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A large variety of dierent descriptors can be employed for describing 3D woven composites. Each of them is targeted to a specic application, ranging from design, weaving, molding, impregnation down to non-destructive testing, imaging and numerical modeling of the actual micro-structure. In order to relate these dierent representations, it is proposed herewith to rely on the inherent weaving pattern as an intrinsic common feature, and to resort to images as a common language to guaranty the continuity of information. To connect these 3D images (either real or synthesized), Digital Volume Correlation (DVC) is called for in order to exploit the conservation of topology. A complete test scenario is devised in which dierent manufactured woven samples are compared to the theoretical textile arrangement. The results conrm the eectiveness of the method.

Introduction

The ever-increasing interest in composite materials has generated a high demand for new custom tools. They include tailored modeling strategies [START_REF] Nehme | Numerical/analytical methods to evaluate the mechanical behavior of interlock composites[END_REF], proper characterization methods [START_REF] Desplentere | Micro-CT characterization of variability in 3D textile architecture[END_REF], accurate simulations [START_REF] Naouar | 3D composite reinforcement meso F.E. analyses based on X-ray computed tomography[END_REF] and adapted non-reference one [START_REF] Mendoza | Unwrapping Textile Fabric[END_REF]. These congurations can be embodied by any of the considered textile descriptors. Furthermore, by bridging the gap [START_REF] Mendoza | Bridging the gap between modeling and analysis for 3D woven composites using Digital Volume Correlation[END_REF][START_REF] Mendoza | Bridging the gap between modeling and analysis for 3D woven composites using Digital Vol-30 ume Correlation[END_REF] between these elements, all the associated analyses are immediately comparable. In like manner, this allows interpreting the various results obtained from these dierent analyses from a unique standpoint: that of their underlying topology. This notion is at the origin of the so-called unique topological descriptor.

The advantages of such an approach are many. First, a continuous digital information chain can be constructed. As such, there is no need for storing redundant information or coming up (missing) information discarded by previous processes, encouraging a more conscious use of the data and capitalizing on previous (potentially costly) eorts. Second, it can be used as a tool for rearranging the data into more convenient representations. For example, aligning the warp and weft orientations with the image axes should aid in the task of correcting warped yarn structures. In particular, two warping modes are well known in this eld: (i) high shear angles which result in non-orthogonal warp and weft orientations, and (ii) warped columns which result in yarn layers with relative in-plane oset. Such preprocessing can have a profound impact on the steps that may be followed, as well as for improving the data exploration.

Third, since this framework is relative by nature, any discrepancy is automatically agged (i.e., NDT). As such, weaving anomalies (e.g., missing yarns or loops) can be identied without developing custom or additional systems, or even actively seeking them.

Finally, given that the current study focuses on the weaving pattern, the meso-scale [START_REF] Lomov | Meso-FE modelling of textile composites: Road map, data ow and algorithms[END_REF] is chosen henceforth. The concerned descriptors (and a proposed classication system) will be detailed in Section 2. The registration and discretization procedures will be discussed in Sections 3 and 4 respectively. The method is then tested on diverse sets of textile descriptors, presented in Section 5. Using these descriptors, a numerical test is performed between two descriptors of the same type. Next, a relatively simple but real scenario is studied between descriptors of dierent nature. And nally, a more complex case is studied by integrating the dierent aspects of previous tests. These results are shown in Section 6.

Overview of textile descriptors

As discussed earlier, there exist many types of textile descriptors. One can attribute this plurality to the hierarchical nature of the material, which leads to a similar organization of descriptors. A representation of such often used descriptors combined into one reference frame is provided in gure 1, such is one of the outcomes of the present study. The following is a general overview of some of the descriptors that are of interest for the present study. 

Topological encoding

The encoding of the structure of a 3D weave describes the relative positions of all yarns. It prescribes a topology, but does not consider any geometrical features (e.g., distance between yarns).

Let us consider a warp-interlaced 3D weave, such as the one shown in gure 2.

Here, the warp yarns undulate around the weft yarns, while the latter remain straight at xed positions. Then, the topological description of a multi-layered composite is based on the warp yarn paths. These paths are described as a sequence of intersection codes. This description is best organized as a matrix, as shown in gure 3. Each matrix entry holds the value pertaining to an intersection between a given warp The former description holds more similarity to the traditional checkerboard pattern used for 2D composites, in which the path of the warp yarn is described as being either above or below the corresponding weft row. This limits the possible matrix values to zero or one, as shown in gure 3a On the other hand, the latter employs intersection level codes, as shown in gure 3b, that identify the weft layer situated above the warp yarn at a given intersection. For completeness, the number of warp planes and the number of weft columns need to be specied.

Geometrical encoding

A geometrical descriptor [START_REF] Sherburn | Geometric and Mechanical Modelling of Textiles[END_REF] builds upon a topological one by placing the yarns in the three-dimensional space. It places the yarns via their centerlines, also known as neutral bers. This one-dimensional curve is dened in the threedimensional space using a series of control points (3D coordinates). These can be limited to a reduced set of master points and employ interpolation functions in-between. Afterwards, the surface of the yarn is dened by sweeping a twodimensional shape along the length of the yarn. This cross-section can take the form of a simple (oriented) parametric curve (e.g., an ellipse) or a list of points that dene a more complex shape.

(a) Yarn neutral bers (b) Yarn cross-sections It should be noted that, thanks to the given cross-sections, the yarns can be considered as solid entities. For such a reason, if the target analysis requires it, the possible yarn inter-penetrations should be dealt with. This involves adapting the yarn centerlines as well as the yarn cross-sections. Multiple approaches have been conceived for dealing with this issue. These include textile geometrical modeling approaches [START_REF] Ansar | Modeling strategies of 3D woven composites: A review[END_REF], mechanical simulations [START_REF] Durville | Numerical simulation of entangled materials mechanical properties[END_REF], as well as image-based techniques [START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on Xray computed tomography[END_REF].

Finite Element encoding

This descriptor builds upon the previous ones by adding some physical properties, that is, by endowing each point of the neutral ber with some material properties. These include local bending stiness, frictional and tensile behavior, brous content, ber orientation, amongst others [START_REF] Lomov | Modelling the geometry of textile composite reinforcement[END_REF][START_REF] Stig | Spatial modelling of 3D-woven textiles[END_REF]. This information is then employed to construct the FE meshes.

In general, a mesh is a discretization of a continuous spatial domain into a discrete one. As such, any volume can be subdivided into smaller (and simpler) elements that can be modeled using simple equations. Hence, the volume in question will vary according to the target analysis. Given that there are two phases in the material, it is possible to mesh only the yarns or to mesh the yarns and the resin.

Furthermore, there exists multiple paradigms for designing the mesh, notably a conformal approach and a homogenized one, as shown in gure 5. While the former aims at presciently meshing the yarn-resin (or yarn-air) and yarn-yarn interfaces [START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on Xray computed tomography[END_REF], the latter allows more exibility by considering mixed elements that account for both phases (e.g., the voxel -FE paradigm [START_REF] Hello | Numerical Simulations of Woven Composite Materials With Voxel-FE Models[END_REF]).
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Registration method

This section will detail the elements required for the development of the socalled correlation framework. Such approach will allow the relative analysis of dierent textile descriptors using DVC. Given that these descriptors may not have a rich texture (i.e., binary images) a strategy will be presented so as to overcome this issue. Furthermore, the scope of this framework includes descriptors of dierent types and sources. Hence the need for a translation step that provides an intermediate representation common to all descriptors. 

η = f (x) -g(x + u(x)) • v 1 (x) -v 0 (x) (1) 
with the optimal displacement eld u(x) and intensity level corrections v 0 (x)

and v 1 (x). The continuous transformation dened by u(x) implicitly includes an assumption of invariant topology between the analyzed volumes (i.e., the yarns are assumed to be organized in the same fashion). On the other hand, the corrections v 0 (x) and v 1 (x) explain all phenomena alien to such a hypothesis (e.g., tomographic reconstruction artifacts).

Given that the problem is ill-posed, well-posedness can be achieved and conditioning may be tuned when the displacement and correction elds are restricted to a space of low dimension. A global variational formulation [START_REF] Leclerc | Voxel-Scale Digital Volume Correlation[END_REF] is used to determine the unknown elds u(x), v 0 (x) and v 1 (x). As such, any eld w(x) will be expressed as a function of the degrees of freedom {a} associated with it:

w(x) ≈ a i φ i (x) (2) 
This decomposition is used to describe the elds u(x), v 0 (x) and v 1 (x). A convenient choice for the kinematic basis φ i (x) is one provided by the Finite Element (FE) method [START_REF] Zienkiewicz | The nite element method[END_REF]. It should be noted that each of these elds could be decomposed dierently (e.g., dierent meshes for each one) but, for the sake of simplicity, they will be expressed under the same formalism. As such, all the degrees of freedom associated to the three elds of interest can be grouped into a single vector of parameters {a}.

The overall solution is given by the minimization of the squared L 2 -norm of the residuals over the entire region of interest. Such optimization problem can be solved with classical iterative Newton-Raphson routine. This leads to the following linear system

[M ] {δa} = {b} (3) 
with the update vector {δa}, the (positive) stiness matrix M and the vector b

M ij = ψ i , ψ j (4) 
b i = ψ i , η (5) 
where •, • denotes the inner product (i.e., a contraction over x), and the eld

ψ i (x) ψ(x) = φ(x) ⊗ s(x) (6) 
that translates to

ψ i (x) = φ i1 (x) s i2 (x) (7) 
with the sensitivity eld s i2

s i2 = (∇ x f, ∇ y f, ∇ z f, f, 1) (8) 
and the super-

index i = (i 1 , i 2 ) that relates i 1 ∈ [1, N n ],
which points to a node (with N n the number of nodes), and i 2 ∈ [1, 5], which denotes the associated degree of freedom.

Longer correlation length

One of the advantages of classical DVC is its high measurement accuracy [START_REF] Leclerc | Voxel-Scale Digital Volume Correlation[END_REF]. Such extreme sensitivity to displacements is a result of the (wellcontrasted) textures being analyzed. In fact, such rich textures translate to rich image gradients varying in all directions.

However, the current context calls for images whose texture may be extremely poor. Any binary image will only contain non-zero gradients on the boundaries of the individual objects. Additionally, such boundaries are extremely localized near the phase boundaries. Thus a direct implementation of the DVC strategy will fail to converge unless the initialization is extremely close to the solution. For such reason, a relaxation scheme that will spread the gradients produced by the boundaries is proposed. This relaxation will progressively increase the correlation length and thus guide DVC to a good solution. It can be achieved by means of a Gaussian kernel with varying radius that is dened with respect to the largest displacement sought.

An example of the procedure is shown in gure 6. Here, a tomographic image of a composite part is recursively ltered by the same Gaussian kernel (with radius 2 px). The widened boundaries extend the eective correlation length in those regions.

Such procedure hints to the use of a multiresolution isotropic approach [START_REF] Mendoza | Dierentiating 3D textile composites: A novel eld of application for Digital Volume Correlation[END_REF].

It consists in the use of a Gaussian pyramid on a isotropic version of the input images. The image pyramid allows to transition from a coarse description of the problem towards a ner one. This is aided by the subsampling required to transition between levels. As such, in coarser levels even the long displacements (in the original image) can be captured. Then, at each pyramid level, the correlation problem is initialized with the displacement eld found in the previous one.

Furthermore, the ane transformation employed for removing the geometrical anisotropy accounts for the attening of yarns. Indeed, the yarns crosssections are usually conceived as ellipses as a result of the manufacturing process. The motivation behind this anisotropy removal is that these regions do not provide much (relevant) information, especially for the aforementioned binary images. Thus, the isotropic version provides images that are smaller but with equivalent relevant information. It should be noted that this discussion is motivated by the fact that the current study is performed on specimens at the meso-scale. Moreover, the anity employed for removing (or reducing) the anisotropy does not need to be exceptionally precise, but rather approximate since the goal is to obtain in average more isotropic shapes. A similar argument can be made for textiles with more complex shapes. Whenever a systematic anisotropy (anisometry) is present, its reduction is benecial [START_REF] Mendoza | Dierentiating 3D textile composites: A novel eld of application for Digital Volume Correlation[END_REF].
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Finally, a complete mechanical regularization technique [START_REF] Mendoza | Complete mechanical regularization applied to digital image and volume correlation[END_REF] (based on the equilibrium gap [2527]) is employed so as to better condition the problem. This favors displacement elds locally obeying a prescribed behavior (e.g., linear elasticity) in the bulk as well as in the surface of the studied samples. This strategy can be seen as a set of lters that locally dampen steep gradients and ensure smooth and dierentiable elds.

Discretization procedure

The chosen intermediate representation for any descriptor is that of an image. As a consequence, a very convenient tool to evaluate dierences between two textile representations is DVC (which deals with 3D images). As such, any of the previously descriptors needs to be projected into a regularly structured space. In other words, a discretization procedure is to be used so as to obtain voxels.

These voxels can be made meaningful by carefully choosing their values.

A natural choice is to assign labels according to the structure they originally belonged to. This results in volumes with as many intensity levels as there are phases in the material. Since the present analysis considers only two phases, the obtained images are binary (or ternary if surrounding void is considered as a phase per se ). It should be noted that this translation process does not result in any overall loss of information since it is always possible to retrieve the information in the original descriptors for any given voxel, and vice versa.

If the concerned descriptor is of topological nature, it needs to be converted into a geometrical one, this can be achieved via any of widely available textile pre-processors [START_REF] Lomov | Textile geometry preprocessor for meso-mechanical models of woven composites[END_REF][START_REF] Lin | Modelling and simulating textile structures using TexGen[END_REF]. Then, the transformation of the geometrical descriptors into images can be obtained via a FE mesh. In fact, the voxel-FE paradigm is appropriate for this case, it proposes to construct regular structured (uniform) meshes composed of cube elements [START_REF] Hello | Numerical Simulations of Woven Composite Materials With Voxel-FE Models[END_REF]. Then each one of this FE elements can be interpreted as a voxel, thus creating an image.

These choices were taken into account in the development of a novel approach. The proposed alternative gracefully transitions from a continuous (parametric) description of the yarn towards a discretized (voxel) one. It is capable of handling the yarn path smoothing, the yarn discretization, and yarn interpenetrations under a exible unied framework. Also, each one of these steps are easily implemented in parallel.

Proposed approach

First, the yarns are modeled as a collection of one-dimensional beam elements, these elements are constructed between every pair of consecutive control points. Then, a simple elastic behavior is applied on each yarn by means of the second-order dierential Laplacian operator acting on the points coordinates.

This eectively smoothens the yarn path and provides a continuous description of the yarn. As such, any point belonging to the i-th yarn centerline can be written as r i (t) with t ∈ [0, 1] as the curvilinear coordinate along the yarn.

This strategy has the advantage of being easily adaptable to more complex behaviors (other than linear elasticity). In fact, if a better constitutive law is available (e.g., hyper-or hypo-elasticity [START_REF] Naouar | Meso-scale FE analyses of textile composite reinforcement deformation based on Xray computed tomography[END_REF][START_REF] Khan | Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[END_REF]), it could be applied eortlessly.

Additionally, this (already computed) Laplacian operator can be re-purposed for the reduction of control points. In fact, the reduced set of master points are easily identied as those having high Laplacian values. These will be the points of higher curvature, and thus necessary for describing the yarn path. An example of the Laplacian operator acting on a yarn is shown in 7. Second, each yarn is discretized via its weighted distance function. This function determines the distance of a given point to the boundary (of the crosssection), it is maximum (100 %) for the points in the neutral ber and decreases in value as the points approach the boundary where the distance attains its minimum (0 %). It is important to note that the function employs a weighted euclidean distance, with the weights being given by the aspect ratio of the ellipse cross-sections. Such distance function is computed for a grid of points (i.e., the voxel centers) regularly spaced (i.e., desired resolution). Additionally, any voxel placed outside of the yarn (i.e., negative distance) is discarded from the analysis.

An example of such image is given in gure 8.

These operations can be expressed under a continuous formalism via the convolution operator

I Di (x) = (h sign • d i )(x -r i ) δ(x -r i ) (9) 
with I Di as the function containing all distances for the i-th yarn, δ(xr i ) as its neutral ber, h sign as the sign truncation function 

h sign (s) =      1 -s, for s ≤ 1 0, for s < 1
d i ({u}) = {u} [C i ] [C i ] {u} (11) 
with the matrix [C i ] dening the cross-section shape for the i-th yarn. For example, in the case of an elliptical cross section aligned with the image axes, the diagonal elements of this matrix are given by the inverse of the ellipse radii.

Third, all considered voxels (with non-zero distances) for all yarns are assembled so as to form the complete image I Y , as show in gure 9. As such, all points considered only once are given the appropriate label (gray level) corresponding the yarn ID. Then, any voxel belonging to a region on yarn interpenetration (more than one yarn) will be assigned to the yarn to which it is closest (i.e., the one with greater I D ). While simple, this handling of yarn interpenetration via the weighted distance function has proven extremely satisfactory.

Finally, the proposed approach outputs two volume images: a chart of distances I D and a chart of yarns I Y . While the former contains oating point values contained between zero and one, the latter contains as many integer intensity values as there are yarns in the textile (plus the resin/air at zero).

Then, thresholding I Y provides the aforementioned binary image I B . At this point, it is important to acknowledge that the image I B can also be written 

I D I Bi (x) = (h bin • d i )(x -r i ) δ(x -r i ) (12) 
with I Bi as the function containing the i-th yarn, and h bin as the binary truncation function

h bin (s) = (N 1 -N 0 ) • H(s -t) + N 0 (13)
with the Heaviside function H(•), the desired intensity levels N 0 and N 1 , and a threshold 0 ≤ t < 1.

In the current context (tomography), the values of N 0 and N 1 represent the attenuation levels of the corresponding phases (i.e., the polymer resin and the carbon ber yarns). An estimate of this values can be easily obtained from the histogram of a micro-CT image, which usually is bi-modal. The estimation of these values can be performed manually, or via a mixture model (e.g., Gaussian mixture model). It should be noted that, in the simplest scenario, they can simply take the values of N 0 = 0 and N 1 = 1. Then, it falls upon the correlation procedure to adapt these values by means of the intensity level corrections v 0 (x) and v 1 (x).

Similarly, the threshold parameter t allows dening the distance (from the yarn centerline) at which the yarn surface is located. Hence, for t = 0, the entire yarn is discretized; on the contrary, as t tends to 1, only the yarn centerline is considered.

Finally, such formulation has the added advantage of not needing to handle specically overlapping yarns since the possibly superimposed yarn will provide the same value of N 1 .

Consequences for the registration procedure

As it was previously introduced, the correlation strategy consists in widening the gradient lengths via ltering operations. This can be seen as a bank of Gaussian lters G j acting on the binary image I B .

{I Bi (x)} G j = {δ(x -r i ) (h bin • d i )(x -r i )} G j (14) = δ(x -r i ) {(h bin • d i )(x -r i ) G j } (15) = δ(x -r i ) Gij (16)
with the kernel Gij as the custom j-th lter for the i-th yarn. This lter can be seen as a wide Gaussian lter acting on the yarn centerline.

Furthermore the pyramidal approach evoked earlier allows, through a mere recursion, obtaining any lter G having a 2 n radius. This is coupled with an iterative subsampling of twice the blur radius.

Setup

Two sets of descriptors are available, each one of them will be employed in progressively more complex analyses.

Available descriptors

The rst group consists in a tomographic scan and a geometrical descriptor of the same textile. This latter was extracted via a careful exploration of the 3D image, hence, it constitutes a good and close description of the observed sample.

In the following, the image and the geometrical descriptor will be referred to as I1 and G1, respectively; they are illustrated in gure 10.

The second group of descriptors is composed of two tomographic images and a FE mesh, all corresponding to the same textile. They will be referred It is worth mentioning that the CT scans are obtained using classical reconstruction algorithms (FDK [START_REF] Feldkamp | Practical cone-beam algorithm[END_REF]) and under acquisition conditions that favors the dierentiation of the dierent phases [START_REF] Mendoza | Dierentiating 3D textile composites: A novel eld of application for Digital Volume Correlation[END_REF]. 

Proposed analyses

The rst analysis is performed between the geometrical descriptor G1 and a numerically deformed version of itself, called G2 (i.e., model-model). This arbitrary deformation is obtained by applying a known Lagrangian displacement eld u to G1. Such displacement was obtained from a previous study on known yarn deformations on this type of fabrics [START_REF] Mendoza | Measuring yarn deformations induced by the manufacturing process of woven composites[END_REF], so as to be representative of a plausible distortion. Then, the correlation procedure is performed as previously detailed with the descriptor G1 as reference, and ground truth is known for validating the result.

The second analysis is performed between the geometrical descriptor G1 and the image I1 (i.e., model-real). As previously stated, the descriptor was built from the image in question. Then, this correlation analysis should allow aligning the observed sample to the reference model G1.

The next group of analyses is performed in three steps. First, the pair of tomographic volumes I2 and I3 is analyzed [START_REF] Mendoza | Dierentiating 3D textile composites: A novel eld of application for Digital Volume Correlation[END_REF]. Next, the pair of descriptors I2 and M1 is analyzed in a similar fashion as previously. In both cases the sample I2 is chosen as the reference conguration and both remaining descriptors are used as the test (deformed) congurations in each step. These third and fourth analyses are analogous to the rst two, but implemented on a dierent set of descriptors. The nal fth step integrates both previous results (i.e., combined analysis).

A schematic representation of the proposed analyses is shown in gure 12 G1 G2 I1 

Model-model registration results

The dierent pyramid levels can be seen in gures 13 and 14. For visualization purposes, the warp and weft yarns were assigned dierent gray levels.

As it can be seen, this strategy does help in widening structures boundaries or interfaces (i.e., the image gradients).

The correlation procedure is performed using 6885 kinematic degrees of freedom represented using cube elements with length 16 px. This length approximates the radius of the circular cross-section of the yarns (in the isotropic space).

A good agreement can be observed between the imposed and measured displacement elds, as shown in gure 15. Furthermore, the image of residuals, testies of a good alignment between both virtual models, as seen in gure 16.

These results are encouraging: correlation performs extremely well in spite of a complex deformation, a poor texture, and a relatively poor chosen kinematics. 

Model-real registration results

The correlation results are analyzed by comparing the reference model G1

with the sample I1. This is achieved by superimposing the yarn boundaries (as described by the model) on top of the sample in the test conguration I1(x) and the sample in the corrected conguration I1(x + u(x)), as shown in gure 17. These images showcase a slight improvement over the already good alignment between both descriptors. Some regions in which the tomographic image is unwrapped so as to better t the model are highlighted.

Furthermore, thanks to the relaxed brightness conservation formulation, the intensity values of the micro-CT image are also corrected. This translates into yarns with more ellipsoid cross-sections and a better contrast between phases, as imposed by the binary image issued from the model G1. As gure 18 shows, the improved separation of classes becomes clear in the corresponding histogram for the image I1, where its bi-modal nature becomes more pronounced. 

Gray level

Counts

I1(x) I1(x + u(x))
Figure 18: Histograms before and after correlation for the micro-CT image

Combined results

This nal collection of results will present a three-part analysis.

The results for the rst step are the so-called metric dierences and topological dierences between of both samples [START_REF] Mendoza | Dierentiating 3D textile composites: A novel eld of application for Digital Volume Correlation[END_REF]. On the one hand, the metric dierences inform on the relative strains between the observed textiles I2 and I3, as obtained from the measured displacement eld u 3 (x). precisely, the topological dierences from I2 and I3, and the aligned model from I2 and M1. Since all results are expressed under the same reference conguration, they can be swiftly compared.

As such, it is possible to query the amount of topological dierences per yarn

C y = x ∈ N y M1 B (x + u 4 (x)) • (I3(x + u 3 (x)) -I2(x)) (17) 
where N y represents the (neighborhood of ) voxels that correspond the y-th yarn At this point, the obtained results can be further exploited if a precise segmentation of the yarns is desired. Since the goal of this study is to align the yarns, the kinematic decomposition (i.e., the degrees of freedom) is not detailed enough so as to precisely (i.e., voxelwise) conform to the yarn boundaries (otherwise, it would lead to ill-conditioning), and as such the proposed registration is not by itself a substitute to segmentation.

N y = { x | M1 Y (x + u 4 (x)) = y } (18) 
However, it does oer an excellent initialization for appropriate segmentation techniques [START_REF] Leventon | Statistical shape inuence in geodesic active contours[END_REF][START_REF] Beucher | The morphological approach to segmentation: the watershed transformation[END_REF], and only minor adjustments of boundaries remain to be determined. In such sense, one could image employing algorithms based on graphs [START_REF] Jie | Graph cuts segmentation with geometric shape priors for medical images[END_REF][START_REF] Boykov | Fast Approximate Energy Minimization via Graph Cuts[END_REF], on some form of energy minimization [START_REF] Cootes | Active shape modelstheir training and application[END_REF], on some a priori information [START_REF] Mendoza Quispe | Shape prior based image segmentation using manifold learning[END_REF] or, even better, based a combination of all of those [START_REF] Couprie | Power watershed: A unifying graph-based optimization framework[END_REF].

For example, the alignment of the model to the sample provides sucient seeds (e.g., the yarn centerlines) for correctly segmenting the yarns in the CT image. This helps to overcome the challenge faced when, two (or more) yarns are so heavily compressed against each other, that they become visually indistinguishable (at the meso-scale). Alternatively, the yarns could be formulated as attractors (or repulsors) that would minimize (or maximize) a certain energy functional.

Finally, the proposed correlation framework represents a novel paradigm for the segmentation of yarns. Indeed, this method presents itself as a topdown approach, much unlike most classical bottom-up approaches. The latter bottom-up methods start from the smallest feature of interest (i.e., the intensities at each voxel) in order to build-up towards a sought structure (e.g., the yarns, the textile). Such process is mostly of local nature (i.e., the yarns) and the notion of a textile is faint. On the contrary, the proposed top-down method starts with the global notion of a textile model, which is then aligned towards a given descriptor. This constitutes a major advantage of the technique since it is capable of robustly handling local discrepancies thanks to the information provided elsewhere by the (global ) model. This is to be contrasted with most segmentation approaches based on local features, that may suer from local indeterminations leading to topological violations (such as wrong pairing of yarn segments).

Conclusions

The use of Digital Volume Correlation for the dialog between various textile descriptors was presented. This technique, applied to 3D woven composites, is based on the key concept of the conservation of topology. The robustness of this approach comes from the use of a reference conguration that provides the algorithm with a vast amount of information with a considerably low eort.

Dierent scenarios involving dierent descriptors were explored, and by combining the dierent steps, an automatic nondestructive testing (NDT) procedure for 3D woven composites was achieved. It should be noted that the detection of missing yarns (or any other anomaly) was not the intended target of the analysis. However, given that they do not conform to the reference or to the assumption of constant topology, they appeared naturally. In addition, these missing yarns were identied (i.e., by ID number) thanks to the relationships established with a model of the textile.

This technique allows the use of a single topological descriptor for the many dierent analyses that are involved in the study of the woven composites. As such, it has many applications on dierent elds.

For example, in the domain of mechanical simulation and validation of forming models using architectures extracted from micro-CT images [START_REF] Naouar | simulation of composite reinforcement deformation based on X-ray computed tomography[END_REF][START_REF] Yousaf | Digital element simulation of aligned tows during compaction validated by computed tomography (CT)[END_REF]. Usually, these techniques call for a meshing procedure per each analyzed sample.

This results in as many meshes as samples, which in turn, encumbers the comparative analysis between the results of these many simulations. However, if only one topological descriptor is considered, only one mesh and potentially only one (base/reference) simulation would be needed. The mesh could simply be adapted to each new sample, as shown in the examples here with the geometrical descriptors and the tomographic images. Even more interestingly, the reference simulation could be adapted to the new deformed sample because the displacement eld relating both congurations is known. Evidently, this form of transfer learning necessitates an appropriate description of the phenomena to be studied. Some simulations have been planned with this purpose.

Additionally, the technique can be used as a tool for non-destructive testing:

it can be performed either on the metric dierences, on the topological dierences, or on both. The former could inform on typical modes of deformation, which would allow dening novel and appropriate metrics [START_REF] De Luis-García | On the choice of a tensor distance for DTI white matter segmentation[END_REF]. These could then enable the identication of anomalous strain patterns. Clearly, this implies a multitude of comparative analyses on multiple woven composite samples so as to build a proper database of such modes. Similarly, the topological dierences could be analyzed for the identication of patterns or structures that would indicate weaving anomalies using machine learning techniques.

Furthermore, it should be noted that the Gaussian lter employed alongside the discretization procedure for descriptors other than images leads to a mod-erate loss of information (since it erases high frequency features). The most important property of this lter is that even if the synthetic image generated by the model is too sharp or too contrasted, the mollifying nature of the Gaussian lter will bring both images of interest (the reconstructed CT scan and the synthetic image) closer together.

Moreover, these operations (discretization and convolution) occur only once: before the correlation procedure. That means that they are not updated, unlike the displacement eld which does evolve during the iterations. This could be considered as a limitation of the current proposition since the convolution and the distortion of the fabric do not commute. As such, a good registration may not be possible for cases of extreme distortions. For such a reason, it is proposed to alternate between both operations during iterations. That is, to apply the estimated displacement to the original descriptor, lter the discretized image, and determine the additional correction to the displacement eld; as is done with multi-modality registration [START_REF] Charbal | Hybrid Stereocorrelation Using Infrared and Visible Light Cameras[END_REF]. Repeating this operation iteratively would permit a better estimation of the correction elds. In fact, the proposed discretization procedure aligns perfectly with this goal. The approach is currently being explored.

This proposed extension to the technique could also have an impact on the discretization and convolution operations. The construction of the binary image from the model involves the denition of the binary levels which could be progressively adapted by using smooth indicator functions blurred along the ber direction [START_REF] Wassermann | Unsupervised white matter ber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter bers[END_REF]. Similarly, the parameters for the convolution operation (Gaussian radii) could become additional degrees of freedom (besides displacement and intensity levels). As such, the yarns would be modeled after their yarn centerline locally ltered by the appropriate kernel. Such approach was alluded to when discussing the consequences of registration in the discretization procedure (i.e., a wide Gaussian lter) [START_REF] Charbal | Integrated Digital Image Correlation considering gray level and blur variations: Application to distortion measurements of IR camera[END_REF].

Finally, this technique could also benet from the inherent periodicity of the fabric and further integrate elements so as increase its eciency.
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 1 Figure 1: Multiple textile descriptors for the same textile architecture.
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 23 Figure 2: Topological encoding of warp-interlaced composite: while the green ( ) weft yarns are modeled straight along their orientation, the red ( ) and blue ( ) warp yarns undulate in dierent planes

Figure 4 :

 4 Figure 4: Geometrical encoding for a sample textile

Figure 5 :

 5 Figure 5: Multiple Finite Element encodings for a sample textile: (a) only yarns or (b)-(c) both phases can be meshed, using (a)-(b) pyramid or (c) cube FE element types

Figure 6 :

 6 Figure 6: An image f recursively ltered by a Gaussian kernel G displays horizontal gradients ∇ x that extend the range of visibility for correlation

Figure 7 :

 7 Figure 7: Laplacian operator acting on the coordinates of a yarn: the control points of higher curvature are automatically highlighted

Figure 8 :

 8 Figure 8: Dierent views for a sample image I D

Figure 9 :

 9 Figure 9: Dierent views for a sample image I Y

Figure 10 :

 10 Figure 10: First group of textile descriptors: (a) a CT scan of a composite sample, and (b) its equivalent geometrical descriptor

Figure 11 :

 11 Figure 11: Second group of descriptors: (a) reference and (b) test samples observed through CT, and (c) FE mesh with the same textile denition

Figure 12 :

 12 Figure 12: Proposed sets of analyses combining the available descriptors

Figure 13 :

 13 Figure 13: Volume representation of the dierent pyramid levels for G1

Figure 14 :(Figure 15 :

 1415 Figure 14: (x-z) mid-plane representation of the dierent pyramid levels for G1

Figure 16 :

 16 Figure 16: Dierent mid-planes for the residuals for G1 and G2: (a)-(b) before and (c)-(d) after correlation

Figure 17 :

 17 Figure 17: (x-z) mid-plane of I1 before and after correlation, the model G1 is shown with outlined yarn borders, the ellipses highlight some regions of improved alignment; for visualization purposes the images in (a) and (b) are zoomed and shown in the isotropic conguration in (c) and (d) respectively

Figure 19 :

 19 Figure 19: The signature of the missing yarns is clear in (a) the metric differences, as well as in (b) the topological dierences between the analyzed volumes I2 and I3

Figure 20 :

 20 Figure 20: The dierent representations of M1: (a) as a (discretized) binary image, and (b) as a model aligned with the reference sample.

From

  this tally C y , shown in gure 21a, two yarns are clearly distinguished from the rest. A new virtual model which only considers these yarns is shown in gure 21b. Clearly, these yarns correspond to the missing ones, which (in this particular ordering) correspond to the yarns with ID numbers 20 and 26. These ID numbers are extremely relevant because (if the weaving patter is known) it is possible to identify their role in the textile architecture.

Figure 21 :

 21 Figure 21: (a) The amount of topological dierences per yarn helps identify (b) the missing yarns.
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