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Abstract 

Locality 1, in the Lower Cave of the Zhoukoudian cave complex, China, is one of the most 

important Middle Pleistocene paleoanthropological and archaeological sites worldwide, with the 

remains of c. 45 Homo erectus individuals, 98 mammalian taxa, and thousands of lithic tools 

recovered. Most of the material collected before World War II was lost. However, besides two 

postcranial elements rediscovered in China in 1951, four human permanent teeth from the 

‘Dragon Bone Hill,’ collected by O. Zdansky between 1921 and 1923, were at the time brought to 

the Paleontological Institute of Uppsala University, Sweden, where they are still stored. This 

small sample consists of an upper canine (PMU 25719), an upper third molar (PMU M3550), a 

lower third premolar crown (PMU M3549), and a lower fourth premolar (PMU M3887). Some 

researchers have noted the existence of morpho-dimensional differences between the 

Zhoukoudian and the H. erectus dental assemblage from Sangiran, Java. However, compared to 

its chrono-geographical distribution, the Early to Middle Pleistocene dental material currently 

forming the Chinese-Indonesian H. erectus hypodigm is quantitatively meager and still poorly 

characterized for the extent of its endostructural variation. We used micro-focus X-ray 

tomography techniques of virtual imaging coupled with geometric morphometrics for 

comparatively investigating the endostructural conformation (tissue proportions, enamel 

thickness distribution, enamel-dentine junction morphology, pulp cavity shape) of the four 

specimens stored in Uppsala, all previously reported for their outer features. The results suggest 

the existence of time-related differences between continental and insular Southeast Asian dental 

assemblages, the Middle Pleistocene Chinese teeth apparently retaining an inner signature closer 

to the likely primitive condition represented by the Early Pleistocene remains from Java, while 

the Indonesian stock evolved toward tooth structural simplification. 

  



1. Introduction 

1.1. The cave complex site of Zhoukoudian 

The karstic cave complex site of Zhoukoudian, approximately 42 km South of Beijing, China, is 

one of the historically most prolific and extensively investigated prehistoric sites in Asia (e.g., 

Black et al., 1933, Black, 1934, Weidenreich, 1937, Weidenreich, 1941, Weidenreich, 1943, Pei 

and Zhang, 1985, Wu et al., 1985, Zhou et al., 2000, Shen et al., 2001, Shen et al., 2009, Boaz et 

al., 2004, Gaboardi et al., 2005). Initial excavations were carried out by the paleontologist Otto 

Zdansky, who unearthed the first human remains of the so-called ‘Dragon Bone Hill,’ together 

with faunal material and lithic industry (Zdansky, 1926). Due to the large amount of material 

recovered at Locality 1, in the Lower Cave (c. 45 human individuals, 98 mammalian taxa, and 

thousands of lithic tools), Zhoukoudian is considered one of the most important Middle 

Pleistocene paleoanthropological and archaeological sites worldwide (Wood, 2015). 

Zhoukoudian Locality 1 preserves an approximately 40 m thick sedimentary sequence that can be 

divided, from top to bottom, into 17 stratigraphic levels (Layers), the first top layer being the 

youngest (Wu et al., 1985; for a review of the stratigraphic sequence, see; Shen et al., 2009). 

Most of the human remains derive from Layers 8–9 and 3–4 (Yang et al., 1985). The Layers 8 

and 9, representing an accumulation of c. 6 m, are composed of limestone and dolomitic rockfall 

debris interbedded with fine silt/clay and sand (Goldberg et al., 2001). The c. 8 m thick Layers 3 

and 4 show various facies: Layer 4 exhibits a succession of fine silts with some clay and sand 

rich in phytoliths mixed with ashes (with burnt bones suggesting the intentional use of fire; 

Binford and Ho, 1985, Weiner et al., 1998, Weiner et al., 1999, Zhang et al., 2014, Zhong et al., 

2014; but see also Wu, 1999), whereas Layer 3 displays centimeter thick cemented beds and 

localized areas rich in circular voids (vesicles), indicating the presence of vegetation. These 

features indicate that conditions were becoming progressively wetter during the deposition of 

Layers 4 and 3, with various long-term openings of the cave (Goldberg et al., 2001). 

Based on multiple relative (biostratigraphy, paleomagnetism) and absolute (fission track, 

thermoluminescence, ESR, 230Th/234U and U-series) dating methods, Layers 8–9 were first 

estimated to c. 350–500 ka (Zhao et al., 1985, Huang et al., 1993), whereas Layers 3–4 were 

estimated to c. 250–350 ka (Yuan and Chen, 1980, Pei, 1985, Zhao et al., 1985, Guo et al., 1991, 

Huang et al., 1993, Grün et al., 1997). More recent analyses based on cosmogenic 26Al/10Be 

burial dating of quartz sediments and artifacts from the lower strata of Locality 1 yielded ages 



between 0.68 and 0.78 Ma ago, compatible with the Chinese loess stratigraphy S6 S7 levels 

and with the MIS 17–19 stages (Shen et al., 2009). These dates, older than previous estimates, 

indicate that a human presence at northern China latitudes occurred under different climatic and 

environmental conditions, even during the relatively mild glacial period corresponding to MIS 18 

(Shen et al., 2009). 

The mammalian assemblages from Layers 8–9 support such interpretation, with a cold-climate 

fauna suggesting steppe and forest environments and a trend over time toward increasing 

grasslands, even though warmer climatic conditions prevailed during the deposition of Layer 5 

(Shen et al., 2009). Oxygen isotope data from herbivorous teeth from Layers 8–9 and Layer 4 

indicate a habitat of mixed C3/C4 vegetation and winter monsoon strengthening during the colder, 

drier intervals (Gaboardi et al., 2005). 

The faunal record from Zhoukoudian Locality 1 is rich in invertebrates (fluvial and terrestrial 

gastropods; Black, 1933), amphibians (at least two anuran taxa; Black, 1933), reptiles (including 

squamate taxa belonging to Ophidia and Lacertilia, as well as testudines; Black, 1933), and birds 

(represented by a rich avifauna, including large flightless birds like Struthio sp.; Black, 1934, 

Rich et al., 1986). The mammal fauna is represented by a few Early Pleistocene survivors (like 

Equus sanmeniensis, Sus lydekkeri or Paracamelus gigas), as well as by a number of taxa 

recorded for the first time at the regional scale (such as Myospalax, Ursus spelaeus, Vulpes 

vulpes, Crocuta ultima, Cervus canadensis; Lucas, 2001, Li et al., 2014). In this respect, it has 

been estimated that 89% of the fossil taxa represented in this locality are still living today (Lucas, 

2001). 

Also, the hominin-bearing Layers 8–9 recorded a diversity of large mammals, including non-

human primates (Macaca robustus), Carnivora (Canis lupus, Ursus thibetanus, Ursus arctos), 

Perissodactyla (Dicerorhinus choukoutienensis, Coelodonta antiquitatis, E. sanmeniensis), 

Artiodactyla (Moschus moschiferus, Megaceros pachyosteus, Ovis sp., Bison sp.), and 

Proboscidea (Palaeoloxodon cf. namadicus), as well as micromammal taxa belonging to 

Chiroptera (Rhinolophus, Miniopterus, Ia), Lagomorpha (Ochotona), Rodentia (Cricetinus, 

Cricetulus, Micromys, Rattus, Gerbillus, Microtus), and Soricomorpha (Scaptochirus, Neomys, 

Crocidura; Hu, 1985, Lin, 1985, Yang et al., 1985, Li et al., 2014). 

A similar faunal spectrum is found in Layers 3–4, which also contains some additional taxa 

(notably, Carnivora like Canis cyonids, Nyctereutes sinensis, Cuon antiquus, Vulpes cf. corsac, 



Meles cf. leucurus, Gulo sp., Pachycrocuta brevirostris, Machairodus inexpectatus, Panthera cf. 

tigris, Panthera cf. pardus, Felis teilhardi, Felis cf. microtis, but also Artiodactyla like Cervus cf. 

nippon, Spirocerus peii, Bubalus teilhardi, and Rodentia such as Trogontherium cuvieri and 

Hystrix cf. subcristata; Hu, 1985, Lin, 1985, Yang et al., 1985, Li et al., 2014). Considering that 

the majority of these mammals are accustomed to warm-mild climate open grassland, but that 

some are woodland-associated taxa, the paleoenvironmental and paleoecological signals point to 

the presence of both expanded steppe and temperate forest during the human occupation phases 

(Li et al., 2014). 

Over 17,000 stone artifacts were recovered in most of the stratigraphic levels of Locality 1, from 

Layer 11 to 1 (Pei and Zhang, 1985, Wu et al., 1985). Among those, nearly half were classified 

into 10 morphological categories, where flakes, choppers, core-tools, scrapers, points, and burins 

are the most abundant (Shen et al., 2016). The assemblage from Layers 4–5 is the largest one. 

The amount of large size tools tends to decrease from Layers 8–10 to 1–5, while the opposite is 

true for the flakes and the pointed tools (Wu et al., 1985, Shen et al., 2016). In most layers, the 

most abundant raw material is quartzite (representing up to 95.8% of the lithic artifacts in Layers 

4–5; Li, 2016), a material anyhow not found in the vicinity of the Zhoukoudian area (Pei and 

Zhang, 1985); on the other hand, the local raw materials, like chert, were mostly exploited during 

the deposition of Layers 1–5 (Shen et al., 2016). 

 

1.2. Human remains from Locality 1 and the tooth specimens stored at Uppsala University 

Zhoukoudian Locality 1 yielded all of the early Middle Pleistocene human remains of the 

‘Dragon Bone Hill.’ Taphonomic analyses show that 67% of such remains exhibit large carnivore 

bite marks and high bone fragmentation patterns compatible with the activity recorded for the 

large Pleistocene cave hyena, P. brevirostris (Ciochon et al., 2000, Boaz et al., 2000, Boaz et al., 

2004). Overall, the contextual evidence from the fossil assemblages, the carnivore damage on the 

bone remains, and the anthropic activity patterns at Zhoukoudian Locality 1 support a scenario of 

sporadic phases of human occupation, when the cave was not a hyena den (Boaz et al., 2004). 

Between 1921 and 1923, four isolated permanent teeth were recovered by O. Zdansky and then 

brought to the Paleontological Institute of Uppsala University, Sweden: an upper canine, an upper 

molar, and two lower premolars. One premolar (PMU M3549) and the molar tooth (PMU 

M3550) were described by Zdansky (1926) and by Black (1927) and attributed to Sinanthropus 



pekinensis; the second premolar (PMU M3887) was reported later on by Zdansky (1952) and 

attributed to the same taxon. In the meantime, the still unreported canine tooth (PMU 25719) 

turned up within the faunal remains, where it was recovered only in 2011 and described by 

Kundrát et al. (2015). 

From 1927 to 1966, continuing research at the site yielded nearly 200 Middle Pleistocene human 

remains, representing up to 45 individuals (Wood, 2015). Under still unknown circumstances, 

most of the material collected before World War II was lost (Berger et al., 2012), and only two 

postcranial elements (a tibial and a femoral fragment rediscovered in China in 1951; Wang and 

Sun, 2000) and the four isolated teeth stored in Uppsala currently represent the pre-WWII human 

fossil assemblage from the ‘Dragon Bone Hill.’ Later excavations at Zhoukoudian Locality 1 

recovered additional human fossils and faunal and cultural materials (Wood, 2011). 

The human remains from Zhoukoudian Locality 1 are now generally regarded as classic 

representatives of Homo erectus (Antón, 2003, Antón, 2013, Wood, 2011, Wood, 2015). 

Interestingly, some researchers noted that the cranial assemblage from Zhoukoudian resembles 

the Sambungmacan/Ngandong series, but differs markedly from the Trinil and Sangiran material 

(Schwartz and Tattersall, 2003). In addition, the existence of morphological and dimensional 

differences between the Zhoukoudian and the Early-Middle Pleistocene Sangiran dental samples 

have also been pointed out (Kaifu et al., 2005b, Xing et al., 2014). 

 

1.3. Goals of the study 

Compared to its chrono-geographical distribution, the Early to Middle Pleistocene dental material 

currently forming the Chinese-Indonesian H. erectus hypodigm is quantitatively meager and still 

poorly characterized for the extent of its endostructural variation (Smith et al., 2009, Zanolli, 

2011, Zanolli, 2015, Liu et al., 2013, Liu et al., 2017, Xing et al., 2014, Xing et al., 2016, 

Martinón-Torres et al., 2017). 

Information on the external morphology and crown size of the four teeth stored in Uppsala have 

been provided in previous contributions (Zdansky, 1926, Zdansky, 1952, Black, 1927, Kundrát et 

al., 2015). Given the potential value in taxonomic, phylogenetic, and adaptive/evolutionary 

studies of quantitative data on the inner tooth structural organization (e.g., Macchiarelli et al., 

2006, Macchiarelli et al., 2008, Olejniczak et al., 2008a, Olejniczak et al., 2008b, Skinner et al., 

2008a, Skinner et al., 2008b, Bayle et al., 2010, Bailey et al., 2011, Martínez de Pinillos et al., 



2014, Martinón-Torres et al., 2014, Zanolli et al., 2014, Zanolli et al., 2015, Pan et al., 2017), we 

used micro-focus X-ray tomography techniques of virtual imaging coupled with geometric 

morphometrics for comparatively investigating their tissue proportions, enamel thickness 

distribution, enamel-dentine junction morphology, and pulp cavity shape. When testable, we 

examined the specimens from Zhoukoudian Locality 1 under the assumption that their 

endostructural signature is closer to that of the Chinese (Liu et al., 2013, Liu et al., 2017, Xing et 

al., 2014, Xing et al., 2016), rather than the Indonesian, fossil assemblage (Smith et al., 2009, 

Zanolli, 2011, Zanolli, 2015, Kaifu et al., 2015). 

 

2. Materials and methods 

The four tooth specimens from Zhoukoudian Locality 1 permanently stored at the Paleontological 

Institute of Uppsala University represent: a complete upper right canine (URC: PMU 25719), a 

complete upper right third molar (URM3: PMU M3550), a lower left third premolar crown 

(LLP3: PMU M3549), and a nearly complete lower right fourth premolar, only damaged on its 

distobuccal root (LRP4: PMU M3887; Kundrát et al., 2015; Fig. 1). 



 

Figure 1. Virtual rendering of the four Homo erectus specimens from Zhoukoudian. PMU 

25719, upper right canine; PMU M3550, upper right third molar; PMU M3549, lower left 

third premolar crown; PMU M3887, lower right fourth premolar. For each specimen, the 



outer surface (A), the dentine (B), and the pulp cavity (C) are illustrated in occlusal and 

occluso-lateral views. Scale bar = 5.0 mm. 

 

The specimens were imaged by X-ray computed microtomography (μCT) at the Multidisciplinary 

Laboratory of the ICTP, Trieste (Tuniz et al., 2013), according to the following parameters: 110 

kV voltage, 90 μA current, angular step of 0.25° over a scan angle of 360°. The final volumes 

were reconstructed with an isotropic voxel size ranging from 6.4 to 11.6 μm. 

Using the commercial software Avizo v.8.0 (Visualization Sciences Group Inc.) and the freeware 

ImageJ (Schneider et al., 2012), a semi-automatic, threshold-based segmentation was carried out 

following the half-maximum height (HMH) method (Spoor et al., 1993) and the region of interest 

thresholding protocol (ROI-Tb; Fajardo et al., 2002) by taking repeated measurements on 

different slices of the virtual stack (Coleman and Colbert, 2007). 

Among the four Chinese specimens, only the lower third premolar (PMU M3549) is unworn and 

suitable for the assessment of whole crown tissue proportions, the other specimens showing 

variably extended occlusal wear facets and dentine exposure (stage 2–3 following Smith [1984]). 

The plane halfway between that containing the most apical continuous ring of enamel and that 

containing the most apical enamel was taken as the cervical plane (Olejniczak et al., 2008a). The 

tooth's crown was virtually separated from the roots and the following variables measured or 

calculated: Ve, the volume of the enamel cap (mm3); Vcdp, the volume of the coronal dentine, 

including the coronal aspect of the pulp chamber (mm3); Vc, the total crown volume, including 

enamel, dentine, and pulp (mm3); SEDJ, the enamel–dentine junction (EDJ) surface (mm2); 

Vcdp/Vc (=100*Vcdp/Vc), the percent of coronal volume that is dentine and pulp (%); 3D AET 

(=Ve/SEDJ), the three-dimensional (3D) average enamel thickness (mm); 3D RET (=100*3D 

AET/[Vcdp1/3]), the scale-free 3D relative enamel thickness (see Kono, 2004, Olejniczak et al., 

2008a). As no directly comparable data on crown tissue proportions are so far available for 

Pleistocene human LP3s from continental and insular Southeast Asia, we compared the results of 

PMU M3549 to: the Early Pleistocene early Homo specimen SKX 21204 from Swartkrans, South 

Africa (Pan et al., 2016); four Neanderthal teeth from Krapina, Croatia (KRD33, KRD34, 

KRD111, KRD114; NESPOS Database, 2017); and 10 recent human LP3s from Europe and 

Africa (original data). 



Given the availability in the H. erectus assemblage from Java of two upper third molars (the 

specimens NG0802.1 [Zanolli, 2011, Zanolli, 2015] and Sangiran 4 [original data]), in order to 

extract the maximum amount of structural information from the occlusally worn Chinese 

specimen, we assessed and compared its lateral (non-occlusal) enamel distribution pattern. In 

fact, while occlusal enamel topography is more directly informative in terms of functional 

activity and adaptive responses (e.g., Kono, 2004, Kono and Suwa, 2008, Olejniczak et al., 

2008b, Guy et al., 2013), lateral enamel thickness is also involved in dissipating occlusally 

related stresses (Benazzi et al., 2013a, Benazzi et al., 2013b). Accordingly, a plane parallel to the 

cervical one and tangent to the lowest enamel point of the occlusal basin was established, all 

material above it was removed, and only the enamel and dentine portions between these two 

planes was preserved to estimate tissue proportions (Toussaint et al., 2010, Macchiarelli et al., 

2013, Zanolli et al., 2017). By using a recently developed analytical protocol (Zanolli et al., 

2017), the following variables were measured or calculated on the new set of virtually reduced 

and simplified M3 crowns: LVe, the lateral volume of enamel (mm3); LVcdp, the lateral volume 

of coronal dentine, including the lateral coronal aspect of the pulp chamber (mm3); LSEDJ, the 

enamel-dentine junction lateral surface (mm2); 3D LAET (=LVe/LSEDJ), the 3D lateral average 

enamel thickness (mm); 3D LRET (=100*3D LAET/[LVcdp1/3]), the 3D lateral relative enamel 

thickness (Zanolli et al., 2017). 

To visualize similarities versus differences in enamel thickness topography, ad hoc imaging 

techniques were used to virtually unroll the lateral enamel and to project it into standardized 

morphometric maps (Bondioli et al., 2010, Macchiarelli et al., 2013, Zanolli et al., 2017). By 

using a custom developed routine in R v.3.4.0 (R Development Core Team, 2017) with the 

packages spatstat (Baddeley et al., 2015) and gstat (Pebesma, 2004), enamel thickness values 

were standardized between 0 and 1 and each morphometric map was set within a grid of 40 

columns and 180 rows. For the two Javanese H. erectus specimens, five Neanderthal UM3s from 

Krapina (KRD97, KRD109, KRD162, KRD163, KRD170; NESPOS Database, 2017), and five 

recent humans (original data), we produced a consensus map generated by merging the available 

individual records into a single dataset and by subsequently calculating the interpolation using 

Generalized Additive Modeling (GAM; see Bondioli et al., 2010). 

Intra- and inter-observer tests for accuracy of the estimates were run by two observers. Linear, 

surface, and volumetric measurements provided differences less than 4% for both tests. 



Description of the nonmetric features at the enamel-dentine junction (EDJ) is adapted from 

classical outer crown features scored following Scott and Turner (1997) and the scores of the 

Arizona State University Dental Anthropology System (ASUDAS; Turner et al., 1991). 

Geometric morphometric (GM) analysis of the EDJ was performed on the virtual surfaces of all 

four specimens from Zhoukoudian. The slightly worn dentine apex of the canine tooth (PMU 

25719) and that of the upper M3 paracone (PMU M3550) were partially reconstructed (by 

elaborating a 3D approach deriving from Smith et al., 2012). Except for the canine that lacks 

adequate homologous points, a landmark-based analysis was thus performed by placing one 

landmark on the apex of each main cusp (the paracone, protocone, metacone, and hypocone of 

the UM3 and the protoconid and metaconid of the two premolars). A set of sliding 

semilandmarks were then positioned along the marginal and oblique/transversal crests (82 

semilandmarks on the UM3 and 72 semilandmarks on the P3 and P4; see Pan et al., 2016). In 

addition, a recently developed landmark-free approach was applied to compare the EDJ 

conformation (for its application to cercopithecoid molars, see Beaudet et al., 2016). This method 

relies on the construction of group-average surface models and their deformation to the 

investigated surfaces (Durrleman et al., 2012a, Durrleman et al., 2012b, Dumoncel et al., 2014). 

The surfaces are represented by a set of oriented faces and the comparison does not assume a 

point-to-point correspondence between samples, as in classical landmark-based GM analyses. As 

a pre-processing step, unscaled EDJs were aligned, using the “Align Surface” module available 

on the software Avizo v.8.0. The deformations between surfaces were mathematically modeled as 

a diffeomorphism, i.e., a one-to-one deformation of the 3D space that is smooth, invertible, and 

with a smooth inverse, which is particularly appropriate for comparing overall shapes and local 

orientation in the field of computational anatomy (Glaunès and Joshi, 2006, Durrleman et al., 

2014). From a set of surfaces, together with a set of initial control points located near its most 

variable parts, a mean shape and a set of momenta parameterizing the deformations of the mean 

shape to each individual were estimated (Durrleman et al., 2012a, Durrleman et al., 2012b). 

Using the package Morpho v.2.5.1 (Schlager, 2017) for R v.3.4.0 (R Development Core Team, 

2017), a generalized Procrustes analysis (GPA) and a weighted between-group principal 

component analysis (bgPCA) based on the Procrustes and deformation-based shape residuals 

(Mitteroecker and Bookstein, 2011) were performed. Allometry was tested on the landmark-

based analyses using the coefficient of determination (R2) of a multiple regression (Bookstein, 



1991), in which the explicative variable is the centroid size and the dependent variables are the 

bgPC scores (Mitteroecker et al., 2013). 

 

3. Results 

3.1. Tooth tissue proportions and enamel thickness 

Tissue proportions assessed for the lower third premolar PMU M3549 and, limitedly to the lateral 

crown, for the upper third molar PMU M3550 are shown in Table 1 and illustrated in Figure 2, 

together with the estimates from some Pleistocene and extant human specimens/samples (see also 

Supplementary Online Material [SOM] Table S1). 

 

Table 1. Tooth crown tissue proportions (percent of coronal volume that is dentine and 

pulp, Vcdp/VC) and 3D relative enamel thickness (RET) assessed in the Homo erectus 

lower third premolar PMU M3549 and upper third molar PMU M3550 from Zhoukoudian 

and compared to the estimates from some fossil and extant human specimen/samples. 

Specimen/sample Vcdp/Vc (%) 3D RET 

PMU M3549 48.2 23.5 

EHSA (n = 1) 41.4 29.0 

NEA (n = 4) Mean 56.4 15.6 

Range 53.3–58.1 14.4–18.3 

RH (n = 10) Mean 47.5 24.0 

 
Range 42.7–52.2 19.4–28.3 

 
LVcdp/LVc (%) 3D LRET 

PMU M3550a 77.5 11.8 

HEJ (n = 2) Mean 75.6 12.2 

Range 74.0–77.1 11.9–12.5 

NEA (n = 5) Mean 79.6 9.6 



Specimen/sample Vcdp/Vc (%) 3D RET 

Range 76.4–85.6 6.3–11.4 

RH (n = 5) Mean 77.2 11.3 

Range 73.5–79.8 10.4–13.3 

a 

Because of occlusal wear in PMU M3550, in all UM3s the variables have been assessed 

on the virtually cropped crowns (lateral Vcdp/VC and 3D LRET). EHSA = early Homo 

from South Africa (specimen SKX 21204 from Swartkrans), HEJ = Homo erectus from 

Java (specimens NG0802.1 and Sangiran 4 from Sangiran), NEA = Neanderthals 

(Krapina), RH = recent humans. See SOM Table S1 for the parameters used to compute 

Vcdp/VC and 3D RET indices. 



 

Figure 2. Tooth crown tissue proportions and enamel thickness assessed in the Homo 

erectus lower third premolar PMU M3549 and upper third molar PMU M3550 from 

Zhoukoudian, and compared to the estimates from some fossil and extant human 



specimen/samples (see Table 1). (A) Percent of crown dentine (Vcdp/Vc) in LP3s. (B) 3D 

relative enamel thickness (3D RET) in LP3s. (C) Percent of lateral crown dentine 

(LVcdp/LVc) in UM3s. (D) 3D lateral relative enamel thickness (3D RET) in UM3s. 

EHSA = early Homo from South Africa (SKX 21204 from Swartkrans), HEJ = Homo 

erectus from Java (NG0802.1 and Sangiran 4 from Sangiran), NEA = Neanderthals 

(Krapina; n = 4 in A and B; n = 5 in C and D), RH = recent humans (n = 10 in A and B; n 

= 5 in C and D). 

 

With its moderately low percent of crown dentine and pulp and relatively thick enamel, the 

premolar from Zhoukoudian falls within the range of variation shown by our comparative extant 

human sample. PMU M3549 displays higher Vcdp/Vc and lower 3D RET values than measured 

in the SKX 21204 early Homo specimen from Swartkrans (Pan et al., 2016), while the opposite is 

observed with respect to the Neanderthal estimates (Fig. 2). 

Comparative enamel crown topographic variation for this Chinese premolar is revealed by the 

cartographies imaged in Figure 3, which map topographic thickness variations at the outer 

enamel surface. Similar to the pattern shown by all lower P3s considered in the study, the thickest 

enamel in the specimen from Zhoukoudian is found on the upper mid-crown (occlusal) portion of 

its buccal aspect but, compared to the Neanderthal and extant human conditions, also along the 

mesial and distal margins. In the thickly enameled early Homo specimen from Swartkrans, which 

presents the highest RET value for the lateral crown, enamel is more homogeneously distributed, 

but an extended thicker spot is uniquely found at its distal cusp. In the relatively and absolutely 

thinner Neanderthal LP3s, thicker enamel is limited to the buccal aspect (Fig. 3). 



 

Figure 3. Enamel thickness cartographies of the Homo erectus lower third premolar PMU 

M3549 from Zhoukoudian compared with those of some fossil and extant human LP3s. 

Topographic thickness variation is rendered by a pseudo-color scale ranging from thinner 

dark-blue to thicker red. Independently from their original side, all crowns are shown as 

right. EHSA = early Homo from South Africa (SKX 21204 from Swartkrans), NEA = 

Neanderthals (Krapina; consensus map; n = 4), RH = recent humans (consensus map; n = 

10), o = occlusal, m = mesial, b = buccal, d = distal, l = lingual. Scale bar = 1.62 mm in 

PMU M3549, NEA, and RH; scale bar = 2.0 mm in EHSA. 

 

For the lateral crown aspect, the LVcdp/LVc percent ratio of the upper third molar PMU M3550 

is indistinguishable from the Neanderthal and extant human estimates, but slightly exceeds that 

calculated for the two H. erectus specimens from Sangiran (Table 1; Fig. 2), the latter crowns 

again displaying thicker enamel (3D LRET). The standardized morphometric maps (MMs) of the 



virtually unrolled and projected lateral enamel of the Chinese specimen and the consensus MMs 

obtained for Javanese H. erectus, Neanderthals, and recent humans are shown in Figure 4. 

 

 

Figure 4. Enamel thickness cartography of the lateral enamel thickness in the Homo 

erectus upper third molar PMU M3550 from Zhoukoudian compared with the 

standardized morphometric maps (MMs) of some fossil and extant human UM3s. 

Topographic thickness variation is rendered by a pseudo-color scale ranging from thinner 

dark blue to thicker red. HEJ = Homo erectus from Java (NG0802.1 and Sangiran 4 from 

Sangiran; consensus map), NEA = Neanderthals (Krapina; consensus map; n = 5), RH = 

recent humans (consensus map; n = 5), m = mesial, l = lingual, d = distal, b = buccal. 

 

While displaying slightly thinner lateral enamel compared to the two crowns from Sangiran 

(Table 1), enamel thickness topographic distribution in PMU M3550 casts the pattern of the 

Javanese H. erectus representatives, the distolingual aspect revealing an extended thicker band 

well-projected cervically (Fig. 4). Also, likely associated with a shared tooth crown architecture 

(notably, outer surface convexity and intercuspal groove depth and extension), a distinct 

subocclusal thickening of the buccal compartment is present in both Chinese and Javanese 

specimens, while it ranges from faint to absent in Neanderthals and extant humans, whose crown 

maps are longitudinally much less contrasted. A distinct feature in PMU M3550 is represented by 

a triangular-shaped enamel thickening projecting deep into the mesial compartment (Fig. 4). 



3.2. EDJ morphology and pulp cavity shape 

The EDJ of the upper canine PMU 25719 shows marked distal crests on both labial and lingual 

aspects (distal accessory ridge equivalent to ASUDAS grade 3), while the mesial marginal crest 

is less developed (despite the adjacent enamel breakage, its morphology is still preserved). Subtle 

digitations (nearly parallel and variably marked crests) are present on the lingual aspect. The pulp 

cavity displays a sub-circular cross-section along most of its height and a sub-conical shape at 

crown level (Fig. 1). 

In the UM3 PMU M3550, the EDJ shows four main cusps (the dentine horn of the hypocone 

being quite blunt, comparable to ASUDAS grade 2), a low and interrupted transverse crest (with 

bifurcated paracone segments), a low and incomplete oblique crest (starting distally to the 

protocone dentine horn), and a number of accessory crests running from the marginal ridges 

toward the center of the occlusal basin (Fig. 1). There is no evidence of Carabelli's trait, as the 

lingual surface of the protocone is smooth (grade 0, following Ortiz et al. [2012] and ASUDAS). 

On a comparative basis, the morphology of its pulp chamber is peculiar. It exhibits a relatively 

flat roof bearing a sub-circular shallow cavity set at the center of the protocone horn and a single 

taurodontic and mesiodistally flattened root canal (Figure 1, Figure 5), while the Javanese H. 

erectus specimen Sangiran 4, from the Early Pleistocene Pucangan Formation of the Sangiran 

Dome, and all recent human UM3s examined in this study display more developed pulp horns 

and two to three splayed main root canals (Fig. 5). The specimen KRD 58 from Krapina, also 

imaged in Figure 5, shows the unique Neanderthal morphology (Macchiarelli et al., 2006, 

Kupczik and Hublin, 2010), with very high pulp horns corresponding to the three main cusps, but 

a single columnar pulp canal that only divides into three branches in its apical part (Fig. 5). 



 

Figure 5. Virtual rendering of the pulp cavity of the Homo erectus upper third molar PMU 

M3550 from Zhoukoudian compared with that of some selected fossil and extant human 

UM3s. Independently from their original side, all specimens are shown as right. HEJ = 

Homo erectus from Java (Sangiran 4), NEA = Neanderthal (KRD58 from Krapina), RH = 

recent human, o = occlusal, m = mesial. Scale bar = 5.0 mm. 

 

To the best of our knowledge, no comparable information on the pulp cavity shape is available 

for Chinese H. erectus UM3s. However, that of a Middle Pleistocene lower M3 (PA834-2) from 

Longtan Cave, Hexian, is described as bearing five horns that correspond to each of the five main 

cusps (Xing et al., 2014). This morphology is also found in the LM2 and LM3 of the PA831 

mandible from the same site, where the two mesial horns are higher than the three distal ones 

(Liu et al., 2017). 

The unworn LP3 crown PMU M3549 displays two well-developed buccal and lingual dentine 

horns (ASUDAS grade 0). Its EDJ also expresses a complete transverse crest, an accessory 

cuspulid on the mesial marginal ridge, and a low accessory crest running from the distobuccal 

marginal ridge toward the center of the posterior fovea (Fig. 1). The pulp chamber, still in 

development, only displays a sub-conic rounded roof (Fig. 1). 

Finally, the EDJ of the molarized LP4 PMU M3887 exhibits two well-developed mesial dentine 

horns and two smaller but distinct distal dentine horns corresponding to the hypoconid and 



entoconid, respectively; a small relief on the distal marginal ridge comparable to a minute 

hypoconulid, a bifurcated (with middle and distal segments) interrupted trigonid transversal crest, 

multiple talonid accessory crests running from the marginal ridges toward the center of the 

occlusal basin, and a protostylid-like feature visible as two mesial and distal grooves bordered by 

low crests on the buccal aspect (Fig. 1). Its pulp chamber only shows two developed horns 

corresponding to the mesial cusps, together with a thick columnar root canal (Fig. 1). 

 

3.3. GM analysis of the EDJ conformation 

The results of the between-group PCA (bgPCA) from the GM analyses of the EDJ using 

semilandmarks and the deformation-based method (see Materials and methods) are shown in 

Figure 6. For the landmark-based analyses (Fig. 6A–C), the first two components (bgPC1 and 

bgPC2) respectively show a moderate allometric signal (R2 ranging from 0.17 to 0.44) and no 

size-dependent shape variation (R2 systematically <0.00), thus mostly representing shape 

variation. Overall, both landmark-based (Fig. 6A–C) and deformation-based (Fig. 6D–G) 

analyses distinguish between fossil and extant humans and give comparable results regarding the 

condition of the Chinese H. erectus teeth with respect to the Pleistocene and recent human 

specimens/samples considered in the analysis (Table 2). 



 



Figure 6. Between-group principal component analysis (bgPCA) of the enamel-dentine 

junction (EDJ) of the four Homo erectus specimens from Zhoukoudian (PMU 25719, UC; 

PMU M3550, UM3; PMU M3549, LP3; PMU M3887, LP4) compared to some fossil and 

extant human specimens/samples (details in Table 2). (A) Semilandmarks based analysis 

of the UM3s. (B) Semilandmarks based analysis of the LP3s. (C) Semilandmarks based 

analysis of the LP4. (D) Deformation based analysis of the UM3s. (E) Deformation based 

analysis of the LP3s. (F) Deformation based analysis of the LP4s. (G) Deformation based 

analysis of the UCs. The ridge curves and surfaces illustrate the extreme shapes along 

each bgPC for the semilandmark analyses. EHSA = early Homo from South Africa (SKX 

21204 from Swartkrans), HEJ = Homo erectus from Java (NG0802.1 and Sangiran 4 from 

Sangiran), HNA = late Early–early Middle Pleistocene Homo from North Africa 

(Tighenif 2), NEA = Neanderthals (Krapina), RH = recent humans. 

 

Table 2. Fossil and extant human specimens/samples used in the geometric morphometric 

(GM) analyses of the enamel–dentine junction (EDJ). 

Specimen/sample Site UC UM3 LP3 LP4 References 

H. erectus from 

Zhoukoudian 

Locality 1 PMU 

25719 

PMU M3550 PMU 

M3549 

PMU 

M3887 

Present 

study 

H. erectus from 

Java (HEJ) 

Sangiran 

Dome 

Sangiran 4 NG0802.1, 

Sangiran 4 

  
Zanolli, 

2011, 

Zanolli, 

2013, 

Zanolli, 

2015; 

Original 

data 

Early Homo from 

South Africa 

(EHSA) 

Swartkrans 
  

SKX 

21204 

SKX 

21204 

Pan et al., 

2016 



Specimen/sample Site UC UM3 LP3 LP4 References 

Late Early–early 

Middle Pleistocene 

Homo from North 

Africa (HNA) 

Tighenif 
   

Tighenif 2 Zanolli and 

Mazurier, 

2013 

Neanderthals 

(NEA) 

Krapina KRD36, 

KRD37, 

KRD76, 

KRD102, 

KRD103, 

KRD141 

KRD58, 

KRD97, 

KRD99, 

KRD109, 

KRD162, 

KRD163, 

KRD170, 

KRD173, 

KRD178 

KRD25, 

KRD27, 

KRD28, 

KRD29, 

KRD33, 

KRD34, 

KRD111, 

KRD114 

KRD26, 

KRD30, 

KRD31, 

KRD32, 

KRD35, 

KRD50, 

KRD118 

NESPOS 

Database, 

2017 

N recent humans 

(RH) 

 
7 9 14 13 Original 

data 

The specimens from Zhoukoudian show low EDJ topography, close to the shape of the Early-

Middle Pleistocene specimens from Africa (the SKX 21204 LP3 and LP4 from Swartkrans [Pan 

et al., 2016] and the Algerian Tighenif 2 LP4 [Zanolli and Mazurier, 2013]) and from Indonesia 

(the Sangiran 4 [original data] and NG0802.1 UM3s [Zanolli, 2013, Zanolli, 2015] from the 

Sangiran Dome). The Zhoukoudian lower premolars are clearly discriminated from the variation 

observed for the Late Pleistocene Neanderthals from Krapina (NESPOS Database, 2017) and 

extant humans (Fig. 6B,C,E,F). The EDJ of the UM3 PMU 3550 also differs from the 

Neanderthal condition, but less distinctly from that of the extant humans (Fig. 6A, D). The results 

of the deformation-based analysis of the EDJ of the UCs are coherent with those provided by the 

other teeth, the specimen PMU 25719 being close to Sangiran 4 (H. erectus) and intermediate 

between Neanderthals and recent humans (Fig. 6G). 

4. Discussion and conclusions 

Recent studies of the Early and Middle Pleistocene hominin dental record from continental Asia, 

including the remains from the Chinese sites of Chaoxian, Jianshi, Hexian, Panxian Dadong, 



Yiyuan, Zhoukoudian (e.g., Xing et al., 2009, Xing et al., 2014, Xing et al., 2016, Bailey and Liu, 

2010, Liu et al., 2010, Liu et al., 2013, Liu et al., 2017), and from insular Southeast Asia, such as 

the Indonesian assemblage from the Sangiran Dome (Kaifu et al., 2005a, Kaifu et al., 2005b, 

Kaifu, 2006, Zaim et al., 2011, Zanolli, 2011, Zanolli, 2013, Zanolli, 2015, Zanolli et al., 2012), 

show a wide range of morpho-dimensional variability through time and space (Martinón-Torres 

et al., 2017). For the Middle Pleistocene, this can be exemplified by the contrast at a regional 

scale between the small human mandible SOA-MM4 from Mata Menge, Flores Island, 

suggesting a body size similar to the Late Pleistocene hominins from Liang Bua (van den Bergh 

et al., 2016), and the robust mandible Penghu 1 from Taiwan, showing a thick corpus and large 

teeth (Chang et al., 2015). 

In such a contrasted scenario likely resulting from complex population dynamics (Qiu, 2016), 

“characterising the morphology and spatio-temporal distribution of the Asian hominins would be 

a critical contribution to the current debate about the pattern of hominin settlement in Asia” 

(Martinón-Torres et al., 2017:2). Thus, despite their modest quantity, there is potential interest in 

the signal extracted from the inner structure of the four tooth specimens from Zhoukoudian 

Locality 1 for tentatively exploring some evolutionary trends. 

Studies focusing on molar crown tissue proportions show that most fossil and extant Plio-

Pleistocene hominins share absolutely and relatively thick enamel (Smith et al., 2012, Zanolli and 

Mazurier, 2013, Skinner et al., 2015, Zanolli, 2015, Pan et al., 2016), apart from the relatively 

thinly enameled Neanderthals (Macchiarelli et al., 2006, Macchiarelli et al., 2013, Olejniczak et 

al., 2008a) and for the condition of some isolated specimens (e.g., Zanolli et al., 2014). This does 

not, however, concern the still poorly explored existence of taxon/population-specific patterns in 

enamel thickness topographic distribution (Zanolli et al., 2017). 

Within the limited amount of directly comparable evidence, both the LP3 PMU M3549 and the 

UM3 PMU M3550 from Zhoukoudian (this latter specimen uniquely assessed for its lateral 

enamel) are thickly enameled to an extent similar to the condition assessed in a 

penecontemporaneous upper M2 (PA833) from Longtan Cave, Hexian (2D RET: 23.5; Xing et 

al., 2014). These estimates also align with those obtained on six H. erectus molars from Java 

(average 3D RET: 21.9; Zanolli, 2015). In this respect, no obvious distinction is currently 

possible among the tooth assemblages from continental and island Southeast Asia. 



As shown in previous studies, the analysis of the EDJ shape rather distinctly discriminates 

among, and even within, hominin taxa (e.g., Skinner et al., 2008b, Crevecoeur et al., 2014, 

Zanolli et al., 2014, Martin et al., 2017). All Middle Pleistocene Chinese upper molars from 

Yiyuan, Hexian, and Zhoukoudian investigated so far (Xing et al., 2014, Xing et al., 2016; this 

study) resemble the primitive condition expressed in this study by the Early Pleistocene Sangiran 

4 molars (Fig. 7). Specifically, they share: dense occlusal wrinkling; a relatively low EDJ 

topography with numerous secondary ridges and grooves; marked distal displacement of the 

lingual essential segment of the oblique crest (i.e., instead of running buccolingually from the 

protocone dentine horn, the oblique crest initiates about 2 mm distally, from the lingual marginal 

ridge); and a proportionally much larger trigon than talon basin (Fig. 7). The lower molars from 

the same Chinese localities also show a densely crenulated occlusal morphology of the EDJ, with 

a low topography and accessory traits (Xing et al., 2016, Liu et al., 2017). Conversely, the late 

Early to early Middle Pleistocene Indonesian mandibular specimens from the Kabuh Formation 

of the Sangiran Dome (Zanolli et al., 2012, Zanolli, 2015) reveal a slightly derived, simplified 

structural pattern consisting of; mesiodistal reduction, reduction or even loss of the hypoconulid 

and hypocone, and higher and less crenulated EDJ reliefs (Fig. 7). 



 

Figure 7. Schematic representation of the possible time-related evolutionary trajectories of 

the enamel-dentine junction (EDJ) conformation in Indonesian Homo erectus upper 

molars as exemplified by the condition displayed by tooth specimens from Sangiran, Java 

(lower panel; Zanolli, 2015; this study). The endostructural condition in Early Pleistocene 

Chinese molar crowns is currently unknown, however, the H. erectus specimens from 

Hexian, Yiyuan, and Zhoukoudian (Xing et al., 2014; this study) reveal a pattern closer to 

that of the earlier, not of the later, Indonesian representatives (upper panel; see also Fig. 

6). 

 

Different from the results of enamel thickness, the analysis of the EDJ suggests the existence of 

time-related endostructural differences between the continental and insular Southeast Asian 

dental assemblages available so far. The Middle Pleistocene Chinese tooth crowns would 

apparently retain a signal closer to the likely primitive model, here exemplified by the Early 

Pleistocene Sangiran 4 specimen, while the pattern expressed by their penecontemporaneous 

Indonesian representatives points to EDJ structural simplification (Zanolli, 2015, van den Bergh 



et al., 2016). Interestingly, a simplified condition (revealed by the loss of the hypoconulid in the 

lower molars, the absence/reduction of accessory crests, protostylid and accessory cusp 

expression) also characterizes the inner molar morphology of the Late Pleistocene Flores 

hominins (Kaifu et al., 2015), even if it has been recently reiterated that a close phylogenetic 

relationship between Homo floresiensis and H. erectus is not a foregone conclusion (Argue et al., 

2017; but see; Felizola Diniz-Filho and Raia, 2017). 

As demonstrated by the dental remains from Panxian Dadong, Southern China, and Xujiayao, 

Northern China, complex features are retained at the EDJ until the Late Pleistocene (e.g., a well-

developed tuberculum dentale with finger-like extensions on lingual aspect of the anterior teeth, 

elevated and thick distal crest on the canine, asymmetrical lower P3 crown contour accessory 

crests, low dentine topography with numerous accessory crests and cusps, Liu et al., 2013, Xing 

et al., 2015). While such archaic-like conditions persisted late in China, the appearance in 

continental Eastern Asia of a derived endostructural molar tooth pattern does not seem to precede 

the second half of the Middle Pleistocene. 

Tooth-based information is still quantitatively too scarce and widely spread to allow reliable 

reconstructions of the evolutionary dynamics of Early and Middle Pleistocene human groups 

across continental and insular Southeast Asia. Current models oscillate between a virtually 

continuous occupation of the macro-region all along the Pleistocene, to peopling patterns 

implying much more sporadic and localized settlements (review in Martinón-Torres et al., 2017). 

Whatever the most likely scenario may be, one should keep in mind the role eustatic- and 

tectonic-related events had on the peopling phases and evolutionary dynamics of hominin 

populations, having intermittently connected/isolated the Sunda region to the Asian mainland 

(e.g., Voris, 2000, de Vos and Long, 2001, van den Geer et al., 2010, Larick and Ciochon, 2015). 

Another relevant aspect to consider concerns the role of buffer/filter in continental Southeast Asia 

played by the persistence of a relatively stable humid and dense rainforest environment through 

most of the Pleistocene (Ciochon, 2009, Ciochon, 2010). Once set within a robust chronological 

framework, the integration of such ecological determinants would help in assessing the processes 

leading to the early establishment of the differences in outer and inner tooth crown morphology 

between the Indonesian and the Chinese dental assemblages outlined in this study (Kaifu et al., 

2005a, Bailey and Liu, 2010, Liu et al., 2013, Liu et al., 2017, Zanolli, 2013, Xing et al., 2014, 

Xing et al., 2016, Kundrát et al., 2015; present study), the retention in the early Middle 



Pleistocene Chinese sample of archaic dental features (Xing et al., 2014, Xing et al., 2016, 

Kundrát et al., 2015, Liu et al., 2017; present study), and the peculiar morphology of the Northern 

Asian teeth (including highly complex occlusal morphology) not seen so far in any other human 

fossil sample (Xing et al., 2014, Xing et al., 2016). 

We conclude that only a subtle revision of previously collected remains and the discovery and 

analysis of new dental material from reasonably well-constrained chronological contexts will 

allow appropriate testing of the suggested and alternative scenarios. 
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