
HAL Id: hal-02296513
https://hal.science/hal-02296513v1

Preprint submitted on 28 Sep 2019 (v1), last revised 13 Oct 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ATOL: Automatic Topologically-Oriented Learning
Martin Royer, Frédéric Chazal, Yuichi Ike, Yuhei Umeda

To cite this version:
Martin Royer, Frédéric Chazal, Yuichi Ike, Yuhei Umeda. ATOL: Automatic Topologically-Oriented
Learning. 2019. �hal-02296513v1�

https://hal.science/hal-02296513v1
https://hal.archives-ouvertes.fr

ATOL: Automatic Topologically-Oriented Learning

Martin Royer and Frederic Chazal
Datashape, Inria Saclay

Palaiseau, France.
firstname.surname@inria.fr

Yuichi Ike and Yuhei Umeda
Fujitsu Laboratories, AI Lab

Tokyo, Japan.
surname.firstname@fujitsu.com

Abstract

There are abundant cases for using Topological Data
Analysis (TDA) in a learning context, but robust topological
information commonly comes in the form of a set of
persistence diagrams, objects that by nature are uneasy to
affix to a generic machine learning framework.
We introduce a vectorisation method for diagrams that
allows to collect information from topological descriptors
into a format fit for machine learning tools. Based on a
few observations, the method is learned and tailored to
discriminate the various important plane regions a diagram
is set into. With this tool one can automatically augment
any sort of machine learning problem with access to a TDA
method, enhance performances, construct features reflecting
underlying changes in topological behaviour. The proposed
methodology comes with only high level tuning parameters
such as the encoding budget for topological features. We
provide an open-access, ready-to-use implementation and
notebook.
We showcase the strengths and versatility of our approach on
a number of applications. From emulous and modern graph
collections to a highly topological synthetic dynamical orbits
data, we prove that the method matches or beats the state-
of-the-art in encoding persistence diagrams to solve hard
problems. We then apply our method in the context of an
industrial, difficult time-series regression problem and show
the approach to be relevant.

Introduction
Topological Data Analysis (TDA) is a field dedicated to
the capture and description of relevant geometrical or
topological information from data. The use of TDA with
standard machine learning tools has proved particularly
advantageous in dealing with all sorts of complex data,
meaning objects that are not or partly Euclidean, for instance
graphs, time series, etc. The applications are abundant,
from social network analysis, bio and chemoinformatics, to
medical imaging and computer vision.

Through persistent homology, a multi-scale analysis of
the geometric properties of the data, robust and stable
information can be extracted. The resulting topological
features are commonly computed in the form of a
persistence diagram whose structure (an unordered set of
points in the plane representing birth and death times for
the features) does not easily fit the general machine learning

input format. Therefore TDA is generally combined to
machine learning by way of an embedding method for
persistence diagrams.
Contributions. Our work is set in that trend: we introduce
an automatic and learned vectorisation method designed
to accurately reflect the inner variations of a given set of
persistence diagrams. We showcase how, using this tool,
integrating topological analysis into challenging learning
problems leads to state-of-the-art results.

These contributions induce the following advantages: it
allows for integration of TDA into a standard machine
learning pipeline. There is little to no tuning, and a low level
of knowledge of TDA is required, therefore the framework
has a democratisation effect for learning on topological
problems. It allows for univariate or multivariate topological
representations of complex objects: graphs, time series,
dynamical systems with interpretability benefits – connected
to interpretability in TDA. Lastly it is a simple, efficient,
swiss-knife embedding method that is of use in all sorts of
learning problems and proving very efficient already.
Related work. A first line of combining persistence
diagrams with machine learning is by designing a
convenient vector representation. For instance it involves
interpreting diagrams as images in (Adams et al. 2017),
extracting topological signatures with respect to fixed points
whose optimal position are learnt in (Hofer et al. 2017), a
square-root transform of their approximated pdf in (Anirudh
et al. 2016).

A second line introduces a specific kernel as the multi-
scale kernel of (Reininghaus et al. 2015), the weighted
Gaussian kernel of (Kusano, Hiraoka, and Fukumizu 2016)
or the sliced Wasserstein kernel of (Carrière, Cuturi,
and Oudot 2017). Those techniques have state-of-the-art
behaviour on problems we will showcase, but for drawback
they require another step for an explicit representation, and
are known to scale poorly.

A recent orthogonal line of work has managed to directly
combine the uneasy structure of persistence diagrams to
neural networks architectures (Zaheer et al. 2017), (Carrière
et al. 2019), with some interesting successes. Neural
networks have immense benefits but are also heavy to deploy
and hard to understand. They can always be paired with a
representation method as in (Hofer et al. 2017).

Figure 1: Example of a filtration by union of balls built
on top of a 2-dimensional data set (red points) and its
corresponding persistence diagram. As the radius of the balls
increases, the connected components initially represented
by each data point get merged; two cycles appears and
disappears along the filtration. The connected components
give rise to the red points on the vertical axis of the diagram
as their birth time are all 0, and the cycles give rise to the
two blue points.

Methodology
Persistent homology in TDA
Persistent homology plays a central role in TDA. It provides
a rigorous mathematical framework and efficient algorithms
to encode relevant multi-scale topological features of
complex data, usually represented as point clouds or
more complex geometric objects such as, e.g., time-series,
graphs, 3D images,... - see (Edelsbrunner and Harer 2010;
Boissonnat, Chazal, and Yvinec 2018) for a detailed
introduction to persistent homology.

More precisely, persistent homology encodes the
evolution of the topology of families of nested topological
spaces (Fα)α∈A, called filtrations, built on top of the
data and indexed by a set of real numbers A that can be
seen as scale parameters. For example, for a point cloud
in Euclidean space, Fα can be the union of the balls of
radius α centered on the data points - see Figure 1. Given
a filtration (Fα)α∈A its topology (homology) changes as α
increases: new connected components can appear, existing
connected components can merge, cycles and cavities can
appear or be filled, etc. Persistent homology tracks these
changes, identifies features and associates, to each of them,
an interval or lifetime from αbirth to αdeath. For instance, a
connected component is a feature that is born at the smallest
α such that the component is present in Fα, and dies when
it merges with an older connected component. The set of
intervals representing the lifetime of the identified features
is called the barcode of the filtration. As an interval can
also be represented as a point in the plane with coordinates
(αbirth, αdeath), the set of points representing the intervals
is called the persistence diagram of the filtration. The main
advantage of persistence diagrams is that:

(i) they are proven to provide robust qualitative and
quantitative topological information (Chazal et al. 2016)
about the data;
(ii) since each point of the diagram represents a specific
topological feature with its lifespan, they are easily
interpretable as features;
(iii) from a practical perspective, persistence diagrams can
be efficiently computed from a wide family of filtrations
(The GUDHI Project 2015).
However, as persistence diagrams come as unordered
set of points with non constant cardinality, they cannot
be immediately processed as standard vector features in
machine learning algorithms.

Automatic featurisation of persistence diagrams
Let D be the space of persistence diagrams. For ease of
presentation we will not be considering points with infinite
y-coordinates i.e. infinite lifetime, therefore in this work
a persistence diagram D consists in a finite collection of
points in R2.

We introduce a featurisation method for elements of D,
see Algorithm 1. Given a budget b ∈ R∗+ and diagram
examplesD1, . . . , DL forL ∈ R∗+, we use this fixed number
of observations in order to tailor a vectorisation map with
budget b for this space, that is we useD1, . . . , DL to produce
a map a : D → Rb. This map would ideally reflect the core
topological variations of D in Euclidean space Rb.

Algorithm 1: ATOL-featurisation
Data: Collection of persistence diagrams

(D1, . . . , DL)
parameters: budget b ∈ N∗
Result: vectorisation map a : D → Rb

1 Concatenate diagram collection into collection of
points in P ⊂ R2;

2 Run extraction algorithm on P (e.g. clustering
algorithm) to produce centers c1, . . . , cb in R2 and
deviations e1, . . . , eb in R∗+. Then define Laplacian
contrast functions:
lk : R2 → R, d 7→ exp

[
− |ck−d|2ek

]
;

3 Compute vectorisation map:

a : D → Rb, D 7→
[∑

d∈D lk(d)
]
k∈[b]

To that effect we will use localisation variations between
various elements of D1, . . . , DL, that is we set to find
regions of the plane where points in D1, . . . , DL seem
to aggregate or disperse, and build a dedicated way to
describe those regions. One generic way of doing it is using
a clustering algorithm on the concatenated collection of
points P :=

⋃
i∈[L]Di, and extract representative points per

cluster.
In practice we run Lloyd’s k-means algorithm (Lloyd

1982), extract clusters, centers and use them to produce
what we call Laplacian contrast functions. For a given center
c ∈ R2 associated with cluster G ⊂ P , we compute cluster

deviation e and Laplacian contrast function l : R2 → R:

e :=

√∑
d∈G

|d− c|22 (1)

l : d 7→ exp
[
− |c− d|2

e

]
. (2)

Therefore each center is associated a specific-range contrast
function. The constrasts functions are then concatenated to
form a vector reflecting topological information gathered
from persistence diagrams.

Note that embedding map a is derived without knowledge
of a learning task, its derivation is fully unsupervised. The
representation is learned since it is data-dependent, but it
is also agnostic to the task and only depends on getting a
glimpse at a few persistence diagrams. This helps to localise
important aggregation points (centers) and determine an
average range of observation (deviations) from which to
collect information (contrasts) on all diagrams.

This featurisation is close to a non-neural-network version
of (Hofer et al. 2017) or to the codebook method of
(Zielinski et al. 2018), but distinctly differs from these
methods in the contrast maps introduced above, and those
are key to our method’s state-of-the-art results, see the
Competitive TDA learning Section.

Automatic topological learning
In the context of a standard learning problem Ω := (X, y),
the previous algorithm can be used to solve, help solve
or provide some simplified topological understanding on
elements X ∈ X of the problem.

This is the framework of Algorithm 2: after observing
some elements X1, . . . , XL in X (in the context of a
learning problem there always will be such a L >
0), after using persistent homology to derive collections
of diagrams associated to those elements D1, . . . , DL,
Algorithm 1 provides an efficient way to produce a
vectorised representation for space X . Those features can
then be used on their own or concatenated with other
relevant features in learning schemes.

Competitive TDA learning
In this section we demonstrate the advantages of
our approach. By addressing assorted and challenging
applications (a collection of graphs, dynamical orbits
and time-series learning problems), we show the ATOL
framework to be not only competitive and state-of-the-
art, but also strongly efficient with respect to compacity
and tuning, easy to use with high automaticity while also
allowing for interpretability with respect to the underlying
topological features. Those characteristics make it a sort
of swiss-knife method, easily deployed and operated for
any sort of problem where one would project a topological
analysis foray.

Graph classification problems
Learning problems involving graph data are receiving an
extraordinary amount of interest, and we now showcase the
greatest value of our method: it is highly competitive.

Algorithm 2: ATOL: Automatic Topologically-
Oriented Learning

Data: Complex learning problem Ω := (X, y)
with X ∈ X complex elements and y labels
(available, partially available or hidden)

parameters: method Φ : X → D yielding
topological descriptors, b, L ∈ (N∗)2

Result: Enhanced learning problem
Ω̃ := ((X, v(X)), y) with topological,
euclidean features v(X) ∈ Rb

1 Using a small number of observations
Φ(X1), . . . ,Φ(XL), produce a vectorisation map a
with Algorithm 1;

2 For all elements of the learning problem, compute
their topological descriptors Φ(X) and featurisation
through map a, so that each element X is described
by v(X) = a(Φ(X)) ∈ Rb.

Recently (Carrière et al. 2019) have introduced a powerful
way of extracting topological information from graph
structures. They make use of heat kernel signatures (HKS)
for graphs (Hu, Rustamov, and Guibas 2014), a spectral
family of signatures (with diffusion parameter t > 0)
whose topological structure can be encoded in the extended
persistence framework, yielding four types of topological
features with exclusively finite persistence. On both of those
points we refer to Sections 4.2 and 2 from (Carrière et
al. 2019). Therefore for each graph and HKS diffusion
time t the resulting topological descriptor from (Carrière
et al. 2019) are four persistence diagrams with all finite
coordinates.

We leverage those topological descriptors and for fair
comparison use the same benchmarks to demonstrate the
efficiency of our method. It includes small and large sets of
graphs (MUTAG has 188 graphs, REDDIT12K has 12000),
small and large graphs (IMDB-M has 13 nodes on average,
REDDIT5K has more than 500), dense and sparse graphs
(FRANKENSTEIN has around 12 edges per nodes, COLLAB
has more than 2000), binary and multi-class problems
(REDDIT12K has 11 classes), and graphs of different nature
(social networks, chemoinformatics, bioinformatics). All
datasets can be found in the repository (Kersting et al. 2016).

For the entire set of probems we use the same two
HKS diffusion times to be .1 and 10, fueling the extended
graph persistence framework and resulting in 8 persistence
diagrams per graph. For budget we choose b = 80 for all
experiments. We discard and make no use of graph attributes
on edges or vertices that some dataset exhibit, and no other
sort of features are collected, i.e. Algorithm 2 here simply
consists in reducing the original problem from Ω to Ω̃ :=
(v(X), y) with v(X) ∈ R80. To compute the embedding
map a (Algorithm 1) we use all available diagrams in the
training set (without supervision). The resulting embedding
is empirically stable as soon as the dataset contains more
than a few dozen elements.

To give an approximate value to our method’s worth

in this learning context, we evaluate the featurisation for
classification purposes using the standard scikit-learn
(Pedregosa et al. 2011) random-forest classification tool
with 100 trees and all other parameters set as default. On
each problem we perform a 10-fold evaluation and average
the resulting accuracies. Mean accuracies and standard
deviations over 10 such experiments are shown Table 1.

methods RetGK1 RetGK11 FGSD GCNN PersLay ATOL
problems
REDDIT5K 56.1(0.5) 55.3(0.3) 47.8 52.9 56.6(0.3) 58.5(0.2)
REDDIT12K 48.7(0.2) 47.1(0.3) — 46.6 47.7(0.2) 44.5(0.1)
COLLAB 81.0(0.3) 80.6(0.3) 80.0 79.6 76.4(0.4) 83.9 (0.1)
IMDB-B 71.9(1.0) 72.3(0.6) 73.6 73.1 70.9(0.7) 74.4 (0.7)
IMDB-M 47.7(0.3) 48.7(0.6) 52.4 50.3 48.7(0.6) 47.9 (0.6)
BZR — — — — 87.2(0.7) 74.4 (1.9)
COX2 80.1(0.9) 81.4(0.6) — — 81.6(1.0) 58.6 (1.4)
DHFR 81.5(0.9) 82.5(0.8) — — 81.8(0.8) 80.3 (0.7)
MUTAG 90.3(1.1) 90.1(1.0) 92.1 86.7 89.8(0.9) 86.9 (1.3)
PROTEINS 75.8(0.6) 75.2(0.3) 73.4 76.3 74.8(0.3) 70.0 (0.4)
NCI1 84.5(0.2) 83.5(0.2) 79.8 78.4 72.8(0.3) 78.9 (0.3)
NCI109 — — 78.8 — 71.7(0.3) 77.5 (0.5)
FRNKNSTN — — — — 70.7(0.4) 72.8 (0.4)

Table 1: Mean accuracy and standard deviation over ten 10-
folds for RetGK1 and RetGK11 (Zhang et al. 2018), FGSD
(Verma and Zhang 2017) (single 10-fold), GCNN (Xinyi and
Chen 2019) (single 10-fold), PersLay (Carrière et al. 2019)
and our method. Bold fonts indicate the best scores.

Those results are state-of-the-art, gaining two to three
points on the next best contender on two of the more difficult
datasets (REDDIT5K and COLLAB). Overall all results
represent solid performances except for one surprising miss
on small problem COX2.

The competitors shown here are tailored to graph
problems (Perslay excepted), with two graph kernel methods
(RetGK1, RetGK11), one graph embedding method (FGSD)
and one capsule neural network method (GCNN). (Hofer et
al. 2017) also report on REDDIT5K and REDDIT12K, with
mean accuracies of 55.5 and 44.5 for 10 cross-validation
runs.

Computations are run on a laptop (i5-7440HQ 2.80 GHz
CPU), and Algorithm 1 takes about 1 seconds on small
MUTAG dataset, and 8 seconds on average size IMDB-B
dataset (single fold). The results presented here are easily
accessible (requiring open source C++/Python library Gudhi
(The GUDHI Project 2015), Python library (Pedregosa et al.
2011)) and reproducible with the public repository github.
com/martinroyer/atol.

We now stress that all those experiments were run with the
exact same configuration for Algorithm 2. The budget was
selected as a round number: 10 centers for each of the four
diagram types of extented persistence, for each filtration,
hence b = 80. Moreover, this parameter is not pivotal to
the performances reported, as they are stable across a wide
range of such parameter. Figure 2 shows the variation in
performances for four problems as the budget is increased.
It is apparent that the budget selection, Algorithm 2’s
main parameter, is not crucial, and that the procedure is
performant even for very compact representations with only
a couple centers par diagram type.

Overall, the simplicity and absence of tuning hint at

Figure 2: Accuracies and standard deviations over ten 10-
fold for four of the graph problems, as the number of centers
per diagram type per filtration is increased. The resulting
budget is b = 8× n centers as there are 4 diagrams type
and 2 filtrations. The chosen value for all graph experiments
is n centers = 10.

robustness and good generalisation power.

Reflecting topological variations in dynamical
orbits
(Adams et al. 2017) use a synthetic, discrete dynamical
system (used to model flows in DNA microarrays) with the
following property: the resulting chaotic trajectories exhibit
distinct topological characteristics depending on a parameter
r > 0. The dynamical system is:

xn+1 := xn + ryn(1− yn) mod 1

yn+1 := yn + rxn+1(1− xn+1) mod 1

With random initialisation and five different parameters r ∈
{2.5, 3.5, 4, 4.1, 4.3}, a thousand iterations per trajectory
and a thousand orbits per parameter, a datasets of five
thousand orbits is constituted and commonly used for
evaluating topological methods. The problem of classifying
this datasets in accordance to their underlying parameter is
rather uneasy and challenging.

We apply our framework on persistence diagrams from
the AlphaComplex filtrations in dimensions 0 and 1 with
a total budget of b = 80. After a learning phase with a
70/30 split, we measure accuracy over a hundred runs. This
yields a 84.2 (0.8) mean accuracy and deviation. In the exact
same experimental setup, the best competitive methods
have obtained the following mean accuracies: 72.38 (2.4)
(Reininghaus et al. 2015), 76.63 (0.7) (Kusano, Hiraoka,
and Fukumizu 2016), 83.6 (0.9) (Carrière, Cuturi, and Oudot
2017), 85.9 (0.8) (Le and Yamada 2018), 87.7 (1.0) (Carrière
et al. 2019). Therefore our results are also competitive for
this problem.

Let us now restrict the problem to a two-class problem,
i.e. only select orbits generated with parameters r ∈

Figure 3: Example of synthetised orbits (x and y coordinates
in the flat torus [0, 1]2) with parameter 4.0 (top row) and 4.1
(bottom row).

{4.0, 4.1}. Figure 3 shows a few such orbits. For orbits
generated with parameter r = 4.1, it happens that the
initialisation is close to an attractor point, that gives it the
special shape as in the leftmost orbit.

The persistence diagrams generated for each orbit are
featurised through Algorithm 1 and Figure 4 shows such
feature for a given center. The spikes match the specific
orbits with special shape mentioned above, but the overall
mean change in value reflects the underlying change
in topological structure. Each such features allows for
univariate representation of the original data, and the
combine use of ten such features makes for a 88% accuracy
score in this context. As centers are locally fixed within
the R2 plane, one can infer which elements within the sets
are drawn towards which centers and derive topological
information with respect to the original object without any
supervision. Lastly, after learning, center importance in
learning task may also be determined (Figure 4) and provide
additional understanding.

Topological score for time series, an industrial
application
Finally we present an industrial application for time series,
in a case where the learning problem is hard and no obvious
solutions are to be found.

This dataset consists in the following experiments: using
commercially available simulator of a Japenese city road
circuit course, about a hundred subjects are monitored (RRI
data sampled at 4Hz) for a 80 minutes drive that includes
two periods of high-speed driving at the beginning and at the
end of the experiment, and a low-speed driving period in the
middle designed to induce sleepiness. For each experiment,
an expert annotation (labeled NEDO score) produced from
observing the driver is made available, indicating sleepiness
on a 1 to 5 class scale. We show four such experiments in
Figure 5 (the RR-intervals have been normalised).

This problem of retrieving the sleepiness level based on
RRI levels is hard and ill-posed: there are strong individual
differences in perceived reaction to a given situation, a
single experiment per subject to learn behaviour from, and
apparent noise or absence of signal in annotations, see
e.g. subject 3 in Figure 5. Nevertheless we propose to use

Figure 4: Top: for the 2-class problem, feature value for
each orbit with respect to a given center. Indices 0 to 999
are for orbits with parameter 4.0, indices 1000 to 1999 for
orbits with parameter 4.3. The black line is immaterial,
and drawn for visualisation purposes. Bottom: for the 5-
class problem, example centers for homological dimension
1 drawn in the plane and their respective importance in the
initial classification task.

the ATOL framework to produce features meant reflect the
sleepiness level in subjects based on RRI variations. The
intent is that even though this will poorly reflect the latent
sleepiness level, this could be enough to allow to catch
jumps in the perceived attention level.

The framework can readily be applied to time series in any
given dimension and used to produce topological features.
For this application we will follow a classical path: (i) use a
sliding window decomposition on the time-series, (ii) use
a time-delay embedding to transform said window into a
point cloud, (iii) apply persistent homology analysis (we
will use DTM-filtration) to produce persistence diagrams
and (iv) vectorise persistence diagrams using Algorithm 1.
We concatenate those features with the mean and standard
deviation statistics on the sliding-window. As for learning,
we compute a learner based on other individuals’ features
regressed to their NEDO scores, and use it to generate a
score based on ATOL features (see middle and bottom row
in Figure 6).

Although this score imperfectly reflects the underlying
NEDO score for a given patient, is can still have some uses.
We set to detect two jumps on this topologically-augmented
score using a Gaussian Kernel. We also compute a regressor
based on the standard features without additional topological
features, for comparison purposes, and also detect two
jumps on this standard score.

Figure 6 shows two example results of our analysis. Each
panel (top and bottom) consists in three time-series: the
(hidden) NEDO score (top row), the ATOL-score computed
from a regressor based on topological features (middle row),
and a standard score computed from a regressor based
solely on standard features (bottom row). The changes of
colour from blue to red and to blue indicates the changes
in the experimental design for the driving simulation,
i.e. the red portion indicates low-speed driving whereas
the blue portions indicate high-speed driving periods. The
black dotted lines indicate jumps detected from the ATOL
representation, whereas the red dotted lines indicate jumps
detected from the standard representation. In the top panel,
the two series of jumps are concomitant, and almost an exact
match to the underlying changes in the experimental design.
In the bottom panel, an improvement over the standard score
is caught with the ATOL score that better reflects the changes
in latent NEDO score for this subject, two the point that
the detected jumps are an exact match for the changes in
experimental conditions. Overall, the ATOL score has less
spikes and more regularity than the standard score, which is
expected as the topological features are extracted posterior
to a time-delay embedding procedure.

Figure 5: Measured drowsiness and annotated NEDO score
for four subjects.

Figure 6: Results of NEDO score (top row) regression and of
a 2-jumps detection procedure, from standard features alone
(bottom row) and ATOL features (middle row). Red zones
indicates low-speed section of the simulation, blue zones
indicates high-speed section.

References
Adams, H.; Emerson, T.; Kirby, M.; Neville, R.; Peterson,
C.; Shipman, P.; Chepushtanova, S.; Hanson, E.; Motta, F.;
and Ziegelmeier, L. 2017. Persistence images: a stable
vector representation of persistent homology. Journal of
Machine Learning Research 18(8).
Anirudh, R.; Venkataraman, V.; Ramamurthy, K. N.; and
Turaga, P. 2016. A riemannian framework for statistical
analysis of topological persistence diagrams. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 1023–1031.
Boissonnat, J.-D.; Chazal, F.; and Yvinec, M. 2018.
Geometric and Topological Inference, volume 57.
Cambridge University Press.
Carrière, M.; Chazal, F.; Ike, Y.; Lacombe, T.; Royer, M.;
and Umeda, Y. 2019. PersLay: A Simple and Versatile
Neural Network Layer for Persistence Diagrams. arXiv e-
prints arXiv:1904.09378.
Carrière, M.; Cuturi, M.; and Oudot, S. 2017.
Sliced Wasserstein kernel for persistence diagrams. In
International Conference on Machine Learning, volume 70,
664–673.
Chazal, F.; de Silva, V.; Glisse, M.; and Oudot, S.
2016. The structure and stability of persistence modules.
SpringerBriefs in Mathematics. Springer.
Edelsbrunner, H., and Harer, J. 2010. Computational
Topology: An Introduction. AMS.
Hofer, C.; Kwitt, R.; Niethammer, M.; and Uhl, A. 2017.
Deep learning with topological signatures. In Advances in
Neural Information Processing Systems, 1634–1644.
Hu, N.; Rustamov, R.; and Guibas, L. 2014. Stable
and informative spectral signatures for graph matching. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2305–2312.
Kersting, K.; Kriege, N. M.; Morris, C.; Mutzel, P.; and
Neumann, M. 2016. Benchmark data sets for graph kernels.
http://graphkernels.cs.tu-dortmund.de.
Kusano, G.; Hiraoka, Y.; and Fukumizu, K. 2016.
Persistence weighted Gaussian kernel for topological data
analysis. In International Conference on Machine Learning,
volume 48, 2004–2013.
Le, T., and Yamada, M. 2018. Persistence Fisher kernel:
a Riemannian manifold kernel for persistence diagrams.
In Advances in Neural Information Processing Systems,
10027–10038.
Lloyd, S. 1982. Least squares quantization in pcm. IEEE
Trans. Inf. Theor. 28(2):129–137.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Reininghaus, J.; Huber, S.; Bauer, U.; and Kwitt, R. 2015. A
stable multi-scale kernel for topological machine learning.

In IEEE Conference on Computer Vision and Pattern
Recognition.
The GUDHI Project. 2015. GUDHI User and Reference
Manual. GUDHI Editorial Board.
Verma, S., and Zhang, Z.-L. 2017. Hunt for the unique,
stable, sparse and fast feature learning on graphs. In
Advances in Neural Information Processing Systems, 88–98.
Xinyi, Z., and Chen, L. 2019. Capsule graph neural network.
In International Conference on Learning Representations.
Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.;
Salakhutdinov, R.; and Smola, A. 2017. Deep sets. In
Advances in Neural Information Processing Systems, 3391–
3401.
Zhang, Z.; Wang, M.; Xiang, Y.; Huang, Y.; and Nehorai, A.
2018. RetGK: Graph Kernels based on Return Probabilities
of Random Walks. In Advances in Neural Information
Processing Systems, 3968–3978.
Zielinski, B.; Lipinski, M.; Juda, M.; Zeppelzauer, M.; and
Dlotko, P. 2018. Persistence Codebooks for Topological
Data Analysis. arXiv e-prints arXiv:1802.04852.

