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Discrete Box-Constrained Minimax Classifier for
Uncertain and Imbalanced Class Proportions

Cyprien Gilet, Susana Barbosa, Lionel Fillatre

Abstract—This paper aims to build a supervised classifier for dealing with imbalanced datasets, uncertain class proportions,
dependencies between features, the presence of both numeric and categorical features, and arbitrary loss functions. The Bayes
classifier suffers when prior probability shifts occur between the training and testing sets. A solution is to look for an equalizer decision
rule whose class-conditional risks are equal. Such a classifier corresponds to a minimax classifier when it maximizes the Bayes risk.
We develop a novel box-constrained minimax classifier which takes into account some constraints on the priors to control the risk
maximization. We analyze the empirical Bayes risk with respect to the box-constrained priors for discrete inputs. We show that this risk
is a concave non-differentiable multivariate piecewise affine function. A projected subgradient algorithm is derived to maximize this
empirical Bayes risk over the box-constrained simplex. Its convergence is established and its speed is bounded. The optimization
algorithm is scalable when the number of classes is large. The robustness of our classifier is studied on diverse databases. Our
classifier, jointly applied with a clustering algorithm to process mixed attributes, tends to balance the class-conditional risks while being
not too pessimistic.

Index Terms—Minimax Classifier, Γ-Minimax Classifier, Imbalanced datasets, Uncertain Class Proportions, Prior Probability Shift,
Discrete Bayes Classifier, Histogram Rule, Bayesian Robustness.
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1 INTRODUCTION

THE task of supervised classification is becoming increas-
ingly promising in several real applications, such as

medical diagnosis, condition monitoring or fraud detection.
However, the context of such applications often presents
the following difficulties: First, the class proportions (the
priors) are generally imbalanced and may evolve in time for
unknown reasons. Secondly, we generally have to work with
both numeric and categorical features (mixed attributes),
many of which present dependencies. Finally, we often have
to take into account a specific loss function, provided by the
experts in the relevant field, in order to unequally penalize
the class classification errors.

1.1 Related work

The common objective in supervised classification tasks is
to minimize the empirical global risk of errors, based on
a set of labeled training samples as presented in [1], [2].
This global risk of classification errors is the weighted sum
of the class-conditional risks with respect to the associated
class proportions as shown in [3]. Such a classifier can
be extremely sensitive to the class proportions when the
classes are not perfectly separable. Classes are said perfectly
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• S. Barbosa is with University Côte d’Azur, CNRS, IPMC laboratory,
Sophia-Antipolis, France.
E-mail: sudocarmo@gmail.com

This paper corresponds to the version accepted (not published) in IEEE
Transactions on Pattern Analysis and Machine Intelligence. Manuscript
submitted on 1st April 2020; revised on 24th September 2020; revised on 1st
December 2020; accepted on 4th December 2020. The official published version
of this article is available on the IEEE Transactions on Pattern Analysis and
Machine Intelligence Journal (DOI: 10.1109/TPAMI.2020.3046439).

separable when samples at any given location in the features
space can come from only one possible class. Otherwise,
the classes are not perfectly separable, and this issue of-
ten occurs in most real applications, like for example in
medical field. When the classes are not perfectly separable
and the training set is imbalanced, that is, the classes are
unequally represented, most classifiers essentially focus on
the dominating classes that contain the largest number of
occurrences, and tend to underestimate the least represented
ones as underlined in [4], [5], [6], [7], [8]. In other words,
a minority class with just a small number of occurrences
will tend to have a large class-conditional risk. A common
approach to deal with imbalanced datasets is to balance
the data by resampling the training set as studied in [4],
[5]. However, this approach introduces a bias since the
actual state of nature remains imbalanced. Another common
approach is cost-sensitive learning, studied in [4], [5], [9],
[10], which aims to optimize the cost of class classification
errors in order to counterbalance the number of occurrences
of each class.

Furthermore, a classifier presenting imbalanced class-
conditional risks becomes sensitive to prior probability
shifts. Prior probability shift, as defined in [11], [12], occurs
when the true state of nature can change in time due
to unknown reasons, and the priors associated with the
test samples differ from the class proportions observed in
the training set. As discussed in [13], the sensitivity of
a classifier to prior probability shifts is greater when the
class-conditional risks are imbalanced. And the issue of
prior probability shifts remains essential to resolve since the
global risk of error is expected to evolve linearly when prior
probability shifts occur as shown in [3], [14]. Since the early
2000s a new supervised classification field has emerged for
addressing this issue of prior probability shifts, namely the
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quantification as studied in [13], [15], [16], [17], [18]. Using a
training set, the task of quantification consists in estimating
the class proportions of a test set in order to improve
the classification performances associated with this given
test sample. However, the main drawback of quantification
approaches is that the task of classifying test instances is not
performed individually but for the whole sample, which is
not always possible for many real-world applications like
medicine.

Hence, prior probability shifts and training with imbal-
anced datasets share a common trait, namely the sensitiv-
ity to unequal class-conditional risks. Equalizing the class-
conditional risks is therefore essential to obtain a robust
classifier. A famous and relevant approach for designing a
robust classifier in the presence of imbalanced datasets and
prior probability shifts is to fit the classifier by minimizing
the maximum of the class-conditional risks as studied in [3],
[14], [19], [20]. The resulting decision rule is called minimax
classifier. Statistical decision theory in [21] shows that an
equalizer Bayesian classifier, one whose class-conditional
risks are all equal, is necessarily a minimax classifier. The
minimax criterion is part of the field named Bayesian Ro-
bustness which characterizes the task of considering robust
classifiers with respect to prior probability shifts, as men-
tioned in [19].

1.2 Motivation for the study
A pioneering article on the minimax criterion in the field
of machine learning is [22]. This paper studies the general-
ization error of a minimax classifier but does not provide
any method to compute it. In [23], the authors proposed
the Minimum Error Minimax Probability Machine for the
task of binary classification only, and the extension to mul-
tiple classes is difficult. This method is very close to the
one described in [24]. The Support Vector Machine (SVM)
decision rule can also be tuned for minimax classification
as in [25]. The study proposed in [25] is limited to linear
classifiers (either using or not using a feature mapping)
and to the classification problems between only two classes.
In [26], the authors proposed an approach that fits a de-
cision rule by learning the probability distribution which
minimizes the worst case of misclassification over a set of
distributions centered on the empirical distribution. When
the class-conditional distributions of the training set belong
to a known parametric family of probability distributions,
the competitive minimax approach can be an alternative
solution as proposed in [27]. Finally, in [28], the authors pro-
posed a fixed-point algorithm based on generalized entropy
and strict sense Bayesian loss functions. To estimate the
least-favorable priors, this approach alternates a resampling
step of the learning set with an evaluation step of the class-
conditional risk. However, the fixed-point algorithm needs
the minimax rule to be an equalizer rule. We can show that
this assumption is not always satisfied when considering
discrete features. Moreover, when the training dataset is too
small or highly imbalanced, it is not possible to resample the
dataset with respect to some priors that demand too many
random occurrences from the classes containing initially just
a few instances.

Basically, the minimax classifier derives from the com-
putation of the least favorable priors which maximize the

minimum empirical global risk of error over the probabilis-
tic simplex as shown in [3], [14], [19]. These least favorable
priors are generally difficult to compute as underlined in
[19], [29], [30]. Simple algorithms are still required to com-
pute the least favorable priors for any classification prob-
lems. Moreover, although the minimax criterion is suitable
for addressing the issues regarding class proportions, this
approach appears sometimes too pessimistic, as discussed
in [19], [31]. This drawback occurs when the least favorable
priors seem unrealistic and the global risk of error becomes
too high. In order to alleviate this drawback when it occurs,
a solution is to consider a set Γ of reasonable or realistic
prior distributions, which leads to the Γ-minimax criterion
introduced in [19]. However, the calculation of a Γ-minimax
classifier is difficult too. Currently, no algorithm exists to
calculate it in a general way. Finally, it is difficult to achieve
optimal results when dealing with both numeric and cate-
gorical attributes. To compute a minimax classifier, we need
a good estimate of the joint distribution of the input features
in each class. However, in the presence of mixed attributes,
and due to the curse of dimensionality (as noted in [14],
[32]), this estimation is quite difficult. In such a case, a
weaker solution would be to consider the naı̈ve approach
of estimating the marginal distribution of each feature inde-
pendently. But this hypothesis is not acceptable since we
want to take into account the dependencies between the
features. Thenceforth, a reasonable approach is to discretize
the numeric attributes in order to reduce the complexity
of the joint distribution estimation. Especially since many
papers in the literature have shown that the discretization
of the numeric features generally leads to accurate results, as
in [33], [34], [35], [36], [37], with strong analytic properties.
For example, in the case of binary classification with respect
to the L0-1 loss function, the true error rate of the histogram
rule which minimizes the risk of error on a discrete training
set can be calculated exactly as in [38], [39], [40]. In our
context, all these benefits encourage us to discretize the
numeric features. For all these reasons, our motivation is
to develop a Γ-minimax classifier adapted to discrete or
discretized features which can be easily computed.

Our approach is especially relevant for applications with
severe requirements on the global risk of classification errors
and strongly imbalanced datasets including for example
medical diagnosis [41], [42], image classification [43], fault
detection and isolation [29] and fraud detection [44]. For
these kinds of applications, it is crucially important to
propose a simple and fast algorithm that can almost equalize
the class-conditional risks whatever the training set at hand.

1.3 Contribution and organization of the paper

The contributions of the paper are the following. First, we
introduce a specific Γ-minimax classifier, called the “Box-
constrained minimax classifier”, which takes into account
some independent bounds on each class proportion. The
main advantage of considering such a box-constraint stems
from the fact that experts in the field of application can
easily and rationally build it, by providing some inde-
pendent bounds on each class proportion. For example,
in the medical field, it may be reasonable to bound the
maximum frequency of a given disease. To our knowledge,
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the approach of taking into account independent bounds
on the priors has not yet been studied to address the
minimax criterion drawback. Secondly, we propose a the-
oretical study of the minimum achievable risk of error in
the case of discrete features, called the discrete empirical
Bayes risk, as a function of the priors. We show that this
is a non-differentiable concave multivariate piecewise affine
function over the probabilistic simplex. Thirdly, we propose
a projected-subgradient-based algorithm which computes
the box-constrained minimax classifier in the case of discrete
features. This algorithm searches for the priors which max-
imize the minimum risk of errors over the box-constrained
simplex. We establish the convergence of this algorithm.
It must be noted that this algorithm can also be used to
compute the usual unconstrained minimax classifier, which
remains still challenging in general. Fourthly, we show
that this algorithm can be coupled with a discretization
process, such as the k-means algorithm, to compute the
box-constrained minimax classifier in the context of mixed
attributes. Finally, we carefully show the robustness of our
box-constrained minimax classifier since it is an almost
equalizer classifier. We train it on imbalanced datasets and
test it on test sets with prior probability shifts.

This paper is part of the field of Γ-minimaxity and
Bayesian robustness for supervised classification tasks. It
generalizes our preliminary works published in [45], [46].
We introduced our minimax classifier without considering
any box-constraint on the priors in [45]. We generalized [45]
by introducing the concept of box-constraint on the priors
in [46]. In this paper, we reinforce [46] by providing all the
proofs and carefully analyzing and interpreting the numer-
ical performance of our classifier. We consider many state-
of-the-art approaches and compare them to our classifier on
both simulated and real datasets. We exploit several datasets
with different and complementary characteristics.

The paper is organized as follows. Section 2 introduces
the box-constrained minimax classifier concept. Section 3
studies the discrete empirical Bayes risk and derives the
algorithm to compute the discrete box-constrained minimax
classifier. In section 4, we show how to easily and accurately
discretize databases containing both numeric and categori-
cal features with the k-means algorithm. We then carry out
a rigorous experimental procedure to compare our novel
classifier with other traditional classifiers that deal with the
issues of imbalanced and uncertain class proportions. These
experiments are based on seven real databases coming from
different application fields. Section 5 concludes the paper.
The appendices support the main results of the paper, and
provide the mathematical proofs.

2 BOX-CONSTRAINED MINIMAX CLASSIFIER

Given K ≥ 2 the number of classes, let Y = {1, . . . ,K} be
the set of class labels and Ŷ = Y the predicted labels. Let X
be the space of all feature values. Let L : Y × Ŷ → [0,+∞)
be the loss function such that, for all (k, l) ∈ Y×Ŷ ,L(k, l) :=
Lkl corresponds to the loss, or the cost, of predicting class l
when the real class is k. For example, the L0-1 loss function
is defined by Lkk = 0 and Lkl = 1 when k 6= l. We consider
a multiset S = {(Yi, Xi) , i ∈ I} containing a number m of
labeled training samples where I is a finite set of indices.

Let 1{Yi=k} be the indicator function of the event Yi = k.
In the following, π̂ := [π̂1, . . . , π̂K ] corresponds to the class
proportions of the training set:

π̂k =
1

m

∑

i∈I
1{Yi=k}, ∀k ∈ Y. (1)

The task of supervised classification as defined in [1], [2],
[14] is to learn a decision rule δ : X → Ŷ which assigns
each instance i ∈ I to a class Ŷi ∈ Ŷ from its feature vector
Xi := [Xi1, . . . , Xid] ∈ X composed of d observed features,
such that δ minimizes the empirical risk

r̂(δ) =
1

m

∑

i∈I
L(Yi, δ(Xi)). (2)

In the following, we will use the notation δπ to denote that
the decision rule δ was fitted, by minimizing (2), with the
priors π, for any π in theK-dimensional probability simplex
S defined by S := {π ∈ [0, 1]K :

∑K
k=1 πk = 1}. Let

P̂(δπ̂(Xi) = l | Yi = k) denote the empirical probability
for the classifier δπ̂ to assign the class l given that the true
class is k:

P̂(δπ̂(Xi) = l | Yi = k) =
1

mk

∑

i∈Ik
1{δπ̂(Xi)=l}, (3)

where Ik = {i ∈ I : Yi = k} be the set of training samples
from class k and mk = |Ik| is the number of instances in Ik.
As explained in [3], the risk (2) can be written as

r̂ (δπ̂) =
∑

k∈Y
π̂kR̂k (δπ̂) , (4)

where R̂k (δπ̂) is the empirical class-conditional risk associ-
ated with class k, defined by

R̂k (δπ̂) :=
∑

l∈Ŷ
Lkl P̂(δπ̂(Xi) = l | Yi = k). (5)

In the following, ∆ := {δ : X → Ŷ} denotes the set of all
possible classifiers.

2.1 Empirical Bayes risk for the training set prior

Let us consider that each feature Xij is discrete or before-
hand discretized and takes on a finite number of values tj . It
follows that the feature vector Xi = [Xi1, . . . , Xid] takes on
a finite number of values in the finite set X = {x1, . . . , xT }
where T =

∏d
j=1 tj . Each vector xt can be interpreted as

a “profile vector” which characterizes the instances. Let
T = {1, . . . , T} be the set of indices. Then let us define
for all k ∈ Y and for all t ∈ T ,

p̂kt :=
1

mk

∑

i∈Ik
1{Xi=xt}, (6)

the probability estimate of observing the feature profile
xt ∈ X given that the class label is k. In the context of
statistical hypothesis testing theory, [47] calculates the risk
of a statistical test with discrete inputs. In the next lemma,
we extend this calculation to the empirical risk of a classifier
δ ∈ ∆ with discrete features in the context of machine
learning.
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Lemma 1. Given a classifier δ ∈ ∆, its associated empirical risk
on the training dataset is given by

r̂ (δπ̂) =
∑

t∈T

∑

k∈Y

∑

l∈Ŷ
Lkl π̂k p̂kt 1{δπ̂(xt)=l}. (7)

Proof. The proof is detailed in Appendix C.1.

According to Lemma 1, the performance of any classifier
δ fitted on the training dataset depends only on the loss
function L, the probabilities p̂kt, and the priors π̂k. In
this sense, the set of values {p̂kt, π̂k} can be viewed as
collectively exhaustive of the training dataset. The following
theorem precises the discrete empirical Bayes classifier for
K ≥ 2 classes and any positive loss function L.

Theorem 1. The empirical Bayes classifier δBπ̂ , which minimizes
the empirical risk (7) over ∆, is given by

δBπ̂ : Xi 7→ arg min
l∈Ŷ

∑

t∈T

∑

k∈Y
Lkl π̂k p̂kt 1{Xi=xt}. (8)

Its associated empirical risk is r̂
(
δBπ̂
)

=
∑
k∈Y π̂kR̂k

(
δBπ̂
)
,

where for all k ∈ Y ,

R̂k
(
δBπ̂

)
=
∑

t∈T

∑

l∈Ŷ
Lkl p̂kt 1{λlt=minq∈Ŷ λqt}, (9)

with, for all l ∈ Ŷ and all t ∈ T , λlt =
∑
k∈Y Lkl π̂k p̂kt.

Proof. The proof is detailed in Appendix C.2.

According to Theorem 1, the empirical Bayes classifier
δBπ̂ outperforms, on the training set, any more advanced
classifiers. We note that this classifier is non-naı̈ve, it takes
into account all the possible dependencies between the
features since we do not make any assumptions of inde-
pendence between the attributes for calculating it.

2.2 Background on the minimax classifier principle
Let S ′ = {(Y ′i , X ′i) , i ∈ I ′} be a multiset, where I ′ is a
finite set of indices, containing a number m′ of test samples
satisfying the unknown class proportions π′ = [π′1, . . . , π

′
K ].

The classifier δπ̂ fitted using the training set S is then used
to predict the classes Y ′i of the test samples i ∈ I ′ from their
associated features X ′i ∈ X . As described in [3], the risk of
misclassification with respect to the classifier δπ̂ and as a
function of π′ is defined by

r̂ (π′, δπ̂) =
∑

k∈Y
π′kR̂k (δπ̂) . (10)

Fig. 1, left, illustrates the risk r̂ (π′, δπ̂) for K = 2. In this
case, it can be rewritten as

r̂ (π′, δπ̂) = π′1
(
R̂1 (δπ̂)− R̂2 (δπ̂)

)
+ R̂2 (δπ̂) . (11)

It is clear that r̂ (π′, δπ̂) is a linear function of π′1. It is
easy to verify that the maximum value of r̂ (π′, δπ̂) is
M(δπ̂) := max{R̂1 (δπ̂) , R̂2 (δπ̂)}. Since M(δπ̂) is larger
than r̂ (π′, δπ̂), it implies that the risk of the classifier can
change significantly when π′ differs from π̂.

More generally, for K ≥ 2 classes, the maximum risk
that can be attained by a classifier when π′ shifts over the
simplex is M(δπ̂) := max{R̂1 (δπ̂) , . . . , R̂K (δπ̂)}. Hence, a
solution to ensure a decision rule δπ̂ is robust with respect

to the class proportions π′ is to fit δπ̂ by minimizing M(δπ̂).
As explained in [3], this minimax problem is equivalent to
considering the following optimization problem:

δBπ̄ = argmin
δ∈∆

max
π∈S

r̂(π, δπ) = argmin
δ∈∆

max
π∈S

r̂(δπ). (12)

The upper indexB in (12) means that δBπ̄ is a Bayes classifier.
The famous Minimax Theorem in [48] establishes that

min
δ∈∆

max
π∈S

r̂(δπ) = max
π∈S

min
δ∈∆

r̂(δπ). (13)

In our case, dealing only with discrete features entails that
the set of possible classifiers ∆ is finite. Looking at the proof
of the Minimax theorem in [48] shows immediately that the
Minimax theorem holds when ∆ is finite. In the following,
let us define

δBπ := arg min
δ∈∆

r̂(δπ) (14)

the optimal Bayes classifier associated with any given priors
π ∈ S. Hence, according to (13), provided that we can
calculate δBπ for any π ∈ S, the optimization problem (12)
is equivalent to computing the least favorable priors

π̄ := arg max
π∈S

r̂
(
δBπ

)
, (15)

so that the minimax classifier δBπ̄ solution of (12) is given by
(14) when considering the priors (15).

2.3 Benefits of the box-constrained minimax classifier
Sometimes, the minimax classifier appears too pessimistic in
the case where the experts consider that the least favorable
priors π̄ are unrealistic (i.e., π̄ is too far from π̂), and that
the global risk of errors associated with δBπ̄ is too high as
noted in [19]. In such a case, a solution is to shrink the class
proportions constraint, based on the knowledge, or the focus
of interest, of the experts in the application domain.

For example in Fig. 1, right, let us consider that the
proportions of class 1 are uncertain but bounded between
a1 = 0.1 and b1 = 0.4. If we look at the point b1, it is clear
that the classifier δBπ̂ fitted on the class proportions π̂1 of
the training set is very far from the minimum empirical
Bayes risk r̂

(
π′, δBπ′

)
. The minimax classifier δBπ̄ is more

robust and the box-constrained minimax classifier δBπ? has
no loss. If we look now at the point a1, the minimax
classifier is disappointing but the loss of the box-constrained
minimax classifier is still acceptable. In other words, the box-
constrained minimax classifier seems to provide us with a
reasonable trade-off between the global loss of performance,
the minimization of the maximum of the class-conditional
risks, and the robustness to the change of priors, based
on the knowledge, or the interest, of the experts in the
application domain. To our knowledge, the concept of box-
constrained minimax classifiers has not been studied yet.

More generally for K ≥ 2 classes, in the case where
we bound each class proportion πk independently between
[ak, bk]k∈Y , we set up the box-constraint

B :=
{
π ∈ RK : ∀k ∈ Y, 0 ≤ ak ≤ πk ≤ bk ≤ 1

}
, (16)

which results in the box-constrained simplex

U := S ∩ B. (17)
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Fig. 1. Comparison between the empirical Bayes classifier δBπ̂ , the minimax classifier δBπ̄ and the box-constrained minimax classifier δBπ? . These
results come from a synthetic dataset for which K = 2 classes. The generation of this dataset is detailed in Appendix A.1.

To compute the box-constrained minimax classifier with
respect to U, we therefore consider the minimax problem

δBπ? = arg min
δ∈∆

max
π∈U

r̂(δπ).

And, according to (13), provided that we can calculate δBπ for
any π ∈ U, this problem leads to the optimization problem

π? = arg max
π∈U

r̂
(
δBπ

)
. (18)

Remark 1. It is worth noting that the minimax classifier δBπ̄
is a particular case of the box-constrained minimax classifier
δBπ? . Indeed, the least favorable priors π̄ are still accessible when
considering B = [0, 1]K , so that U = S and π? = π̄.

3 COMPUTATION OF THE BOX-CONSTRAINED
MINIMAX CLASSIFIER

Let us remind that all the features are discrete, or have been
discretized. In [39], [40], [49], [50], the authors analyze the
risk (2) for the discrete classification task, any number K
of classes and an arbitrary loss function. These studies are
limited to a given prior or a random prior with a given
distribution. This section extends the study of the risk as a
function of the priors over the simplex S. This extension is
necessary to compute the least favorable prior π?.

3.1 Empirical Bayes risk extended to any prior

Since we can only exploit the instances from the training
set, the probabilities p̂kt defined in (6) are assumed to be
estimated once and for all. This is an usual assumption
in the literature [13]. Statistical estimation theory in [51]
has established that the estimates p̂kt correspond to the
maximum likelihood estimates of the true probabilities pkt
for all (k, t) ∈ Y ×T . By estimating these probabilities with
the full training set, we get the best unbiased estimate with
the smallest variance. This paper assumes that the class-
conditional probabilities are representative of the test set.

However, as explained in Section 2, we cannot be confi-
dent in the class proportion estimates π̂k. Indeed, when the
training set is imbalanced, these estimates π̂k can lead to
a biased Bayes classifier toward the most probable classes.
Furthermore, the estimates π̂k can be uncertain: i) the esti-
mates are not informative about the true a priori distribu-
tion, or ii) the estimates, which are computed only one time,
can not capture the priors probability shifts that can occur
in time. Thus, the empirical Bayes risk must be viewed as a
function of the priors. By this way, the performance of the
classifier can be assessed whatever the class proportions are.

From Theorem 1, and keeping the class-conditional prob-
abilities p̂kt unchanged, it follows that the empirical Bayes
classifier (14) associated with any prior π ∈ S is given by

δBπ : Xi 7→ arg min
l∈Ŷ

∑

t∈T

∑

k∈Y
Lkl πk p̂kt 1{Xi=xt}. (19)

Moreover, the associated minimum empirical Bayes risk
r̂
(
δBπ
)

extended to any prior π ∈ S is given by the function
V : S→ [0,+∞) defined by

V (π) := r̂
(
δBπ

)
=
∑

k∈Y
πkR̂k

(
δBπ

)
, (20)

where, for all k ∈ Y ,

R̂k
(
δBπ

)
=
∑

t∈T

∑

l∈Ŷ
Lkl p̂kt 1{λlt=minq∈Ŷ λqt}, (21)

with, for all l ∈ Ŷ and all t ∈ T , λlt =
∑
k∈Y Lkl πk p̂kt.

The function V : π 7→ V (π) gives the minimum value of the
empirical Bayes risk when the class proportions are π and
the class-conditional probabilities p̂kt remain unchanged.
In other words, a classifier can be said to be robust to
priors probability shifts if its risk remains very close to V (π)
whatever the value of π ∈ S.

It is well known in the literature, see [3], [14], that the
Bayes risk, as a function of the priors, is concave over the
probability simplex S. The following proposition shows that
this result holds when considering the empirical Bayes risk
(20). Let us note that all the results are given for π ∈ S, but
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they also hold over the box-constrained probability simplex
U since U ⊂ S.

Proposition 1. The empirical Bayes risk V : π 7→ V (π) is
concave over the probability simplex S.

Proof. The proof is detailed in Appendix C.3.

Then, the following proposition and its corollary con-
sider the non-differentiability of V over S.

Proposition 2. The empirical Bayes risk V : π 7→ V (π) is a
multivariate piecewise affine function over S with a finite number
of pieces.

Proof. The proof is detailed in Appendix C.4.

Corollary 1. If the following condition

∃ (π, π′, k) ∈ S× S× Y : R̂k
(
δBπ

)
6= R̂k

(
δBπ′

)
(22)

is satisfied, then V is non-differentiable over the simplex S.

Proof. The proof is detailed in Appendix C.5.

Note that condition (22) is most likely achievable. Other-
wise, each class-conditional risk would remain equal what-
ever the prior. And if condition (22) is not satisfied, it follows
that V is affine over S.

3.2 Optimization procedure and convergence

In order to compute our box-constrained minimax classifier,
according to (18) and when considering (20), our objective
is to solve the following optimization problem

π? = arg max
π∈U

V (π). (23)

Since V : π 7→ V (π) is in general non-differentiable
provided that condition (22) is satisfied, it is necessary to
develop an optimization algorithm adapted to both the non-
differentiability of V and the domain U. To this aim, we
propose to use a projected subgradient algorithm based on
[52] and following the scheme

π(n+1) = PU

(
π(n) +

γn
ηn

g(n)

)
, (24)

where, at each iteration n ≥ 1, g(n) denotes a subgradient
of V at the point π(n), γn denotes the subgradient step,
ηn = max{1, ‖g(n)‖2}, and PU denotes the exact projection
onto the box-constrained simplex U. We note that this algo-
rithm also holds in the particular case where condition (22)
is not satisfied, that is, when the function V is affine over
U. The following lemma gives a subgradient of the target
function V .

Lemma 2. Given π ∈ U, the vector composed by all the
class-conditional risks R̂

(
δBπ
)

:=
[
R̂1

(
δBπ
)
, . . . , R̂K

(
δBπ
)]

is
a subgradient of V at the point π.

Proof. The proof is detailed in Appendix C.6.

In the following, we choose g(n) = R̂
(
δB
π(n)

)
at each iter-

ation n ≥ 1 in (24). The following theorem establishes the
convergence of the iterates (24) to π?.

Theorem 2. When considering g(n) = R̂
(
δB
π(n)

)
and any

sequence of steps (γn)n≥1 satisfying

inf
n≥1

γn > 0,
+∞∑

n=1

γ2
n < +∞,

+∞∑

n=1

γn = +∞, (25)

the sequence of iterates (24) converges strongly to a solution π?

of (23), whatever the initialization π(1) ∈ S.

Proof. The proof is a consequence of Theorem 1 in [52]. Here
we have strong convergence since π(n) belongs to a finite
dimensional space.

It is worth noting that when the empirical Bayes risk
V is not constantly equal to zero over S, the subgradient
R̂
(
δBπ?
)

at the box-constrained minimax optimum cannot
vanish, otherwise the associated risk V (π?) would be null
too due to (20). And this would be a contradiction with the
fact that π? is solution of (23). Hence, in this general case, the
sequence (24) is infinite and we need to consider a stopping
criterion. With this aim, we propose to follow the reasoning
in [53] which leads to the following corollary.

Corollary 2. At iteration N ≥ 1,
∣∣∣∣max
n≤N

{
V
(
π(n)

)}
− V (π?)

∣∣∣∣ ≤ ϕ(N),

with

ϕ(N) := max





1,

√√√√
K∑

k=1

[
K∑

l=1

Lkl

]2



ρ2 +

∑N
n=1 γ

2
n

2
∑N
n=1 γn

, (26)

where ρ is a constant satisfying ‖π(1) − π?‖2 ≤ ρ.

Proof. The proof is summarized in Appendix C.7.

In practice we can choose ρ2 = K since all the propor-
tions belong to the probability simplex. Since (26) converges
to 0 as N → ∞, we can choose a small tolerance ε > 0 as a
stopping criterion: we fix ε and then compute N = Nε such
that the bound in (26) is smaller than ε.

When considering the sequence of iterates (24), we need
to compute the exact projection onto the box-constrained
probability simplex U at each iteration n. To this end,
we propose to consider the algorithm provided in [54],
which computes the exact projection onto polyhedral sets
in Hilbert spaces. In Appendix B, we show how to apply
this projection to our box-constrained simplex U. We note
that in the case where we are interested in computing the
minimax classifier δBπ̄ , we have U = S (see Remark 1), and
we can perform the projection onto S using the algorithms
provided in [55] or [56] for which the complexity are lower.

3.3 Box-constrained minimax classifier algorithm
The procedure for computing the box-constrained minimax
classifier δBπ? is summarized step by step in Algorithm 1. In
practice, we can choose the sequence of steps (γn)n≥1 = 1/n
which satisfies (25). Let us note that our approach does not
need to resample the training set at each iteration n. Indeed,
π(n) and π? are used only analytically, which enables us to
include all the information provided in the training set for
computing our minimax classifier.

A Matlab version and a Python version of our algorithm
are available at [57].
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Algorithm 1 Box-constrained minimax classifier
1: Input: (Yi, Xi)i∈I , K , N .
2: Compute π(1) = π̂
3: Compute the p̂kt values, given by (6).
4: r? ← 0, π? ← π(1)

5: for n = 1 to N do
6: for k = 1 to K do
7: g

(n)
k ← R̂k

(
δB
π(n)

)
see (21)

8: end for
9: r(n) =

∑K
k=1 π

(n)
k g

(n)
k see (20)

10: if r(n) > r? then
11: r? ← r(n), π? ← π(n)

12: end if
13: γn ← 1/n, ηn ← max{1, ‖g(n)‖2}
14: π(n+1) ← PU

(
π(n) + γn g

(n)/ηn
)

15: end for
16: Output: r?, π? and δBπ? provided by (19) with π = π?.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate the interest of our box-
constrained minimax classifier on one syhthetic database
described in Appendix A.2, and on six real ones described in
[58], [59], [60], [61], [62], [63], coming from different appli-
cation domains, and presenting the previously mentioned
issues. These databases present different levels of difficulty,
depending on the number of classes, the class proportions,
the loss function, the number of features and the number
of instances. A detailed description of all these databases
is available in Supplementary Material. An overview of the
main characteristics of each database is given in Table 1, and
their associated class proportions π̂ are provided in Fig. 3.

TABLE 1
Overview on each database. Among the d features, dn corresponds to
the number of numeric features. Moreover, Quad denotes the quadratic

loss function, such that for all (k, l) ∈ Y × Ŷ, Lkl = (k − l)2. Finally,
Stl denotes the loss function provided by the experts of the application

domain in [61], such that L12 = 10, L21 = 500, and L11 = L22 = 0.

DATABASE m d dn K L

SYNTHETIC 10,000 2 2 3 L0-1
FRAMINGHAM [58] 3,658 15 8 2 L0-1
DIABETES [59] 768 8 8 2 L0-1
ABALONE [60] 4,177 8 7 5 Quad
SCANIA TRUCKS [61] 69,309 130 130 2 Stl
NASA PC3 [62] 1,563 37 36 2 L0-1
SATELLITE [63] 5,100 36 36 2 L0-1

4.1 Features discretization
In order to apply our algorithm, we need to discretize
the numeric features. To this aim, many methods can be
applied. As explained in [33], [34], we can use supervised
discretization methods such as [64], [65], [66], or unsu-
pervised methods such as the k-means algorithm in [67].
For our experiments, after having compared many of these
methods of discretization in terms of computation time, and
their impact on the risk of misclassifiactions and on the
generalization error, it resulted that the k-means algorithm
was the most convenient and leaded to the most interesting
results.

For each database, we therefore decided to quantize
the features using the k-means algorithm with a number
T ≥ K of centroids. In other words, each real feature vector
Xi ∈ Rd composed of all the features was quantized with
the index of the centroid closest to it, i.e., Q(Xi) = j where
Q : Rd 7→ {1, . . . , T} denotes the k-means quantizer and j is
the index of the centroid of the cluster in which Xi belongs
to. By discretizing the features space using the Kmeans
algorithm, our approach considers that the instances be-
longing to the same cluster may have similar behavior and
assigns them to the same class. This philosophy is closely
related to the clustering of bandits based approaches for
which the objective is to identify clusters of users so that
the users belonging to the same cluster are supposed to
have similar behavior, which allows to improve the contents
recommendation based on the payoffs computed in each
cluster [68], [69].

The choice of the number of centroids T is important
since it has an impact on the generalization error. It was
established from a 4-sub-fold cross-validation over the main
training set, and such that the generalization error com-
puted over the validation set, as a function of T , should not
exceed the training error by more than ε > 0. An example
of this procedure is given in Fig. 2.

0 500 1000 1500 2000 2500
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0.05
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0.15

0.2

0.25

Training set: average risk
Validation set: average risk
Topt = 200
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ba
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Fig. 2. Framingham database: choice of T from the training set in the first
iteration of the 4-fold cross-validation procedure, and when considering
ε = 0.01. The dashed curves show the standard-deviation around the
mean of r̂

(
π̂, δBπ̂

)
.

4.2 Box-constraint generation

In practice, the experts of the application domain can estab-
lish the Box-constraint by bounding independently some or
all the priors. Concerning the synthetic database, we set the
box-constraint as

B := {π ∈ R3 : 0.6 ≤ π1 ≤ 1, 0.1 ≤ π2 ≤ 0.25,

0 ≤ π3 ≤ 0.1}. (27)

Regarding the real databases, in order to illustrate the bene-
fits of the box-constrained minimax classifier δB

π? compared
to the minimax classifier δB

π̄ and the discrete Bayes classifier
δB
π̂ , we consider a box-constraint Bβ centered in π̂, and such

that, given β ∈ [0, 1],

Bβ =
{
π ∈ RK : ∀k ∈ Y, π̂k − ρβ ≤ πk ≤ π̂k + ρβ

}
, (28)

with ρβ := β ‖π̂ − π̄‖∞ = β maxk∈Y |π̂k − π̄k|. Our box-
constrained probabilistic simplex is therefore Uβ = S ∩ Bβ .
Thus, when β = 0, B0 = {π̂}, hence U0 = {π̂} and π? = π̂.
When β = 1, π̄ ∈ B1, hence π̄ ∈ U1 and π? = π̄.
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Fig. 3. Pie plots corresponding to the priors π̂, π? and π̄ associated with each databases. These results correspond to the average of the computed
priors at each iteration of the 4-folds cross-validation procedure.

4.3 Procedures of the experiments
For each database, we performed a 4-fold cross-validation
procedure and we applied our box-constrained minimax
classifier δB

π? with respect to their associated box-constraint.
We set to 4 the number of folds in order to keep large
enough test folds for each database. Concerning the syn-
thetic database, we considered the box (27). Concerning the
real databases, we considered the boxes B0.6 for the Fram-
ingham, Diabetes, Scania Trucks, NASA pc3 and Satellite
databases, and B0.4 for the Abalone database.

4.3.1 Flowchart of the Box-constrained minimax classifier
In subsection 4.1, we presented a preprocessing approach
for discretizing the numeric features in order to apply our
discrete box-constrained minimax criterion. On the follow-
ing, we will consider the box-constrained minimax classifier
δB
π? as the assembly of this features discretization step

with the box-constrained minimax computation described
in Algorithm 1. The flowchart presented in Fig. 4 illustrates
how these two procedures are assembled. Furthermore, as
explained in Remark 1, the usual minimax classifier δBπ̄ is
a particular case of the box-constrained minimax classifier
when B = [0, 1]K .

4.3.2 Classifiers considered for the experiments
We compared our box-constrained minimax classifier δB

π? to
the Logistic Regression [70] denoted by δLR

π̂ , the K-Nearest-
Neighbors denoted by δNN

π̂ , the discrete Bayes classifier δB
π̂

(8), the minimax classifier δB
π̄ .

We moreover compare our new algorithm with three
common approaches adapted for dealing with imbalanced
datasets: the Weighted Logistic Regression denoted by
δWLR
π̂ , the Weighted Random Forest denoted by δWRF

π̂ ,
Weighted K-Nearest-Neighbors denoted by δWNN

π̂ . The
Weighted Logistic Regression and the Weighted Random
Forests are fitted by considering class-weights inversely
proportional to class frequencies and using the algorithms
provided by Scikit-Learn [71]. Concerning the Weighted K-
Nearest-Neighbors we use the approach provided by [72].
This approach attributes the class for which the sum of the

Sub-cross-validation 
procedure 

Kmeans 
discretization 

with      centroids

Discrete Bayes 
Classifier �B

⇡̂<latexit sha1_base64="DWBLquL8Twd7e4wQseiIddEe+L8="></latexit>

T<latexit sha1_base64="1SZS4rLcBVtn1x4r/w1mnbZ7NCU="></latexit>

Lo
op

:  
fo

r  
   

 fr
om

   
   

 to
   

  
T <latexit sha1_base64="1SZS4rLcBVtn1x4r/w1mnbZ7NCU="></latexit>

K <latexit sha1_base64="1kZEgzSVq1CC8G+CbZM1gHQgyxE="></latexit>
Selection of  

         
Kmeans 

discretization 
of the  

Training set 
with 

centroids

Topt
<latexit sha1_base64="NYY8WIpn42swgaT8ctas5C+EukE="></latexit>

Yes

No

Convergence

  Box-Constraint B<latexit sha1_base64="ZARdpGX/ouST1tjlXZmfMGGzxyA="></latexit>

Algorithm 1

⇡?
<latexit sha1_base64="NsuAV0TfKc5TxDbbe2qMjOLwpfY="></latexit>

�B
⇡?

<latexit sha1_base64="Ke05W5kDaZ5O7/kIVp9/ILiw9oE=">AAAC3HicjVHLSsNAFD3GV62vqgsXboJFcFXSKuhSdOOygm0F05ZJOtahaRImE6GE7tyJW3/ArX6P+Af6F94ZI/hAdEKSM+fec+beuV4ciEQ5zvOENTk1PTNbmCvOLywuLZdWVptJlEqfN/woiOSZxxIeiJA3lFABP4slZ0Mv4C1vcKTjrSsuExGFp2oU8/aQ9UNxIXymiOqW1t0eDxTrZm4sOpmbKCbH485hsVsqOxXHLPsnqOagjHzVo9ITXPQQwUeKIThCKMIBGBJ6zlGFg5i4NjLiJCFh4hxjFEmbUhanDEbsgL592p3nbEh77ZkYtU+nBPRKUtrYIk1EeZKwPs028dQ4a/Y378x46tpG9PdyryGxCpfE/qX7yPyvTveicIF904OgnmLD6O783CU1t6Irtz91pcghJk7jHsUlYd8oP+7ZNprE9K7vlpn4i8nUrN77eW6KV10lDbj6fZw/QbNWqe5Uaie75YPDfNQFbGAT2zTPPRzgGHU0TP33eMCj1bGurRvr9j3Vmsg1a/iyrLs3/piZHg==</latexit>

Yes

No

⇡(n+1) = PS\B

✓
⇡(n) +

�n

⌘n
g(n)

◆

<latexit sha1_base64="jayKXwu+I4NK6Ys1DRCjRep2uYo="></latexit>

Lo
op

:  
fo

r  
   

 in
   

   
 

f <latexit sha1_base64="gDamQ2QGbPHUn38fqIzF2LLdZD0="></latexit>

{F
o
ld

1
,.

..
,F

o
ld

F
}

<latexit sha1_base64="RF+e3+HDC1FZAkE6Qo8s4tBWGxg="></latexit>

T
N

<latexit sha1_base64="rXsOWY42iPGjRwHVypD8peTpYm0="></latexit>

T = TN
<latexit sha1_base64="DO3XNdYuJlskgnB0R6+QCBfmDog="></latexit>

f = FoldF
<latexit sha1_base64="9EsvRRno7ZAOMhhIdymn9XPR+9g=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCq5JUQTdCUSguK9gHtKUk6bSG5kUyEWvpwp249Qfc6g+Jf6B/4Z0xBbWITkhy5tx7zsy91wpdJ+a6/ppRZmbn5heyi7ml5ZXVNXV9oxYHSWSzqh24QdSwzJi5js+q3OEua4QRMz3LZXVrcCri9SsWxU7gX/BhyNqe2fednmObnKiOutXTjrUWZ9c8CUflwO2OO+VcR83rBV0ubRoYKcgjXZVAfUELXQSwkcADgw9O2IWJmJ4mDOgIiWtjRFxEyJFxhjFypE0oi1GGSeyAvn3aNVPWp73wjKXaplNceiNSatglTUB5EWFxmibjiXQW7G/eI+kp7jakv5V6ecRyXBL7l26S+V+dqIWjhyNZg0M1hZIR1dmpSyK7Im6ufamKk0NInMBdikeEbamc9FmTmljWLnpryvibzBSs2NtpboJ3cUsasPFznNOgViwY+4Xi+UG+dJKOOott7GCP5nmIEs5QQZW8b/CIJzwrTeVWuVPuP1OVTKrZxLelPHwAxk6XDQ==</latexit>

{Fold1, . . . , FoldF }
<latexit sha1_base64="RF+e3+HDC1FZAkE6Qo8s4tBWGxg="></latexit>

Topt
<latexit sha1_base64="NYY8WIpn42swgaT8ctas5C+EukE="></latexit>

Compute global risks for 
training and test sets

Training set

Fig. 4. Flowchart of the box-constrained minimax classifier δB
π? which

includes both the discretization and the training steps.

class-weighted instances is the maximum in the neighbor-
hood, where in each class k ∈ Y , the associated class-weight
is wk = 1− π̂k.

We finally consider two quantification approaches de-
signed for dealing with prior probability shifts. To this
aim, we applied the discrete Bayes classifier (19) associated
to the class proportions estimated beforehand on the test
sets with the adjusted count approach described in [13],
[15], [16], and with a more advanced method based on
energy distance given in [73]. In the following, these two
adjusted classifiers will be respectively denoted as δAC

and δepc. The set of all these classifiers is denoted ∆E :={
δLR
π̂ , δRF

π̂ , δNN
π̂ , δWLR

π̂ , δWRF
π̂ , δWNN

π̂ , δB
π̂ , δ

B
π? , δ

B
π̄ , δ

AC, δepc
}

.

4.3.3 Criteria of comparisons

For these experiments we evaluate each classifier on five dif-
ferent criteria during a common cross-validation procedure.

At each iteration of the cross-validation procedure, we
first compare the global risk (4) associated with each classi-



DISCRETE BOX-CONSTRAINED MINIMAX CLASSIFIER FOR UNCERTAIN AND IMBALANCED CLASS PROPORTIONS 9

fier δ ∈ ∆E on both the training set S = {(Yi, Xi) , i ∈ I}
and the test set S ′ = {(Y ′i , X ′i) , i ∈ I ′}.

The databases we are considering here are imbalanced,
or highly imbalanced, which complicates the task of well
classifying the samples from the classes with the smallest
priors. For measuring the performance of each classifier
δ ∈ ∆E on this difficult task, we compute maxk∈Y R̂k(δ) on
both the training sets and the test sets, so that the smaller
this criterion is, the more accurate the classifier δ appears
for well classifying samples from the smallest classes.

In order to illustrate the fact that the minimax classifiers
δB
π? and δB

π̄ aim at balancing as more as possible the class
conditional risks with respect to the constraints Uβ and S,
we moreover consider the criterion ψ : ∆E → R+ such that

ψ(δ) := max
k∈Y

R̂k(δ)−min
k∈Y

R̂k(δ). (29)

In other words, the criterion ψ aims to measure how equal-
izer a given classifier δ ∈ ∆E is.

In order to evaluate the robustness of each classifier
when the class proportions are uncertain and prior proba-
bility shifts occur, we generated 100 random priors π(s), s ∈
{1, . . . , 100}, uniformly dispersed over the box-constrained
simplex U. To this aim, we uniformly generated a sequence
of priors over the simplex S using the procedure in [74],
until that 100 of them also satisfy the constraint U. Then,
for each repetition of the cross-validation procedure, we
generated 100 test subsets S(s) =

{
(Y ′i , X

′
i) , i ∈ I(s)

}
by

randomly selecting instances from the full test fold set S ′,
and such that each test subset S(s) satisfies one of the
random priors π(s). Each classifier δ ∈ ∆E was finally tested
when considering all the 100 random priors over U. In order
to measure the robustness of each classifier δ, we look at the
boxplot of [r̂(π(1), δ), . . . , r̂(π(100), δ)], which allows to both
evaluate the dispersion and the values of the risks r̂(π(s), δ),
s ∈ {1, . . . , 100}.

4.4 Results

In this subsection, we first present a detailed description of
the results associated with the synthetic database, and we
then summarize the results associated with the real ones.

4.4.1 Results associated with the synthetic database
The values of the global risks r̂(π̂, δ) and r̂(π′, δ) associated
respectively with the training and test sets are given in
Fig. 7. We can observe that the discrete Bayes classifier δB

π̂

applied on the discretized database can well challenge with
the Logistic Regression δLR

π̂ and the K-Nearest-Neighbors
δNN
π̂ applied both to the real features. This confirms that

the discretization of the features has a negligible impact.
Fig. 5 shows the samples of the synthetic dataset. It is clear
that the class 2 is the most difficult class to discriminate:
class 2 represents just 15% of the dataset and it overlaps
significantly the samples of class 1 which represent 80% of
the dataset. We can note that the classifiers not tuned for im-
balance datasets have some difficulties for well classifying
the samples of class 2.

The priors π? and π̄ computed with our minimax al-
gorithm for this synthetic database are given in Fig. 3. It is
important to note that the least favorable priors π̄, which are

Fig. 5. Synthetic database: Scatter plot of the instances from each class
{C1, C3, C3}. The database generation is described in Appendix A.2.

Fig. 6. Synthetic database: Impact of the priors on the class-label
assignment to each discrete profile for the classifiers δBπ̂ , δBπ? and δBπ̄ .

the most adequate for equalizing the class conditional risks,
are not balanced for this database. Under the hypothesis that
the function V (20) calculated on the discretized database is
close enough to the empirical Bayes risk associated to real
features, this illustrates the fact that the common solution
mentioned in the state of the art, which aims at re-sampling
the training set for satisfying the balanced class proportions
π̂ = [1/K, . . . , 1/K], can be not optimal.

We can observe in Fig. 7 that the minimax classifier
δB
π̄ perfectly balanced the class-conditional risks, and its

associated global risks of errors are lower than the risks as-
sociated to the weighted Logistic Regression δWLR

π̂ and the
weighted Random Forest δWRF

π̂ . These two last approaches
counterbalanced the class conditional risks contrary to the
Logistic Regression δLR

π̂ , the discrete Bayes classifier δB
π̂ and

the K-Nearest-Neighbors δNN
π̂ , which leads to important

global risks of errors. Finally, the Box-constrained minimax
classifier δB

π? appears as a trade-off between the discrete
Bayes classifier δB

π̂ and the minimax classifier δB
π̄ . In other

words, δB
π? tends to balance the class-conditional risks while

satisfying an acceptable global risk of errors with respect to
the box-constraint.

Regarding the robustness of each classifier when dealing
with prior probability shifts, we can observe in Fig. 8 that
the two quantification approaches get low global risks when
prior probability shifts occur over U. Indeed, the task of esti-
mating the class proportions π(s) of each test set S(s) before
applying the discrete Bayes classifier (19) allows to reach
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Fig. 7. Synthetic database: Comparison of the risks of misclassification after the 4-fold cross-validation procedure for which the class proportions
of the test set were similar to the training set. On the top, the boxplots (training versus test) illustrate the dispersion of the global risks of
misclassification. On the bottom, the barplots correspond to the average conditional risks associated to each class {C1, C2, C3} for each classifier.

Fig. 8. Synthetic database: On the top, the boxplots illustrate the dispersion of the global risks of misclassification [r̂(π(1), δ), . . . , r̂(π(100), δ)]
associated to each classifier δ ∈ ∆E when prior probability shifts occur over U. On the bottom, the boxplots correspond to the dispersion of the
conditional risks [R̂k(δ), . . . , R̂k(δ)] associated to each class {C1, C2, C3} of each classifier δ when dealing with these prior probability shifts.

the values of V (20) at these associated class proportions.
However, as illustrated in Fig. 8, it follows that the values
of the class-conditional risks become highly dispersed for
these two quantification approaches. In other words, despite
the fact that these quantification approaches allow to obtain
satisfying global risks of errors when prior probability shifts
occur, these methods do not guaranty robustness on the
class-conditional risks. Contrary to these quantification ap-
proaches, the class-conditional risks associated to the other
methods stay less dispersed when prior probability shifts
occur. And regarding the dispersion of their associated
global risks in Fig. 8, the minimax classifier δBπ̄ , the weighted
Logistic Regression δWLR

π̂ , the weighted Random Forest
δWRF
π̂ , and the box-constrained minimax classifier δB

π? were
the most robust when the class proportions of the 100 test
sets differed from π̂ since their associated risks r̂(π(s), δ),
s ∈ {1, . . . , 100} were the less dispersed. This means that
these classifiers stay the more stable when prior probability
shifts occur over U. Between these four decision rules, the
box-constrained minimax classifier gets the lowest global
risks. In other words, it results that the box-constrained
minimax classifier appears as the best classifier for ensuring
an acceptable robustness in terms of both global and class-
conditional risks, while respecting satisfactory global risks
of error with an acceptable class-conditional risks balancing.

Let us finish the study of the synthetic dataset by
showing the impact of the box-constraint over the decision
regions of the classifier. Let us compare the Bayes classifier,
the minimax classifier and the box-constrained classifier.
Generally, the discretization of the features made by the
Kmeans algorithm depends on the classifier. However, to
show the impact of the priors, we set temporarily the same
discrete features for all these classifiers. The partition of
the input space is shown in Fig. 6. We can observe that
the Bayes classifier favours the class 1. Our box-constrained
minimax algorithm changes the class-label of certain regions
(a region corresponds to a discrete profile) to give more
importance to class 2 and class 3. These changes become
more significant when we apply the minimax algorithm
which clearly favours class 2 over class 1.

4.4.2 Results associated with the real databases

Regarding the six real databases, the results associated to
each classifier for each criterion are presented in Table 2. In
order to get a better overview of these results, we computed
the average rank of each decision rule δ ∈ ∆E based on
the six databases. Due to the computing time associated
with the Weighted K-Nearest-Neighbors, we decided to not
consider this classifier for these experiments. The priors π?

and π̄ computed for each database using our algorithm
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are summarized in Fig. 3. We can observe that the least
favorable priors π̄ for the databases Abalone, Scania Trucks
and Satellite are not balanced and that they are different
from the priors of the training set.

Concerning the global risks r̂(π̂, δ) and r̂(π′, δ), we can
observe in Table 2 that the discrete Bayes classifier δB

π̂ ap-
plied on the discretized databases can challenge the Logistic
Regression δLR

π̂ and the K-Nearest-Neighbors δNN
π̂ applied

both to the real features. Here again, this shows that the
discretization impact is negligible. Furthermore, balancing
the class-conditional risks implies that the classifiers δWLR

π̂ ,
δWRF
π̂ , δB

π̄ get higher global risks than the decision rules δB
π̂ ,

δLR
π̂ , δNN

π̂ . Hence, the box-constrained minimax classifier δB
π?

usually appears as a trade-off between the classifiers δB
π̂ ,

δLR
π̂ , δNN

π̂ and the classifiers δWLR
π̂ , δWRF

π̂ , δB
π̄ .

Regarding the maximum of the class conditional risks,
the minimax classifier δB

π̄ can challenge the weighted Logis-
tic Regression δWLR

π̂ and the weighted Random Forest δWRF
π̂

applied both to real features. Note that although δWLR
π̂

and δWRF
π̂ usually get convincing results for many of these

real databases, it appears that these two classifiers suffer
significantly on the two most difficult databases (Abalone
and Scania trucks). Contrary to these two classifiers, our
minimax algorithm clearly achieves the lowest value of the
maximum class-conditional risks. This phenomena is also
illustrated with the criterion ψ, since the minimax classifier
δB
π̄ appears as the most adequate for balancing the class-

conditional risks. Here again, the box-constrained minimax
classifier δB

π? generally appears as a trade-off between the
classifiers δB

π̂ , δLR
π̂ , δNN

π̂ and the classifiers δWLR
π̂ , δWRF

π̂ , δB
π̄

for equalizing the class-conditional risks.
Regarding the robustness of each classifier when deal-

ing with prior probability shifts over Uβ , the results1 are
presented in Fig. 10. For these experiments, we observe
similar results to those of the synthetic database. Although
the classifiers δB

π̄ , δWLR
π̂ , δWRF

π̂ generally get the highest
global risks of errors, they were the most robust when the
class proportions of the 1000 test sets differed from π̂ since
their associated risks r̂(π(s), δ), s ∈ {1, . . . , 100} were the
less dispersed. Our box-constrained minimax classifier δB

π?

appears here again as a trade-off between the classifiers δB
π̂ ,

δLR
π̂ , δNN

π̂ and the classifiers δWLR
π̂ , δWRF

π̂ , δB
π̄ for equaliz-

ing the class-conditional risks and for satisfying acceptable
global risks of errors. Finally, all these classifiers ensure a
better stability of the class-conditional risks than the two
quantification approaches δAC and δepc.

Finally, if we look at the processing training times, we
have to note that the task of discretizing the features as
described in subsection 4.1 induces a higher processing
training time for the classifiers δBπ̂ , δBπ? , δBπ̄ . Excluding this
preprocessing time of discretizing the features, we can ob-
serve that δBπ̄ is generally faster than δBπ? . This difference
comes from the fact that for computing δBπ̄ , the projection
onto S is performed using the algorithm provided by [55],
whereas concerning δBπ? , the procedure for projected onto U
is more complex.

1. Since the results associated with the Diabetes, Scania Trucks,
Abalone, NASA pc3 and Satellite databases are similar to those asso-
ciated to the Synthetic and the Framingham databases, we just present
here the results associated to the Framingham database.

4.4.3 Impact of the Box-constraint radius
We have previously seen that the box-constrained minimax
classifier δBπ? allows to find a trade-off between achieving an
acceptable global risk and equalizing the class-conditional
risks. This trade-off depends on the box-constraint bounds.
For illustrating this fact on the Framingham database, we
considered different box-constraints Bβ by changing the
radius ρβ in (28). When β ranges from 0 to 1, we increase the
radius ρβ of Bβ until that π̄ belongs to Uβ . Hence, as illus-
trated in Fig. 9, the more ρβ increases, the more equalizer δBπ?
becomes. It follows that δBπ? becomes more accurate for well
classifying the samples from the smallest classes. However,
the more ρβ increases, the more pessimistic δBπ? becomes
since V (π?) converges to V (π̄). Therefore, the experts can
easily tighten or spread the box-constraint bounds in order
to find an acceptable trade-off.
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Fig. 9. Framingham database: Impact of the box-constraint radius on
δB
π? when β increases from 0 to 1 in (28), after a 4-fold cross-validation

procedure. As β increases, the box-constraint radius increases which
changes the values of π?, and therefore the values of V (π?) and
ψ(δB

π? ). Results are presented as mean± std.

4.5 Application to a large scale database

The previous results illustrated that sometimes the weighted
approaches like the Weighted Logistic Regression or the
Weighted Random Forest can perform well too in the task
of equalizing the class-conditional risks. However, these
weighted approaches can suffer when dealing with a large
number of classes K . Furthermore, when the class propor-
tions of the training set are balanced, the class-conditional
risks can even be highly unequal due to the complexity of
the classification problem. In such a case, these weighted
classifiers become unable to balance the class-conditional
risks when considering weights inversely proportional to
the class proportions. Unlike these weighted methods, our
minimax classifier δB

π̄ is able to face these difficulties for
minimizing the maximum of the class-conditional risks.

Let us consider the CIFAR-100 database [43] that con-
tains 60,000 images withK = 100 classes for which the class
proportions are perfectly balanced. For this experiment, we
considered the features extracted from the last hidden layer
of the convolutional neural networks EfficientNet-B0 [75].
We then discretized the features using the Kmeans proce-
dure and we compared on the same database the efficiency
of the Weighted Logistic Regression δWLR

π̂ , the Weighted
Random Forest δWRF

π̂ , and the Discrete Minimax Classifier
δB
π̄ , for minimizing the maximum of the class-conditional

risks. We do not apply the box-constrained minimax clas-
sifier on this dataset; we prefer focusing our attention to
the equalization of the class-conditional risks on such a
large scale dataset. The training set, respectively the test
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TABLE 2
Results associated with each classifier δ ∈ ∆E and each database after the 4-fold cross-validation procedure. The notation δ R means that the

classifier δ was applied on the real features. The notation δ K means that the classifier δ was performed on the discretized version of each
database using the Kmeans algorithm. The results are presented as [mean± std]. For each criterion and for each database, the green font

characterizes the most efficient classifier, whereas the red font characterizes the classifier with the worst result. For each criterion, in order to get a
better overview for comparing each classifier, we moreover computed the average rank of each decision rule δ based on their results associated

with the 6 databases. Furthermore, the computing time criterion associated with the classifiers {δBπ̂ , δ
B
π? , δ

B
π̄ } takes into account the preprocessing

task of discretizing the data as described in subsection 4.1.

Classifiers
Criteria Databases

δLRπ̂ R δBπ̂ K δNNπ̂ R δWLR
π̂ R δWRF

π̂ R δBπ? K δBπ̄ K

Framingham 0.15± 0.00 0.15± 0.00 0.14± 0.00 0.34± 0.01 0.28± 0.01 0.19± 0.01 0.34± 0.01
Diabetes 0.29± 0.01 0.25± 0.03 0.22± 0.00 0.31± 0.01 0.23± 0.02 0.25± 0.02 0.27± 0.02
Abalone 0.34± 0.01 0.33± 0.01 0.32± 0.01 1.06± 0.77 0.97± 0.16 0.43± 0.02 0.65± 0.04

Scania Trucks 3.13± 0.03 0.96± 0.02 3.51± 0.10 0.71± 0.02 0.61± 0.03 2.58± 0.31 4.24± 0.93
NASA pc3 0.10± 0.00 0.09± 0.00 0.10± 0.00 0.89± 0.01 0.17± 0.01 0.16± 0.02 0.30± 0.01

Training
r̂ (π̂, δ)

Satellite 0.003± 0.0 0.007± 0.0 0.008± 0.0 0.019± 0.0 0.024± 0.0 0.023± 0.0 0.045± 0.01
Classifier Average Rank 3.00 2.17 2.33 5.00 3.83 3.67 5.50

Framingham 0.15± 0.00 0.15± 0.00 0.15± 0.01 0.35± 0.01 0.30± 0.02 0.22± 0.02 0.37± 0.01
Diabetes 0.30± 0.03 0.29± 0.02 0.28± 0.03 0.31± 0.04 0.25± 0.03 0.29± 0.02 0.31± 0.01
Abalone 0.34± 0.02 0.36± 0.01 0.37± 0.02 1.07± 0.78 1.05± 0.20 0.49± 0.02 0.67± 0.06

Scania Trucks 3.20± 0.25 0.99± 0.06 3.68± 0.24 0.85± 0.14 0.73± 0.01 2.67± 0.42 4.32± 0.96
NASA pc3 0.10± 0.01 0.11± 0.01 0.10± 0.01 0.89± 0.01 0.20± 0.01 0.20± 0.02 0.32± 0.01

Test
r̂ (π′, δ)

Satellite 0.007± 0.00 0.008± 0.0 0.008± 0.0 0.022± 0.0 0.026± 0.0 0.025± 0.0 0.050± 0.01
Classifier Average Rank 2.17 2.17 2.50 4.33 3.17 3.33 5.33

Framingham 0.95± 0.01 0.94± 0.01 0.89± 0.01 0.34± 0.00 0.33± 0.02 0.67± 0.03 0.35± 0.01
Diabetes 0.60± 0.05 0.47± 0.06 0.46± 0.02 0.34± 0.01 0.25± 0.02 0.38± 0.06 0.29± 0.03
Abalone 3.25± 0.49 3.06± 0.19 4.05± 0.46 1.35± 0.79 1.07± 0.14 0.93± 0.26 0.83± 0.17

Scania Trucks 271± 10 39.8± 4.5 298± 13 38.5± 2.7 19.8± 1.9 10.8± 2.7 6.5± 1.2
NASA pc3 1.00± 0.00 0.92± 0.02 0.96± 0.01 0.99± 0.01 0.18± 0.01 0.57± 0.02 0.30± 0.01

Training
max
k∈Ŷ

R̂k(δ)

Satellite 0.20± 0.03 0.44± 0.04 0.56± 0.02 0.02± 0.01 0.13± 0.01 0.23± 0.06 0.05± 0.01
Classifier Average Rank 6.16 5.33 6.00 3.33 2.00 3.33 1.83

Framingham 0.96± 0.02 0.97± 0.02 0.93± 0.02 0.37± 0.01 0.41± 0.02 0.73± 0.03 0.45± 0.04
Diabetes 0.62± 0.05 0.51± 0.05 0.55± 0.04 0.34± 0.04 0.29± 0.01 0.44± 0.07 0.34± 0.01
Abalone 3.29± 1.06 3.68± 0.38 3.79± 0.71 1.61± 0.64 1.64± 0.69 1.99± 0.22 1.92± 0.55

Scania Trucks 272± 18 43.2± 5.2 312± 15 51.9± 17.9 30.5± 4.8 17.9± 5.2 11.6± 3.1
NASA pc3 1.00± 0.00 0.98± 0.02 0.99± 0.02 0.99± 0.01 0.30± 0.05 0.74± 0.07 0.40± 0.05

Test
max
k∈Ŷ

R̂k(δ)

Satellite 0.31± 0.07 0.52± 0.10 0.57± 0.09 0.11± 0.03 0.20± 0.06 0.37± 0.03 0.20± 0.10
Classifier Average Rank 5.50 5.33 5.83 2.33 1.83 3.33 2.17

Framingham 0.94± 0.01 0.93± 0.01 0.88± 0.01 0.02± 0.02 0.07± 0.03 0.56± 0.04 0.01± 0.01
Diabetes 0.48± 0.05 0.33± 0.12 0.38± 0.03 0.07± 0.03 0.07± 0.02 0.20± 0.09 0.02± 0.02
Abalone 3.14± 0.49 2.88± 0.18 3.96± 0.46 1.33± 0.80 1.05± 0.15 0.59± 0.26 0.27± 0.11

Scania Trucks 267± 11 39.3± 4.5 297± 13.1 38.2± 2.7 19.5± 1.9 8.3± 3.1 2.5± 1.5
NASA pc3 1.00± 0.00 0.92± 0.02 0.96± 0.01 0.99± 0.01 0.04± 0.03 0.45± 0.04 0.02± 0.01

Training
ψ(δ)

Satellite 0.20± 0.03 0.44± 0.04 0.56± 0.02 0.02± 0.01 0.11± 0.01 0.21± 0.06 0.002± 0.0
Classifier Average Rank 5.83 5.17 6.00 3.33 2.67 3.17 1.00

Framingham 0.95± 0.02 0.96± 0.02 0.91± 0.02 0.04± 0.03 0.13± 0.03 0.60± 0.04 0.09± 0.03
Diabetes 0.49± 0.03 0.34± 0.10 0.42± 0.03 0.09± 0.02 0.08± 0.03 0.24± 0.12 0.05± 0.01
Abalone 3.18± 1.05 3.48± 0.38 3.67± 0.71 1.60± 0.66 1.53± 0.72 1.63± 0.20 1.40± 0.61

Scania Trucks 272± 18 42.7± 5.1 312± 15 51.6± 18 30.1± 4.9 15.5± 5.1 7.3± 3.0
NASA pc3 1.00± 0.00 0.96± 0.02 0.99± 0.02 0.99± 0.00 0.10± 0.06 0.60± 0.10 0.09± 0.05

Test
ψ(δ)

Satellite 0.31± 0.07 0.52± 0.10 0.57± 0.09 0.09± 0.04 0.18± 0.07 0.35± 0.03 0.15± 0.09
Classifier Average Rank 5.83 5.33 6.17 3.00 2.50 3.50 1.33

Framingham 2.65± 0.34 34.8± 5.1 0.003± 0.00 2.05± 0.41 0.23± 0.05 34.2± 0.57 34.8± 3.36
Diabetes 0.67± 0.35 10.5± 0.1 0.01± 0.00 0.73± 0.23 0.13± 0.00 12.7± 0.3 10.9± 0.03
Abalone 5.39± 1.09 37.8± 0.59 0.003± 0.00 10.58± 0.04 0.22± 0.00 158.5± 1.6 41.2± 0.1

Scania Trucks 408± 33 799± 18 4.37± 1.50 392± 34 5.72± 4.61 847± 13 812± 8
NASA pc3 2.19± 2.57 13.5± 0.1 0.003± 0.00 5.56± 0.50 0.19± 0.00 15.9± 0.2 14.3± 0.2

Training
Time (s)

Satellite 6.60± 0.36 43.8± 06 0.005± 0.0 20.4± 0.1 0.22± 0.00 45.0± 0.5 45.5± 1.6
Classifier Average Rank 3.33 4.83 1.00 3.67 2.00 6.33 5.83

Framingham 6.8× 10−4 1.0× 10−2 4.8× 10−2 1.0× 10−3 1.5× 10−2 9.9× 10−3 1.2× 10−2

Diabetes 5.8× 10−4 2.7× 10−3 6.9× 10−3 5.5× 10−4 9.6× 10−3 2.7× 10−3 2.7× 10−3

Abalone 6.4× 10−4 4.0× 10−2 3.6× 10−2 6.2× 10−4 1.5× 10−2 3.8× 10−2 3.8× 10−2

Scania Trucks 3.3× 10−3 2.1× 10−1 17.9± 1.2 3.6× 10−3 5.2× 10−2 2.2× 10−1 2.3× 10−1

NASA pc3 7.8× 10−4 5.4× 10−3 1.4× 10−2 5.8× 10−4 1.2× 10−2 4.9× 10−3 4.8× 10−3

Predictions
Time (s)

Satellite 7.1× 10−4 1.4× 10−2 1.4× 10−2 6.8× 10−4 1.3× 10−2 1.4× 10−2 1.4× 10−2

Classifier Average Rank 1.67 4.33 5.50 1.33 4.33 4.00 4.33

set, is composed of 40,000 instances, resp. 20,000 instances.
Both the training and test sets satisfied the balanced class
proportions π̂ = [1/100, . . . , 1/100].

The Weighted Logistic Regression δWLR
π̂ and the

Weighted Random Forest δWRF
π̂ have similar results than

the Discrete Bayes Classifier δB
π̂ . Their global risks of errors

reach 0.161 on the training set and 0.167 on the test set. But
we can observe in Fig. 11 that, even though the class pro-
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Fig. 10. Framingham database: On the top, the boxplots illustrate the dispersion of the global risks of misclassification [r̂(π(1), δ), . . . , r̂(π(100), δ)]
associated to each classifier δ ∈ ∆E when prior probability shifts occur over U. On the bottom, the boxplots correspond to the dispersion of the
conditional risks [R̂k(δ), . . . , R̂k(δ)] associated to each class {C1, C2} of each classifier δ when dealing with these prior probability shifts.

Fig. 11. CIFAR-100 database: Class-conditional risks associated with the Dicrete Bayes Classifier δB
π̂ , the Weighted Logistic Regression δWLR

π̂ , the
Weighted Random Forest δWRF

π̂ , and the Discrete Minimax Classifier δB
π̄ on both the training and test sets.

portions are perfectly balanced, their class-conditional risks
are highly unequal, achieving ψ(δB

π̂ ) = 0.508, ψ(δWLR
π̂ ) =

0.545, ψ(δWRF
π̂ ) = 0.528 on the training set, and ψ(δB

π̂ ) =
0.560, ψ(δWLR

π̂ ) = 0.630, ψ(δWRF
π̂ ) = 0.625 on the test

set. Since the class proportions are perfectly balanced, the
Weighted Logistic Regression and the Weighted Random
Forest were not able to balance the class-conditional risks
when considering their class-weights inversely proportional
to the class proportions. Because of the large number of
classes, it is too difficult to manually optimize these class-
weights. Despite these difficulties, we can observe that
our minimax classifier δB

π̄ performed well to minimize the
maximum of the class-conditional risks and to balance these
risks per class, achieving r̂(π̂, δB

π̄ ) = 0.283 and ψ(δB
π̄ ) = 0.23

on the training set, and ψ(δB
π̄ ) = 0.35 and r̂(π̂, δB

π̄ ) = 0.294
on the test set.

5 CONCLUSION AND DISCUSSIONS

This paper proposes a box-constrained minimax classifier
which fits in the field of Γ-minimaxity and Bayesian robust-
ness for supervised classification tasks. Our approach aims
to address the issues of imbalanced datasets and uncertain
class proportions, for multiple classes, when considering
any positive loss function. The box-constraint can be con-
veniently defined by experts in the application field. Our

method allows us to find a trade-off between minimizing
the maximum of the class-conditional risks and achieving
an acceptable global risk of errors. Our approach also al-
lows to easily consider the classic minimax criterion which
remains generally challenging to compute in many applica-
tion fields.

Our algorithm does not assume independence between
features. To compute our minimax classifier, we need to
discretize the numeric features beforehand, which allows
us to calculate and model the discrete empirical non-naı̈ve
Bayes risk over the simplex. The performance of our classi-
fier depends on the feature discretization. We have seen that
using the k-means algorithm leads to accurate results.

Future work will be devoted to adapt our algorithm
for training a minimax regret classifier [19], [31], studying
the generalization error of our minimax classifier, and im-
proving the computation time of the exact projection onto
the box-constrained simplex, which would be preferable for
dealing with databases containing a large number of classes.
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His current research interests include statistical decision theory, ma-

chine learning, deep learning, signal and image processing, and bio-
inspired processing.



DISCRETE BOX-CONSTRAINED MINIMAX CLASSIFIER FOR UNCERTAIN AND IMBALANCED CLASS PROPORTIONS 16

APPENDIX A
SYNTHETIC DATABASES GENERATION

A.1 Synthetic database for Figure 1

The results presented in Fig. 1 come from a synthetic dataset.
This dataset was generated as follows: We considered K =
2 classes and d = 3 features. We generated m = 20, 000
instances such that for each instance i ∈ I , Yi ∼ Cat(K, π̂)
with π̂ = [0.2, 0.8]. The categorical distribution, which is
denoted as Cat(K, π̂), is a discrete distribution with support
{1, . . . ,K} such that the probability of output k is π̂k. For
all j ∈ {1, . . . , d}, we generated the features Xij as follow:

Xij = 1{Yi=1}Ui + 1{Yi=2}Vi ,

with Ui ∼ N (µ1j , σ1j) and Vi ∼ N (µ2j , σ2j) where

µ =

[
37.5 6.5 19
39 7 20

]
, σ =

[
1 1.5 1.2
2 0.8 2

]
.

The univariate normal distribution with mean µ and
standard-deviation σ is denoted N (µ, σ). We then dis-
cretized each feature j ∈ {1, . . . , d} into 6 uniform bins
over [mini∈I Xij ,maxi∈I Xij ]. Finally, we considered the
following loss function L such that L11 = 3, L12 = 15,
L21 = 25, L22 = 2.

A.2 Synthetic database for Section 4

The synthetic database considered in Section 4 was gener-
ated as follows: We considered K = 3 classes {C1, C3, C3}
and d = 2 features. We generated m = 10, 000 instances
such that for each instance i ∈ I , Yi ∼ Cat(K, π̂) with
π̂ = [0.8, 0.15, 0.05]. For j ∈ {1, 2}, we generated the
features Xij as follows:

Xij = 1{Yi=1}Ui + 1{Yi=2}Vi + 1{Yi=3}Wi ,

with Ui ∼ N (µ1j , σ1j), Vi ∼ N (µ2j , σ2j),Wi ∼ N (µ3j , σ3j)
where

µ =




9.5 10
10 12

11.7 7.6


 , σ =




1 1.5
1.1 1.2
0.8 0.8


 .

With this aim, we used the algorithm datasets.make blobs pro-
vided by Scikit-Learn [71]. The scatter plot of the database
generated is provided in Fig. 5. For this database, we finally
considered the L0-1 loss function.

APPENDIX B
PROJECTION ONTO THE CONSTRAINT U
Let us recall that U = S ∩ B, where B := {π ∈ RK : ∀k =
1, . . . ,K, 0 ≤ ak ≤ πk ≤ bk ≤ 1}. Let us define for all
i ∈ {1, . . . , 2K + 2}

Ui =





{
π ∈ RK : 〈π, ei〉 ≤ bi

}
if i ∈ {1, . . . ,K}{

π ∈ RK :
〈
π,−e(i−K)

〉
≤ −ai

}

if i ∈ {K + 1, . . . , 2K}{
π ∈ RK : 〈π, 1K〉 ≤ 1

}
if i = 2K + 1{

π ∈ RK : 〈π,−1K〉 ≤ −1
}

if i = 2K + 2

where, for all k ∈ {1, . . . ,K}, ek ∈ RK is the indicator
vector with 1 in coordinate k, and 1K ∈ RK is the vector
fully composed of ones. We can therefore write U as

U =
2K+2⋂

i=1

Ui. (30)

In [54], the author proposes an algorithm to compute the
exact projection onto polyhedral sets in Hilbert spaces,
which is the case of our box-constrained simplex (30).

APPENDIX C
PROOFS OF THE PAPER

C.1 Proof of Lemma 1

From (4), (5), (3) and (6) it follows that:

r̂(δπ̂) =
∑

k∈Y

∑

l∈Ŷ
Lkl π̂k P̂(δπ̂(Xi) = l | Yi = k)

=
∑

k∈Y

∑

l∈Ŷ
Lkl π̂k

1

mk

∑

i∈Ik
1{δπ̂(Xi)=l}.

The indicator function in the last equation can be rewritten
as

1{δπ̂(Xi)=l} =
∑

t∈T
1{δπ̂(xt)=l} 1{Xi=xt}.

Hence:

r̂(δπ̂) =
∑

t∈T

∑

k∈Y

∑

l∈Ŷ
1{δπ̂(xt)=l} Lkl π̂k

1

mk

∑

i∈Ik
1{Xi=xt}

=
∑

t∈T

∑

k∈Y

∑

l∈Ŷ
1{δπ̂(xt)=l} Lkl π̂k p̂kt .

�

C.2 Proof of Theorem 1

Let δ ∈ ∆, let t ∈ T , and let ht = argmin
l∈Ŷ

∑
k∈Y Lkl π̂k p̂kt,

∑

l∈Ŷ

∑

k∈Y
Lkl π̂k p̂kt 1{δ(xt)=l}

≥
∑

k∈Y
Lkht π̂k p̂kt

∑

l∈Ŷ
1{δ(xt)=l}

≥
∑

k∈Y
Lkht π̂k p̂kt.

The last inequality can be rewritten as
∑

l∈Ŷ

∑

k∈Y
Lkl π̂k p̂kt 1{δ(xt)=l}

≥
∑

l∈Ŷ

∑

k∈Y
Lklπ̂kp̂kt1{∑k∈Y Lkl π̂kp̂kt=minq∈Ŷ

∑
k∈Y Lkqπ̂kp̂kt}

≥
∑

l∈Ŷ

∑

k∈Y
Lkl π̂k p̂kt 1{λlt=minq∈Ŷ λqt},

where, for all (q, t) ∈ Ŷ ×T , λqt =
∑
k∈Y Lkq π̂k p̂kt. Hence,

from (7), and for all δ ∈ ∆, we get

r̂(δπ̂) ≥
∑

t∈T

∑

l∈Ŷ

∑

k∈Y
Lkl π̂k p̂kt 1{λlt=minq∈Ŷ λqt}. (31)
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It follows that (31) is a lower bound of the empirical Bayes
risk. It is straightforward to verify that the decision rule
(8) achieves the lower bound (31). Hence, the classifier (8)
minimizes (7), and its associated empirical Bayes risk is:

r̂
(
δBπ̂

)
=
∑

t∈T

∑

l∈Ŷ

∑

k∈Y
Lkl π̂k p̂kt 1{λlt=minq∈Ŷ λqt}. (32)

Finally, from (4) and (32), we identify the empirical class-
conditional risk of class k ∈ Y as (9). �

C.3 Proof of Proposition 1

Let α ∈ [0, 1] and let consider the priors π, π′, π′′ ∈ S such
that π′′ = απ + (1− α)π′. Thus,

V (π′′) = r̂
(
δBπ′′

)
=
∑

k∈Y
π′′k R̂k

(
δBπ′′

)

= α
∑

k∈Y
πkR̂k

(
δBπ′′

)
+ (1− α)

∑

k∈Y
π′kR̂k

(
δBπ′′

)

= α r̂
(
π, δBπ′′

)
+ (1− α) r̂

(
π′, δBπ′′

)

≥ α r̂
(
π, δBπ

)
+ (1− α) r̂

(
π′, δBπ′

)

≥ α r̂
(
δBπ

)
+ (1− α) r̂

(
δBπ′

)

≥ αV (π) + (1− α)V (π′) .

This shows that V is concave over S . �

C.4 Proof of Proposition 2

Let us consider the equivalence relation R over the simplex
S such that, for all (π, π′) ∈ S× S,

πRπ′ ⇐⇒ ∀(l, t) ∈ Ŷ × T ,
1{λlt=minq∈Y λqt} = 1{λ′

lt=minq∈Y λ′
qt},

with

λlt =
∑

k∈Y
Lkl πk p̂kt and λ′lt =

∑

k∈Y
Lkl π

′
k p̂kt.

Let π ∈ S, and let [π] ⊂ S denote the equivalence class to
which π belongs. Thus, according to (21), for all k ∈ Y , there
exists a constant αk ≥ 0 such that for all π′ ∈ [π], R̂k

(
δBπ′
)

=
αk. Then, by considering α = [α1, . . . , αK ] and according to
(20) we have for all π′ ∈ [π], V (π′) =

∑K
k=1 π

′
kαk, which

shows that V is affine over [π]. Since the set of equivalence
classes is a partition of the simplex S, V is piecewise affine
over S.

Moreover, we can show that π′ ∈ [π] if and only if
δBπ′(xt) = δBπ (xt) for all t ∈ T . Thus, by denoting S/R the
quotient set of S, there exists an injection ϕ : S/R → YX .
Hence |S/R| ≤ |Y||X | = KT . It follows that the number of
pieces composing V is finite. �

C.5 Proof of Corollary 1

Let us suppose that there exist π, π′ ∈ S and k ∈ Y such that
R̂k
(
δBπ
)
6= R̂k

(
δBπ′
)
. Then, from the proof of Proposition 2,

V is at least composed of two affine pieces, since it is
impossible to have a single equivalence class. Hence, V is
non-differentiable over the intersections of these pieces. �

C.6 Proof of Lemma 2
Let us recall that, for a concave function f : RK → R, g
is a subgradient of f at point u ∈ RK if g satisfies f(v) ≤
f(u) + 〈v − u, g〉 for all v ∈ RK . Here, 〈a, b〉 denotes the
dot product between the vectors a and b. In our case, given
π ∈ U, let us consider π′ ∈ U. Denoting R̂

(
δBπ
)

the vector
R̂
(
δBπ
)

:=
[
R̂1

(
δBπ
)
, . . . , R̂K

(
δBπ
)]

of all class-conditional
risks, we get:

V (π) +
〈
π′ − π, R̂

(
δBπ

)〉

=
∑

k∈Y
πk R̂k

(
δBπ

)
+
∑

k∈Y
(π′k − πk) R̂k

(
δBπ

)

=
∑

k∈Y
π′kR̂k

(
δBπ

)

≥ r̂
(
π′, δBπ′

)
= r̂

(
δBπ′

)
= V (π′).

This inequality holds for any π′ ∈ U, hence the result. �

C.7 Proof of Corollary 2
Following the reasoning in [53] when considering the sub-
gradient definition associated with a concave function, we
can show that at iteration N ≥ 1

V (π?)−max
n≤N

{
V
(
π(n)

)}

≤

∥∥∥π(1) − π?
∥∥∥

2

2
+
∑N
n=1

γ2
n

η2n

∥∥∥g(n)
∥∥∥

2

2

2
∑N
n=1

γn
ηn

.

(33)

Since ηn = max
{

1,
∥∥∥g(n)

∥∥∥
2

}
, we can moreover show that

N∑

n=1

γ2
n

η2
n

∥∥∥g(n)
∥∥∥

2

2
≤

N∑

n=1

γ2
n. (34)

Since at each iteration we choose g(n) = R̂
(
δB
π(n)

)
, we have

∥∥∥g(n)
∥∥∥

2
=

√
∑K
k=1

[
R̂k
(
δB
π(n)

)]2

=

√
∑K
k=1

[∑K
l=1 Lkl P̂

(
δB
π(n)(Xi) = l | Yi = k

)]2

≤
√
∑K
k=1

[∑K
l=1 Lkl

]2
.

It follows that for all n ∈ {1, . . . , N}, ηn ≤ max {1, h(L)},
with

h(L) :=

√
∑K
k=1

[∑K
l=1 Lkl

]2
.

Hence we have,
N∑

n=1

γn
ηn
≥ 1

max {1, h(L)}
N∑

n=1

γn. (35)

Finally, from (33), (34) and (35), we get (26). �
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Discrete Box-Constrained Minimax Classifier for Uncertain and Imbalanced Class Proportions
Cyprien Gilet, Susana Barbosa, Lionel Fillatre

Supplementary Material
Database descriptions

Framingham Heart database: This database comes
from the Framingham Heart study [58], and contains the
clinical observations of 3,658 individuals (after removing
individuals with missing values) who were followed for
10 years. The objective of the Framingham study was
to predict the development of Coronary Heart Disease
(CHD) within 10 years based on d = 15 observed features
measured at inclusion. We therefore have K = 2 classes,
with class 2 corresponding to individuals who have
developed CHD, and class 1 corresponding to the others.
Among the 15 features, 7 are categorical (sex, education,
smoking status, previous history of stroke, diabetes, hypertension,
antihypertensive treatment) and 8 are numeric (age, number
of cigarettes per day, cholesterol levels, systolic blood pressure,
diastolic blood pressure, heart rate, body mass index (BMI),
glycemia). The dataset is imbalanced: π̂ = [0.85, 0.15], which
means that 15% of the individuals developed CHD within
10 years. For this database, we considered the L0-1 loss
function.

Diabetes prediction database: Another example of
the application of machine learning in the field of
medicine is to predict the onset of diabetes based on
diagnostic measurements. We consider here the database
studied in [59] which was originally provided by the
National Institute of Diabetes and Digestive and Kidney
Diseases, and available at [76]. This database contains the
measurements of 8 clinical and biological features (Number
of times pregnant, Plasma glucose concentration, Diastolic blood
pressure, Triceps skin fold thickness, 2-Hour serum insulin, BMI,
Diabetes pedigree function, Age) for 768 patients. We have
K = 2 classes, where class 2 corresponds to the patients
who tested positive for diabetes. The class proportions
of this dataset are π̂ = [0.65, 0.35]. For this database, we
considered the L0-1 loss function.

Abalone database: The Abalone dataset contains the
physical measurements of 4,177 abalones from Tasmania
[60]. This dataset is composed of 8 features (1 categorical
and 7 numerical) from which the objective is to predict the
age of each abalone. The initial ages to be predicted ranged
from 1 to 29. For this experiment, we decided to consider
K = 5 classes {A1, A2, A3, A4, A5} associated with the age
groups {[≤ 4], [5, 10], [11, 15], [16, 20], [≥ 21]} and with the
class proportions π̂ = [0.02, 0.64, 0.28, 0.05, 0.01]. These
classes are imbalanced. For this database we considered the
quadratic loss function: for all (k, l) ∈ Y×Ŷ , Lkl = (k− l)2,
so that the farther the predicted class is from the true class,
the more important this error is.

APS Failure Trucks database: This real condition mon-
itoring database [61] focuses on the Air Pressure System
(APS) used for various functions in Scania trucks such
as braking and gear changes. Measurements of a specific
APS component were collected from heavy Scania trucks in
everyday use. The goal is to predict a potential failure of this
component. We therefore consider K = 2 classes where the
class 1 corresponds to the APS without failures, and class 2
to the defect APS components. For this database, the costs
of class misclassifications were given by experts:

L =

[
0 10

500 0

]
, (36)

so that the cost of predicting a nonexistent failure is $10,
while the cost of missing a failure is $500. After removing
missing values, the database contains the measurements of
69,309 samples, of which 68,494 do not present any failure
and 815 do present a failure. Hence, the class proportions
π̂ = [0.9882, 0.0118] are highly imbalanced, which highly
complicates the task of predicting a failure. Finally, each
sample is described by d = 130 numeric and categorical
anonymized features.

NASA pc3 software database: The purpose of this
database is to detect certain defects in a flight software
of a satellite in Earth orbit [62], [77]. More details on
this database and on this task are given in [77] and
[78]. For our experiments, we downloaded the data from
https://www.openml.org/d/1050. This database is
composed of 1,563 samples and 37 attributes measured with
McCabe [79] and Halstead [80] “module”-based metrics.
We have K = 2 classes, where class 2 corresponds to the
defect programs. The class proportions π̂ = [0.8976, 0.1024]
are imbalanced, which complicates the task of detecting
defective programs. For this database, we considered the
L0-1 loss function.

Satellite database: We consider another real,
highly imbalanced database, downloaded from
https://www.openml.org/d/40900, for which the
motivation is to classify images of soil taken from a
satellite into K = 2 classes with the class proportions
π̂ = [0.9853, 0.0147]. This database is composed of 5,100
samples and 36 attributes, and we considered the L0-1 loss
function.


