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Abstract

A large variety of di�erent descriptors can be employed for describing 3D woven

composites. Each of them is targeted to a speci�c application, ranging from

design, weaving, molding, impregnation down to non-destructive testing, imag-

ing and numerical modeling of the �actual� micro-structure. In order to relate

these di�erent representations, it is proposed herewith to rely on the inherent

weaving pattern as an intrinsic common feature, and to resort to images as a

common language to guaranty the continuity of information. To connect these

3D images (either �real� or synthesized), Digital Volume Correlation (DVC) is

called for in order to exploit the conservation of topology. A complete test sce-

nario is devised in which di�erent manufactured woven samples are compared

to the theoretical textile arrangement. The results con�rm the e�ectiveness of

the method.

Keywords: woven composites, digital volume correlation

1. Introduction

The ever-increasing interest in composite materials has generated a high

demand for new custom tools. They include tailored modeling strategies [1],

proper characterization methods [2], accurate simulations [3] and adapted non-
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destructive testing (NDT) techniques based on high-resolution X-ray computed

tomography (micro-CT) images [4].

However, these analyses tend to be developed and carried out independently

of each other. Naturally, this occurs mainly due to the fact that each procedure

uses a di�erent �textile descriptor�. Indeed, each of these descriptors conceives

the woven composite in a manner that better suits the target analysis. For ex-

ample, some statistical descriptors extracted from CT images may be best suited

for NDT (such as the structure tensor [5]). On the contrary, textile simulations

may be best served by Finite Element (FE) [6] meshes or even �virtual models�

(CAD) that represent the structure of the textile [7]. As a result, the analyses

cannot (completely) bene�t from the results of each other, which also limits

the confrontation between real (experimental) data and modeling (or numerical

simulations) [8].

Nonetheless, all these textile descriptors share a common characteristic: the

weaving pattern. Such pattern de�nes the relative position of yarns (reinforce-

ment) that is maintained by the polymer resin (matrix). This de�nition is

intrinsic to the material and always present, even if the target analysis may not

require it (e.g., statistical descriptors). It is noteworthy that this always-present

feature will not be �identical� in all the descriptors. For example, the yarn po-

sitions (in the three-dimensional space) of a given textile will di�er between

a �theoretical� representation versus a �real� one, or even simply a �realistic�

one [9]. Thus, relating any pair of descriptors only requires the identi�cation of

these di�erences.

Moreover, these descriptors can also be expressed under a common language:

that of an image, that is they can generate images looking �alike�. Again, this

similarity comes from the material itself; in particular from the two constitutive

phases of the composite.

As formulated, the inherent problem is actually quite close to that encoun-

tered in Digital Volume Correlation (DVC) [10, 11]: to retrieve the displacement

�eld relating pairs of con�gurations. As such, it is possible to consider the ma-

terial as in a so-called deformed or �wrapped� con�guration with respect to a
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reference one [12]. These con�gurations can be embodied by any of the con-

sidered textile descriptors. Furthermore, by bridging the gap [13, 14] between

these elements, all the associated analyses are immediately comparable. In like

manner, this allows interpreting the various results obtained from these di�er-

ent analyses from a unique standpoint: that of their underlying topology. This

notion is at the origin of the so-called unique topological descriptor.

The advantages of such an approach are many. First, a continuous digital

information chain can be constructed. As such, there is no need for storing

redundant information or coming up (missing) information discarded by previ-

ous processes, encouraging a more conscious use of the data and capitalizing on

previous (potentially costly) e�orts. Second, it can be used as a tool for rear-

ranging the data into more convenient representations. For example, aligning

the warp and weft orientations with the image axes should aid in the task of

�correcting� warped yarn structures. In particular, two warping modes are well

known in this �eld: (i) �high shear angles� which result in non-orthogonal warp

and weft orientations, and (ii) �warped columns� which result in yarn layers

with relative in-plane o�set. Such preprocessing can have a profound impact on

the steps that may be followed, as well as for improving the data exploration.

Third, since this framework is relative by nature, any discrepancy is automat-

ically �agged (i.e., NDT). As such, weaving anomalies (e.g., missing yarns or

loops) can be identi�ed without developing custom or additional systems, or

even actively seeking them.

Finally, given that the current study focuses on the weaving pattern, the

meso-scale [15] is chosen henceforth. The concerned descriptors (and a pro-

posed classi�cation system) will be detailed in Section 2. The registration and

discretization procedures will be discussed in Sections 3 and 4 respectively. The

method is then tested on diverse sets of textile descriptors, presented in Sec-

tion 5. Using these descriptors, a numerical test is performed between two

descriptors of the same type. Next, a relatively simple but real scenario is stud-

ied between descriptors of di�erent nature. And �nally, a more complex case is

studied by integrating the di�erent aspects of previous tests. These results are
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shown in Section 6.

2. Overview of textile descriptors

As discussed earlier, there exist many types of textile descriptors. One can

attribute this plurality to the hierarchical nature of the material, which leads

to a similar �organization� of descriptors. A representation of such often used

descriptors combined into one reference frame is provided in �gure 1, such is

one of the outcomes of the present study. The following is a general overview

of some of the descriptors that are of interest for the present study.

Figure 1: Multiple textile descriptors for the same textile architecture.

2.1. Topological encoding

The encoding of the structure of a 3D weave describes the relative positions

of all yarns. It prescribes a topology, but does not consider any geometrical

features (e.g., distance between yarns).

Let us consider a warp-interlaced 3D weave, such as the one shown in �gure 2.

Here, the warp yarns undulate around the weft yarns, while the latter remain

�straight� at �xed positions. Then, the topological description of a multi-layered

composite is based on the warp yarn paths. These paths are described as a

sequence of intersection codes.

This description is best organized as a matrix, as shown in �gure 3. Each

matrix entry holds the value pertaining to an intersection between a given warp
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(a) Horizontal warp

orientation

(b) Horizontal weft

orientation

Figure 2: Topological encoding of warp-interlaced composite: while the green

( ) weft yarns are modeled straight along their orientation, the red ( ) and

blue ( ) warp yarns undulate in di�erent planes

yarn and a given weft row. While it is possible to list all possible intersections

(between all warp yarns against all weft yarns), a more succinct matrix can be

obtained if only the �pertinent� intersections are listed.

(a) Using binary codes (b) Using level codes

Figure 3: Topological encoding in the form of a matrix

The former description holds more similarity to the traditional checkerboard

pattern used for 2D composites, in which the path of the warp yarn is described

as being either above or below the corresponding weft row. This limits the pos-

sible matrix values to zero or one, as shown in �gure 3a On the other hand, the

latter employs intersection level codes, as shown in �gure 3b, that identify the

weft layer situated above the warp yarn at a given intersection. For complete-

ness, the number of warp planes and the number of weft columns need to be

speci�ed.
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2.2. Geometrical encoding

A geometrical descriptor [7] builds upon a topological one by placing the

yarns in the three-dimensional space. It places the yarns via their centerlines,

also known as neutral �bers. This one-dimensional curve is de�ned in the three-

dimensional space using a series of control points (3D coordinates). These can

be limited to a reduced set of �master� points and employ interpolation functions

in-between. Afterwards, the surface of the yarn is de�ned by sweeping a two-

dimensional shape along the length of the yarn. This cross-section can take the

form of a simple (oriented) parametric curve (e.g., an ellipse) or a list of points

that de�ne a more complex shape.

(a) Yarn neutral �bers (b) Yarn cross-sections

Figure 4: Geometrical encoding for a sample textile

It should be noted that, thanks to the given cross-sections, the yarns can be

considered as �solid� entities. For such a reason, if the target analysis requires it,

the possible yarn inter-penetrations should be dealt with. This involves adapting

the yarn centerlines as well as the yarn cross-sections. Multiple approaches have

been conceived for dealing with this issue. These include textile geometrical

modeling approaches [16], mechanical simulations [17], as well as image-based

techniques [18].

2.3. Finite Element encoding

This descriptor builds upon the previous ones by adding some physical prop-

erties, that is, by endowing each point of the neutral �ber with some material

properties. These include local bending sti�ness, frictional and tensile behavior,
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�brous content, �ber orientation, amongst others [19, 20]. This information is

then employed to construct the FE meshes.

In general, a mesh is a discretization of a continuous spatial domain into a

discrete one. As such, any volume can be subdivided into smaller (and simpler)

elements that can be modeled using simple equations. Hence, the volume in

question will vary according to the target analysis. Given that there are two

phases in the material, it is possible to mesh only the yarns or to mesh the yarns

and the resin.

Furthermore, there exists multiple paradigms for designing the mesh, notably

a �conformal� approach and a homogenized one, as shown in �gure 5. While the

former aims at presciently meshing the yarn-resin (or yarn-air) and yarn-yarn

interfaces [18], the latter allows more �exibility by considering �mixed� elements

that account for both phases (e.g., the voxel -FE paradigm [21]).

(a) (b) (c)

Figure 5: Multiple Finite Element encodings for a sample textile: (a) only

yarns or (b)-(c) both phases can be meshed, using (a)-(b) pyramid or (c) cube

FE element types

3. Registration method

This section will detail the elements required for the development of the so-

called �correlation framework�. Such approach will allow the relative analysis

of di�erent textile descriptors using DVC. Given that these descriptors may

not have a rich texture (i.e., binary images) a strategy will be presented so

as to overcome this issue. Furthermore, the scope of this framework includes
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descriptors of di�erent types and sources. Hence the need for a �translation�

step that provides an intermediate representation common to all descriptors.

3.1. Correlation procedure

Digital Volume Correlation [22] is a widely used technique for measuring

the internal displacement �eld between volume pairs, generally obtained from

tomography. For a reference image f(x) and a test image g(x), DVC minimizes

the L2 norm of residuals

η = f(x)− g(x+ u(x)) · v1(x)− v0(x) (1)

with the optimal displacement �eld u(x) and intensity level corrections v0(x)

and v1(x). The continuous transformation de�ned by u(x) implicitly includes

an assumption of invariant topology between the analyzed volumes (i.e., the

yarns are assumed to be organized in the same fashion). On the other hand, the

corrections v0(x) and v1(x) explain all phenomena alien to such a hypothesis

(e.g., tomographic reconstruction artifacts).

Given that the problem is ill-posed, well-posedness can be achieved and

conditioning may be tuned when the displacement and correction �elds are

restricted to a space of low dimension. A global variational formulation [11] is

used to determine the unknown �elds u(x), v0(x) and v1(x). As such, any �eld

w(x) will be expressed as a function of the degrees of freedom {a} associated
with it:

w(x) ≈
∑

aiφi(x) (2)

This decomposition is used to describe the �elds u(x), v0(x) and v1(x). A

convenient choice for the kinematic basis φi(x) is one provided by the Finite

Element (FE) method [6]. It should be noted that each of these �elds could be

decomposed di�erently (e.g., di�erent meshes for each one) but, for the sake of

simplicity, they will be expressed under the same formalism. As such, all the

degrees of freedom associated to the three �elds of interest can be grouped into

a single vector of parameters {a}.
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The overall solution is given by the minimization of the squared L2-norm of

the residuals over the entire region of interest. Such optimization problem can

be solved with classical iterative Newton-Raphson routine. This leads to the

following linear system

[M ] {δa} = {b} (3)

with the �update� vector {δa}, the (positive) sti�ness matrixM and the vector

b

Mij = 〈ψi,ψj〉 (4)

bi = 〈ψi, η〉 (5)

where 〈·, ·〉 denotes the inner product (i.e., a contraction over x), and the �eld

ψi(x)

ψ(x) = φ(x)⊗ s(x) (6)

that translates to

ψi(x) = φi1(x) si2(x) (7)

with the �sensitivity� �eld si2

si2 = (∇xf, ∇yf, ∇zf, f, 1) (8)

and the �super-index� i = (i1, i2) that relates i1 ∈ [1, Nn], which points to a node

(with Nn the number of nodes), and i2 ∈ [1, 5], which denotes the associated

degree of freedom.

3.2. Longer correlation length

One of the advantages of �classical� DVC is its high measurement accu-

racy [11]. Such extreme sensitivity to displacements is a result of the (well-

contrasted) textures being analyzed. In fact, such rich textures translate to rich

image gradients varying in all directions.

However, the current context calls for images whose texture may be ex-

tremely poor. Any binary image will only contain non-zero gradients on the
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boundaries of the individual objects. Additionally, such boundaries are ex-

tremely localized near the phase boundaries. Thus a direct implementation of

the DVC strategy will fail to converge unless the initialization is extremely close

to the solution. For such reason, a relaxation scheme that will spread the gradi-

ents produced by the boundaries is proposed. This relaxation will progressively

increase the correlation length and thus guide DVC to a good solution. It can

be achieved by means of a Gaussian kernel with varying radius that is de�ned

with respect to the largest displacement sought.

An example of the procedure is shown in �gure 6. Here, a tomographic

image of a composite part is recursively �ltered by the same Gaussian kernel

(with radius 2 px). The widened boundaries extend the e�ective correlation

length in those regions.

Such procedure hints to the use of a multiresolution isotropic approach [23].

It consists in the use of a Gaussian pyramid on a isotropic version of the input

images. The image pyramid allows to transition from a coarse description of

the problem towards a �ner one. This is aided by the subsampling required to

transition between levels. As such, in coarser levels even the �long� displace-

ments (in the original image) can be captured. Then, at each pyramid level,

the correlation problem is initialized with the displacement �eld found in the

previous one.

Furthermore, the a�ne transformation employed for removing the geomet-

rical anisotropy accounts for the ��attening� of yarns. Indeed, the yarns cross-

sections are usually conceived as ellipses as a result of the manufacturing pro-

cess. The motivation behind this anisotropy removal is that these regions do

not provide much (relevant) information, especially for the aforementioned bi-

nary images. Thus, the isotropic version provides images that are smaller but

with equivalent relevant information. It should be noted that this discussion

is motivated by the fact that the current study is performed on specimens at

the meso-scale. Moreover, the a�nity employed for removing (or reducing) the

anisotropy does not need to be exceptionally �precise�, but rather approximate

since the goal is to obtain in average more isotropic shapes. A similar argument
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(a) f (b) G~ f (c) G~G~ f

(d) ∇x {f} (e) ∇x {G~ f} (f) ∇x {G~G~ f}

Figure 6: An image f recursively �ltered by a Gaussian kernel G displays hori-

zontal gradients ∇x that extend the range of �visibility� for correlation

can be made for textiles with more complex shapes. Whenever a systematic

anisotropy (anisometry) is present, its reduction is bene�cial [23].

Finally, a �complete� mechanical regularization technique [24] (based on the

equilibrium gap [25�27]) is employed so as to better condition the problem. This

favors displacement �elds locally obeying a prescribed behavior (e.g., linear

elasticity) in the bulk as well as in the surface of the studied samples. This

strategy can be seen as a set of �lters that locally dampen steep gradients and

ensure smooth and di�erentiable �elds.

4. Discretization procedure

The chosen intermediate representation for any descriptor is that of an im-

age. As a consequence, a very convenient tool to evaluate di�erences between

two textile representations is DVC (which deals with 3D images). As such, any

of the previously descriptors needs to be projected into a regularly structured

space. In other words, a discretization procedure is to be used so as to obtain

voxels.

These voxels can be made meaningful by carefully choosing their values.
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A natural choice is to assign labels according to the structure they originally

belonged to. This results in volumes with as many intensity levels as there are

phases in the material. Since the present analysis considers only two phases,

the obtained images are binary (or ternary if surrounding void is considered as

a phase per se). It should be noted that this �translation� process does not

result in any overall loss of information since it is always possible to retrieve the

information in the original descriptors for any given voxel, and vice versa.

If the concerned descriptor is of topological nature, it needs to be converted

into a geometrical one, this can be achieved via any of widely available textile

pre-processors [28, 29]. Then, the transformation of the geometrical descriptors

into images can be obtained via a FE mesh. In fact, the voxel-FE paradigm is

appropriate for this case, it proposes to construct regular structured (uniform)

meshes composed of cube elements [21]. Then each one of this FE elements can

be interpreted as a voxel, thus creating an image.

These choices were taken into account in the development of a novel ap-

proach. The proposed alternative gracefully transitions from a continuous (para-

metric) description of the yarn towards a discretized (voxel) one. It is capable

of handling the yarn path smoothing, the yarn discretization, and yarn inter-

penetrations under a �exible uni�ed framework. Also, each one of these steps

are easily implemented in parallel.

4.1. Proposed approach

First, the yarns are modeled as a collection of one-dimensional beam ele-

ments, these elements are constructed between every pair of consecutive control

points. Then, a simple elastic behavior is applied on each yarn by means of the

second-order di�erential Laplacian operator acting on the points coordinates.

This e�ectively smoothens the yarn path and provides a �continuous� descrip-

tion of the yarn. As such, any point belonging to the i-th yarn centerline can

be written as ri(t) with t ∈ [0, 1] as the curvilinear coordinate along the yarn.

This strategy has the advantage of being easily adaptable to more complex

behaviors (other than linear elasticity). In fact, if a better constitutive law is
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available (e.g., hyper- or hypo-elasticity [18, 30]), it could be applied e�ortlessly.

Additionally, this (already computed) Laplacian operator can be re-purposed

for the reduction of control points. In fact, the reduced set of master points

are easily identi�ed as those having high Laplacian values. These will be the

points of higher curvature, and thus necessary for describing the yarn path. An

example of the Laplacian operator acting on a yarn is shown in 7.

10 15 20 25 30 35 40 45 50 55

6
8

y

z

Figure 7: Laplacian operator acting on the coordinates of a yarn: the control

points of higher curvature are automatically highlighted

Second, each yarn is discretized via its weighted distance function. This

function determines the distance of a given point to the boundary (of the cross-

section), it is maximum (100 %) for the points in the neutral �ber and decreases

in value as the points approach the boundary where the distance attains its

minimum (0 %). It is important to note that the function employs a weighted

euclidean distance, with the weights being given by the aspect ratio of the ellipse

cross-sections. Such distance function is computed for a grid of points (i.e., the

voxel centers) regularly spaced (i.e., desired resolution). Additionally, any voxel

placed outside of the yarn (i.e., negative distance) is discarded from the analysis.

An example of such image is given in �gure 8.

These operations can be expressed under a continuous formalism via the

convolution operator

IDi
(x) = (hsign ◦ di)(x− ri)~ δ(x− ri) (9)

with IDi as the function containing all distances for the i-th yarn, δ(x− ri) as
its neutral �ber, hsign as the sign truncation function

hsign(s) =

1− s, for s ≤ 1

0, for s < 1

(10)
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Figure 8: Di�erent views for a sample image ID

and di as the weighted distance function

di({u}) =
√
{u}ᵀ[Ci]

ᵀ
[Ci] {u} (11)

with the matrix [Ci] de�ning the cross-section shape for the i-th yarn. For

example, in the case of an elliptical cross section aligned with the image axes,

the diagonal elements of this matrix are given by the inverse of the ellipse radii.

Third, all considered voxels (with non-zero distances) for all yarns are �as-

sembled� so as to form the complete image IY , as show in �gure 9. As such,

all points considered only once are given the appropriate label (gray level) cor-

responding the yarn ID. Then, any voxel belonging to a region on yarn inter-

penetration (more than one yarn) will be assigned to the yarn to which it is

�closest� (i.e., the one with greater ID). While simple, this handling of yarn

interpenetration via the weighted distance function has proven extremely satis-

factory.

Finally, the proposed approach outputs two volume images: a chart of dis-

tances ID and a chart of yarns IY . While the former contains �oating point

values contained between zero and one, the latter contains as many integer

intensity values as there are yarns in the textile (plus the resin/air at zero).

Then, �thresholding� IY provides the aforementioned binary image IB. At

this point, it is important to acknowledge that the image IB can also be written
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Figure 9: Di�erent views for a sample image IY

in a similar fashion as ID

IBi
(x) = (hbin ◦ di)(x− ri)~ δ(x− ri) (12)

with IBi
as the function containing the i-th yarn, and hbin as the binary trun-

cation function

hbin(s) = (N1 −N0) ·H(s− t) +N0 (13)

with the Heaviside function H(·), the desired intensity levels N0 and N1, and a

threshold 0 ≤ t < 1.

In the current context (tomography), the values of N0 and N1 represent the

attenuation levels of the corresponding phases (i.e., the polymer resin and the

carbon �ber yarns). An estimate of this values can be easily obtained from the

histogram of a micro-CT image, which usually is bi-modal. The estimation of

these values can be performed manually, or via a mixture model (e.g., Gaussian

mixture model). It should be noted that, in the simplest scenario, they can

simply take the values of N0 = 0 and N1 = 1. Then, it falls upon the correlation

procedure to �adapt� these values by means of the intensity level corrections

v0(x) and v1(x).

Similarly, the threshold parameter t allows de�ning the distance (from the

yarn centerline) at which the yarn surface is located. Hence, for t = 0, the entire

yarn is discretized; on the contrary, as t tends to 1, only the yarn centerline is
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considered.

Finally, such formulation has the added advantage of not needing to handle

speci�cally overlapping yarns since the possibly superimposed yarn will provide

the same value of N1.

4.2. Consequences for the registration procedure

As it was previously introduced, the correlation strategy consists in �widen-

ing� the gradient lengths via �ltering operations. This can be seen as a bank of

Gaussian �lters Gj acting on the binary image IB.

{IBi
(x)}~Gj = {δ(x− ri)~ (hbin ◦ di)(x− ri)}~Gj (14)

= δ(x− ri)~ {(hbin ◦ di)(x− ri)~Gj} (15)

= δ(x− ri)~ G̃ij (16)

with the kernel G̃ij as the custom j-th �lter for the i-th yarn. This �lter can

be seen as a �wide� Gaussian �lter acting on the yarn centerline.

Furthermore the pyramidal approach evoked earlier allows, through a mere

recursion, obtaining any �lter G having a 2n radius. This is coupled with an

iterative subsampling of twice the blur radius.

5. Setup

Two sets of descriptors are available, each one of them will be employed in

progressively more complex analyses.

5.1. Available descriptors

The �rst group consists in a tomographic scan and a geometrical descriptor

of the same textile. This latter was extracted via a careful exploration of the 3D

image, hence, it constitutes a good and close description of the observed sample.

In the following, the image and the geometrical descriptor will be referred to as

I1 and G1, respectively; they are illustrated in �gure 10.

The second group of descriptors is composed of two tomographic images

and a FE mesh, all corresponding to the same textile. They will be referred
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(a) I1 (b) G1

Figure 10: First group of textile descriptors: (a) a CT scan of a composite

sample, and (b) its �equivalent� geometrical descriptor

to as I2, I3 and M1, accordingly. These observed samples I2 and I3 were

used in a previous study. In reference [23], we have employed this pair for the

identi�cation of the so-called �metric di�erences� and �topological di�erences�.

Such study was capable of automatically detecting a voluntary alteration of

sample I2: the removal of two yarns. The geometrical descriptor M1 can be

expressed as the images M1D, M1Y and M1B. They correspond to the di�erent

discretized representations discussed earlier (the distance functions, the yarns

and the binary image), all three descriptors are shown in �gure 11.

It is worth mentioning that the CT scans are obtained using classical recon-

struction algorithms (FDK [31]) and under acquisition conditions that favors

the di�erentiation of the di�erent phases [23].

(a) I2 (b) I3 (c) M1

Figure 11: Second group of descriptors: (a) reference and (b) test samples

observed through CT, and (c) FE mesh with the same textile de�nition
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5.2. Proposed analyses

The �rst analysis is performed between the geometrical descriptor G1 and a

numerically deformed version of itself, called G2 (i.e., model-model). This �ar-

bitrary� deformation is obtained by applying a known Lagrangian displacement

�eld u to G1. Such displacement was obtained from a previous study on known

yarn deformations on this type of fabrics [32], so as to be representative of a

plausible distortion. Then, the correlation procedure is performed as previously

detailed with the descriptor G1 as reference, and ground truth is known for

validating the result.

The second analysis is performed between the geometrical descriptor G1 and

the image I1 (i.e., model-real). As previously stated, the descriptor was built

from the image in question. Then, this correlation analysis should allow aligning

the observed sample to the reference model G1.

The next group of analyses is performed in three steps. First, the pair of

tomographic volumes I2 and I3 is analyzed [23]. Next, the pair of descriptors I2

and M1 is analyzed in a similar fashion as previously. In both cases the sample

I2 is chosen as the reference con�guration and both remaining descriptors are

used as the test (deformed) con�gurations in each step. These third and fourth

analyses are analogous to the �rst two, but implemented on a di�erent set of

descriptors. The �nal �fth step integrates both previous results (i.e., combined

analysis).

A schematic representation of the proposed analyses is shown in �gure 12
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Figure 12: Proposed sets of analyses combining the available descriptors

6. Results

6.1. Model-model registration results

The di�erent pyramid levels can be seen in �gures 13 and 14. For visual-

ization purposes, the warp and weft yarns were assigned di�erent gray levels.

As it can be seen, this strategy does help in widening structures boundaries or

interfaces (i.e., the image gradients).

The correlation procedure is performed using 6885 kinematic degrees of free-

dom represented using cube elements with length 16 px. This length approx-

imates the radius of the circular cross-section of the yarns (in the isotropic

space).

A good agreement can be observed between the imposed and measured dis-

placement �elds, as shown in �gure 15. Furthermore, the image of residuals,

testi�es of a good alignment between both virtual models, as seen in �gure 16.

These results are encouraging: correlation performs extremely well in spite of a

complex deformation, a poor texture, and a relatively poor chosen kinematics.
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(a) Pyramid level 1 (b) Pyramid level 2

(c) Pyramid level 3 (d) Pyramid level 4

Figure 13: Volume representation of the di�erent pyramid levels for G1

(a) Pyramid level 1 (b) Pyramid level 2

(c) Pyramid level 3 (d) Pyramid level 4

Figure 14: (x-z) mid-plane representation of the di�erent pyramid levels for G1
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(a) ux (b) uy (c) uz

(d) ux (e) uy (f) uz

−2 0 2 5 8 11 −5 0 5

Figure 15: Components of the displacement �elds for G1 and G2: (a)-(c) known

�eld, and (d)-(f) measured �eld (in px)

(a) (x-z) mid-plane (b) (y-z) mid-plane

(c) (x-z) mid-plane (d) (y-z) mid-plane

Figure 16: Di�erent mid-planes for the residuals for G1 and G2: (a)-(b) before

and (c)-(d) after correlation
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(a) I1(x) (b) I1(x+ u(x))

(c) I1(x) (d) I1(x+ u(x))

Figure 17: (x-z) mid-plane of I1 before and after correlation, the model G1

is shown with outlined yarn borders, the ellipses highlight some regions of

improved alignment; for visualization purposes the images in (a) and (b) are

�zoomed� and shown in the isotropic con�guration in (c) and (d) respectively

6.2. Model-real registration results

The correlation results are analyzed by comparing the reference model G1

with the sample I1. This is achieved by superimposing the yarn boundaries

(as described by the model) on top of the sample in the �test� con�guration

I1(x) and the sample in the �corrected� con�guration I1(x + u(x)), as shown

in �gure 17. These images showcase a slight improvement over the already good

alignment between both descriptors. Some regions in which the tomographic

image is �unwrapped� so as to better �t the model are highlighted.

Furthermore, thanks to the relaxed brightness conservation formulation, the

intensity values of the micro-CT image are also �corrected�. This translates into

yarns with more ellipsoid cross-sections and a better contrast between phases,

as imposed by the binary image issued from the model G1. As �gure 18 shows,

the improved separation of classes becomes clear in the corresponding histogram

for the image I1, where its bi-modal nature becomes more pronounced.
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Figure 18: Histograms before and after correlation for the micro-CT image

6.3. Combined results

This �nal collection of results will present a three-part analysis.

The results for the �rst step are the so-called �metric di�erences� and �topo-

logical di�erences� between of both samples [23]. On the one hand, the �metric

di�erences� inform on the relative strains ε between the observed textiles I2

and I3, as obtained from the measured displacement �eld u3(x). The trace

of this relative strain tensor (i.e., an invariant re�ecting the local change in

volume), shown in �gure 19a, is localized around the missing yarns (due to a

re-arrangement of the remaining yarns). On the other hand, the �topological

di�erences� highlight the missing yarns (they break the assumption of conserved

topology). They are obtained by means of the semi-residual due to displace-

ment only, which does not account for the brightness and contrast corrections, as

shown in �gure 19b. It is important to note that the registration is performed

correctly despite the sizable �topological di�erences� induced by the missing

yarns.

The second step consists in adapting the (theoretical) model M1 onto the

sample I2. The necessary intermediate representation of M1 as a binary image

is shown in �gure 20a. After registration, the found displacement �eld is ap-

plied onto the corresponding geometrical descriptor so as to obtain an �aligned�

version of M1. This result, shown in �gure 20b, leads to the �segmentation� and

identi�cation of yarns.

Finally, the results of the two preceding calculations are combined. More
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(a) Trace of the relative strain tensor

(b) Semi-residual due to displacement

only

Figure 19: The signature of the missing yarns is clear in (a) the �metric dif-

ferences�, as well as in (b) the �topological di�erences� between the analyzed

volumes I2 and I3

(a) M1B(x) (b) M1Y(x+ u4(x))

Figure 20: The di�erent representations of M1: (a) as a (discretized) binary

image, and (b) as a model aligned with the reference sample.

precisely, the �topological di�erences� from I2 and I3, and the �aligned� model

from I2 and M1. Since all results are expressed under the same reference con-

�guration, they can be swiftly compared.

As such, it is possible to query the �amount� of topological di�erences per

yarn

Cy =
∑

x∈Ny

M1B(x+ u4(x)) · (I3(x+ u3(x))− I2(x)) (17)

where Ny represents the (neighborhood of) voxels that correspond the y-th yarn

Ny = {x | M1Y(x+ u4(x)) = y } (18)
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From this tally Cy, shown in �gure 21a, two yarns are clearly distinguished

from the rest. A new virtual model which only considers these yarns is shown

in �gure 21b. Clearly, these yarns correspond to the missing ones, which (in this

particular ordering) correspond to the yarns with ID numbers 20 and 26. These

ID numbers are extremely relevant because (if the weaving patter is known) it

is possible to identify their role in the textile architecture.

0 20 40 60 80 100
0

2

4

·104

Yarn ID

C
ou

n
ts

(a) (b)

Figure 21: (a) The amount of topological di�erences per yarn helps identify (b)

the missing yarns.

At this point, the obtained results can be further exploited if a precise seg-

mentation of the yarns is desired. Since the goal of this study is to �align the

yarns�, the kinematic decomposition (i.e., the degrees of freedom) is not detailed

enough so as to precisely (i.e., voxelwise) conform to the yarn boundaries (oth-

erwise, it would lead to ill-conditioning), and as such the proposed registration

is not by itself a substitute to segmentation.

However, it does o�er an excellent �initialization� for appropriate segmen-

tation techniques [33, 34], and only minor adjustments of boundaries remain

to be determined. In such sense, one could image employing algorithms based

on graphs [35, 36], on some form of energy minimization [37], on some a priori

information [38] or, even better, based a combination of all of those [39].

For example, the alignment of the model to the sample provides su�cient

seeds (e.g., the yarn centerlines) for correctly segmenting the yarns in the CT
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image. This helps to overcome the challenge faced when, two (or more) yarns

are so heavily compressed against each other, that they become visually indis-

tinguishable (at the meso-scale). Alternatively, the yarns could be formulated as

�attractors� (or �repulsors�) that would minimize (or maximize) a certain energy

functional.

Finally, the proposed correlation framework represents a novel paradigm

for the �segmentation� of yarns. Indeed, this method presents itself as a top-

down approach, much unlike most �classical� bottom-up approaches. The latter

bottom-up methods start from the smallest feature of interest (i.e., the intensities

at each voxel) in order to �build-up� towards a sought structure (e.g., the yarns,

the textile). Such process is mostly of local nature (i.e., the yarns) and the

notion of a textile is faint. On the contrary, the proposed top-down method

starts with the global notion of a textile model, which is then aligned towards

a given descriptor. This constitutes a major advantage of the technique since

it is capable of robustly handling local discrepancies thanks to the information

provided elsewhere by the (global) model. This is to be contrasted with most

segmentation approaches based on local features, that may su�er from local

indeterminations leading to topological violations (such as wrong pairing of

yarn segments).

7. Conclusions

The use of Digital Volume Correlation for the dialog between various textile

descriptors was presented. This technique, applied to 3D woven composites, is

based on the key concept of the conservation of topology. The robustness of

this approach comes from the use of a reference con�guration that provides the

algorithm with a vast amount of information with a considerably low e�ort.

Di�erent scenarios involving di�erent descriptors were explored, and by com-

bining the di�erent steps, an automatic nondestructive testing (NDT) procedure

for 3D woven composites was achieved. It should be noted that the detection

of missing yarns (or any other anomaly) was not the intended target of the
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analysis. However, given that they do not conform to the reference or to the

assumption of constant topology, they appeared naturally. In addition, these

missing yarns were identi�ed (i.e., by ID number) thanks to the relationships

established with a model of the textile.

This technique allows the use of a single topological descriptor for the many

di�erent analyses that are involved in the study of the woven composites. As

such, it has many applications on di�erent �elds.

For example, in the domain of mechanical simulation and validation of form-

ing models using architectures extracted from micro-CT images [40, 41]. Usu-

ally, these techniques call for a meshing procedure per each analyzed sample.

This results in as many meshes as samples, which in turn, encumbers the com-

parative analysis between the results of these many simulations. However, if

only one topological descriptor is considered, only one mesh and potentially

only one (base/reference) simulation would be needed. The mesh could sim-

ply be adapted to each new sample, as shown in the examples here with the

geometrical descriptors and the tomographic images. Even more interestingly,

the reference simulation could be �adapted� to the new �deformed� sample be-

cause the displacement �eld relating both con�gurations is known. Evidently,

this form of transfer learning necessitates an appropriate description of the phe-

nomena to be studied. Some simulations have been planned with this purpose.

Additionally, the technique can be used as a tool for non-destructive testing:

it can be performed either on the �metric di�erences�, on the �topological di�er-

ences�, or on both. The former could inform on �typical� modes of deformation,

which would allow de�ning novel and appropriate metrics [42]. These could then

enable the identi�cation of anomalous strain patterns. Clearly, this implies a

multitude of comparative analyses on multiple woven composite samples so as

to build a �proper� database of such modes. Similarly, the �topological di�er-

ences� could be analyzed for the identi�cation of patterns or structures that

would indicate weaving anomalies using machine learning techniques.

Furthermore, it should be noted that the Gaussian �lter employed alongside

the discretization procedure for descriptors other than images leads to a mod-
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erate �loss of information� (since it erases high frequency features). The most

important property of this �lter is that even if the synthetic image generated

by the model is too sharp or too contrasted, the mollifying nature of the Gaus-

sian �lter will bring both images of interest (the reconstructed CT scan and the

synthetic image) closer together.

Moreover, these operations (discretization and convolution) occur only once:

before the correlation procedure. That means that they are not updated, un-

like the displacement �eld which does evolve during the iterations. This could

be considered as a limitation of the current proposition since the convolution

and the distortion of the fabric do not commute. As such, a good registration

may not be possible for cases of extreme distortions. For such a reason, it is

proposed to alternate between both operations during iterations. That is, to ap-

ply the estimated displacement to the original descriptor, �lter the discretized

image, and determine the additional correction to the displacement �eld; as

is done with multi-modality registration [43]. Repeating this operation itera-

tively would permit a better estimation of the correction �elds. In fact, the

proposed discretization procedure aligns perfectly with this goal. The approach

is currently being explored.

This proposed extension to the technique could also have an impact on the

discretization and convolution operations. The construction of the binary image

from the model involves the de�nition of the binary levels which could be pro-

gressively adapted by using smooth indicator functions blurred along the �ber

direction [44]. Similarly, the parameters for the convolution operation (Gaus-

sian radii) could become additional degrees of freedom (besides displacement

and intensity levels). As such, the yarns would be modeled after their yarn cen-

terline locally �ltered by the appropriate kernel. Such approach was alluded to

when discussing the consequences of registration in the discretization procedure

(i.e., a �wide� Gaussian �lter) [45].

Finally, this technique could also bene�t from the inherent periodicity of the

fabric and further integrate elements so as increase its e�ciency.

28



Acknowledgements

This work is supported by the PRC MECACOMP, project co-founded by

DGAC and Safran group, involving Safran group companies, ONERA, CNRS

and other academic partners. AMQ acknowledges the support of a PhD grant

from ANRT and Safran Tech.

References

[1] S. Nehme, A. Hallal, F. Fardoun, R. Younes, B. Hagege, Z. Aboura, M. Ben-

zeggagh, F. H. Chehade, Numerical/analytical methods to evaluate the me-

chanical behavior of interlock composites, Journal of Composite Materials

45 (2011) 1699�1716. doi:10.1177/0021998310385592.

[2] F. Desplentere, S. V. Lomov, D. L. Woerdeman, I. Verpoest, M. Wevers,

A. Bogdanovich, Micro-CT characterization of variability in 3D textile

architecture, Composites Science and Technology 65 (2005) 1920�1930.

doi:10.1016/j.compscitech.2005.04.008.

[3] N. Naouar, E. Vidal-Salle, J. Schneider, E. Maire, P. Boisse, 3D com-

posite reinforcement meso F.E. analyses based on X-ray computed to-

mography, Composite Structures 132 (2015) 1094�1104. doi:10.1016/j.

compstruct.2015.07.005.

[4] D. J. Bull, L. Helfen, I. Sinclair, S. M. Spearing, T. Baumbach, A compari-

son of multi-scale 3D X-ray tomographic inspection techniques for assessing

carbon �bre composite impact damage, Composites Science and Technol-

ogy 75 (2013) 55�61. doi:10.1016/j.compscitech.2012.12.006.

[5] R. de Luis-García, R. Deriche, C. Alberola-López, Texture and color seg-

mentation based on the combined use of the structure tensor and the im-

age components, Signal Processing 88 (2008) 776�795. doi:10.1016/j.sigpro.

2007.09.019.

29

http://dx.doi.org/10.1177/0021998310385592
http://dx.doi.org/10.1016/j.compscitech.2005.04.008
http://dx.doi.org/10.1016/j.compstruct.2015.07.005
http://dx.doi.org/10.1016/j.compstruct.2015.07.005
http://dx.doi.org/10.1016/j.compscitech.2012.12.006
http://dx.doi.org/10.1016/j.sigpro.2007.09.019
http://dx.doi.org/10.1016/j.sigpro.2007.09.019


[6] O. C. Zienkiewicz, The �nite element method, volume 3, McGraw-hill Lon-

don, 1977.

[7] M. Sherburn, Geometric and Mechanical Modelling of Textiles, Ph.D. the-

sis, University of Nottingham, 2007. doi:10.1016/j.compositesa.2009.04.009.

[8] R. Gras, H. Leclerc, F. Hild, S. Roux, J. Schneider, Identi�cation of a set

of macroscopic elastic parameters in a 3D woven composite: Uncertainty

analysis and regularization, International Journal of Solids and Structures

55 (2015) 2�16. doi:10.1016/j.ijsolstr.2013.12.023.

[9] I. Verpoest, S. V. Lomov, Virtual textile composites software WiseTex:

Integration with micro-mechanical, permeability and structural analysis,

Composites Science and Technology 65 (2005) 2563�2574. doi:10.1016/j.

compscitech.2005.05.031.

[10] B. K. Bay, Methods and applications of digital volume correlation, The

Journal of Strain Analysis for Engineering Design 43 (2008) 745�760. doi:

10.1243/03093247JSA436.

[11] H. Leclerc, J. N. Périé, S. Roux, F. Hild, Voxel-Scale Digital Volume

Correlation, Experimental Mechanics 51 (2011) 479�490. doi:10.1007/

s11340-010-9407-6.

[12] A. Mendoza, S. Roux, J. Schneider, E. Parra, E. Obert, Unwrapping Textile

Fabric, in: 3rd International Conference on Tomography of Materials and

Structures, 2017, pp. 1�2.

[13] A. Mendoza, J. Schneider, E. Parra, E. Obert, S. Roux, Bridging the

gap between modeling and analysis for 3D woven composites using Digital

Volume Correlation, in: 7th International Symposium on Aircraft Materials

(ACMA2018), 2018.

[14] A. Mendoza, J. Schneider, E. Parra, E. Obert, S. Roux, Bridging the gap

between modeling and analysis for 3D woven composites using Digital Vol-

30

http://dx.doi.org/10.1016/j.compositesa.2009.04.009
http://dx.doi.org/10.1016/j.ijsolstr.2013.12.023
http://dx.doi.org/10.1016/j.compscitech.2005.05.031
http://dx.doi.org/10.1016/j.compscitech.2005.05.031
http://dx.doi.org/10.1243/03093247JSA436
http://dx.doi.org/10.1243/03093247JSA436
http://dx.doi.org/10.1007/s11340-010-9407-6
http://dx.doi.org/10.1007/s11340-010-9407-6


ume Correlation, in: ECCM18 - 18 th European Conference on Composite

Materials, 2018.

[15] S. V. Lomov, D. S. Ivanov, I. Verpoest, M. Zako, T. Kurashiki, H. Nakai,

S. Hirosawa, Meso-FE modelling of textile composites: Road map, data

�ow and algorithms, Composites Science and Technology 67 (2007) 1870�

1891. doi:10.1016/j.compscitech.2006.10.017.

[16] M. Ansar, W. Xinwei, Z. Chouwei, Modeling strategies of 3D woven

composites: A review, Composite Structures 93 (2011) 1947�1963. doi:

10.1016/j.compstruct.2011.03.010.

[17] D. Durville, Numerical simulation of entangled materials mechanical prop-

erties, Journal of Materials Science 40 (2005) 5941�5948. doi:10.1007/

s10853-005-5061-2.

[18] N. Naouar, E. Vidal-Sallé, J. Schneider, E. Maire, P. Boisse, Meso-scale

FE analyses of textile composite reinforcement deformation based on X-

ray computed tomography, Composite Structures 116 (2014) 165�176. doi:

10.1016/j.compstruct.2014.04.026.

[19] S. V. Lomov, Modelling the geometry of textile composite reinforcement,

2010.

[20] F. Stig, S. Hallström, Spatial modelling of 3D-woven textiles, Composite

Structures 94 (2012) 1495�1502. doi:10.1016/j.compstruct.2011.12.003.

[21] G. Hello, J. Schneider, Z. Aboura, Numerical Simulations of Woven Com-

posite Materials With Voxel-FE Models, in: 16th European Conference on

Composite Materials (ECCM 2014), June, 2014, pp. 22�26.

[22] B. K. Bay, T. S. Smith, D. P. Fyhrie, M. Saad, Digital volume correlation:

Three-dimensional strain mapping using X-ray tomography, Experimental

Mechanics 39 (1999) 217�226. doi:10.1007/BF02323555.

31

http://dx.doi.org/10.1016/j.compscitech.2006.10.017
http://dx.doi.org/10.1016/j.compstruct.2011.03.010
http://dx.doi.org/10.1016/j.compstruct.2011.03.010
http://dx.doi.org/10.1007/s10853-005-5061-2
http://dx.doi.org/10.1007/s10853-005-5061-2
http://dx.doi.org/10.1016/j.compstruct.2014.04.026
http://dx.doi.org/10.1016/j.compstruct.2014.04.026
http://dx.doi.org/10.1016/j.compstruct.2011.12.003
http://dx.doi.org/10.1007/BF02323555


[23] A. Mendoza, J. Schneider, E. Parra, E. Obert, S. Roux, Di�erentiating 3D

textile composites: A novel �eld of application for Digital Volume Correla-

tion, Composite Structures 208 (2019) 735�743. doi:10.1016/j.compstruct.

2018.10.008.

[24] A. Mendoza, J. Neggers, F. Hild, S. Roux, Complete mechanical reg-

ularization applied to digital image and volume correlation, Computer

Methods in Applied Mechanics and Engineering 355 (2019) 27�43. doi:

10.1016/j.cma.2019.06.005.

[25] D. Claire, F. Hild, S. Roux, A �nite element formulation to identify damage

�elds: the equilibrium gap method, International Journal for Numerical

Methods in Engineering 61 (2004) 189�208.

[26] S. Roux, F. Hild, H. Leclerc, Mechanical assistance to DIC, Procedia

IUTAM 4 (2012) 159�168. doi:10.1016/j.piutam.2012.05.018.

[27] Z. Tomicevic, F. Hild, S. Roux, Mechanics-Aided Digital Image Correlation,

The Journal of Strain Analysis for Engineering Design 48 (2013) 330�343.

[28] S. V. Lomov, A. V. Gusakov, G. Huysmans, A. Prodromou, I. Verpoest,

Textile geometry preprocessor for meso-mechanical models of woven com-

posites, Composites Science and Technology 60 (2000) 2083�2095. doi:

10.1016/S0266-3538(00)00121-4.

[29] H. Lin, L. P. Brown, A. C. Long, Modelling and simulating textile struc-

tures using TexGen, in: Advanced Materials Research, volume 331, Trans

Tech Publ, 2011, pp. 44�47.

[30] M. A. Khan, T. Mabrouki, E. Vidal-Sallé, P. Boisse, Numerical and ex-

perimental analyses of woven composite reinforcement forming using a hy-

poelastic behaviour. Application to the double dome benchmark, Jour-

nal of Materials Processing Technology 210 (2010) 378�388. doi:10.1016/j.

jmatprotec.2009.09.027.

32

http://dx.doi.org/10.1016/j.compstruct.2018.10.008
http://dx.doi.org/10.1016/j.compstruct.2018.10.008
http://dx.doi.org/10.1016/j.cma.2019.06.005
http://dx.doi.org/10.1016/j.cma.2019.06.005
http://dx.doi.org/10.1016/j.piutam.2012.05.018
http://dx.doi.org/10.1016/S0266-3538(00)00121-4
http://dx.doi.org/10.1016/S0266-3538(00)00121-4
http://dx.doi.org/10.1016/j.jmatprotec.2009.09.027
http://dx.doi.org/10.1016/j.jmatprotec.2009.09.027


[31] L. A. Feldkamp, L. C. Davis, J. W. Kress, Practical cone-beam algorithm,

J Opt Soc Am 1 (1984) 612�619. doi:10.1364/JOSAA.1.000612.

[32] A. Mendoza, J. Schneider, E. Parra, S. Roux, Measuring yarn deformations

induced by the manufacturing process of woven composites, Composites

Part A: Applied Science and Manufacturing 120 (2019) 127�139. doi:10.

1016/j.compositesa.2019.02.008.

[33] M. E. Leventon, W. E. L. Grimson, O. Faugeras, Statistical shape in�uence

in geodesic active contours, in: Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, volume 1, IEEE,

2000, pp. 316�323. doi:10.1109/CVPR.2000.855835.

[34] S. Beucher, F. Meyer, The morphological approach to segmentation: the

watershed transformation, Optical Engineering-New York-Marcel Dekker

Incorporated- 34 (1992) 433�433.

[35] Z. J. Jie, Graph cuts segmentation with geometric shape priors for medical

images, in: Proceedings of the IEEE Southwest Symposium on Image

Analysis and Interpretation, IEEE, 2008, pp. 109�112. doi:10.1109/SSIAI.

2008.4512297.

[36] Y. Boykov, O. Veksler, R. Zabih, Fast Approximate Energy Minimiza-

tion via Graph Cuts, IEEE Transactions on pattern analysis and machine

intelligence 23 (2001) 122�1239.

[37] T. F. Cootes, C. J. Taylor, D. H. Cooper, J. Graham, Active shape models -

their training and application, Computer Vision and Image Understanding

61 (1995) 38�59. doi:10.1006/cviu.1995.1004.

[38] A. Mendoza Quispe, C. Petitjean, Shape prior based image segmenta-

tion using manifold learning, in: 5th International Conference on Image

Processing, Theory, Tools and Applications 2015, IPTA 2015, 2015. doi:

10.1109/IPTA.2015.7367113.

33

http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1016/j.compositesa.2019.02.008
http://dx.doi.org/10.1016/j.compositesa.2019.02.008
http://dx.doi.org/10.1109/CVPR.2000.855835
http://dx.doi.org/10.1109/SSIAI.2008.4512297
http://dx.doi.org/10.1109/SSIAI.2008.4512297
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1109/IPTA.2015.7367113
http://dx.doi.org/10.1109/IPTA.2015.7367113


[39] C. Couprie, L. Grady, L. Najman, H. Talbot, Power watershed: A unifying

graph-based optimization framework, IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence 33 (2011) 1384�1399. doi:10.1109/TPAMI.

2010.200.

[40] N. Naouar, E. Vidal-Salle, E. Maire, J. Schneider, P. Boisse, Meso F.E.

simulation of composite reinforcement deformation based on X-ray com-

puted tomography, Materiaux & Techniques 104 (2014) 165�176. doi:

10.1051/mattech/2016029.

[41] Z. Yousaf, P. Potluri, P. J. Withers, D. Mollenhauer, E. Zhou, S. Duning,

Digital element simulation of aligned tows during compaction validated by

computed tomography (CT), International Journal of Solids and Structures

(2016). doi:10.1016/j.ijsolstr.2017.05.044.

[42] R. de Luis-García, C. Alberola-López, C. F. Westin, On the choice of

a tensor distance for DTI white matter segmentation, in: Mathematics

and Visualization, 202519, Springer, Berlin, Heidelberg, 2012, pp. 283�306.

doi:10.1007/978-3-642-27343-8{_}15.

[43] A. Charbal, J. E. Dufour, F. Hild, M. Poncelet, L. Vincent, S. Roux, Hybrid

Stereocorrelation Using Infrared and Visible Light Cameras, Experimental

Mechanics 56 (2016) 845�860. doi:10.1007/s11340-016-0127-4.

[44] D. Wassermann, L. Bloy, E. Kanterakis, R. Verma, R. Deriche, Unsuper-

vised white matter �ber clustering and tract probability map generation:

Applications of a Gaussian process framework for white matter �bers, Neu-

roImage 51 (2010) 228�241. doi:10.1016/j.neuroimage.2010.01.004.

[45] A. Charbal, J. E. Dufour, A. Guery, F. Hild, S. Roux, L. Vincent, M. Pon-

celet, Integrated Digital Image Correlation considering gray level and blur

variations: Application to distortion measurements of IR camera, Optics

and Lasers in Engineering 78 (2016) 75�85. doi:10.1016/j.optlaseng.2015.

09.011.

34

http://dx.doi.org/10.1109/TPAMI.2010.200
http://dx.doi.org/10.1109/TPAMI.2010.200
http://dx.doi.org/10.1051/mattech/2016029
http://dx.doi.org/10.1051/mattech/2016029
http://dx.doi.org/10.1016/j.ijsolstr.2017.05.044
http://dx.doi.org/10.1007/978-3-642-27343-8{_}15
http://dx.doi.org/10.1007/s11340-016-0127-4
http://dx.doi.org/10.1016/j.neuroimage.2010.01.004
http://dx.doi.org/10.1016/j.optlaseng.2015.09.011
http://dx.doi.org/10.1016/j.optlaseng.2015.09.011

	Introduction
	Overview of textile descriptors
	Topological encoding
	Geometrical encoding
	Finite Element encoding

	Registration method
	Correlation procedure
	Longer correlation length

	Discretization procedure
	Proposed approach
	Consequences for the registration procedure

	Setup
	Available descriptors
	Proposed analyses

	Results
	Model-model registration results
	Model-real registration results
	Combined results

	Conclusions

