grave! Consequences of bioturbation on the Neandertal "burial" at Regourdou (Montignac-sur-Vézère, Dordogne)[END_REF].

Regourdou 1 is missing its cranium but preserves a nearly intact mandible with a complete set of moderately worn permanent teeth [START_REF] Maureille | Les dents inférieures du Néandertalien Regourdou 1 (site Regourdou, commune de Montignac, Dordogne): analyses métriques et comparatives[END_REF][START_REF] Macchiarelli | Virtual dentitions: Touching the hidden evidence[END_REF][START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF][START_REF] Bayle | Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database[END_REF][START_REF] Volpato | Hand to mouth in a Neandertal: Right handedness in Regourdou 1[END_REF]Fig. 1). During the last decade, a systematic revision of the faunal remains and associated sediments from the early excavations has allowed the identification of 59 additional postcranial remains attributed to the same individual, mostly from the axial skeleton [START_REF] Couture | Les caractères anatomiques du squelette néandertalien Régourdou 1[END_REF][START_REF] Madelaine | Nouveaux restes humains moustériens rapportés au squelette néandertalien de Regourdou 1 (Regourdou, commune de Montignac[END_REF]Meyer et al., 2011a;Maureille et al., 2015b). However, no additional cranial elements were recovered.

In this study we apply the OFA method to measure and quantify the occlusal tooth wear pattern of Regourdou 1, with the aim of obtaining information about its masticatory behavior, subsistence strategy and cultural habits. Compared to the variation in Neanderthals, the lower dentition of Regourdou 1 is characterized by a modest crown size, especially for the mesiodistal diameter, and by a reduced left P3 [START_REF] Maureille | Les dents inférieures du Néandertalien Regourdou 1 (site Regourdou, commune de Montignac, Dordogne): analyses métriques et comparatives[END_REF]. However, according to [START_REF] Volpato | Hand to mouth in a Neandertal: Right handedness in Regourdou 1[END_REF], despite the relatively small size of its posterior crowns, canine breadth in this individual is large (10.0 mm), greater than European MIS 4-3 Neanderthal females (mean = 8.2 mm, range = 7.5-9.7 mm, n = 10) and at the high-end of the range reported for Neanderthal males (mean = 9.5 mm, range = 8.8-10.1 mm, n = 12; [START_REF] Volpato | Hand to mouth in a Neandertal: Right handedness in Regourdou 1[END_REF]. In the original description of the specimen, Piveteau (1964) argued that the unusual morphology of the occlusal surface in the left P3 is probably the result of "a deterioration occurred during fossilization" (Piveteau, 1964:184, our translation from the original in French). In addition, [START_REF] Maureille | Les dents inférieures du Néandertalien Regourdou 1 (site Regourdou, commune de Montignac, Dordogne): analyses métriques et comparatives[END_REF] observed that the right teeth of Regourdou 1 were more worn than their antimeres. The asymmetric pattern of Regourdou 1 was further examined by [START_REF] Volpato | Hand to mouth in a Neandertal: Right handedness in Regourdou 1[END_REF], who analyzed the orientation of the microwear striations over the labial surfaces of incisors and canines. The predominance of right oblique scratches, typical of right-handed manipulations, was probably caused by the use of the anterior teeth as a vice or a third hand. Asymmetric variation in enamel thickness was also found on the posterior dentition, more evident in the third premolars (Macchiarelli et al., 2013:Fig. 11.2).

In the present study, our goal is to investigate the nature and possible causes of the unusual wear found on the left P3. In the process, we also provide the first quantitative macrowear analysis of the Regourdou 1 dentition, which sheds light on the masticatory processes, diet and cultural habits of this individual. In addition, because asymmetric masticatory loads in the mandible could generate local variation in cortical bone thickness [START_REF] Demes | Stress-strength relationships in the mandibles of hominoids[END_REF][START_REF] Daegling | Compact bone distribution and biomechanics of early hominid mandibles[END_REF][START_REF] Masumoto | Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible[END_REF][START_REF] Daegling | Functional significance of cortical bone distribution in anthropoid mandibles: An in vitro assessment of bone strain under combined loads[END_REF][START_REF] Ichim | Functional significance of strain distribution in the human mandible under masticatory load: Numerical predictions[END_REF], we analyze if there is any asymmetric mandibular bone distribution in the premolar area. Variation in the mandible seems to be functionally related to mechanical loadings generated during masticatory and paramasticatory regimes [START_REF] Bouvier | Effect of bone strain on cortical bone structure in macaques (Macaca mulatta)[END_REF][START_REF] Lieberman | Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face[END_REF][START_REF] Holmes | Dietary effects on development of the human mandibular corpus[END_REF]. Accordingly, we investigate if cortical bone asymmetry in Regourdou 1 is biomechanically related to non-masticatory stresses [START_REF] Maureille | Les dents inférieures du Néandertalien Regourdou 1 (site Regourdou, commune de Montignac, Dordogne): analyses métriques et comparatives[END_REF]Volpato et al., 2011a[START_REF] Volpato | Hand to mouth in a Neandertal: Right handedness in Regourdou 1[END_REF][START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF]. Furthermore, we also investigate possible asymmetry of the radicular dentine thickness distribution and variation between the left and right third premolars, using 'virtual cartography' methods [START_REF] Bayle | Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database[END_REF][START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF][START_REF] Zanolli | The late Early Pleistocene human dental remains from Uadi Aalad and Mulhuli-Amo (Buia), Eritrean Danakil: Macromorphology and microstructure[END_REF][START_REF] Zanolli | The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment[END_REF]. As a whole, this information should help us to better understand the relationships between mandibular architecture, occlusal wear and how the masticatory system functions in some Neanderthals.

Materials and methods

Image acquisition

Three-dimensional data of the Regourdou 1 mandible and dentition, housed at the Périgord Museum of Art and Archaeology (Périgueux, France), were acquired through microtomographic scanning (SR-μCT) at the beamline ID 17 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France (experiment SC1587c; [START_REF] Macchiarelli | How Neanderthal molar teeth grew[END_REF][START_REF] Mazurier | Improved noninvasive microstructural analysis of fossil tissues by means of SR-microtomography[END_REF][START_REF] Bayle | Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database[END_REF]. The mandible was imaged according to the following parameters: energy, 70 keV; projections, 1500 in half acquisition mode; integration time, 29.91 ms. The final sections were reconstructed from sinograms and saved in a 32-bit floating-point raw format at an isotropic voxel size of 45.5 µm. The SR-μCT record of the Regourdou 1 mandible is available at the NESPOS website (https://www.nespos.org/display/openspace/Home; Fig. 1).

Following segmentation (see infra), intra-and inter-observer tests for accuracy of the (SR)μCTbased measures and estimates run by two to four observers (depending on the variables) provided differences less than 4%, which agrees with previous tests on similar µCT-based quantitative analyses performed on fossil teeth (e.g., [START_REF] Bayle | Dental maturational sequence and dental tissue proportions in the early Upper Paleolithic child from Abrigo do Lagar Velho, Portugal[END_REF][START_REF] Skinner | Enamel thickness trends in Plio-Pleistocene hominin mandibular molars[END_REF][START_REF] Martín-Francés | Tooth crown tissue proportions and enamel thickness in Early Pleistocene Homo antecessor molars (Atapuerca, Spain)[END_REF][START_REF] Zanolli | The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment[END_REF].

Occlusal fingerprint analysis

We used high-resolution replicas of teeth made in epoxy resin obtained by combining the resin LARIT L-160 with the hardener LARIT 502 (Lange und Ritter, GmbH). Since the epoxy is transparent, we combined this mix with an opaque black pigment compatible with epoxy material [START_REF] Fiorenza | Morphology, wear and 3D digital surface models: Materials and techniques to create high-resolution replicas of teeth[END_REF].

The wear facets labeling system follows the terminology proposed by Maier and Schneck (1981) and [START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF], who described 13 complementary pairs of facets in hominoid molars. For this study, we have divided the wear facets into three different groups based on the masticatory processes acting during the normal chewing cycle [START_REF] Kay | Jaw movement and tooth use in recent and fossil primates[END_REF][START_REF] Janis | The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species[END_REF], following the color coding used in Fiorenza et al. (2011a): buccal phase I facets (colored in blue; facets 1, 1.1, 2, 2.1, 3 and 4); lingual phase I facets (colored in green; facets 5, 5.1, 6, 6.1, 7 and 8); and phase II facets (colored in red; facets 9, 10, 11, 12 and 13).

To recognize non-masticatory wear patterns, we utilize the dental occlusal concept (Douglass and DeVreugd, 1997;Schultz 2003;[START_REF] Schulz | Basiswissen zur Datenübertragung[END_REF][START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF][START_REF] Kullmer | An experimental approach to evaluate the correspondence between wear facet position and occlusal movements[END_REF]Fiorenza et al., 2011a;[START_REF] Fiorenza | Dental wear and cultural behaviour in Middle Paleolithic humans from the Near East[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF][START_REF] Burnett | Crown wear: Identification and categorization[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF], which takes into account the possible three-dimensional occlusal movements responsible for wear facets formation starting from a position of maximum intercuspation (or centric occlusion). Facets 1, 1.1, 4, 5 and 8 are in contact during lateroretrusive movements (LRT; colored in blue). Facets 2, 2.1, 3, 6 and 7 are produced by lateroprotrusion (LRT, colored in yellow) while facets 9, 11 and 12 are in contact during mediotrusion (MT, colored in green) and immediate side shift (ISS, colored in red). Lastly, facets 10 and 13 correspond to medioprotrusive movements (MPT, colored in orange; [START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF][START_REF] Kullmer | An experimental approach to evaluate the correspondence between wear facet position and occlusal movements[END_REF]Fiorenza et al., 2011c).

The OFA analysis consists of five consecutive steps [START_REF] Fiorenza | Occlusal wear pattern analysis of functional morphology in Neanderthals and early Homo sapiens dentition[END_REF]. The first one is the creation of a reference plane. This is achieved by translating and aligning the occlusal plane (defined by three landmarks selected on the lowest surface point of the second molars and central incisor) to the xy coordinate system [START_REF] Ulhaas | A new 3-d approach to determine functional morphology of cercopithecoid molars[END_REF][START_REF] Ulhaas | Tooth wear diversity in early hominid molars: A case study[END_REF][START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF][START_REF] Kullmer | An experimental approach to evaluate the correspondence between wear facet position and occlusal movements[END_REF]. The second step consists of the manual identification of each facet and dentine area directly onto the polygonal model using the polyline tool in the IMEdit TM of Polyworks ® V12 (InnovMetric software, Québec, Canada), a 3D metrology software. Once all facets and dentine exposures are identified, we measure the area by selecting all triangles within their perimeter (step 3). Successively we generate the average plane of each facet using the best-fit plane function in Polyworks ® V12. The facet inclination angle is measured between the facet and reference plane (step 4). Finally, we import the digital data into the IMInspect TM module for calculating the directions of each facet using facet normal vectors projected to the reference plane and afterward onto the individual facet planes (step 5). The final result of this last step is the creation of a three-dimensional occlusal compass of the facet pattern of each tooth that contains visual information on the direction of all facets and on their inclinations [START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF][START_REF] Fiorenza | Brief communication: Identification reassessment of the isolated tooth Krapina D58 through Occlusal Fingerprint Analysis[END_REF]Fiorenza et al., , 2011c;;[START_REF] Fiorenza | Dental wear and cultural behaviour in Middle Paleolithic humans from the Near East[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF][START_REF] Burnett | Crown wear: Identification and categorization[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF]. It is important to note that in this study we compared the relative wear facet areas of a lower molar of Regourdou 1 with published results obtained from a Neanderthal and AMH sample mostly consisting of upper molars (Fiorenza et al., 2011a;[START_REF] Harvati | New Neanderthal remains from Mani peninsula, S. Greece: The Kalamakia Middle Palaeolithic cave site[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF] because we do not have lower molar macrowear data for these two Pleistocene human species.

Cortical bone distribution

To test cortical bone distribution on a portion of the mandible, between approximately the mesial aspect of the canine and the mesial aspect of the first molar, we virtually separated the endosteal surface of the cortical shell from the trabecular bone and investigated its right and left sides for asymmetry in cortical bone topographic thickness of buccal and lingual components. Based on a semiautomatic segmentation, a preliminary map of cortical bone thickness distribution of the Regourdou 1 mandible was firstly performed by Volpato et al. (2011a) (Supplementary Online Material [SOM] Fig. S1).

The different steps of the procedure, developed through the software packages Avizo v.9.5 (Termo Fisher ™ -FEI, Hillsboro, Oregon, USA) and ImageJ [START_REF] Schneider | NIH Image to ImageJ: 25 years of image analysis[END_REF], are detailed in SOM S1 and illustrated in SOM Fig. S2. Although the process described above is time-consuming, the segmentation of the selected portion of the Regourdou 1 mandible was facilitated by the extremely limited presence of sedimentary matrix infill and by its poor degree of mineralization. However, because of the local presence of some thicker plate-like trabecular structures [START_REF] Gibson | The mechanical behaviour of cancellous bone[END_REF][START_REF] Stauber | Volumetric spatial decomposition of trabecular bone into rods and plates: A new method for local bone morphometry[END_REF], at some sites, the otherwise distinct endosteal contour has been defined by local manual corrections and interpolation every ten virtual slices (step 7 of the segmentation procedure; SOM Fig. S2). The minor discontinuities along the buccal and lingual cortical shells related to the oblique fracture running in the original specimen from the apex of the right canine towards the base of the corpus, just at the level of the left I2, have been virtually integrated; conversely, as they do not affect the analysis, the lack on both sides of two alveolar bone splinters at I2-C1 level has been ignored.

Cortical bone thickness topographic variation in the selected left and right portions of the Regourdou 1 mandible was measured by computing the distance between the triangulated periosteal and endosteal surfaces of the cortical shell; for each vertex of one surface, the closest point on the other surface was computed. Cortical thickness distribution was virtually rendered for the buccal and the lingual aspects of each side using a chromatic scale increasing from dark blue (thin) to red (thick). This synthetic visual descriptor allows the quick identification of similarities and differences in bone topographic distribution and the qualitative assessment of structural asymmetries [START_REF] Bondioli | Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[END_REF][START_REF] Mazurier | The inner structural variation of the primate tibial plateau characterized by high-resolution microtomography. Implications for the reconstruction of fossil locomotor behaviours[END_REF][START_REF] Bayle | Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database[END_REF]Volpato et al., 2011b;[START_REF] Puymerail | Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java)[END_REF][START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF][START_REF] Cazenave | Hominin Biomechanics, Virtual Anatomy and Inner Structural Morphology: From Head to Toe. A Tribute to Laurent Puymerail[END_REF]. Besides morphometric maps, cortical bone thickness was measured at three buccal and three lingual 2 × 2 mm sites geometrically defined at homologous spots on both sides of the mandible. The first measure (U, upper) was taken below the P3 apex; the second measure (L, lower) was taken between the P3 apex and the lower mandibular margin; the last measure (I, intermediate) was taken between the upper and the lower sites (Fig. 2).

Radicular dentine thickness

In order to identify any possible difference in the pattern of root dentine thickness distribution between the left and right third premolars, we digitally segmented the 60-85% portion (i.e., the subcervical portion) of the total P3 root length along a predefined vertical line at the middle of the lingual aspect and then unrolled and projected it onto a morphometric map [START_REF] Bondioli | Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[END_REF][START_REF] Bayle | Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database[END_REF][START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF][START_REF] Zanolli | The late Early Pleistocene human dental remains from Uadi Aalad and Mulhuli-Amo (Buia), Eritrean Danakil: Macromorphology and microstructure[END_REF][START_REF] Zanolli | The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment[END_REF] generated by a custom routine developed in R v.3.5.0 (R Development Core Team, 2018) with the packages Momocs [START_REF] Bonhomme | Momocs: Outline analysis using R[END_REF], spatstat [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF] and gstat [START_REF] Pebesma | Multivariable geostatistics in S: The gstat package[END_REF]. We applied the same 'unrolling' protocol to investigate the dentine topography in P3 belonging to modern human male individuals (n = 3) from the Pretoria Bone Collection, Johannesburg, South Africa [START_REF] L'abbé | The Pretoria bone collection: A modern South African skeletal sample[END_REF]. These three individuals, aged 26 (A), 32 (B), and 56 years (C), show a low (stages 1-2 following [START_REF] Smith | Patterns of molar wear in hunter-gatherers and agriculturalists[END_REF] to moderate (stage 3) degree of occlusal wear. In this assemblage, slight right vs. left wear differences are only found in the oldest individual, where the right P3 crown (stage 3) shows a small dentine exposure on the protoconid, which is absent on its antimere (stage 2). The modern human sample was scanned using an X-Tek (Metris) XT H225L industrial microtomographic system at the South African Nuclear Energy Corporation (NECSA), Pelindaba, at a resolution ranging from 47 to 90 µm. In all cases, dentine thickness values have been standardized between 0 and 1 and each morphometric map has been set within a grid of 80 columns and 100 rows.

Statistical analyses

To visually compare the Regourdou 1 molar wear pattern with that of other human samples, we have used the data currently available for Neanderthal and anatomically modern human (AMH) specimens (Fiorenza et al., 2011a;[START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF]. In order to create a robust and more homogenous sample, from each specimen we selected only one maxillary molar in wear stages 2 and 3 (Fiorenza et al., 2011a). For Regourdou 1, we selected the right M2 (the relative wear areas of its antimere are similar).

We have used the ternary plot, which is a diagram depicting the proportions of three variables (in this specific case, represented by the relative areas of buccal, lingual and phase II facets), which have to sum to 1 or 100%. Moreover, we have employed circular statistical methods to analyze facet directions to establish whether or not the unique pattern found on the left P3 is due to non-masticatory processes (Fiorenza et al., 2011c;[START_REF] Fiorenza | Dental wear and cultural behaviour in Middle Paleolithic humans from the Near East[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF][START_REF] Burnett | Crown wear: Identification and categorization[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF]. Because the occlusal compass movements are enclosed in a circular space of 360°, standard statistical investigations are not directly applicable to the analysis of directional data [START_REF] Hammer | Paleontological Data Analysis[END_REF]. For example, the difference between a value of 350° and 10° is not 340° but only 20°. We have described the facet's directions using basic descriptive parameters, such as the mean angle, the 95% confidence interval, and the circular standard deviation. One of the first steps in circular statistics is to investigate if the data is taken from a von Mises distribution (the equivalent of the normal distribution for linear data). To measure the departure of the circular distribution from a perfect circle, the maximum likelihood estimate of the concentration parameter (k) was calculated [START_REF] Batschelet | Circular Statistics in Biology[END_REF][START_REF] Fisher | Statistical Analysis of Circular Data[END_REF][START_REF] Mardia | Directional Statistics[END_REF]. As k gets large, the von Mises distribution approaches the normal distribution.

In order to evaluate whether the facet directions follow a random distribution or specific directions of occlusal movements (described by the dental occlusal concept; Douglass and DeVreugd, 1997), we used the Rayleigh's test and the Rao's spacing test [START_REF] Batschelet | Circular Statistics in Biology[END_REF][START_REF] Fisher | Statistical Analysis of Circular Data[END_REF][START_REF] Mardia | Directional Statistics[END_REF]. The Rao's spacing test is based on the idea that if the underlying distribution is uniform, successive observations should be evenly spaced. Large deviations from this distribution suggests directionality [START_REF] Levitin | Rao's spacing test[END_REF]. Similarly, the Rayleigh's test is used to assess whether the distribution of mean angles of direction departs randomly from circular uniformity. For example, if vectors of similar wear facets point toward the same direction, the Rayleigh's test will be characterized by small p values, indicating thus a significant departure from uniformity.

To visually display a facet's major directions, we used the rose diagrams, which are circular histograms divided into sectors to display the data frequency and orientation [START_REF] Hammer | Paleontological Data Analysis[END_REF]. The ternary plot was created using the software PAST v.3.13 [START_REF] Hammer | PAST: Palaeontological Statistics Software Package for education and data analysis[END_REF].

Directional statistic results and rose diagrams were obtained using a circular statistic software program (Oriana TM v. 4.00, Kovach Computing Services, Pentraeth, UK).

Results

Occlusal fingerprint analysis

The anterior teeth of the Regourdou 1 mandible show a more advanced degree of wear than the postcanine dentition, with large dentine exposures and rounded labial wear (Fig. 3). The incisors display a pronounced dentine exposure on the incisal edge, wherein each incisor possesses a complete enamel rim enclosing a dentine area. The canines show a very similar wear pattern. They differ from the incisors in also possessing steep triangular wear facets (on this distolabial face) which were probably generated by contact with the mesiolingual wall of the upper canine due to a slight horizontal overlap between maxillary and mandibular opposing teeth [START_REF] Kaifu | Tooth wear and the "design" of the human dentition: A perspective from evolutionary medicine[END_REF].

A close look at the occlusal wear in the postcanine teeth highlights the presence of several dentine areas, flatter lingual facets and a lower metaconid in the right molars, especially observable in the first molar (Table 1). In particular, we notice a marked asymmetric pattern in absolute area exposed by dentine, with the right side (61.87 mm 2 ) significantly more worn than the left (46.45 mm 2 ). In contrast, the left lower P3 shows a more advanced degree of wear than its antimere, and a mesiodistally elongated dentine exposure is visible on the buccal aspect of the occlusal surface.

The presence of a well-developed, polished and semicircular enamel wear (Fig. 4) between the protoconid tip and the mesial marginal ridge excludes the possibility that taphonomic and/or diagenetic processes. On the other hand, the oblique surfaces of the occlusal enamel wear facets are slightly inclined mesially.

If we look more in detail at the left P3 wear facets and the exposed dentine area, we can see in mesiodistal direction that the wear surface is shaped like a saddle. The wear area represents a groove with changing inclination from mesial to distal. It is mesiodistally elongated and ends with a steeply inclined distal margin running parallel to the crown wall. In contrast, the right P3 is characterized by a normal wear pattern enclosing a smaller dentine exposure around the protoconid. Both P4 display similar wear patterns, with facets forming buccally, along the protoconid, metaconid and entoconid.

Finally, the left P4 is the only tooth in the postcanine dentition on which no dentine exposure is detectable.

The first molars show the most advanced wear of all postcanine dentition, with the exception of the left P3 discussed above. Large dentine areas are visible in all five main cusps of the lower M1.

The dentine exposure on the entoconid coalesces with the dentine of the lingual slope of the hypoconulid, creating one dentine basin with a convex distal margin.

The wear pattern in the M2 is characterized by large facets that do not coalesce (Fig. 5).

Relatively small dentine basins are pronounced on the mesiobuccal side of the entoconid, also visible in the slightly less worn third molars, although the dentine exposure in the right side decreases from M2 to M3. The wear pattern on the third molars is characterized by marked differences in hypoconid and hypoconulid areas, where the facets tend to fuse, forming a flat concave area especially evident on the left M3. Distobuccally, a concave basin likely occludes with the hypocone of the upper M 3 , and seems to function structurally as a mortar-and-pestle system, particularly suitable for grinding and crushing food items.

Among other features, the Neanderthal lower molars are characterized by the presence of the mid-trigonid crest (Vanderbroek, 1967;[START_REF] Zubov | The epicristid or middle trigonid crest defined[END_REF][START_REF] Wu | Brief communication: Variation in the frequency and form of the lower permanent molar middle trigonid crest[END_REF], a well-developed mesial fovea [START_REF] Bailey | Neanderthal dental morphology: Implications for modern human origins[END_REF] and a well-developed metaconid. In all molars of Regourdou 1, we observe that around the mid-trigonid region, wear facets develop along its mesial slopes and are characterized by steep planes, particularly on the buccal side of the metaconid. In contrast, in the distal part of the occlusal molar surface, the amount of dentine exposure increases, the height of the entoconid and protoconid decrease, and the resulting wear facets tend to be flatter. In terms of relative facet areas, the percentages of the various chewing phases are similar among the postcanine tooth elements (Table 2).

In particular, phase II areas are more developed in M1 when compared with those of M2 and M3, probably because of the advanced degree of wear. Similarly, the wear planes of phase II areas are flatter than buccal and lingual phase I facets in M1 and M2; the opposite situation is found in M3 (Table 3). It is also interesting to note that the inclination of buccal and lingual phase I facets in M1 is generally steeper than that of adjacent teeth. The opposite situation is found for phase II areas.

Generally, first molars are characterized by flatter wear facets than second and third molars, simply because they erupt earlier and therefore are exposed to wear for a longer period of time. Teeth with a higher degree of wear are also characterized by a flatter occlusal wear pattern [START_REF] Fiorenza | Occlusal wear pattern analysis of functional morphology in Neanderthals and early Homo sapiens dentition[END_REF][START_REF] Fiorenza | Functional relationship between dental macrowear and diet in Late Pleistocene and recent modern human populations[END_REF].

Ecogeographic analysis

For the comparative analysis of relative wear facet areas, we used the right M2 of Regourdou 1, which is characterized by 30% of buccal phase I facets, 38% of lingual phase I facets and 32% of phase II areas (Table 4). In the ternary diagram (the schematic graphic representation of these proportions), Regourdou 1 plots near the Neanderthals from temperate regions dominated by deciduous woodland forest (DEW group; Fig. 6, in green), and thus differs from the individuals from cold steppe and coniferous forests (SCF; Fig. 6, in blue) and warmer Mediterranean evergreen forests (MED; Fig. 6, in red; see also Fiorenza et al, 2011a). The two latter groups are characterized by large buccal phase I facets and small lingual phase I areas (SCF), and by equally large buccal phase I facets and phase II areas (MED).

Cultural habits

Circular statistical analysis of Regourdou 1 lower molars and premolars confirm that all the major movements (large κ values) described by the dental occlusal concept (Douglass and DeVreugd, 1997) fall within a von Mises distribution, displaying preferred directions, with statistically significant values for both the Rayleigh's test and Rao's spacing tests (p < 0.05; Table 5). Based on their special position, the two semicircular facets (here labeled as P1 and P2) should be equivalent to facets 1 and 10 ( [START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF], and they should correspond to LRT and MPT movements, respectively. However, when we visually inspect the major occlusal directions using the rose diagram (Fig. 7), the vectors of P1 and P2, which are characterized by non-significant Rayleigh values, fall outside these major orientations pointing to different areas of the compass (LPT and MT respectively). This indicates a high level of anisotropy and a circular random distribution.

Cortical bone distribution

The morphometric maps of the Regourdou 1 mandible reveal cortical bone thickness topographic variation between the right and left side (Fig. 8.) While the thickness-related signal around the perialveolar and periradicular areas (in blue) on the buccal aspect should be considered as indicative only (due to the combined effects of real bony thinness and local damages, especially at the level of the canines), the left cortex is noticeably thicker than its right counterpart across the entire intermediate level of the mandibular body, especially below the premolars. Within the set of 12 measurements considered in this study, the differences among the thickness values specifically assessed at the upper (U), lower (L) and intermediate (I) levels of the mandibular body (Fig. 2) confirm this pattern (Table 6). Compared to the buccal aspect, the differences in bone thickness distribution between the two lingual cortical shells appear less distinct and randomly spread, but in this case it is the right side that shows a slightly thicker average cortex (Fig. 8; see also the mandible in basal view in SOM Fig. S1).

Radicular dentine thickness

The standardized morphometric maps rendering radicular dentine thickness topographic variation across the 60-85% root length portion of the right and left Regourdou 1 P3 are shown in Figure 9, where they are compared to the maps generated for the same region of interest for the lower P3 pairs of three recent adult humans (Fig. 9A-C; see Materials and methods) showing a low to moderate degree of occlusal wear (stages 1-2 to 3; [START_REF] Smith | Patterns of molar wear in hunter-gatherers and agriculturalists[END_REF].

In Regourdou 1, the virtually extracted and unrolled chromatic-related root projections reveal some distinct topographic differences. Specifically, the thickened dentine of the left P3 uniquely displays a proportionally wide and vertically extended buccal reinforcement exactly where the antimere tends to show relatively thinner tissue. Conversely, the two premolars share a thick, pillarlike vertical lingual strip, an absolutely and relatively thinner distal strip and, to a lesser extent, a thinner mesial strip.

Even if associated with absolutely thinner dentine, approximately the same structural signature displayed by the Regourdou 1 right P3 (thicker lingual vs. thinner distobuccal dentine) is homogeneously found in both maps of the two younger modern human individuals used in this study for comparison (A and B, 26 and 32 years old, respectively), both displaying low occlusal wear (stages 1-2) with no macroscopic evidence of side differences. However, similar to Regourdou 1, a slightly more contrasted pattern is shown by the 56 year old individual (C). Perhaps associated with a slightly more advanced degree of occlusal wear affecting the crown of its right P3 (stage 3; [START_REF] Smith | Patterns of molar wear in hunter-gatherers and agriculturalists[END_REF], where a dentine spot is present on the buccal cusp, its morphometric map reveals a small vertical buccal reinforcement absent on the root of its occlusally slightly less worn (stage 2) antimere (Fig. 9).

Discussion

Dental macrowear

Regourdou 1 shows a typical Neanderthal wear pattern, with incisors and canines exhibiting heavier wear than molars. Heavy anterior tooth wear is a morphological feature almost ubiquitous among adult Neanderthals and other Middle Pleistocene hominins (such as Kabwe), which has been interpreted as a habitual use of teeth as tools for cutting, holding, and shaping a variety of objects (e.g., [START_REF] Brace | Environment, tooth form, and size in the Pleistocene[END_REF][START_REF] Molnar | Tooth wear and culture: A survey of tooth functions among some prehistoric populations[END_REF]Bermudez de Castro et al., 1988;[START_REF] Trinkaus | Morphological contrasts between the Near Eastern Qafzeh-Skhul and late archaic human samples: Grounds for a behavioral difference?[END_REF][START_REF] Fox | Non-dietary marks in the anterior dentition of the Krapina Neanderthals[END_REF].

The study of [START_REF] Volpato | Hand to mouth in a Neandertal: Right handedness in Regourdou 1[END_REF] confirmed the para-masticatory interpretation associating the predominance of oblique scratches found on the right mandibular incisors of Regourdou 1 with righthanded manipulations performed at the front of the mouth. This asymmetric pattern in dental wear was first observed by [START_REF] Maureille | Les dents inférieures du Néandertalien Regourdou 1 (site Regourdou, commune de Montignac, Dordogne): analyses métriques et comparatives[END_REF], and it is supported by our results (see also [START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF]. Differences in the macrowear pattern are found between the right and left sides of this mandible, with the right teeth showing a flatter occlusal surface and prominently larger dentine areas.

However, the opposite situation is observed in third premolars, where the left P3 shows more wear than its right antimere.

Asymmetry in tooth wear in human populations can be considerable [START_REF] Smith | Patterns of molar wear in hunter-gatherers and agriculturalists[END_REF]. The wear asymmetry observed in Regourdou 1 could be simply due to preferential chewing on one side [START_REF] Molnar | Tooth wear rates among contemporary Australian Aborigines[END_REF][START_REF] Martinez-Gomis | Relationship between chewing side preference and handedness and lateral asymmetry of peripheral factors[END_REF]. Alternatively, asymmetry in macrowear patterns could be related to asymmetry in the masticatory apparatus, typical of X-occlusion (or alternate intercuspation), where upper and lower teeth can meet in maximum contact on either left or right sides, but not on both sides together [START_REF] Barrett | X-occlusion[END_REF][START_REF] Brown | Yuendumu: Legacy of a Longitudinal Growth Study in Central Australia[END_REF][START_REF] Oxilia | The physiological linkage between molar inclination and dental macrowear pattern[END_REF]. However, it is difficult to reconstruct the intercuspation with only the mandible preserved. Nonetheless, it is noteworthy that besides a certain degree of outer tooth crown size asymmetry [START_REF] Maureille | Les dents inférieures du Néandertalien Regourdou 1 (site Regourdou, commune de Montignac, Dordogne): analyses métriques et comparatives[END_REF], fluctuating endostructural antimeric variation in Regourdou 1 has been detected also in tooth tissue proportions of its postcanine dentition, notably for the variables total volume of pulp (Vp), volume of crown pulp (Vcp), volume of crown dentine (Vcd), and volume of crown dentine + pulp (Vcdp; Macchiarelli et al., 2013:Table 11.1). However, the relationship between function and development of this antimeric variation needs to be further explored [START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF].

Non-masticatory behavior

The use of teeth as tools is not exclusively found in the anterior dentition, but it also involves the postcanine teeth. For instance, dental enamel chipping in molars and premolars has been found in various human populations and different fossil hominins, and it has been associated with masticatory and non-masticatory activities [START_REF] Turner | Dental chipping in Aleuts, Eskimos and Indians[END_REF][START_REF] Lukacs | Traumatic injuries of prehistoric teeth: New evidence from Baluchistan and Punjab Provinces, Pakistan[END_REF][START_REF] Milner | Teeth as artifacts of human behavior: Intentional mutilation and accidental modification[END_REF][START_REF] Bonfiglioli | Masticatory and nonmasticatory dental modifications in the Epipalaeolithic necropolis of Taforalt (Morocco)[END_REF][START_REF] Belcastro | Continuity or discontinuity of the lifestyle in central Italy during the Roman Imperial age-early Middle Ages transition: Diet, health, and behavior[END_REF][START_REF] Constantino | Tooth chipping can reveal the diet and bite forces of fossil hominins[END_REF][START_REF] Scott | Dental chipping: Contrasting patterns of microtrauma in Inuit and European populations[END_REF]. More recently, we have described a unique wear pattern found on the posterior maxillary dentition in various recent hunter-gatherer populations, in some Neanderthals and in anatomically modern humans from the Mediterranean region, which was not created during normal mastication but more likely result from the attritional and abrasive contacts generated through daily task activities for foods processing and/or object manufacturing (Fiorenza et al., 2011c;Fiorenza andKullmer, 2013, 2015;[START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF]. We named these wear areas, forming along the buccal side of maxillary molars, parafacets, to reflect their non-masticatory etiology (Fiorenza et al., 2011c).

In order to test whether the unique wear found of the left P3 of the Regourdou 1 mandible is associated with non-masticatory activities, we examined the dip directions (the angle between the projected and the reference vectors) of these wear areas to see whether they correspond to the directions of major occlusal movements, which could be responsible for their formation. In normal occlusion, the vectors (encoded in a circular space ranging from 0° to 360°) of these specific wear facets should fall within the major directions described by the dental occlusal compass concept (Douglass and DeVreugd, 1997;[START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF]. Our analysis shows, however, that the two facets found on the left P3 do not fall within the space range of the occlusal directions, the lateroretrusive and lateroprotrusive movements, and therefore differ from a normal masticatory behavior.

We have also examined if the semicircular shape (Fig. 10A) of this wear could be the product of a repetitive abrasive movement with a cord-like object, similar to those described for modern human populations, such as the Natufians, where teeth were used as tools while making baskets or fishing nets [START_REF] Larsen | Dental modifications and tool use in the Western Great Basin[END_REF][START_REF] Minozzi | Nonalimentary tooth use in prehistory: An example from early Holocene in central Sahara (Uan Muhuggiag, Tadrart Acacus, Libya)[END_REF][START_REF] Bonfiglioli | Masticatory and nonmasticatory dental modifications in the Epipalaeolithic necropolis of Taforalt (Morocco)[END_REF][START_REF] Eshed | Tooth wear and dental pathology at the advent of agriculture: New evidence from the Levant[END_REF][START_REF] Molleson | A method for the study of activity related skeletal morphologies[END_REF][START_REF] Erdal | Occlusal grooves in anterior dentition among Kovuklukaya inhabitants (Sinop, Northern Anatolia, 10th century AD)[END_REF]. This pattern of dental wear has been described as an enamel rim surrounding depressed dentine area, usually circular in shape ('cup-shaped' topography), probably produced by a pulling action across the first molar and second premolar [START_REF] Eshed | Tooth wear and dental pathology at the advent of agriculture: New evidence from the Levant[END_REF].

Through a CAD (computer-aided design) model, we have virtually simulated how a cord-like object would fit around the semicircular wear found on the left P3 (Fig 10B). Based on the shape and inclination of this unique wear, it is possible that the object was pulled toward the lingual side.

Elongated grooves on the occlusal surfaces are generally reported in the anterior dentition, but they have also been found on premolars and molars [START_REF] Larsen | Dental modifications and tool use in the Western Great Basin[END_REF][START_REF] Eshed | Tooth wear and dental pathology at the advent of agriculture: New evidence from the Levant[END_REF]. However, it is important to note that the wear found in Natufians dentition was symmetrical [START_REF] Eshed | Tooth wear and dental pathology at the advent of agriculture: New evidence from the Levant[END_REF] and that it ran in a different direction from those seen in Regourdou 1; therefore, this interpretation cannot be confirmed here.

Another possible cause of this wear could be the presence of a supernumerary tooth, rotated premolar, or transposed canine in the maxillary dentition. Supernumerary teeth are extremely rare. In modern humans, for instance, the presence of supernumerary teeth is between 0.1% and 3.4% [START_REF] Ceperuelo | Supernumerary fourth molar and dental pathologies in a Calcolithic individual from El Mirador Cave site (Sierra de Atapuerca, Burgos, Spain)[END_REF]. In the literature review of the human fossil record we did not find any specimen with supernumerary teeth. However, we suspect that a supernumerary (or rotated) premolar would not generate similar wear as observed in Regourdou 1. For example, we recently described the occlusion of an adult male gorilla with a fully erupted, 180° rotated extra maxillary premolar [START_REF] Fiorenza | Occlusion in an adult male gorilla with a supernumerary maxillary premolar[END_REF]. This individual did not show the same wear as the Regourdou 1 left third premolar. The occlusal simulation and kinematic analysis of the adult gorilla specimen revealed a high level of overlap in facet directions, combined with the absence of common occlusal contacts and lack of semicircular facets. In addition, Rougier et al. ( 2006) described a number of rotated Neanderthal lower third premolars from the Croatian site of Krapina and none of these cases show a wear pattern similar to that found in Regourdou 1.

Build-up bone and root dentine suggest asymmetrical forces placed on the left P3 that could result from idiosyncratic use (masticatory or non-masticatory). However, at this stage, we are unable to tease apart the cause of wear on the left P3 (non-masticatory versus masticatory activities), and we can only observe its unique shape and unusual occlusal directions depicted in the dental occlusal compass. Further investigations of the original through scanning electron microscopy, will be necessary to identify the striations within P3 facets and their orientations. In addition, virtual occlusal simulation and experimental replication of striations [START_REF] Oxilia | Earliest evidence of dental treatment in the Late Upper Paleolithic[END_REF][START_REF] Oxilia | The dawn of dentistry in the late upper Paleolithic: An early case of pathological intervention at Riparo Fredian[END_REF] could help us to precisely determine the nature of this wear pattern.

Dietary signals

To date, no studies have investigated and reconstructed the ecology and diet of the Neanderthal from Regourdou. A previous study based on the analysis of upper molars in Neanderthals and AMH found a wear pattern dominated by buccal phase I facets in meat eater populations, and a pattern with large lingual phase I facets in populations that relied on mixed food resources including a large percentage of plant material (Fiorenza et al., 2011a). However, in a recent macrowear study of an Australian aboriginal population from Yuendumu (Northern Territory, Australia), an asymmetric distribution (not statistically significant) was found between upper and lower molars, especially for lingual and buccal phase I facets [START_REF] Oxilia | The physiological linkage between molar inclination and dental macrowear pattern[END_REF]. However, the other two Neanderthal lower molars included in our comparative sample (Guattari 2 and 3) fall well within the upper molar sample [START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF].

In the light of this new information, we can interpret the predominance of lingual phase I facets, and equally distributed phase II and buccal phase I facets of Regourdou 1, with the intake of mixed food resources, including meat and plant materials. Similar patterns have been described in the Neanderthals from Krapina that lived in deciduous forests and Mediterranean evergreen woodland of northern Croatia during a warm phase of the Eemian Interglacial period (MIS 5e; [START_REF] Rink | ESR ages for Krapina hominids[END_REF][START_REF] Van Andel | Paleolithic landscapes of Europe and environs, 150,000-25,000 years ago: An overview[END_REF], and in Neanderthals and AMH from Mediterranean environments in the Near East during MIS 5e. This conclusion is in agreement with the analysis of the stratigraphy and faunal remains from Level 4 at Regourdou, which suggests a moderately warm phase within MIS 4 [START_REF] Bonifay | La sépulture néandertalienne du Régourdou (Montignac-sur-Vezère, Dordogne)[END_REF][START_REF] Plavcan | The Regourdou 1 Neandertal body size[END_REF]. The macrofauna consists of Ursus arctos, Cervidae, Bovidae, Castor, Sus and Lepus, typical of temperate climates [START_REF] Vandermeersch | The postcranial remains of the Régourdou 1 Neandertal: The shoulder and arm remains[END_REF].

In addition, a recent paleoclimate study places Regourdou 1 in a warm temperate and mesic ecogeographic zone [START_REF] Nicholson | Eemian paleoclimate zones and Neanderthal landscape-use: A GIS model of settlement patterning during the last interglacial[END_REF]. Evidence suggests that Neanderthals living during interglacial warmer phases, or at the southern latitudes near the Mediterranean area, had a broader dietary niche compared to those populations from colder phases. These niches included the intake of marine shellfish, small mammals and birds, and a large range of plants such as legumes, fruit, acorn, wild grasses and underground storage organs (Stiner, 1994;Albert et al., 2000;Madella et al., 2002;Lev et al., 2005;Stringer et al., 2008;[START_REF] Brown | Yuendumu: Legacy of a Longitudinal Growth Study in Central Australia[END_REF]El Zaatari, 2011;Fiorenza et al., 2011aFiorenza et al., , 2015a[START_REF] Fiorenza | Functional relationship between dental macrowear and diet in Late Pleistocene and recent modern human populations[END_REF]Blasco et al., 2013;[START_REF] Fiorenza | Dental wear and cultural behaviour in Middle Paleolithic humans from the Near East[END_REF][START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF]Henry et al., 2011Henry et al., , 2014;;[START_REF] Harvati | New Neanderthal remains from Mani peninsula, S. Greece: The Kalamakia Middle Palaeolithic cave site[END_REF]Estalrrich et al., 2017;Weyrich et al., 2017;Power et al., 2018).

However, for a more accurate assessment of the diet of Regourdou 1, it will be important to extend the macrowear analysis also to Neanderthal and AMH lower molars.

Cortical bone distribution and root dentine thickness variation

Variation in cortical bone distribution in the mandible is a common feature found in all anthropoids, with the lingual side thinner than the buccal side under the molars [START_REF] Demes | Stress-strength relationships in the mandibles of hominoids[END_REF][START_REF] Daegling | Biomechanics of cross-sectional size and shape in the hominoid mandibular corpus[END_REF][START_REF] Daegling | Compact bone distribution and biomechanics of early hominid mandibles[END_REF]. This asymmetric cortical pattern has been interpreted as an adaptation to reduce strains on the lingual sides under the combining action of twisting and occlusal loads [START_REF] Demes | Stress-strength relationships in the mandibles of hominoids[END_REF][START_REF] Dechow | Elastic properties and masticatory bone stress in the macaque mandible[END_REF]. According to [START_REF] Daegling | Functional significance of cortical bone distribution in anthropoid mandibles: An in vitro assessment of bone strain under combined loads[END_REF], a thickened cortex along the buccal side of the mandibular corpus may indicate a structural response to magnified local loads.

In the mandibular area located between the canine and the first molar, we found that cortical bone distribution of the lingual side of the Regourdou 1 is generally thicker than the buccal side (Volpato et al., 2011a;[START_REF] Thibeault | Etude de la covariation entre les dents et la mandibule chez les enfants et adultes Néandertaliens et modernes par imagerie 3[END_REF]. As indicated by [START_REF] Ichim | Functional significance of strain distribution in the human mandible under masticatory load: Numerical predictions[END_REF], who found asymmetric strain distribution on the working and balancing side of the human mandible, the thicker lingual mandibular side found in Regourdou 1 could be interpreted as a response to higher mechanical forces at the lingual aspect (Martinez-Maza et al., 2011).

Our analysis has revealed a slight asymmetry in cortical bone thickness distribution at the level of the P3, with the left buccal cortex being systematically thicker at all three spots measured along a vertical strip below the root apex (Fig. 2). Conversely, no consistent directional differences have been recorded across the homologous sites measured on the lingual side.

Bone is a dynamic tissue that responds to alterations of its mechanical environment (e.g., [START_REF] Huiskes | Bone remodelling around implants can be explained as an effect of mechanical adaption[END_REF][START_REF] Pearson | The aging of Wolff's law: Ontogeny and responses to mechanical loading in cortical bone[END_REF][START_REF] Ruff | Who's afraid of the big bad Wolff?: "Wolff's Law" and bone functional adaptation[END_REF]. The mandibular corpus exhibits strong developmental plasticity, where variation in masticatory loadings and paramasticatory regimes seems responsible for localized differences in bone mass, and morphology [START_REF] Daegling | Functional significance of cortical bone distribution in anthropoid mandibles: An in vitro assessment of bone strain under combined loads[END_REF][START_REF] Fukase | Functional significance of bone distribution in the human mandibular symphysis[END_REF][START_REF] Fukase | Growth-related changes in prehistoric Jomon and modern Japanese mandibles with emphasis on cortical bone distribution[END_REF][START_REF] Holmes | Dietary effects on development of the human mandibular corpus[END_REF][START_REF] Gröning | Modeling the human mandible under masticatory loads: Which input variables are important?[END_REF].

Accordingly, we associate the local variation in cortical bone thickness of the Regourdou 1 mandible to possible asymmetric mechanical loads caused by the use of his/her teeth as tools, as highlighted by the analysis of the macrowear pattern. In this respect, our results indicate an association between tooth macrowear and cortical bone distribution, suggesting that cortical bone asymmetry is probably biomechanically related to masticatory and/or non-masticatory differential loadings. However, given the current lack of immediately comparable evidence from other extant and/or fossil adult human mandibles, the interpretation of a direct functional link between occlusal crown wear and jaw bone asymmetry deserves further investigation. In addition, it is important to highlight that we have found an asymmetric distribution also in the P3 radicular dentine, expressed by an absolutely thicker buccal dentine on the left tooth.

To the best of our knowledge, functionally-related asymmetry in tooth radicular dentine thickness distribution has not been investigated and quantitatively assessed. However, thanks to the current availability of 'virtual unrolling' techniques [START_REF] Bondioli | Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation[END_REF], with the aim of tentatively detecting some taxon-related signal, morphometric maps imaging the pattern of root dentine thickness repartition have been generated for modern and fossil humans, including Neanderthals, AMH, Homo erectus and Homo heidelbergensis [START_REF] Bayle | Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database[END_REF][START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF][START_REF] Zanolli | The late Early Pleistocene human dental remains from Uadi Aalad and Mulhuli-Amo (Buia), Eritrean Danakil: Macromorphology and microstructure[END_REF][START_REF] Zanolli | The Middle Pleistocene (MIS 12) human dental remains from Fontana Ranuccio (Latium) and Visogliano (Friuli-Venezia Giulia), Italy. A comparative high resolution endostructural assessment[END_REF]. In this still limited comparative context, it is interesting to note that, differently from the present analysis of its P3, the standardized morphometric maps previously generated for the root portions 15-85% of the lower lateral incisors (I2) from Regourdou 1 did not evidence any noticeable difference in tissue repartition, including along the labial aspect (SOM Fig. S3).

While harder than bone, dentine is softer than enamel but, by combining rigidity and elasticity, it has greater compressive and tensile strength and better resists crack propagation [START_REF] Berkovitz | Oral Anatomy, Histology and Embryology[END_REF]. Also, after the primary dentine deposition is complete (following root completion and apical closure), dentine formation continues to respond physiologically to a variety of stressors (e.g., abrasion, attrition, erosion, crown fracture, caries). This deposition, responsible for the so-called regular secondary dentine formation, lasts as long as the pulp remains vital and supplied by blood (reviewed in [START_REF] Dean | How the microstructure of dentine can contribute to reconstructing developing dentitions and the lives of hominoids and hominins[END_REF]. While no information is available for the premolar and molar teeth, there is evidence that the pulp of extant human incisors contains high-threshold sensory mechanoreceptors not involved in the sensation of pain, which act as a protective mechanism limiting the maximum bite force by monitoring the stress on compressed dentine [START_REF] Paphangkorakit | Effects on human maximum bite force of biting on a softer or harder object[END_REF].

Accordingly, the pattern of structural asymmetry in radicular dentine thickness topography revealed by the morphometric maps of the Regourdou 1's P3 is compatible with the action of mechanoreceptors playing a long-term role in slightly adapting pulp morphology to resist repetitive strains and stresses through life by locally adapting dentine thickness (M.C. Dean, pers. comm.). The thickened vertical buccal reinforcement uniquely displayed by the left P3 root could, thus represent a site-specific compensatory secondary dentine formation to slow continuous occlusal/axial forces.

A direct functional link in Regourdou 1 between the asymmetric variation in radicular dentine, macrowear patterns and mandibular cortical bone distribution cannot be unequivocally established.

However, we predict that high-resolution analyses of tooth root organization across diverse hominin dentitions, adapted to a variety of dietary and culturally-related functional patterns, should help us to better understand this functional relationship [START_REF] Kupczik | Comparative observations on the tooth root morphology of Gigantopithecus blacki[END_REF][START_REF] Kupczik | Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens[END_REF][START_REF] Bayle | Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database[END_REF][START_REF] Cabec | Long anterior mandibular tooth roots in Neanderthals are not the result of their large jaws[END_REF][START_REF] Soile | Morphological Image Analysis: Principles and Applications[END_REF][START_REF] Macchiarelli | From outer to inner structural morphology in dental anthropology: The integration of the third dimension in the visualization and quantitative analysis of fossil remains[END_REF].

Conclusions

In this study we have combined occlusal fingerprint analysis of the tooth crowns with endostructural virtual imaging to investigate the masticatory behavior, subsistence strategy and cultural habits of the Neanderthal adult individual Regourdou 1. The results indicate that Regourdou 1 preferably chewed on its right side and likely exploited various food sources, including plant and animal food typical of temperate forest habitats. The disproportionally heavy anterior tooth wear suggests the habitual use of teeth as tools. Similarly, the unique wear pattern identified on its left P3, may have been produced by non-masticatory activities. However, further analyses are necessary to precisely identify the nature of this wear.

Left vs. right assessment of cortical bone distribution across the canine-first molar portion of the mandibular body also reveals a slightly thicker cortex in correspondence of the left buccal side, which we interpret as a structural response to locally magnified loads likely related to paramasticatory activities. A fully compatible asymmetrical signature is also provided by the root dentine topography of the left P3, further supporting the interpretation of functionally driven morphostructural changes.

Future studies using the present and other analytical approaches could further investigate whether the overall asymmetric wear pattern and the cortical distribution covary across the entire mandible of this Neanderthal individual. Specifically, finite element analysis can help to predict the biomechanical responses in mandibular models and to clarify the relationships between dental wear, mandibular architecture and occlusal loadings. In addition, with the application of the occlusal fingerprint analysis software, which permits the detection and quantification of collision areas between 3D models of upper and lower teeth during occlusal movements [START_REF] Benazzi | Quantitative assessment of interproximal wear facet outlines for the association of isolated molars[END_REF], it is possible to accurately generate realistic simulations that allow an investigation of how dental and bone tissues deform under different biting scenarios [START_REF] Benazzi | Brief communication: Comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis[END_REF][START_REF] Benazzi | Unravelling the functional biomechanics of dental features and tooth wear[END_REF][START_REF] Benazzi | Dynamic modelling of tooth deformation using occlusal kinematics and finite element analysis[END_REF]Fiorenza et al., 2015b).

The masticatory apparatus is a rather complex structure and variation in cortical bone distribution can affect different areas of this functional unit; in turn, it can be influenced by various morphological and biocultural features that relate to masticatory function and facial types [START_REF] Masumoto | Relationships among facial type, buccolingual molar inclination, and cortical bone thickness of the mandible[END_REF]Daegling and Hotzaman, 2003;[START_REF] Ichim | Functional significance of strain distribution in the human mandible under masticatory load: Numerical predictions[END_REF][START_REF] Grine | Hominin Biomechanics, Virtual Anatomy and Inner Structural Morphology: From Head to Toe. A Tribute to Laurent Puymerail[END_REF]. However, only future analyses based on the extended record from bioculturally and chronologically diverse samples may allow the understanding of the evolutionary dynamic relationships among occlusal wear patterns, inner tooth structural organization, mandibular architecture and the masticatory system as a whole. (Fiorenza et al., 2011a;[START_REF] Fiorenza | Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis[END_REF], where Neanderthals and anatomically modern humans were grouped into three distinct ecogeographical contexts: steppe/coniferous forest (SCF, blue squares), deciduous woodland (DEW, green triangles), and Mediterranean evergreen (MED, red circles). (medioprotrusion, in orange;Douglass and DeVreugd, 1997;[START_REF] Kullmer | Technical note: Occlusal Fingerprint Analysis: Quantification of tooth wear pattern[END_REF]. The vector of the two para-facets found on the left P3 are highlighted in dark red and are labeled as P1 and P2. The rose diagrams show the frequency (divided into sectors) and orientation of wear and para-facets. 
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