Dorian Decriteau

Jean-Philippe Pernot

Marc Daniel

Towards a declarative modeling approach built on top of a CAD modeler

Keywords: Declarative modeling, semantic description, encapsulating CAD operators, shape design

Today's CAD modelers are very efficient in processing 3D shapes of CAD models by means of B-Rep modeling operators such as pad, pocket, shaft, groove, hole, fillet and so on. At a lower description level, those modeling operators are based on Euler operators acting directly on the faces, edges and vertices of the B-Rep models. Using such a top-down approach, the designers do not have to work on low-level geometric entities, but rather manipulate so-called structural and detail features to shape directly the CAD models. However, there is still a gap between the shapes the designers have in mind and the way they have to decompose them in a succession of modeling steps. This paper proposes a new declarative modeling approach to design industrial shapes allowing the designers to interact with a CAD software at a more conceptual level. The designers enter a high-level description of the expected shapes that is then transformed through scripts into traditional CAD operators successively called to create the shapes. Compared to the traditional feature-based approaches, our declarative modeling approach is closer to the way designers think. It saves time while keeping all the advantages of existing efficient CAD modelers. This new approach aims at quickly creating drafts rather than final shapes. Those drafts can then be modified using classical CAD software in which our new approach is fully embedded. This approach is a first step towards a declarative CAD modeler.

Introduction

Today, industrial CAD software rely on an incremental B-Rep (Boundary Representation) modeling paradigm where volume modeling is performed iteratively using planar sketched contours subjected to mainly extrusion or revolution operations, as generative parameters, and to either material addition or removal, as shape sculpting parameters. The construction tree structure is based on reference planes containing the sketched contours and primitive shapes defined from the generative and shape sculpting parameters [START_REF] F A L C I D I E N O | Processing free form objects within a Product Development Process framework[END_REF] .A tal o w e rd e s c r i p t i o nl e v e l , those modeling operators are based on Euler operators acting directly on the faces, edges and vertices of the B-Rep models. In this way, the designers do not manipulate low-level geometric entities, but rather manipulate so-called structural and detail features to shape directly the CAD models [START_REF] Shah | Parametric and Feature-Based CAD/CAM[END_REF].

However, even if CAD modelers provide operators (e.g. pad, pocket, shaft, groove, hole, fillet) to get rid of the direct use and manipulation of canonical surfaces and NURBS [START_REF] ;T I L L E Rw ; T H En U R B Sb O O K | S p r i n g e rV e r l a g[END_REF],workingwithaCADmodelerisalmostprocedural with a lot of intermediate operations required to obtain the desired shape of an object. Actually, all those CONTACT Jean-Philippe Pernot jean-philippe.pernot@ensam.eu Arts et Métiers ParisTech, LSIS Laboratory UMR CNRS 7296 intermediate operations are time-consuming and generate complex construction trees that are not particularly needed to describe the final shape. Moreover, using such a procedural approach, the designers have to make a mental gymnastic to break down the object body into several basicshapeslinkedtothedifferentoperatorsoftheCAD software. Thus, to model a complex shape, a lot of operationshavetobedone,evenifafeaturingapproachisused. This is even truer when dealing with free form objects f o rw h i c ht h en o t i o no ff r e ef o r mf e a t u r e si sm u c hl e s s adopted in current industrial practices [START_REF] Pernot | Incorporating free-form features in aesthetic and engineering product design: State-of-the-art report[END_REF].

Clearly, an approach closer to the designers' way of t h i n k i n gi sm i s s i n ga n dt h e r ei ss t i l lag a pb e t w e e nt h e ideas designers have in mind and the available tools and operators used to model them. Ideally, it would be more convenient to enter a semantic description of the shape, the CAD modeler being in charge of generating it. This is the aim of the approach proposed in this paper. More precisely, in order to stay compatible with existing CAD modelers widely used in the industry, but also to take full advantage of their efficient geometric modeling kernels and features, our attempt was to define a high-level declarative modeling approach implemented i nt h ef o r mo fap l u g i nb u i l to nt o po ft h e s em o d e l e r s . From an initial high-level description, the plugin generates the CAD model and its building tree, which can be immediately integrated and classically manipulated within the CAD modelers. The main idea is to encapsulate several operators and/or features to answer to a partial description of the shape. Since it is built on top of actual CAD modelers, such a declarative modeling approach can be integrated within the Product Development Process (PDP) and the traditional way of manipulating CAD models obviously remains accessible to more experimented users/designers. This top-down approach is illustrated on Fig. 1.A tth et o pl ev e l ,w i th i no u rp l ugin, designers manipulate a semantic description that is transformed into a procedural description, i.e. a sequence of traditional CAD functions and operators (also called features) which use the traditional Euler operators to act on the low-level geometric entities (faces, edges, vertices) defining the underlying B-Rep model. Finally, it is clear that the output of this declarative modeling approach is not a final CAD model instantiated with accurate numerical values, but rather the output is to be considered as a first draft quickly obtained. As a matter of fact, the description must not be tedious and can remain incomplete so as to leave the possibility to refine the description during the next steps of the PDP [START_REF] F A L C I D I E N O | Processing free form objects within a Product Development Process framework[END_REF]. Those forthcoming manipulations are made possible thanks to the fact that the output of this generative process is a B-Rep model defined by a traditional building tree with features and parameters on which the design- The paper presents the results provided by the first version of our plugin. It is organized as follows. Section 2 discusses the related work and section 3 introduces the proposed framework. The different modeling functions are described in section 4 and illustrated in section 5. Section 6 concludes this paper.

Related work

As suggested on Fig. 1, at a low level, CAD modelers generally consider purely geometric description using curves and surfaces represented by means of B-splines and NURBS. Invented more than 40 years ago, these mathematical models are well known and their fundamental concepts can be found in several reference books [START_REF] Farin | Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide[END_REF], [START_REF] ;T I L L E Rw ; T H En U R B Sb O O K | S p r i n g e rV e r l a g[END_REF]. Since the expected shapes are generally complex, the designer often has to decompose them into elementary shapes themselves subdivided into several surfaces. Each elementary surface is defined by means of a network of control points, weights and knot sequences. In addition, these surfaces must most often be trimmed to overcome the topological constraints of the mathematical models [START_REF] Farin | Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide[END_REF]. Finally, the elementary surfaces are assembled together to produce a manifold solid, i.e. a B-Rep representation expressing the relationships between the vertices, the edges and the faces of the topological model as described in [START_REF] Hoffmann | Geometric and Solid Modeling: An Introduction[END_REF]. However, interacting at this very low level is restricted to experts and generally at a final step of the modeling process or to address specific aesthetic issues. Thus, several attempts have been made to try to overcome the limits inherent to the manipulation of low-level geometric entities.

Feature-based modeling introduced in [START_REF] Shah | Expert form feature modeling shell[END_REF] falls into this category of higher-level approaches. By using features to build their CAD models, designers do not anymoreactatalowlevelbutratheronshapeprimitivesthat can be parameterized and pre-defined. Actually, features are used to give a meaning and to manipulate directly a set of geometric entities. Depending on the complexity of the shapes to be represented, different approaches and associated features can be used: form features, semi free form features, free form features or fully free form features [START_REF] Pernot | Incorporating free-form features in aesthetic and engineering product design: State-of-the-art report[END_REF]. If form features are now well known and implemented in most of the existing CAD systems, it is n o tt r u ef o rf r e ef o r mf e a t u r e sw h i c ha r en o ty e tf u l l y available in commercial solutions. Sometimes, features can be directly associated to manufacturing information so that these information can be retrieved in downstream applications [START_REF] Regli | Geometric algorithms for recognition of features from solid models[END_REF]. In this way, an overall CAD system can befullyautomated,however ,theideaofusingmanufacturing features to design a part has its own drawback: the Downloaded by [Arts et Métiers ParisTech] at 02:02 15 April 2016 features used to design the part do not necessarily represent the best way to manufacture it. Therefore, it is the designer's responsibility to evaluate all methods that can produce the targeted shape. Furthermore, manufacturing featuresarenotthemostnaturalwayofdesigningapart. In other words, there is no uniqueness in the way a 3D shape can be described and modeled within CAD software. Thus, even if features are a real improvement in the way designers interact with the CAD models, there is still agapbetweentheavailabletoolsandfunctionalities,and the way designers think in 3D.

Declarative modeling appeared in the early nineteens' and aims at constructing objects by means of a set of properties rather than by entering geometrical information like point coordinates. It is thus mainly based on semantics and not on mathematical properties so that this approach is closer to the way designers think. In their work, Desmontils and Lucas have proposed a synthesis of their first experiments and have described this modeling processinthreesteps [START_REF] Desmontils | Les modeleurs déclaratifs[END_REF]:

• F i r s t ,t h ed e s i g n e rh a st om a k ead e s c r i p t i o no ft h e shape by using an adapted vocabulary. This description must be transformed into a set of constraints thatcanbesolved.Thedescriptioncanbeadaptedto any given trade assuming that a list of synonymous exists. • Second, the modeling software models the shape from the description by exploring through adapted and specific algorithms the space of solutions. As already introduced, this implicitly suggests that such a na p p r o a c hi sm o r ed e v o t e dt oe x p l o r eas e to f solutions than to solve well-constrained or overconstrained problems. • Third, the designer has to browse between the differentproducedsolutionsandchooseone.

It is evidently easier to study objects belonging to discrete spaces of solutions since these sets can be explored (or described) and the tree of solutions can be pruned with the given properties. Spaces of solutions depending on real values are more difficult to study. A first insight of what can be done in mechanics was proposed in [START_REF] Daniel | Towards Declarative Geometric Modeling in Mechanics, in "IDMME'96 -Integrated Design and Manufacturing[END_REF]. Then, declarative modeling has been studied on curves [START_REF] Rossignol | A Declarative Modeler for Bspline Curves[END_REF]a n ds u r f a c e s [START_REF] Gréca | A Declarative System to Design Surfaces[END_REF]. Actually, declarative modeling is one form of the generic variational design approach. T h el a t t e rh a sb e e ni n t r o d u c e di nC A Di n [START_REF] Lin | Variational Geometry in Computer Aided Design[END_REF]. Different attempts have been made to develop this approach. Like for example in [START_REF] Hoffmann | Erep:Aneditable,high-levelrepresentation for geometric design and analysis[END_REF], the associated work quickly concentrates on the important problem of constraints modeling and how to split the set of constraints into smaller independent sets. However, this approach was a m b i t i o u sa n di th a sb e e ns l o w e dd o w nb yt h eh u g e amount of work mandatory to redevelop all the basic operators and primitives required to generate shapes from descriptions. Effectively, at that time, the proposed approach has been designed starting from scratch without considering the existence of efficient and robust geometric kernels accessible through traditional CAD software.

As a conclusion, in this paper, the idea is to combine the advantages of the traditional B-Rep and feature-based modeling approaches with the advantages of a more advanced and high-level declarative modeling approach. As a consequence, this combination takes astutely advantage of today's robust commercial geometric modeling kernels without redeveloping everything starting from scratch. At the end, the proposed approach can be seen a sap l u g i no faC A Ds o f t w a r et h a tt r a n s f o r m sah i g hlev e ldescri p tio nin t oab uildin gtr eega th erin gt og eth er all the operations and functions used to get the final 3D shapes. This procedure is more suitable to quickly obtain a draft or a sketch rather than defining a definitive complex shape. Depending on the needs, the output can then be further processed using the traditional CAD functionalities.

Declarative modeling framework and semantic description module

To be able to move from a mental image the designer has in mind to a draft CAD model generated in a CAD environment, the proposed framework is composed of three modules to be used as a sketcher in the early designed phases of a PDP (Fig. 2):

• the semantic description module in which the designer describes the shapes he/she wants to generate using a dedicated vocabulary and grammar; • the generic shape modeling module which transforms this semantic description into a succession of generic shape modeling functions and operators. This step can be seen as a transformation from a semantic description to a more geometry-oriented description. At this stage, this new description is still generic and do not rely on a specific CAD modeler; • the specific CAD modeling module which transforms this set of generic shape modeling operators and functions into a set of CAD modeling functions and operators. During this last stage, the CAD model is generated using a succession of traditional CAD modeling functions and operators that may differ from a CAD modeler to another. The output is a draft CAD model that can then be used and modified during the next steps of a PDP. The first challenge of this approach is to be able to provide a semantic description of a part. Different tests have been performed to analyze the way existing parts can be described. From a set of predefined descriptions, designers were first invited to model the corresponding parts in a CAD environment. This process proves that, starting from a simple description of a part, a designer can construct it with a CAD software. This study also revealed that describing a part requires some training. It is not necessarily easy but possible. Actually, the goal was not to work on a rich and exhaustive text description but rather to highlight the feasibility of such a top-down approach. Thus, the vocabulary and associated grammar have been voluntarily reduced to a set as simple as possible. This may also explain the difficulties designers had in describing more complex shapes. Assuming a vocabulary and a grammar defined to describe the shapes themselves (see the next section for a complete definition of this vocabulary for the slice, bump and bend operators), the main problem remains the specification of the localization and relative dimensions of those shapes.

Even if at the end the shapes are positioned with respect to an absolute reference frame, always visible during the description phase, the localization of the shapes is performed using a dedicated vocabulary that can either consider an absolute or a relative positioning. The first step of our plugin is to create the master solid. To this aim, the designer has to choose a template into a list composed of parallelepipeds, cylinders, spheres and so o n .

T op o s i t i o nt h es o l i d sa n ds h a p e s ,t h ed e s i g n e rc a n use absolute positioning words like [above], [below], [to the right], [to the left],

[fore] and [back] that should be understood with respect to the absolute reference frame.

extremelyfew], [very-few], [few], [moderately], [rather], [very] and [extremely]. For example, a parallelepiped can be dimensioned as [parallelepiped][moderately][wide], [very][long] and [very-few][high].

Onemustremember that the purpose is to create a draft and not a final fully constrained CAD model. Thus, the proportions between dimensions are more important than the real size values. To do so, the relative dimensioning is performed with respect to an Order-of-Magnitude (OoM) on which 2 summarizes these factors that have been tuned so as to have different ones for straight lines and for radii.

Table 2. Correspondences between quantifiers and factors for relative dimensioning.

For the straight line size:

For the radius-like size:

• [Extremely-few] → OoM × 1/10 • [Extremely-few] → OoM × 1/20 •[V e r y -f e w] → OoM × 1/5 •[V e r y -f e w] → OoM × 1/10 •[F e w] → OoM × 1/2 •[F e w] → OoM × 1/5 • [Moderately] → OoM × 1 • [Moderately] → OoM × 1/2 • [Rather] → OoM × 2 • [Rather] → OoM × 1 •[V e r y] → OoM × 5 •[V e r y] → OoM × 2 • [Extremely] → OoM × 10 • [Extremely] → OoM × 5

From a semantic description model to a DRAFT CAD model

Once the semantic description is available from the first module (section 3), the generic shape modeling module transforms it into a set of generic shape modeling In this paper, three main operators are introduced as a basis to define shapes: the slice, the bump and the bending operators. They all use the localization operator to position the resulting shape.

From a semantic description to a generic geometric description (module 2)

Localization operator

The localization operator aims at positioning a reference plane and a reference point with respect to directional information. For example, starting from a semantic description such as [above] [parallelepiped 1], the generic description module (module 2) defines the following generic steps to be adapted to the CAD modeler in a later stage (module 3):

LO1. Deactivate all the shapes except [parallelepiped 1] (Fig. 3.a and 3.b);

LO2. Compute the position of the center of gravity (COG) and project it onto the outer skin using [above] as a direction of projection (namely Z+ in the present case as presented in Table 1). Create a reference point P at this location (Fig.

Bump operator

The bump operator consists in generating a bump on an object according to a reference plane and numerical parameters describing the extent and size of the bump. It can be noticed that this operator could easily be extended to a [hollow] operator while simply changing the deformation direction to Z-.

Starting from a semantic description such as [above] [parallelepiped 1], [add] [bump], [moderately] [wide],

Bending operator

The bending operator consists in bending an object along an axis and according to a parameter characterizing the amplitude of the bend.

Starting from a semantic description such as [add to] [parallelepiped 1], [bend] [moderately] [concave], [around above-below axis],

the generic geometric description module defines the following generic steps: BE1. Determine the direction around which the bending is performed. If the shape is a cylinder, then this direction corresponds to the axis of the cylinder, otherwise the axis is determined from the [around above-below axis] description, i.e. the Z axis in the present case (Fig. 6

I tc a nb en o t i c e dt h a tt h eo p e r a t o rc o u l de a s i l yb e extended to a [shrink] operator while changing the description [moderately] [concave] to [moderately] [convex].Inthiscase,thequantifier[moderately]

should be inverted, i.e. OoM × 1/(½) = OoM × 2inthepresent case.

From a generic geometric description to a specific draft CAD model (module 3)

After the semantic description has been transformed into a generic geometric description, a draft CAD model can be generated while adapting this intermediate description to a specific CAD modeler. Actually, this module 3 can be seen as an API (Application Protocol Interface) between the high-level semantic language and the functions and operators available in a given CAD software. Of course, it exists as many API as available CAD software. In this work, CATIA V5 has been used as the CAD software for which a specific API as been developed at it is presented in this section.

Considering the implementation point of view, the localization, slice, bump and bending operators have been transformed into a set of VBA macros that can be called to apply directly on an existing model a predefined set of CATIA functions and operators controlled by parameters directly linked to the semantic description. Thus, the output is a CAD model defined by a building tree that can be used in the later stages of the PDP.

Localization macro

This macro uses the Part Design and Generative Shape Design modules of CATIA V5 and needs a solid model as input. The correspondences between the generic shape description introduced in section 4.1.1 and the CATIA V5 functions and operators is given in Table 3:

Slice macro

This macro uses the Part Design module of CATIA V5 andneedsasolidmodelasin p u t.Theco rr espo ndences between the generic shape description introduced in section 4.1.2 and the CATIA V5 functions and operators is given in Table 4:

Results

To illustrate the proposed approach, three examples are introduced in this section. Starting from a semantic description entered by a sequence of menus, the developed algorithm identifies which VBA macros are to be used and which parameters are to be set up. Of course, one can imagine creating a user-friendlier interface but it was not the objective of this research. Due to the vocabulary and grammar considered, the examples are rather simple but allow us to illustrate our approach, actually different than the classical uses of CAD modelers. The reader must keep in mind that the results are obtained by a very low number of clicks.

Example on a mechanical part

In this example, the designer wants to create a mechani-calpartwhichlooksliketheonerepresentedonFig.7.a. Actually, in this example, the designer has been asked to describe an initial CAD model using our vocabulary and grammar. Here is the result of this first step within the semantic description module whereas the It can be noticed that the proposed description is not uniq uea n dsev eralo n esa r epos si b le .F o rs uc hapa rt,a symmetry operator could have been interesting but it has notyetbeenintegratedinourapproach.Ifthesolutionis not suitable, the user can redo his/her description.

As it is visible from the building tree, the designer should create and instantiate 10 sketches and use as many operators. With our approach, the designer has to write 1 0l i n e so fd e s c r i p t i o n(o ro n l y6w h e nt h es y m m e t r y function will be implemented) using intuitive menus. Even for a basic shape like this one, it is quicker to use the declarative modeler if the user wants to make a first draft. Of course, this CAD model can then be modified during the next steps of the PDP. In this example, creating each bump on a classical modeler would be time-consuming since a lot of intermediate construction entities have to be created. With the declarative modeler, the description is made in few m i n u t e sa n di ti sr e a l l ye a s yt oo b t a i nt h i sd r a f tC A D model. One can notice that this part could have been designed using a revolution. But in this case, the difficulty would have been to describe the sketch using a dedicated vocabularyandthishasnotbeenyetconsidered.

Example of a plastic bottle

The description of the plastic bottle represented on Fig. 9.a is made step by step like for the spinning top. Intuitively, the user should use some repetition of item but it has not been yet implemented. The resulting CAD model is displayed on Fig. 9. b .T h er e s u l ti sad r a f tb u ti ti s easy modifiable by the user and it takes just few minutes to describe and generate it. It is really quick to make a first draft and everybody can easily use this descript i v em o d e l e rt oc r e a t es h a p e sw i t h o u tb e i n ga ne x p e r t in CAD modeling. This example is for us the opport u n i t yt os u g g e s tt h a ti tc a nb ec r e a t e dd i ff e r e n t l yt h a n using a revolution surface for which anyway the profile curve must be defined. Applying a similar approach on the sketch with another grammar could also be possible.

Here is the partial description of the plastic bottle:

•

Conclusion

The proposed approach proved to be relevant to generate rapidly CAD models from user-specified semantic descriptions. The proposed declarative modeler is composed of three modules. Users do not manipulate directly the functions and operators of the CAD software. They manipulate a vocabulary used to create sentences (semantic description module), which are then transformed in an intermediate generic modeling description (generic modeling module) finally used to drive several VBA macros that call the functions and operators of the CAD software (specific CAD modeling module). The intermediatemodulehasbeendesignedsoastobeableto In the future, it is foreseen to use this intermediate representation as a CAD-less representation used all along the design process and shared between the actors of the PDP whatever the CAD environments they use. Some limits have been identified. First, even if the declarative modeler is intuitive, it still requires an adaptation phase and a beginner could have difficulties the first time he/she uses the system. The description is not unique. However, for this first work, a rigid framework based on menus to enter the description has been developed even if a different way to handle the user-interface c o u l db em o r ea d a p t e d .T h i si s s u eh a sn o tb e e ny e t addressed. Our approach is really new in CAD. The paper proposes the first results we obtained and we do not claim thatthepluginwedescribecorrespondstoafinalversion.

The current examples are simple and permit to illustrate the method. They can be easily produced by a classical m o d e l e rb u tn o tf a s t e r(b ye x a m p l eb yc o m p a r i n gt h e number of clicks). It is easy to understand that the vocabulary and the grammar can be easily extended allowing to handle more complex situations.

A n y w a y ,t h i sa p p r o a c ho ff e r sag a i ni nt i m ea n dt h e generated model can easily be updated with classical CAD operators since the resulting model is directly embedded in the CAD environment and is defined with a traditional building tree. This model can also be exported in another CAD environment using the classical IGES or STEP file formats.

Finally, entering such a description means that some semantic information are inserted into the CAD modeler. Today, those information are solely used to create the CAD model but one can imagine that it could be used in any other steps of the PDP. In the future, this interesting possibility will evidently require large modifications of actual CAD modelers to give rise to a new generation of modeling environments.

Figure 1 .

 1 Figure 1. Declarative modeling approach built on top of a procedural CAD modeler.

 e r sc a ns t i l lc o m eb a c kt om a k et h efi n a lC A Dm o d e l adapted to industrial constraints. Of course, handling incompletely defined shapes may generate not expected b u tv a l u a b l es o l u t i o n s .I ti sa l s oag o o dm e a nt ot a k e into account the uncertainties the designers have when defining complex shapes.

Figure 2 .

 2 Figure 2. Modular declarative modeling framework as part of a PDP.

 Downloaded by [Arts et Métiers ParisTech] at 02:02 15 April 2016 factors are applied depending on the vocabulary that is used. The final size can be obtained by any homothetic transformation if required. Table

 functionsandoperators.Thistransformationstepisquite generic in the sense that it does not rely on a specific CAD modeler.T h i si sn o ta n y m o r et r u ew h e nc o n s i dering the last module that transforms this generic shape modeling description into a set of specific CAD modeling functions and operators. Those two transformations are explained in this section and examples are given in section 5.

Figure 3 .Figure 4 .

 34 Figure 3. Example of localization.

Figure 5 .

 5 Figure 5. Example of a bump operator.

 .a); BE2. Extract the contour C and C' of the faces which are [above] and [below] (Fig. 6.a). Between the two contours, generate athirdcon tourC''withasizecharacterized by the descriptor [moderately] [concave],i.e. OoM × ½inthepresentcase(Fig.6.b); BE3. Deform the outer skin of the object to bend it [around above-below axis] a n ds ot h a tt h ed e f o r m e d skin goes through the three contours C, C' and C'' (Fig. 6.c).

Figure 6 .

 6 Figure 6. The bending operator.

Table 4 .Table 5 . 6 : 6 .

 4566 Correspondences between the slice generic description and CATIA V5 macro. macro This macro uses the Part Design and Generative Shape Design modules of CATIA V5 and needs a solid model as input. The correspondences between the generic shape d e s c r i p t i o ni n t r o d u c e di ns e c t i o n4.1.2 and the CATIA V5 functions and operators is given in Table 5: Correspondences between the bump generic description and CATIA V5 macro. circle as a limiting line and OoM × 1as an amplitude Disassemble the solid Create abump with the previously defined circle as a limiting curve, P as deformation center, Z+ as deformation direction and OoM × 1 as amplitude of the deformation Remove the previous surface Assemble the set of surfaces Fill the close surface to get a solid Downloaded by [Arts et Métiers ParisTech] at 02:02 15 April 2016 4.2.4. Bending macro This macro uses the Part Design and Generative Shape Design modules of CATIA V5 and needs a solid model as input. The correspondences between the generic shape description introduced in section 4.1.2 and the CATIA V5 functions and operators is given in TableTable Correspondences between the bend generic description and CATIA V5 macro.Steps Bending generic description CATIA V5 functions/operators BE1 Determine the direction around which the bending is performed Simple test on the type of solid used as input. If it is a cylinder, then its axis is used, otherwise the Z axis is used BE2 Extract the contour C and C' Create sketch on the faces Project the faces on the sketches to get the two contours C and C' Create new plane between the two faces Create a sketch Create a circle or a rectangle withasizeof OoM × ½ BE3 Deform the outer skin to create the bend Disassemble the solid Create a loft through the three contours C, C' and C'' Assemble the faces Fill the close surface to get a solid

Figure 7 .

 7 Figure 7. Initial CAD model (a) and the reconstructed one using the declarative modeler (b).reconstructed part and building tree are presented on Fig. 7.b:

Figure 8 .

 8 Figure 8. A spinning top (a) and its draft CAD model obtained with the declarative modeler (b).

Figure 9 .

 9 Figure 9. A bottle of water (a) and the draft model obtained with the declarative modeler (b).

 [Start with] [cylinder 1] [moderately] [wide], [few] [high] • [Above] [cylinder 1], [add] [cylinder 2] [moderately] [wide], [extremely-few] [high]. • [Bend] [extremely-few] [cylinder 2] • [Above] [bending 1], [add] [cylinder 3], [moderately] [wide], [very-few] [high] • ...

 Downloaded by [Arts et Métiers ParisTech] at 02:02 15 April 2016 easily adapt the macros to multiple CAD environments.

Table 1 .

 1 Correspondences between the positioning vocabulary and the direction of the reference frame.

	Positioning vocabulary	Reference frame directions
	[above]	Z+
	[below]	Z-
	[to the right]	Y+
	[to the left]	Y-
	[fore]	X+
	[back]	X-

Table 1

 1

summarizes the correspondences between this positioning vocabulary and the directions of the absolute reference frame. He/she can also use the same wording while further describing it to enable relative positioning. For example, the sentence [above] [parallelepiped 1], [on the right hand size] ca nbeusedt oposi tio nanew shape with respect to [

parallelepiped 1].Tohelptheuser to

 make his/her description, all the names of the shapes already designed are written on the model displayed in the 3D viewer.F o rt h ed i m e n s i o n i n go ft h es h a p e s ,t h eu s e rh a st o complete his/her description with some adjectives called "quantifiers". The dimensioning of the master solid is to be considered as specific since the quantifiers are necessarily absolute values. The list of relative quantifiers is composed of the following adjectives: [

Table 3 .

 3 Correspondences between the localization generic description and CATIA V5 macro.

		Localization generic	
	Steps	description	CATIA V5 functions/operators
	LO1	Deactivate	Deactivate
	LO2	Compute position of COG	Inertia measuring
		Project on the outer skin	Disassemble the solid	,
		and create a reference point	project COG Point	and create a
	LO3	Create a reference plane	Plane with point and normal

Downloaded by [Arts et Métiers ParisTech] at 02:02 15 April 2016

Acknowledgments

T h ea u t h o r sw o u l dl i k et ot h a n kt h et w oF r e n c hI n s t i t u t e s CARNOTAR TSandST ARfortheirsupportstothisresearch project.

Downloaded by [Arts et Métiers ParisTech] at 02:02 15 April 2016 Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org) Powered by TCPDF (www.tcpdf.org)