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Discrete Box-Constrained Minimax Classifier for
Uncertain and Imbalanced Class Proportions

Cyprien Gilet, Susana Barbosa, Lionel Fillatre

Abstract—The goal of this paper is to build a supervised classifier addressing the following difficulties which commonly appear in
safety-critical applications: imbalanced datasets, uncertain class proportions, dependencies between some features, presence of both
numeric and categorical features, and arbitrary loss functions provided by experts. Many works have shown that discretizing the
numeric features is relevant for dealing with mixed attributes. Thus, we develop a novel minimax classifier algorithm, designed for
processing discrete or discretized features, which addresses all the previously mentioned issues. The usual minimax criterion derives
from the computation of the class proportions which maximize the empirical Bayes risk over the probabilistic simplex. However, it can
be potentially too pessimistic when the least favorable priors appear unrealistic or its risk of error becomes too high. In this case, under
the assumption that the experts are able to provide independent bounds on some class proportions, our approach takes into account
these constraints to decrease the risk of error. The resulting box-constrained minimax classifier appears as a trade-off between the
discrete Bayes classifier and the usual minimax classifier.

Index Terms—Minimax Classifier, Γ-Minimax Classifier, Imbalanced datasets, Uncertain Class Proportions, Discrete Bayes Classifier,
Histogram Rule, Bayesian Robustness.

F

1 INTRODUCTION

THE task of supervised classification is becoming increas-
ingly promising in several real applications such as

medical diagnosis, condition monitoring, or fraud detection.
However, the context of such applications often presents
the following difficulties. Firstly, the class proportions (the
priors) are generally imbalanced and may evolve in time for
unknown reasons. Secondly, we generally have to work with
both numeric and categorical features (mixed attributes),
for which many of them present dependencies. Finally, we
often have to take into account a specific loss function,
provided by the experts of the application domain, in order
to penalize differently the class classification errors. This
introduction will discuss the main aspects of our work: 1)
the difficulties to learn a classifier with imbalanced datasets,
2) the robustness of classifiers to uncertain class proportions,
3) the drawbacks of the usual minimax criterion, and 4)
the difficulty to process mixed attributes. Then, it will be
concluded by summarizing the contributions.

1.1 Working with imbalanced datasets
The common objective in the supervised classification task is
to minimize the empirical global risk of errors, based on a set
of labeled learning samples [1], [2]. This global risk of clas-
sification errors is the weighted sum of the class-conditional
risks with respect to the associated class proportions [3].
Hence, when the training set is imbalanced, i.e. the classes
are not equally represented, most of the classifiers essen-
tially focus on the dominating classes containing the largest
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number of occurrences, and tend to underestimate the least
represented ones [4], [5], [6], [7]. In other words, minimizing
the empirical global risk leads the classifier to minimize the
class-conditional risks of the dominating classes. A minority
class with just a small number of occurrences will tend to
have a large class-conditional risk.

A common approach to deal with imbalanced datasets
is to balance the data by resampling the training set [4], [5].
However, this approach introduces a bias since the actual
state of nature remains imbalanced. As shown in this paper,
this bias increases linearly as the gap between the balanced
class proportions and the actual class proportions increases.

An other common approach is the cost sensitive learning
[4], [5], [8], [9] which aims at optimizing the cost of class
classification errors in order to counterbalance the number
of occurrences of each class. However, in our context, this
approach presents two drawbacks: i) it modifies the loss
function provided by the experts and ii) these costs are
generally difficult to tune.

In our context, a relevant approach for working with
imbalanced datasets is to fit the classifier by minimizing
the maximum of the class-conditional risks. The resulting
decision rule is called a minimax classifier. It derives from
the computation of the least favorable priors which maxi-
mize the minimum empirical global risk of error [3], [10],
[11]. These least favorable priors are generally difficult to
calculate as underlined in [12], [13] and [11]. A pioneering
work on the minimax criterion in the field of machine
learning is [14]. This work studies the generalization error
of a minimax classifier but does not provide any method
to compute it. In [15], the authors proposed the Minimum
Error Minimax Probability Machine for the task of binary
classification only, the extension to multiple classes is diffi-
cult. This method is very close to [16]. The Support Vector
Machine (SVM) decision rule can also be tuned for the
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minimax classification [17]. The study proposed in [17] is
limited to the linear classifiers (using or not a feature map-
ping) and to the classification problems between only two
classes. In [18], the authors proposed an approach which
fits a decision rule by learning the probability distribution
which minimizes the worst-case of misclassification over a
set of distributions centered at the empirical distribution.
When the class-conditional distributions of the training set
belong to a known parametric family of probability distri-
butions, the competitive minimax approach can be an alter-
native solution [19]. Finally, in [20], the authors proposed
a fixed-point algorithm based on generalized entropy and
strict sense Bayesian loss functions. To estimate the least-
favorable priors, this approach alternates a resampling step
of the learning set with an evaluation step of the class-
conditional risk. However, the fixed-point algorithm needs
the minimax rule to be an equalizer rule. We can show that
this assumption is not always satisfied when considering
discrete features. Moreover, when the training dataset is too
small or highly imbalanced, it is not possible to resample the
dataset with respect to some priors which demand too many
random samples from the classes which contain initially just
a few samples.

1.2 Working with uncertain class proportions
In many application fields like medicine, the distribution of
the priors can change in time because of unknown reasons
(for example unknown causal effects). We generally do not
know when these changes may occur. This is an important
issue since the overall risk of error evolves linearly when
some changes in the class proportions occur [3], [10]. Nowa-
days, this drawback is more and more discussed in the
Machine Learning field [21], [22], and the task of considering
robust classifiers with respect to uncertainty in the priors
distributions is becoming necessary. In the literature, this
task is generally called Bayesian Robustness [11].

In addition to its relevance for working with imbalanced
datasets, the minimax classifier is also designed to address
the issue of uncertain class proportions [3], [10], [11], [23].
By minimizing the maximum of the class-conditional risks,
we expect the overall risk to become almost constant for
any prior. It is then robust to any changes in the priors. This
asserts that a minimax classifier is relevant in our context.

1.3 Possible drawback regarding the minimax criterion
Although the minimax criterion is suitable for addressing
the issues regarding the class proportions, this approach
appears sometimes too pessimistic as discussed in [11], [24].
This drawback occurs when the least favorable priors seem
unrealistic (i.e. too far from the actual state of nature),
and the global risk of error becomes too high. In order
to alleviate this drawback when it occurs, a solution is to
consider a set Γ of reasonable or realistic prior distributions,
which leads to the Γ-minimax criterion [11]. The calculation
of a Γ-minimax classifier is difficult. Currently, no algorithm
exist to calculate it in a general way.

In this paper, we consider Γ as a box-constraint on the
priors. The main asset of considering such a box-constraint
stems from the fact that the experts of the application
domain can easily and rationally build it, by providing some

independent bounds on each class proportion. For example,
in the medical field, it may be reasonable to bound the
maximum frequency of a given disease. To our knowledge,
the approach of taking into account independent bounds
on the priors has not been studied yet for addressing the
minimax criterion drawback. This novel decision rule is
called the “Box-constrained minimax classifier”.

1.4 Working with both numeric and discrete features
The task of dealing with both numeric and categorical at-
tributes is difficult for reaching optimal results. For comput-
ing a minimax classifier, we need to well estimate the joint
distribution of the input features in each class. However, in
the presence of mixed attributes, and due to the curse of
dimensionality [10], [25], this estimation is quite difficult. In
such a case, a weakening solution would be to consider the
naı̈ve approach of estimating the marginal distribution of
each feature independently. But, as previously mentioned,
this hypothesis is not acceptable since we want to take into
account the dependencies between the features. Hence, a
reasonable approach is to discretize the numeric attributes.
It allows us to constrain the joint distribution of the features
to be categorical, which simplifies its estimation.

Moreover, in the literature, many works have shown that
the discretization of the numeric features generally leads to
accurate results [26], [27], [28], [29], [30], with strong analytic
properties. For example, in the case of binary classification
with respect to the L0-1 loss function, the true error rate of
the histogram rule which minimizes the risk of error on a
discrete training set can be computed exactly [31], [32], [33].
In our context, all these benefits encourage us to discretize
the numeric features.

1.5 Contributions
The contributions of the paper are the following. Firstly, we
introduce a specific Γ-minimax classifier, called the box-
constrained minimax classifier, which takes into account
some independent bounds on each class proportion. Sec-
ondly, we extend the calculation of the binary histogram
rule established in [31], [32], [33] to the case of multiple
classes with respect to any positive loss function. We pro-
pose a theoretical study of the minimum achievable risk
of error in the case of discrete features, called the discrete
empirical Bayes risk, as a function of the class propor-
tions. We show that this is a non-differentiable concave
multivariate piecewise affine function over the probabilistic
simplex. Thirdly, we propose a projected-subgradient-based
algorithm which computes the box-constrained minimax
classifier in the case of discrete features. This algorithm
searches for the priors which maximize the minimum risk
of errors over the box-constrained simplex. We establish the
convergence of this algorithm. It must be noted that this
algorithm can also be used to compute the usual uncon-
strained minimax classifier, which is still challenging in gen-
eral. Fourthly, we show that this algorithm can be coupled
with a discretization process, like the k-means algorithm,
to compute the box-constrained classifier in the context of
mixed attributes.

This paper is in the field of Γ-minimaxity and Bayesian
robustness for supervised classification tasks. It generalizes
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our opening works published in the proceedings [34], [35],
and presents more contents with all the proofs and new
experiments.

The paper is organized as follows. Section 2 introduces
the box-constrained minimax classifier concept. Section 3
studies the discrete empirical Bayes risk. In section 4, we de-
rive the algorithm to compute the discrete box-constrained
minimax classifier. In section 5, we show how to easily
and accurately discretize databases containing both numeric
and categorical features with the k-means algorithm. We
then provide a rigorous experiment procedure to compare
our novel classifier with other usual classifiers faced with
the issues of imbalanced and uncertain class proportions.
These experiments are based on six real databases coming
from different application fields. Section 6 concludes the
paper. The appendices support the main results of the paper,
including the mathematical proofs.

2 BOX-CONSTRAINED MINIMAX CLASSIFIER

Given K ≥ 2 the number of classes, let Y = {1, . . . ,K} be
the set of class labels and Ŷ = Y the predicted labels. Let X
be the space of all feature values. Let L : Y × Ŷ → [0,+∞)
be the loss function such that, for all (k, l) ∈ Y × Ŷ ,
L(k, l) := Lkl corresponds to the loss, or the cost, of
predicting the class l whereas the real class is k. For ex-
ample, the L0-1 loss function is defined by Lkk = 0 and
Lkl = 1 when k 6= l. Given a multiset {(Yi, Xi) , i ∈ I}
containing a number m of labeled learning samples, the task
of supervised classification [1], [2], [10] is to learn a decision
rule δ : X → Ŷ which assigns each sample i ∈ I to a class
Ŷi ∈ Ŷ from its feature vector Xi := [Xi1, . . . , Xid] ∈ X
composed of d observed features, and such that δ minimizes
the empirical risk

r̂(δ) =
1

m

∑
i∈I

L(Yi, δ(Xi)). (1)

As explained in [3], this risk can be written as

r̂ (δπ̂) =
∑
k∈Y

π̂kR̂k (δπ̂) . (2)

Here and in the following, π̂ := [π̂1, . . . , π̂K ] corresponds
to the class proportions of the training set, such that for all
k ∈ Y , π̂k = 1

m

∑
i∈I 1{Yi=k}, where 1{Yi=k} denotes the

indicator function of the event Yi = k. Moreover, in (2),
R̂k (δπ̂) corresponds to the empirical class-conditional risk
associated to class k, defined by

R̂k (δπ̂) :=
∑
l∈Ŷ

Lkl P̂(δπ̂(Xi) = l | Yi = k). (3)

Here, P̂(δπ̂(Xi) = l | Yi = k) denotes the empirical
probability for the classifier δπ̂ to assign the class l given
that the true class is k. Note that in (2) and (3), the notation
δπ̂ means that the decision rule δ was fitted under the priors
π̂. More generally, we will use the notation δπ to denote that
the decision rule δ was fitted when considering the priors
π, for any π in the K-dimensional probabilistic simplex S
defined by S := {π ∈ [0, 1]K :

∑K
k=1 πk = 1}. In the

following, ∆ := {δ : X → Ŷ} denotes the set of all possible
classifiers.

2.1 Reminds on the Minimax classifier principle
Let {(Y ′i , X ′i) , i ∈ I ′} be the multiset containing a number
m′ of test samples satisfying the unknown class proportions
π′ = [π′1, . . . , π

′
K ]. The classifier δπ̂ fitted with the samples

{(Yi, Xi) , i ∈ I} is then used to predict the classes Y ′i of the
test samples i ∈ I ′ from their associated features X ′i ∈ X .
As described in [3], the risk of misclassification with respect
to the classifier δπ̂ and as a function of π′ is defined by

r̂ (π′, δπ̂) =
∑
k∈Y

π′kR̂k (δπ̂) . (4)

Fig. 1, left, illustrates the risk r̂ (π′, δπ̂) for K = 2. In this
case, it can be rewritten as

r̂ (π′, δπ̂) = π′1

(
R̂1 (δπ̂)− R̂2 (δπ̂)

)
+ R̂2 (δπ̂) . (5)

It is then clear that r̂ (π′, δπ̂) is a linear function of π′1. It
is easy to verify that the maximum value of r̂ (π′, δπ̂) is
M(δπ̂) := max{R̂1 (δπ̂) , R̂2 (δπ̂)}. Since M(δπ̂) is larger
than r̂ (π′, δπ̂), it involves that the risk of the classifier can
change significantly when π′ differs from π̂.

More generally, for K ≥ 2 classes, the maximum risk
which can be attained by a classifier when π′ is unknown is
M(δπ̂) := max{R̂1 (δπ̂) , . . . , R̂K (δπ̂)}. Hence, a solution to
make a decision rule δπ̂ robust with respect to the class pro-
portions π′ is to fit δπ̂ by minimizing M(δπ̂). As explained
in [3], this minimax problem is equivalent to consider the
following optimization problem:

δBπ̄ = argmin
δ∈∆

max
π∈S

r̂(π, δπ) = argmin
δ∈∆

max
π∈S

r̂(δπ). (6)

In [36], the famous Minimax Theorem establishes that

min
δ∈∆

max
π∈S

r̂(δπ) = max
π∈S

min
δ∈∆

r̂(δπ). (7)

In our case, dealing only with discrete features involves that
the set of possible classifiers ∆ is finite. Looking at the proof
of the Minimax theorem in [36] shows immediately that the
Minimax theorem holds when ∆ is finite. In the following,
let us define

δBπ := arg min
δ∈∆

r̂(δπ) (8)

the optimal Bayes classifier associated to a given prior π ∈ S.
Hence, according to (7), provided that we can calculate δBπ
for any π ∈ S, the optimization problem (6) is equivalent to
compute the least favorable priors

π̄ := arg max
π∈S

r̂(δBπ ), (9)

so that the minimax classifier δBπ̄ solution of (6) is given by
(8) when considering the prior (9).

2.2 Benefits of the Box-constrained minimax classifier
Sometimes, the minimax classifier appears too pessimistic in
the case where the experts consider that the least favorable
priors π̄ are unrealistic (i.e., π̄ is too far from π̂), and that
the global risk of errors associated to δBπ̄ is too high [11].
In such a case, a solution is to shrink the class proportions
constraint, based on the knowledge, or the interest, of the
experts from the application domain.

For example in Fig. 1, right, let concider that the pro-
portions of class 1 are uncertain but bounded between
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Fig. 1. Comparison between the empirical Bayes classifier δBπ̂ , the minimax classifier δBπ̄ and the box-constrained minimax classifier δBπ? . These
results come from a synthetic dataset for which K = 2 classes. The generation of this dataset is detailed in Appendix A.

a1 = 0.1 and b1 = 0.4. If we look at the point b1, it is
clear that the classifier δBπ̂ fitted on the class proportions π̂1

of the training set is very far from the minimum empirical
Bayes risk r̂

(
π′, δBπ′

)
. The minimax classifier δBπ̄ is more

robust and the box-constrained minimax classifier δBπ? has
no loss. If we look now at the point a1, the minimax
classifier is disappointing but the loss of the box-constrained
minimax classifier is still acceptable. In other words, the box-
constrained minimax classifier seems to provide us with a
reasonable trade-off between the global loss of performance,
the minimization of the maximum of the class conditional
risks, and the robustness to the prior change, based on
the knowledge, or the interest, of the experts from the
application domain. To our knowledge, the concept of box-
constrained minimax classifier has not been studied yet.

More generally for K ≥ 2 classes, in the case where
we bound each class proportion πk independently between
[ak, bk]k∈Y , we set up the box-constraint

B := {π ∈ RK : ∀k ∈ Y, 0 ≤ ak ≤ πk ≤ bk ≤ 1}, (10)

which results that we consider the box-constrained simplex

U := S ∩ B. (11)

Hence, to compute the box-constrained minimax classifier
with respect to U, we therefore consider the minimax prob-
lem

δBπ? = arg min
δ∈∆

max
π∈U

r̂(δπ).

And according to (7), provided that we can calculate δBπ for
any π ∈ U, this problem leads to the optimization problem

π? = arg max
π∈U

r̂(δBπ ). (12)

Remark 1. It is worth noting that the minimax classifier δBπ̄
is a particular case of the box-constrained minimax classifier
δBπ? . Indeed, the least favorable priors π̄ are still accessible when
considering B = [0, 1]K , so that U = S and π? = π̄.

3 DISCRETE EMPIRICAL BAYES RISK

Let consider that all the features are discrete, or beforehand
discretized. In [32], [33], Dougherty et al established strong
results concerning the discrete classification task in the case
of K = 2 classes and when considering the L0-1 loss
function. Among these results, they calculate the histogram
rule which minimizes the risk (1) on the training set. In this
section, we extend the calculation of the discrete empirical
Bayes classifier for K ≥ 2 classes and when considering any
positive loss function L. We then study its associated global
risk of errors as a function of the priors over the simplex S.

3.1 Empirical Bayes risk for the training set prior
For all k ∈ Y , let Ik = {i ∈ I : Yi = k} be the set of learning
samples from the class k, and mk = |Ik| the number of
samples in Ik. Thus with these notations and in link with (3),
we can write

P̂(δπ̂(Xi) = l | Yi = k) =
1

mk

∑
i∈Ik

1{δπ̂(Xi)=l}. (13)

Since each feature Xij is discrete, it takes on a finite
number of values tj . It follows that the feature vector
Xi := [Xi1, . . . , Xid] takes on a finite number of values in
the finite set X = {x1, . . . , xT } where T =

∏d
j=1 tj . Each

vector xt can be interpreted as a “profile vector” which
characterizes the samples. Let us note T = {1, . . . , T} the
set of indices. Let us define for all k ∈ Y and for all t ∈ T ,

p̂kt :=
1

mk

∑
i∈Ik

1{Xi=xt} (14)

the probability estimate of observing the features profile
xt ∈ X given that the class label is k. In the context of
statistical hypothesis testing theory, [37] calculates the risk
of a statistical test with discrete inputs. In the next lemma,
we extend this calculation to the empirical risk of a classifier
δ ∈ ∆ with discrete features in the context of machine
learning.
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Lemma 1. Given a classifier δ ∈ ∆, its associated empirical risk
on the training dataset is given by

r̂ (δπ̂) =
∑
t∈T

∑
k∈Y

∑
l∈Ŷ

Lkl π̂k p̂kt 1{δπ̂(xt)=l}. (15)

Proof. The proof is detailed in Appendix C.1.

According to Lemma 1, the performance of any classifier
δ fitted on the learning dataset depends only on the loss
function L, the probabilities p̂kt, and the priors π̂k. In this
sense, the set of values {p̂kt, π̂k} can be viewed as an
exhaustive statistics of the training dataset. In the following
theorem, we extend the calculation of the empirical discrete
Bayes classifier [32], in our general context of K ≥ 2 classes
and when considering any positive loss function L.

Theorem 1. The empirical Bayes classifier δBπ̂ , which minimizes
the empirical risk (15) over ∆, is given by

δBπ̂ : Xi 7→ arg min
l∈Ŷ

∑
t∈T

∑
k∈Y

Lkl π̂k p̂kt 1{Xi=xt}. (16)

Its associated empirical risk is r̂
(
δBπ̂
)

=
∑
k∈Y π̂kR̂k

(
δBπ̂
)
,

where for all k ∈ Y ,

R̂k
(
δBπ̂

)
=
∑
t∈T

∑
l∈Ŷ

Lkl p̂kt 1{λlt=minq∈Ŷ λqt}, (17)

with for all l ∈ Ŷ and all t ∈ T , λlt =
∑
k∈Y Lkl π̂k p̂kt.

Proof. The proof is detailed in Appendix C.2.

According to Theorem 1, the empirical Bayes classifier
δBπ̂ outperforms, on the training set, any more advanced
classifiers. Let us note that this classifier is non-naı̈ve, it
takes into account all the possible dependencies between
the features since we do not make any assumptions of
independence between the attributes for calculating it.

3.2 Empirical Bayes risk extended to any prior

Since we can only consider the samples from the training
set, the probabilities p̂kt defined in (14) are assumed to
be estimated once for all. Indeed, the statistical estimation
theory [38] has established that the estimates p̂kt correspond
to the maximum likelihood estimates of the true proba-
bilities pkt for all couples (k, t) ∈ Y × T . By estimating
these probabilities with the full training set, we get the best
unbiased estimate with the smallest variance. This paper
assumes that these class-conditional probabilities are repre-
sentative of the test set. However, as explained in Section 2,
we can not be confident in the class proportions estimate
π̂k. They are probably biased by the data collection, and the
priors can change in time for unknown reasons. Thus, the
empirical Bayes risk must be viewed as a function of the
class proportions.

From Theorem 1 and keeping unchanged the class-
conditional probabilities p̂kt, it follows that the empirical
Bayes classifier (8) associated to any prior π ∈ S is given by

δBπ : Xi 7→ arg min
l∈Ŷ

∑
t∈T

∑
k∈Y

Lkl πk p̂kt 1{Xi=xt}. (18)

Moreover, the associated minimum empirical Bayes risk
r̂
(
δBπ
)

extended to any prior π ∈ S is given by the function
V : S→ [0, 1] defined by

V (π) := r̂
(
δBπ

)
=
∑
k∈Y

πkR̂k
(
δBπ

)
, (19)

where for all k ∈ Y ,

R̂k
(
δBπ

)
=
∑
t∈T

∑
l∈Ŷ

Lkl p̂kt 1{λlt=minq∈Ŷ λqt}, (20)

with for all l ∈ Ŷ and all t ∈ T , λlt =
∑
k∈Y Lkl πk p̂kt.

The function V : π 7→ V (π) gives the minimum value of the
empirical Bayes risk when the class proportions are π and
the class-conditional probabilities p̂kt remain unchanged. In
other words, a classifier can be said robust to the priors if its
risk remains very close to V (π) whatever the value of π ∈ S.

It is well known in the literature [3], [10] that the Bayes
risk, as a function of the priors, is concave over the proba-
bilistic simplex S. The following proposition shows that this
result holds when considering the empirical Bayes risk (19).
Let us note that all the results are given for π ∈ S, but they
also hold over the box-constrained probabilistic simplex U
since U ⊂ S.

Proposition 1. The empirical Bayes risk V : π 7→ V (π) is
concave over the probabilistic simplex S.

Proof. The proof is detailed in Appendix C.3.

Then, the following proposition and its corollary study
the non-differentiability of V over S.

Proposition 2. The empirical Bayes risk V : π 7→ V (π) is a
multivariate piecewise affine function over S with a finite number
of pieces.

Proof. The proof is detailed in Appendix C.4.

Corollary 1. If the following condition

∃ (π, π′, k) ∈ S× S× Y : R̂k
(
δBπ

)
6= R̂k

(
δBπ′

)
(21)

is satisfied, then V is non-differentiable over the simplex S.

Proof. The proof is detailed in Appendix C.5.

Note that the condition (21) is most likely achievable.
Otherwise, each class conditional risk would remain equal
whatever the prior. And if the condition (21) is not satisfied,
it results that V is affine over S.

4 COMPUTATION OF THE BOX-CONSTRAINED
MINIMAX CLASSIFIER

In order to compute our box-constrained minimax classifier,
according to (12) and when considering (19), our objective
is to solve the following optimization problem

π? = arg max
π∈U

V (π). (22)

Since V : π 7→ V (π) is in general non-differentiable pro-
vided that the condition (21) is satisfied, it is necessary to
develop an optimization algorithm adapted to both the non-
differentiability of V and the domain U.



DISCRETE BOX-CONSTRAINED MINIMAX CLASSIFIER FOR UNCERTAIN AND IMBALANCED CLASS PROPORTIONS 6

4.1 Optimization procedure and convergence

In order to compute the least favorable priors π? which
maximize V over U in the general case where V is non-
differentiable, we propose to use a projected subgradient
algorithm based on [39] and following the scheme

π(n+1) = PU

(
π(n) +

γn
ηn

g(n)

)
. (23)

In (23), at each iteration n ≥ 1, g(n) denotes a subgradient
of V at the point π(n), γn denotes the subgradient step,
ηn = max{1, ‖g(n)‖2}, and PU denotes the exact projec-
tion onto the box-constrained simplex U. Let us note that
this algorithm also holds in the particular case where the
condition (21) is not satisfied, i.e. when the function V is
affine over U. The following lemma gives a subgradient of
the target function V .

Lemma 2. Given π ∈ U, the vector composed by all the
class-conditional risks R̂

(
δBπ
)

:=
[
R̂1

(
δBπ
)
, . . . , R̂K

(
δBπ
)]

is
a subgradient of V at the point π.

Proof. The proof is detailed in Appendix C.6.

In the following, we choose g(n) = R̂
(
δB
π(n)

)
at each iter-

ation n ≥ 1 in (23). The following theorem establishes the
convergence of the iterates (23) to π?.

Theorem 2. When considering g(n) = R̂
(
δB
π(n)

)
and any

sequence of steps (γn)n≥1 satisfying

inf
n≥1

γn > 0,
+∞∑
n=1

γ2
n < +∞,

+∞∑
n=1

γn = +∞, (24)

the sequence of iterates (23) converges strongly to a solution π?

of (22), whatever the initialization π(1) ∈ S.

Proof. The proof is a consequence of Theorem 1 in [39]. Here
we have the strong convergence since π(n) belongs to a finite
dimensional space.

It is worth noting that when the empirical Bayes risk
V is not constantly equal to zero over S, the subgradient
R̂
(
δBπ?
)

at the box-constrained minimax optimum cannot
vanish, otherwise the associated risk V (π?) would be null
too due to (19). And this would be a contradiction with the
fact that π? is solution of (22). Hence, in this general case, the
sequence (23) is infinite, and we need to consider a stopping
criterion. To this aim, we propose to follow the reasoning in
[40] which leads to the following corollary.

Corollary 2. At the iteration N ≥ 1,∣∣∣∣max
n≤N

{
V
(
π(n)

)}
− V (π?)

∣∣∣∣ ≤ ϕ(N),

with

ϕ(N) := max

1,

√√√√ K∑
k=1

[
K∑
l=1

Lkl

]2
 ρ2 +

∑N
n=1 γ

2
n

2
∑N
n=1 γn

(25)

and where ρ is a constant satisfying ‖π(1) − π?‖2 ≤ ρ.

Proof. The proof is summarized in Appendix C.7.

In practice we can choose ρ2 = K since all the pro-
portions belong to the probabilistic simplex. Since (25) con-
verges to 0 as N → ∞, we can choose a small tolerance
ε > 0 as a stopping criterion: we fix ε and, then, we compute
N = Nε such that the bound in (25) is smaller than ε.

When considering the sequence of iterates (23), we need
to compute the exact projection onto the box-constrained
probabilistic simplex U at each iteration n. To this aim,
we propose to consider the algorithm provided by [41],
which computes the exact projection onto polyhedral sets in
Hilbert spaces. In Appendix B, we show how to apply this
projection to our box-constrained simplex U. Let us note
that in the case where we are interested in computing the
minimax classifier δBπ̄ , we have U = S (see Remark 1), and
we can perform the projection onto S using the algorithm
provided by [42], or its faster version [43], for which the
complexity is lower.

4.2 Box-constrained minimax classifier Algorithm
The procedure for computing the box-constrained minimax
classifier δBπ? is summarized in the step by step Algorithm 1.
In practice, we choose the sequence of steps (γn)n≥1 = 1/n
which satisfies (24). Let us note that our approach does not
need to resample the training set at each iteration n. Indeed,
the uses of π(n) and π? is only analytic, which allows to
involve the entire information provided in the training set
for computing our minimax classifier.

Algorithm 1 Box-constrained minimax classifier
1: Input: (Yi, Xi)i∈I , K , N .
2: Compute π(1) = π̂
3: Compute the p̂kt’s as described in (14).
4: r? ← 0, π? ← π(1)

5: for n = 1 to N do
6: for k = 1 to K do
7: g

(n)
k ← R̂k

(
δB
π(n)

)
see (20)

8: end for
9: r(n) =

∑K
k=1 π

(n)
k g

(n)
k see (19)

10: if r(n) > r? then
11: r? ← r(n), π? ← π(n)

12: end if
13: γn ← 1/n, ηn ← max{1, ‖g(n)‖2}
14: π(n+1) ← PU

(
π(n) + γn g

(n)/ηn
)

15: end for
16: Output: r?, π? and δBπ? provided by (18) with π = π?.

5 NUMERICAL EXPERIMENTS

For illustrating the interest of our box-constrained minimax
classifier, we applied our algorithm to 6 real databases [44],
[45], [46], [47], [48], [49], coming from different application
domains, and presenting the previously mentioned issues.
These databases present different levels of difficulty, de-
pending on the number of classes, the class proportions,
the loss function, the number of features and number of
samples. A detailed description of all these databases is
available in Supplementary Material. An overview of the
main characteristics of each database is given in Table 1, and
their associated class proportions π̂ are provided in Fig. 3.
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TABLE 1
Overview on each database. Among the d features, dn corresponds to
the number of numeric features. Moreover, Quad denotes the quadratic

loss function, such that for all (k, l) ∈ Y × Ŷ, Lkl = (k − l)2. Finally,
Stl denotes the loss function provided by the experts of the application

domain [47], such that L12 = 10, L21 = 500, and L11 = L22 = 0.

DATABASE m d dn K L

FRAMINGHAM [44] 3,658 15 8 2 L0-1
DIABETES [45] 768 8 8 2 L0-1
ABALONE [46] 4,177 8 7 5 Quad
SCANIA TRUCKS [47] 69,309 130 130 2 Stl
NASA PC3 [48] 1,563 37 36 2 L0-1
SATELLITE [49] 5,100 36 36 2 L0-1

5.1 Features discretization
In order to apply our algorithm, we need to discretize
the numeric features. To this aim, many methods can be
applied. As explained in [26], [27], we can use supervised
discretization methods such as [50], [51], [52], or unsuper-
vised methods such as the k-means algorithm [53]. For our
experiments, after having compared many of these methods
of discretization in terms of computation time, and their
impact on the risk of misclassifiactions and on the general-
ization error, it resulted that the k-means algorithm was the
most convenient and leaded to the most interesting results.

For each database, we therefore decided to quantize
the features using the k-means algorithm with a number
T ≥ K of centroids. In other words, each real feature
vector Xi ∈ Rd composed of all the features was quantized
with the index of the centroid closest to it, i.e., Q(Xi) = j
where Q : Rd 7→ {1, . . . , T} denotes the k-means quantizer
and j is the index of the centroid of the cluster in which
Xi belongs to. The choice of the number of centroids T
is important since it has an impact on the generalization
error. It was established from a 10-sub-fold cross-validation
over the main training set, and such that the generalization
error computed over the validation set, as a function of T ,
should not exceed the training error by more than ε > 0. An
example of this procedure is given in Fig. 2.

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

Training set: average risk

Validation set: average risk

T
opt

 = 200

Fig. 2. Framingham database: choice of T from the training set in the first
iteration of the 10-fold cross-validation procedure, and when considering
ε = 0.01. The dashed curves show the standard-deviation around the
mean of r̂

(
π̂, δBπ̂

)
.

5.2 Box-constraint generation
In practice, the Box-constraint can be established by experts
by bounding independently some or all the priors. For
our experiments, in order to illustrate the benefits of the
box-constrained minimax classifier δB

π? compared to the
minimax classifier δB

π̄ and the discrete Bayes classifier δB
π̂ ,

we consider a box-constraint Bβ centered in π̂, and such
that, given β ∈ [0, 1],

Bβ =
{
π ∈ RK : ∀k ∈ Y, π̂k − ρβ ≤ πk ≤ π̂k + ρβ

}
, (26)

with ρβ := β ‖π̂ − π̄‖∞ = β maxk∈Y |π̂k − π̄k|. Our box-
constrained probabilistic simplex is therefore Uβ = S ∩ Bβ .
Thus, when β = 0, B0 = {π̂}, hence U0 = {π̂} and π? = π̂.
When β = 1, π̄ ∈ B1, hence π̄ ∈ U1 and π? = π̄.

5.3 Procedures of the experiments

For each database, we performed a 10-fold cross-validation
procedure and we applied our box-constrained minimax
classifier δB

π? with respect to the box constraint B0.5. We
compared δB

π? to the discrete Bayes classifier δB
π̂ (16), the

minimax classifier δB
π̄ , the Logistic Regression [54] denoted

by δLR
π̂ , and the Random Forest [55] denoted by δRF

π̂ .
We applied δLR

π̂ and δRF
π̂ to both the real datasets and

the discretized datasets in order to evaluate the impact
of the discretization. As explained in Remark 1, we com-
puted the minimax classifier δBπ̄ and its associated least
favorable priors π̄ using our box-constrained minimax al-
gorithm when considering B = [0, 1]K . Let us denote
∆E :=

{
δLR
π̂ , δRF

π̂ , δB
π̂ , δ

B
π? , δ

B
π̄

}
⊂ ∆. For these experiments

we evaluate each classifier on five different criteria.
We first measure the performance of each classifier by

computing their global empirical risks (2) on both the train-
ing set and the test set of the cross-validation procedure.

The databases we are considering here are imbalanced,
or highly imbalanced, which complicates the task of well
classifying the samples from the classes with the smallest
priors. For measuring the performance of each classifier
δ ∈ ∆E on this difficult task, we compute maxk∈Y R̂k(δ) on
both the training sets and the test sets, so that the smaller
this criterion is, the more accurate the classifier δ appears
for well classifying samples from the smallest classes.

In order to illustrate the fact that the minimax classifiers
δB
π? and δB

π̄ aim at balancing as more as possible the class
conditional risks with respect to the constraints Uβ and S,
we moreover consider the criterion ψ : ∆→ R+ such that

ψ(δ) := max
k∈Y

R̂k(δ)−min
k∈Y

R̂k(δ), (27)

In other words, the criterion ψ aims at measuring how
equalizer a given classifier δ ∈ ∆ is.

In order to evaluate the robustness of each classifier
when the class proportions are uncertain, i.e when π′

differs from π̂, we generated 1,000 random priors π(s),
s ∈ {1, . . . , 1000}, uniformly dispersed over the box-
constrained simplex U0.5. To this aim, we uniformly gen-
erated a sequence of priors over S using the procedure
[56], until that 1000 of them also satisfy the constraint
B0.5. Then, for each repetition of the cross-validation pro-
cedure, we generated 1000 test subsets

{
(Y ′i , X

′
i) , i ∈ I(s)

}
by randomly selecting samples from the full test fold set
{(Y ′i , X ′i) , i ∈ I ′}, and such that each test subsets satis-
fies one of the random priors π(s). Each fitted classifier
δ ∈ ∆E was finally tested when considering all the
1000 random priors over U0.5. In order to measure the
robustness of each classifier δ, we look at the boxplot of
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TABLE 2
Results associated to each classifer δ ∈ ∆E and each database after the 10-folds cross-validation procedure. The notation δ K means that the

classifier δ was performed on the discretized version of each database. The results are presented as [mean± std]. For each criterion and for each
database, the green font characterizes the most efficient classifier, whereas the red font characterizes the classifier with the worst result. For each
criterion, in order to get a better overview for comparing each classifier, we moreover computed the average rank of each decision rule δ based on
their results associated to the 6 databases. Finally, the computing time criterion does not take into account the preprocessing task of discretizing
the data. All these results were obtained on a MacBook Pro (Intel Core i7 processor [3.1 GHz], 16 GO of RAM), using MATLAB. The algorithms

used to obtained these results are available at https://github.com/cypgilet/discrete_box_constrained_minimax_classifier.

Classifiers
Criteria Databases

δLRπ̂ δRFπ̂ δLRπ̂ K δRFπ̂ K δBπ̂ K δBπ? K δBπ̄ K

Framingham 0.14± 0.00 0.14± 0.01 0.15± 0.00 0.15± 0.00 0.15± 0.00 0.17± 0.01 0.33± 0.01
Diabetes 0.22± 0.01 0.20± 0.02 0.35± 0.00 0.23± 0.01 0.23± 0.01 0.23± 0.01 0.25± 0.01
Abalone 0.34± 0.01 0.29± 0.02 0.59± 0.01 0.34± 0.02 0.32± 0.02 0.47± 0.04 0.54± 0.06

Scania Trucks 2.09± 0.04 1.28± 0.38 5.88± 0.08 4.44± 0.41 0.95± 0.04 2.78± 0.59 4.48± 1.48
NASA pc3 0.09± 0.00 0.10± 0.00 0.10± 0.00 0.10± 0.00 0.09± 0.00 0.13± 0.01 0.25± 0.01

Training
r̂ (π̂, δ)

Satellite 0.004± 0.0 0.006± 0.0 0.014± 0.0 0.006± 0.0 0.007± 0.0 0.016± 0.0 0.033± 0.01
Classifier Average Rank 1.83 1.50 4.33 2.83 2.00 3.67 4.83

Framingham 0.15± 0.02 0.15± 0.01 0.15± 0.01 0.15± 0.02 0.15± 0.02 0.20± 0.02 0.36± 0.03
Diabetes 0.22± 0.05 0.24± 0.04 0.35± 0.05 0.30± 0.03 0.27± 0.05 0.27± 0.06 0.28± 0.05
Abalone 0.34± 0.04 0.35± 0.04 0.59± 0.05 0.37± 0.05 0.36± 0.03 0.52± 0.04 0.59± 0.08

Scania Trucks 2.28± 0.41 2.09± 0.42 5.88± 0.74 4.46± 0.63 1.10± 0.12 2.94± 0.56 4.63± 1.44
NASA pc3 0.10± 0.02 0.10± 0.02 0.10± 0.02 0.10± 0.02 0.12± 0.02 0.18± 0.02 0.29± 0.04

Test
r̂ (π′, δ)

Satellite 0.007± 0.0 0.006± 0.00 0.014± 0.0 0.012± 0.0 0.009± 0.0 0.020± 0.0 0.035± 0.01
Classifier Average Rank 1.67 1.67 4.17 3.50 2.33 4.00 5.17

Framingham 0.91± 0.01 0.91± 0.04 1.00± 0.00 0.99± 0.01 0.92± 0.02 0.69± 0.04 0.33± 0.01
Diabetes 0.42± 0.01 0.40± 0.07 1.00± 0.00 0.68± 0.12 0.45± 0.03 0.34± 0.04 0.26± 0.02
Abalone 3.24± 0.16 3.47± 0.16 9.00± 0.00 3.33± 0.40 3.12± 0.42 0.74± 0.17 0.61± 0.15

Scania Trucks 177± 3 108± 32 500± 0 376± 33 39± 6 8± 2 5± 1
NASA pc3 0.79± 0.02 0.97± 0.05 1.00± 0.00 1.00± 0.00 0.88± 0.03 0.51± 0.04 0.25± 0.01

Training
max
k∈Ŷ

R̂k(δ)

Satellite 0.21± 0.02 0.37± 0.02 1.00± 0.00 0.80± 0.21 0.41± 0.10 0.13± 0.09 0.03± 0.01
Classifier Average Rank 3.50 4.00 6.50 5.50 3.83 2.00 1.00

Framingham 0.92± 0.04 0.94± 0.03 1.00± 0.00 1.00± 0.00 0.94± 0.04 0.78± 0.05 0.46± 0.05
Diabetes 0.43± 0.09 0.48± 0.08 1.00± 0.00 0.73± 0.08 0.51± 0.10 0.40± 0.09 0.32± 0.06
Abalone 3.18± 1.12 3.45± 1.21 9.00± 0.00 3.74± 0.93 4.08± 0.73 2.11± 0.98 2.01± 1.00

Scania Trucks 192± 23 177± 30 500± 0 378± 37 51± 13 23± 8 19± 10
NASA pc3 0.81± 0.10 0.98± 0.04 1.00± 0.00 1.00± 0.00 0.97± 0.05 0.77± 0.11 0.48± 0.12

Test
max
k∈Ŷ

R̂k(δ)

Satellite 0.33± 0.12 0.38± 0.20 1.00± 0.00 0.84± 0.15 0.52± 0.19 0.37± 0.25 0.24± 0.19
Classifier Average Rank 3.17 4.17 6.50 5.67 4.50 2.17 1.00

Framingham 0.91± 0.01 0.90± 0.05 1.00± 0.00 0.99± 0.01 0.91± 0.03 0.61± 0.06 0.01± 0.01
Diabetes 0.31± 0.01 0.31± 0.07 1.00± 0.00 0.62± 0.13 0.35± 0.04 0.17± 0.07 0.02± 0.01
Abalone 3.12± 0.16 3.37± 0.15 9.00± 0.00 3.20± 0.40 2.96± 0.42 0.35± 0.12 0.15± 0.10

Scania Trucks 177± 3 108± 32 500± 0 376± 33 38± 6 5± 2 2± 2
NASA pc3 0.78± 0.02 0.97± 0.05 1.00± 0.00 1.00± 0.00 0.87± 0.03 0.43± 0.05 0.01± 0.01

Training
ψ(δ)

Satellite 0.21± 0.02 0.37± 0.02 1.00± 0.00 0.80± 0.21 0.41± 0.10 0.11± 0.09 0.01± 0.00
Classifier Average Rank 3.67 4.17 6.50 5.50 3.83 2.00 1.00

Framingham 0.91± 0.04 0.93± 0.04 1.00± 0.00 1.00± 0.00 0.93± 0.05 0.68± 0.07 0.11± 0.06
Diabetes 0.31± 0.10 0.36± 0.10 1.00± 0.00 0.66± 0.09 0.38± 0.10 0.19± 0.09 0.06± 0.06
Abalone 3.06± 1.13 3.32± 1.22 9.00± 0.00 3.60± 0.93 3.90± 0.73 1.71± 0.96 1.59± 1.04

Scania Trucks 192± 23 177± 30 500± 0 378± 37 51± 13 20± 9 15± 11
NASA pc3 0.79± 0.10 0.98± 0.04 1.00± 0.00 1.00± 0.00 0.95± 0.05 0.65± 0.11 0.22± 0.13

Test
ψ(δ)

Satellite 0.32± 0.12 0.38± 0.20 1.00± 0.00 0.84± 0.15 0.52± 0.19 0.36± 0.25 0.22± 0.18
Classifier Average Rank 3.17 4.17 6.50 5.67 4.50 2.17 1.00

Framingham 0.20± 0.05 142± 56 0.12± 0.03 140± 24 0.01± 0.00 0.67± 0.14 0.35± 0.07
Diabetes 0.05± 0.04 94± 44 0.04± 0.01 151± 57 0.01± 0.00 0.53± 0.12 0.21± 0.05
Abalone 6.74± 1.95 156± 66 0.21± 0.05 76± 14 0.03± 0.01 9.21± 0.79 1.01± 0.23

Scania Trucks 636± 1 288± 14 4.72± 0.18 4.36± 0.42 0.10± 0.03 1.25± 0.16 0.50± 0.16
NASA pc3 3.50± 0.23 98± 42 0.06± 0.02 131± 32 0.01± 0.00 0.66± 0.12 0.33± 0.01

Training
Time (s)

Satellite 5.48± 2.33 101± 36 0.24± 0.06 209± 82 0.02± 0.01 0.96± 0.34 0.63± 0.34
Classifier Average Rank 4.50 6.33 2.50 6.17 1.00 4.33 3.17

[r̂(π(1), δ), . . . , r̂(π(1000), δ)], which allows to both evalu-
ate the dispersion and the values of the risks r̂(π(s), δ),
s ∈ {1, . . . , 1000}. In this experiment, we set that each
one of the 1000 test subsets contains a number m(s) ≈
m·min{π̂1, . . . , π̂K}/10 of observations. For ensuring statis-
tically significant results, we need m(s) to be large enough,
and we set that m(s) should be greater than 50 observations.
We can therefore only consider the Framingham database
and the Scania Trucks database for this criterion. And it

results that each one of the 1000 test subsets contains around
54 samples for the Framingham database and 81 samples for
the Scania Truck database.

5.4 Results

The class proportions π? and π̄ computed for each database
are summarized in Fig. 3. As observed for the databases
Abalone, Scania Trucks and Satellite, it is important to
note that the least favorable priors π̄, which are the most
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Fig. 3. Pie plots corresponding to the class proportions π̂, π? and π̄ associated to each databases. These results correspond to the average of the
computed priors at each iteration of the 10-folds cross-validation procedure.

Fig. 4. Framingham database: Comparison of the risks of misclassification after the 10-fold cross-validation procedure for which the class proportions
π′ of the test set were similar to π̂. On the top, the boxplots (training versus test) illustrate the dispersion of the global risks of misclassification. On
the bottom, the barplots correspond to the average class-conditional risk associated to each classifier.
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Fig. 5. Evaluation of the robustness of each classifier when π′ = π(s) changes over U0.5. Here, r̂(π(s), δ) corresponds to the 10-fold cross-validation
average risk associated to the test set satisfying the priors π(s) ∈ U0.5, s ∈ {1, . . . , 1000}.

designed for equalizing the class conditional risks, are not
always balanced. This illustrates the fact that the common
solution mentioned in the state of the art, which aims at re-
sampling the training set for satisfying the balanced class
proportions π̂ = [1/K, . . . , 1/K], can be not optimal.

The results associated to each criterion previously intro-
duced are presented in Table 2, and spotlights results on the
Framingham database are illustrated in Fig. 4. In Table 2,
in order to get a better overview of the results associated

to each criterion, we computed the average rank of each
decision rule δ ∈ ∆E based on the 6 databases.

Concerning the global risks r̂(π̂, δ) and r̂(π′, δ), we can
observe that as theoretically established, the discrete Bayes
classifier δB

π̂ always gets the best training results compared
to all the classifiers applied to the discretized datasets.
Moreover, δB

π̂ can well challenge the Logistic Regression and
the Random Forest applied both to the real features, and
sometimes δB

π̂ can even outperform all the others classifiers
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like for the Scania Trucks database. Finally, as we expected,
the minimax classifier δB

π̄ gets generally the worst results in
terms of global risks, and δB

π? appears as a trade-off between
δB
π̂ and δB

π̄ .
Now, if we look at the maximum of the class conditional

risks, the minimax classifier δB
π̄ gets the best results. This

means that the task of well classifying the samples from the
smallest classes is better performed using δB

π̄ than using all
the other classifiers, even those applied to the real features.
Our box-constrained minimax classifier δB

π? generally holds
the second rank for this criterion, and appears here again as
a trade-off between δB

π̂ and δB
π̄ . Finally, we can observe simi-

lar results concerning the criterion ψ(δ). In other words, δB
π?

allows to find a trade-off between δB
π̂ and δB

π̄ for equalizing
the class conditional risks.

Now, if we look at Fig. 5, the minimax classifier δBπ̄
was the most robust when the class proportions of the 1000
test sets differed from π̂ since its associated risks r̂(π(s), δ),
s ∈ {1, . . . , 1000} were the less dispersed. Concerning the
Framigham database, δBπ̄ stays however still too pessimistic.
But concerning the Scania Trucks database, δBπ̄ was much
more satisfying than δLRπ̂ , δRFπ̂ and δBπ̂ in terms of both
dispersion and risk values. Our box-constrained minimax
classifier δB

π? appears here again as a trade-off between δBπ̂
and δBπ̄ in terms of dispersions and risk values.

Finally, if we look at the processing training times, we
observe that the fastest classifier was δBπ̂ , which particularly
outperformed the Logistic Regression and the Random For-
est applied to both the real and discretized databases. The
processing times of the two minimax classifiers δBπ? and δBπ̄
are pretty low. We can however observe that δBπ̄ is generally
faster than δBπ? . This difference comes from the fact that for
computing δBπ̄ , the projection onto S is performed using the
algorithm provided by [42], whereas concerning δBπ? , the
procedure for projected onto U is more complex.

5.5 Impact of the Box-constraint radius

We have seen previously that the box-constrained minimax
classifier δBπ? allows to find a trade-off between satisfying an
acceptable global risk and equalizing the class-conditional
risks, with respect to independent bounds on the priors.
And this trade-off depends on the box constraint bounds.

For illustrating this fact on the Framingham database,
we considered different box-constraints Bβ by changing the
radius ρβ in (26). When β ranges from 0 to 1, we increase
the radius ρβ of Bβ until that π̄ belongs to Uβ . Hence,
as illustrated in Fig. 6, the more ρβ increases, the more
equalizer δBπ? becomes, then the more accurate δBπ? becomes
for well classifying the samples from the smallest classes.
However, the more ρβ increases, the more pessimistic δBπ?
becomes since V (π?) converges to V (π̄).

Hence, if necessary, the experts can easily tighten or
spread the box-constraint bounds in order to find an ac-
ceptable trade-off.

6 CONCLUSION AND DISCUSSIONS

This paper proposes a box-constrained minimax classifier
which fits in the field of Γ-minimaxity and Bayesian ro-
bustness for supervised classification tasks. Our approach
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Fig. 6. Framingham database: Impact of the box-constraint radius on
δB
π? when β increases from 0 to 1 in (26), after a 10-fold cross-validation

procedure. Results are presented as mean± std.

aims at addressing the issues of imbalanced datasets and
uncertain class proportions, for multiple classes, when con-
sidering any positive loss function. The box-constraint can
be conveniently defined by experts in the application field.
Our method allows to find a trade-off between minimizing
the maximum of the class conditional risks and satisfying
an acceptable global risk of errors.

Our algorithm does not assume independence between
features. To compute our minimax classifier, we beforehand
need to discretize the numeric features, which allows us to
calculate and model the empirical discrete non-naı̈ve Bayes
risk over the simplex. The performance of our classifier
depends on the features discretization. We have seen that
using the k-means algorithm leads to accurate results.

Future work will be devoted to fit our algorithm for
learning a minimax regret classifier [11], [24], to study
the generalization error of our minimax classifier, and to
improve the computation time of the exact projection onto
the box-constrained simplex, which would be preferable for
dealing with databases containing a large number of classes.
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Provence-Alpes-Côte d’Azur region for its financial support.

REFERENCES

[1] V. Vapnik, “An overview of statistical learning theory,” IEEE
transactions on Neural Networks, vol. 10 5, pp. 988–99, 1999.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 2nd ed. Springer-Verlag New York, 2009.

[3] H. V. Poor, An Introduction to Signal Detection and Estimation,
2nd ed. Springer-Verlag New York, 1994.

[4] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1263–1284,
2009.

[5] N. Japkowicz and S. Stephen, “The class imbalance problem: A
systematic study,” Intelligent Data Analysis, pp. 429–449, 2002.

[6] C. Elkan, “The foundations of cost-sensitive learning,” in Proceed-
ings of the 17th International Joint Conference on Artificial Intelligence
- Volume 2, 2001, pp. 973–978.

[7] Q. Dong, S. Gong, and X. Zhu, “Imbalanced deep learning by mi-
nority class incremental rectification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.
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Appendices

APPENDIX A
SYNTHETIC DATASET FOR FIGURE 1

The results presented in Fig. 1 come from a synthetic dataset.
This dataset was generated as follow. We considered K =
2 classes and d = 3 features. We generated m = 20, 000
samples such that for each sample i ∈ I , Yi ∼ Cat(K, π̂)
with π̂ = [0.2, 0.8]. The categorical distribution, which is
denoted as Cat(K, π̂), is a discrete distribution with support
{1, . . . ,K} such that the probability of output k is π̂k. For
all j ∈ {1, . . . , d}, we generated the features Xij as follow:

Xij = 1{Yi=1}Ui + 1{Yi=2}Vi ,

with Ui ∼ N (µ1j , σ1j) and Vi ∼ N (µ2j , σ2j) where

µ =

[
37.5 6.5 19
39 7 20

]
, σ =

[
1 1.5 1.2
2 0.8 2

]
.

The univariate normal distribution with mean µ and
standard-deviation σ is denoted N (µ, σ). We then dis-
cretized each feature j ∈ {1, . . . , d} into 6 uniform bins
over [mini∈I Xij ,maxi∈I Xij ]. Finally, we considered the
following loss function L such that L11 = 3, L12 = 15,
L21 = 25, L22 = 2.

APPENDIX B
PROJECTION ONTO THE CONSTRAINT U

Let us remind that U = S ∩ B, where B := {π ∈ RK : ∀k =
1, . . . ,K, 0 ≤ ak ≤ πk ≤ bk ≤ 1}. Let us define for all
i ∈ {1, . . . , 2K + 2}

Ui =



{
π ∈ RK : 〈π, ei〉 ≤ bi

}
if i ∈ {1, . . . ,K}{

π ∈ RK :
〈
π,−e(i−K)

〉
≤ −ai

}
if i ∈ {K + 1, . . . , 2K}{

π ∈ RK : 〈π, 1K〉 ≤ 1
}

if i = 2K + 1{
π ∈ RK : 〈π,−1K〉 ≤ −1

}
if i = 2K + 2

where, for all k ∈ {1, . . . ,K}, ek ∈ RK is the indicator
vector with 1 in coordinate k, and 1K ∈ RK is the vector
fully composed of ones. We therefore can write U as

U =
2K+2⋂
i=1

Ui. (28)

In [41], the author proposes an algorithm to compute the
exact projection onto polyhedral sets in Hilbert spaces,
which is the case of our box-constrained simplex (28).

APPENDIX C
PROOFS OF THE PAPER

C.1 Proof of Lemma 1

From (2), (3), (13) and (14) it follows that:

r̂(δπ̂) =
∑
k∈Y

∑
l∈Ŷ

Lkl π̂k P̂(δπ̂(Xi) = l | Yi = k)

=
∑
k∈Y

∑
l∈Ŷ

Lkl π̂k
1

mk

∑
i∈Ik

1{δπ̂(Xi)=l}.

The indicator function in the last equation can be rewritten
as

1{δπ̂(Xi)=l} =
∑
t∈T

1{δπ̂(xt)=l} 1{Xi=xt}.

Hence, we finally get:

r̂(δπ̂) =
∑
t∈T

∑
k∈Y

∑
l∈Ŷ

1{δπ̂(xt)=l} Lkl π̂k
1

mk

∑
i∈Ik

1{Xi=xt}

=
∑
t∈T

∑
k∈Y

∑
l∈Ŷ

1{δπ̂(xt)=l} Lkl π̂k p̂kt .

�

C.2 Proof of Theorem 1

Let δ ∈ ∆, let t ∈ T , and let ht = argmin
l∈Ŷ

∑
k∈Y Lkl π̂k p̂kt,

∑
l∈Ŷ

∑
k∈Y

Lkl π̂k p̂kt 1{δ(xt)=l}

≥
∑
k∈Y

Lkht π̂k p̂kt
∑
l∈Ŷ

1{δ(xt)=l}

≥
∑
k∈Y

Lkht π̂k p̂kt.

The last inequality can be rewritten as∑
l∈Ŷ

∑
k∈Y

Lkl π̂k p̂kt 1{δ(xt)=l}

≥
∑
l∈Ŷ

∑
k∈Y

Lklπ̂kp̂kt1{
∑
k∈Y Lkl π̂kp̂kt=minq∈Ŷ

∑
k∈Y Lkqπ̂kp̂kt}

≥
∑
l∈Ŷ

∑
k∈Y

Lkl π̂k p̂kt 1{λlt=minq∈Ŷ λqt},

where for all (q, t) ∈ Ŷ × T , λqt =
∑
k∈Y Lkq π̂k p̂kt. Hence,

from (15), and for all δ ∈ ∆, we get

r̂(δπ̂) ≥
∑
t∈T

∑
l∈Ŷ

∑
k∈Y

Lkl π̂k p̂kt 1{λlt=minq∈Ŷ λqt}. (29)

It follows that (29) is a lower bound of the empirical Bayes
risk. It is straightforward to verify that the decision rule
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(16) achieves the lower bound (29). Hence, the classifier (16)
minimizes (15), and its associated empirical Bayes risk is:

r̂
(
δBπ̂

)
=
∑
t∈T

∑
l∈Ŷ

∑
k∈Y

Lkl π̂k p̂kt 1{λlt=minq∈Ŷ λqt}. (30)

From (2) and (30), we finally identify the empirical class-
conditional risk of class k ∈ Y as (17). �

C.3 Proof of Proposition 1

Let α ∈ [0, 1] and let consider the class proportions
π, π′, π′′ ∈ S such that π′′ = απ + (1− α)π′. Thus,

V (π′′) = r̂
(
δBπ′′

)
=
∑
k∈Y

π′′k R̂k
(
δBπ′′

)
= α

∑
k∈Y

πkR̂k
(
δBπ′′

)
+ (1− α)

∑
k∈Y

π′kR̂k
(
δBπ′′

)
= α r̂

(
π, δBπ′′

)
+ (1− α) r̂

(
π′, δBπ′′

)
≥ α r̂

(
π, δBπ

)
+ (1− α) r̂

(
π′, δBπ′

)
≥ α r̂

(
δBπ

)
+ (1− α) r̂

(
δBπ′

)
≥ αV (π) + (1− α)V (π′) .

This shows that V is concave over S . �

C.4 Proof of Proposition 2

Let us consider the equivalence relation R over the simplex
S such that for all (π, π′) ∈ S× S,

πRπ′ ⇐⇒ ∀(l, t) ∈ Ŷ × T ,
1{λlt=minq∈Y λqt} = 1{λ′

lt=minq∈Y λ′
qt},

with

λlt =
∑
k∈Y

Lkl πk p̂kt and λ′lt =
∑
k∈Y

Lkl π
′
k p̂kt.

Let π ∈ S, and let [π] ⊂ S denote the equivalence class to
which π belongs. Thus, according to (20), for all k ∈ Y , there
exists a constant αk ≥ 0 such that for all π′ ∈ [π], R̂k

(
δBπ′
)

=
αk. Then, by considering α = [α1, . . . , αK ] and according to
(19) we have for all π′ ∈ [π], V (π′) =

∑K
k=1 π

′
kαk, which

shows that V is affine over [π]. Since the set of equivalence
classes is a partition of the simplex S, V is piecewise affine
over S.

Moreover, we can show that π′ ∈ [π] if and only if
δBπ′(xt) = δBπ (xt) for all t ∈ T . Thus, by denoting S/R the
quotient set of S, there exists an injection ϕ : S/R → YX .
Hence |S/R| ≤ |Y||X | = KT . It follows that the number of
pieces composing V is finite. �

C.5 Proof of Corollary 1

Let us suppose that there exist π, π′ ∈ S and k ∈ Y such that
R̂k
(
δBπ
)
6= R̂k

(
δBπ′
)
. Then, from the proof of Proposition 2,

V is at least composed of two affine pieces since it is
impossible to have a single equivalence class. Hence, V is
non-differentiable over the intersections of these pieces. �

C.6 Proof of Lemma 2
Let us remind that, for a concave function f : RK → R, g
is a subgradient of f at point u ∈ RK if g satisfies f(v) ≤
f(u) + 〈v − u, g〉 for all v ∈ RK . Here, 〈a, b〉 denotes the
dot product between the vectors a and b. In our case, given
π ∈ U, let consider π′ ∈ U. Denoting R̂

(
δBπ
)

the vector
R̂
(
δBπ
)

:=
[
R̂1

(
δBπ
)
, . . . , R̂K

(
δBπ
)]

of all class-conditional
risks, we get:

V (π) +
〈
π′ − π, R̂

(
δBπ

)〉
=
∑
k∈Y

πk R̂k
(
δBπ

)
+
∑
k∈Y

(π′k − πk) R̂k
(
δBπ

)
=
∑
k∈Y

π′kR̂k
(
δBπ

)
≥ r̂

(
π′, δBπ′

)
= r̂

(
δBπ′

)
= V (π′).

This inequality holds for any π′ ∈ U, hence the result. �

C.7 Proof of Corollary 2
Following the reasoning in [40] when considering the sub-
gradient definition associated to a concave function, we can
show that at the iteration N ≥ 1

V (π?)−max
n≤N

{
V
(
π(n)

)}

≤

∥∥∥π(1) − π?
∥∥∥2

2
+
∑N
n=1

γ2
n

η2n

∥∥∥g(n)
∥∥∥2

2

2
∑N
n=1

γn
ηn

.

(31)

Since ηn = max
{

1,
∥∥∥g(n)

∥∥∥
2

}
, we can moreover show that

N∑
n=1

γ2
n

η2
n

∥∥∥g(n)
∥∥∥2

2
≤

N∑
n=1

γ2
n. (32)

Since at each iteration we choose g(n) = R̂
(
δB
π(n)

)
, we have∥∥∥g(n)

∥∥∥
2

=

√∑K
k=1

[
R̂k
(
δB
π(n)

)]2
=

√∑K
k=1

[∑K
l=1 Lkl P̂

(
δB
π(n)(Xi) = l | Yi = k

)]2
≤
√∑K

k=1

[∑K
l=1 Lkl

]2
.

It follows that for all n ∈ {1, . . . , N}, ηn ≤ max {1, h(L)},
with

h(L) :=

√∑K
k=1

[∑K
l=1 Lkl

]2
.

Hence we have,
N∑
n=1

γn
ηn
≥ 1

max {1, h(L)}

N∑
n=1

γn. (33)

From (31), (32) and (33), we finally get (25). �
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Supplementary Material
Databases descriptions

Framingham Heart database: This database comes
from the Framingham Heart study [44], and contains the
clinical observations of 3,658 individuals (after removing
individuals with missing values) who have been followed
for 10 years. The objective of the Framingham study was
to predict the development of a Coronary Heart Disease
(CHD) within 10 years based on d = 15 observed features
measured at inclusion. We therefore have K = 2 classes,
with class 2 corresponding to individuals who have
developed a CHD, and class 1 corresponding to the others.
Among the 15 features, 7 are categorical (sex, education,
smoking status, previous history of stroke, diabetes, hypertension,
antihypertensive treatment) and 8 are numeric (age, number
of cigarettes per day, cholesterol levels, systolic blood pressure,
diastolic blood pressure, heart rate, body mass index (BMI),
glycemia). The dataset is imbalanced: π̂ = [0.85, 0.15], which
means that 15% of the individuals have developed a CHD
within 10 years. For this database, we considered the L0-1
loss function.

Diabetes prediction database: Another example of
machine learning application in medicine field is to predict
the onset diabetes based on diagnostic measurements.
We consider here the database studied in [45] which was
originally provided by the National Institute of Diabetes
and Digestive and Kidney Diseases, and available at [57].
This database contains the measurements of 8 clinical
and biological features (Number of times pregnant, Plasma
glucose concentration, Diastolic blood pressure, Triceps skin
fold thickness, 2-Hour serum insulin, BMI, Diabetes pedigree
function, Age) for 768 patients. We have K = 2 classes,
where the class 2 corresponds to the patients who were
tested positive for diabetes. The class proportions of
this dataset are π̂ = [0.65, 0.35]. For this database, we
considered the L0-1 loss function.

Abalone database: The Abalone dataset contains the
physical measurements of 4,177 abalones from Tasmania
[46]. This dataset is composed of 8 features (1 categorical
and 7 numerical) from which the objective is predict the
age of each abalone. The initial ages to predict ranged from
1 to 29. For this experiment, we decided to rather consider
K = 5 classes {A1, A2, A3, A4, A5} associated to the age
groups {[≤ 4], [5, 10], [11, 15], [16, 20], [≥ 21]} satisfying the
class proportions π̂ = [0.02, 0.64, 0.28, 0.05, 0.01]. These
classes are imbalanced. For this database we considered the
quadratic loss function: for all (k, l) ∈ Y×Ŷ , Lkl = (k− l)2,
so that the more the predicted class is far from the true
class, the more important this error is.

APS Failure Trucks database: This real condition moni-
toring database [47] focuses on Air Pressure System (APS)
used for various functions in Scania trucks such as braking
and gear changes. Measurements of a specific APS compo-
nent were collected from heavy Scania trucks in everyday
usage. The goal is to predict a potential failure of this
component. We therefore consider K = 2 classes where the
class 1 corresponds to the APS without failures, and class 2
to the defect APS components. For this database, the costs
of class misclassifications were given by experts:

L =

[
0 10

500 0

]
, (34)

so that the cost of predicting a non-existing failure is $10,
while the cost of missing a failure is $500. After removing
missing values, the database contains the measurements of
69,309 samples for which 68,494 do not present any failure
and 815 present a failure. Hence, the class proportions
π̂ = [0.9882, 0.0118] are highly imbalanced, which highly
complicates the task of predicting a failure. Finally, each
sample is described by d = 130 numeric and categorical
anonymized features.

NASA pc3 software database: The purpose of this
database is to detect certain defects in a flight software
of a satellite in Earth orbit [48], [58]. More details on
this database and on this task are given in [58] and
[59]. For our experiments, we downloaded the data at
https://www.openml.org/d/1050. This database is
composed by 1,563 samples and 37 attributes measured
with McCabe [60] and Halstead [61] “module”-based
metrics. We have K = 2 classes, where the class 2
corresponds to the defect programs. The class proportions
π̂ = [0.8976, 0.1024] are imbalanced, which complicates the
task of detecting defect programs. For this database, we
considered the L0-1 loss function.

Satellite database: We consider another real
highly imbalanced database, downloaded at
https://www.openml.org/d/40900, for which the
motivation is to classify images of soil taken from a
satellite into K = 2 classes satisfying the class proportions
π̂ = [0.9853, 0.0147]. This database is composed by 5,100
samples and 36 attributes, and we considered the L0-1 loss
function.


