

Exploring the flux pinning performance of bulk FeSe by electron irradiation

<u>Q. Nouailhetas</u>^{1,2}, M. R. Koblischka^{2,3}, A. Koblischka-Veneva^{2,3}, K. Berger¹, B. Douine¹, K. van der Beek⁴

¹ GREEN, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France

² Universität des Saarlandes, 66041 Saarbrücken, Germany

³ Department of Materials Science and Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan ⁴ Laboratoire des Solides Irradies, CNRS, Ecole Polytechnique, 91128 Palaiseau, France

SUPERFOAM project supported by an ANR-DFG grant

quentin.nouailhetas@univ-lorraine.fr

30/08/19

- Iron selenide superconductors (FeSe):
 - Discovered in 2008
 - rare-earth free, non toxic material
- Polycrystalline FeSe:
 - Ball melted process at 950 °C
 - Critical temperature: 8 K

I SHIBAURA INSTITUTE OF TECHNOLOGY

- Well coupled and randomly oriented grains of the order of 1 μm
- Presence of a Fe₆Se₇ ferromagnetic phase (40% of the volume)

SEM pictures of polycrystalline FeSe sample

30/08/2019

UNIVERSITÉ **PAS**

2

Forschungsgemeinschaf

Irradiation campaign using SIRIUS and SQUID measurements

- Adding point like irradiation using electron irradiation of 2.5 MeV for 2 different dose:
 - A total dose of $4 \times 10^{19} e^{-1200}$ or 1.27 C
 - A total dose of $2 \times 10^{19} e^{-1000}$ or 0.655 C
- Those measurements were done using MPMS SQUID for a high precision at different temperatures (2 to 7 K) and from 7 to -7 T.
- Few irradiated samples were characterized

UNIVERSITÉ De lorraine

I SHIBAURA INSTITUTE OF TECHNOLOGY

 1 unirradiated sample called "Unirr" was also characterized

Polycrystalline FeSe sample Area=1.7mm², thickness ≈ 0.3 mm

.R.E.E.I

UNIVERSITÄT

SAARLANDES

DES

30/08/2019

Quentin NOUAILHETAS PASREG 2019

Critical state model for polycrystalline FeSe

- Typical asymmetric magnetization loops for a polycrystalline FeSe superconductors at different temperature:
 - Very asymmetric magnetization loops...
 - -...at each temperature
 - A constantly quasi-null moment for a decreasing external field
 - The so called Bean critical state model cannot be applied here
 - We need to determine the nature of those magnetization loops

R.E.E.

30/08/2019

Quentin NOUAILHETAS PASREG 2019

UNIVERSITÄT DES

SAARLANDES

- A sum of 2 different moments:
 - An intergrain moment generated by a intergrain current, without pinning processes and with a total reversibility
 - An intragrain moment generated by an intragrain current, with pinning processes and symmetry with the external field axis
- For an external magnetic field B(T), we can see that:
- $\succ |\mathsf{M}_{\text{intergrain}}(\mathsf{B})| = |\mathsf{M}_{\text{intragrain}}(\mathsf{B})|.$
- which means 50% of the superconducting volume is allocated for each current

UNIVERSITÉ DE LORRAINE

G.R.E.E.I

30/08/2019

Quentin NOUAILHETAS PASREG 2019

5

Forschungsgemeinschaf

UNIVERSITÄT

SAARLANDES

DES

Critical state model for polycrystalline FeSe

- We know that 60% of the sample is superconductor...
- ... And 50% of it generate the intragrain moment
- ➤Which means just 30% of the total volume of the sample is responsible for the intragrain current.

Critical state model for polycrystalline FeSe

UNIVERSITÉ DE LORRAINE

 Now let us apply the so-called extended Bean model which extracts the critical current from the intragrain moment (using the factor of the sample's volume we computed just before). Using the following formula [Chen et al., 1989]:

$$J_{c} = \frac{\Delta M_{\text{intragrain}}}{a\left(1 - \frac{a}{3b}\right)} \times \left(\frac{100}{30}\right)$$

Where ΔM is the thickness of the magnetization loop, *a* is the width of the sample and *b* its length.

Intragrain critical current of polyccrystalline FeSe at 2 K

R.E.E.

30/08/2019

Quentin NOUAILHETAS PASREG 2019

UNIVERSITÄT

SAARLANDES

DES

1

Critical current of irradiated polycrystalline FeSe

 By applying the same model on irradiated sample we can compare them at 2 K:

INSTITUTE OF

Forschungsgemeinschaf

UNIVERSITÄT

SAARLANDES

DES

G.R.E.E.N

Critical current of irradiated polycrystalline FeSe

• Let us have a look on the temperature dependency for each irradiation dose:

30/08/2019

Quentin NOUAILHETAS PASREG 2019

UNIVERSITÉ DE LORRAINE

INSTITUTE OF TECHNOLOGY 9

Forschungsgemeinschaf

UNIVERSITÄT

SAARLANDES

DES

G.R.E.E.N

Conclusion

- Conclusion
 - We developed a new model to extract the Intragrain critical current of a polycrystalline superconductor
 - We have seen the influence of the irradiation on a FeSe polycrystalline sample:
 - > A "medium" dose increases the critical current

UNIVERSITÉ DE LORRAINE

INSTITUTE OF

- > A "high" dose starts to lowering the critical current, comparing at "medium" dose
- What next?
 - A second campaign is planned at GANIL for a heavy ion irradiation (1 GeV Pb ions)
 - New experiments are necessary to confirm those results and to see if the properties will continue to decrease at higher dose

Quentin NOUAILHETAS PASREG 2019

UNIVERSITÄT

SAARLANDES

DES

G.R.E.E.M

Thank you for your attention!

Please ask your questions!

Annexes

12