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Abstract

Endogenous sharing rules were introduced by Simon and Zame [16] to model payoff
indeterminacy in discontinuous games. They prove the existence in every compact strategic
game of a mixed Nash equilibrium and an associated sharing rule. We extend their result to
economies with externalities [1] where, by definition, players are restricted to pure strategies.
We also provide a new interpretation of payoff indeterminacy in Simon and Zame’s model
in terms of preference incompleteness.
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1 Introduction

The model of strategic games with endogenous sharing rules was introduced by Simon and
Zame [16]. Formally, it is a (N+1)-tuple G = ((Xi)i∈N ,U), where N is the set1 of players,
Xi is the strategy set of player i ∈ N , and U is a multivalued function from X :=

∏

i∈N Xi

to RN with nonempty values. The set U(x) ⊂ RN can be interpreted as the universe of
payoff possibilities, given the strategy profile x ∈ X. When U(x) = {(ui(x))i∈N} is a
singleton for every x ∈ X, G reduces to a usual strategic game, ui being the payoff
function of player i.

Simon and Zame [16] provide conditions that guarantee the existence of a solution for
G, i.e., existence of a selection q = (qi)i∈N of U (a sharing rule of U), together with a
mixed Nash equilibrium m∗ = (m∗

i )i∈N of the game G = ((Xi)i∈N , (qi)i∈N).

∗Paris School of Economics, Centre d’Economie de la Sorbonne UMR 8174, Université Paris I
Panthéon/ Sorbonne.

†Director of Research at CNRS, Université Paris-Dauphine, PSL Research University, Lamsade, 75016
Paris, France. Also affiliated with Department of Economics, Ecole Polytechnique, France. Laraki’s
work was supported by grants administered by the French National Research Agency as part of the
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1For simplicity, we use the same letter N for the set of players or the number of players.
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The concept of sharing rule gives rise to many interpretations. Imagine a designer
who must determine who wins an indivisible object in some auction including tie-breaking
rules. In that case, selections of U represent admissible auction rules, and a solution can
be seen as a mechanism and a Nash equilibrium of the induced game. Another motivation
comes from the payoff indeterminacy that many economic models exhibit: for example,
several producers have to choose, each, a location in an area where a continuum of con-
sumers are uniformly distributed. Assume each consumer goes to the closest location.
Then payoffs are not well defined when some producers choose the same location: indeed,
any division of consumers between the producers is plausible. Simon and Zame’s result
guarantees the existence of a market sharing rule under which the discontinuous game
played by the producers admits a mixed Nash equilibrium.

In this note, we prove existence of a Simon and Zame “solution” in economies with
externalities (also called generalized games). This is a general equilibrium model, intro-
duced by Arrow and Debreu [1], in which players play in pure strategies and each player
admissible set of strategies is constrained by the strategies chosen by the opponents. For
example, in exchange economies, consumers are limited by their budget constraint, which
depends on the price vector, itself depending on consumers’ demands.

Our second contribution is an interpretation of sharing rules indeterminacy in terms
of preference incompleteness. As Aumann [2] argues: “of all axioms of utility theory,
the completeness axiom is perhaps the most questionable”. Following this seminal paper,
many extensions of equilibrium models to incomplete preferences have been investigated,
either for continuous preferences [9, 14], or discontinuous ones [6, 12, 17]. In this note, we
will assume that the ambiguity generated by the indeterminacy of payoffs creates incom-
pleteness in the preferences. This permits to associate to every economy with externalities
and endogenous sharing rules an economy with externalities and incomplete and discon-
tinuous preferences. We prove that, in general, this economy does not possess a Nash
equilibrium, but it is possible to complete the preferences in a weak sense to restore the
existence of an equilibrium.

2 Economies with Endogenous Sharing Rules

An Economy with externalities and endogenous sharing rules E is a pair E = (G,B =
(Bi)i∈N) where G = ((Xi)i∈N ,U) is a game with endogenous sharing rules, and Bi is a
multivalued mapping from X−i to Xi with a closed graph and nonempty convex values
(i.e., a Kakutani-type mapping).

Definition 1 A solution of E is a pair (x∗, q), where q = (qi)i∈N is a selection of U , and
x∗ ∈ X is a generalized Nash equilibrium of ((Xi)i∈N , (qi)i∈N ,B), i.e.:
(i) For every i ∈ N , x∗

i ∈ Bi(x
∗
−i).

(ii) For every xi ∈ Bi(x
∗
−i), qi(xi, x

∗
−i) ≤ qi(x

∗).

Consider the following assumptions:
A1: X is a convex and compact subset of a Hausdorff and locally convex topological
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vector space;
A2: U is bounded;
A3: The graph of E , defined by Γ := {(x, v) : v ∈ U(x) and xi ∈ Bi(x−i) for every i ∈ N},
is closed;
A4: U admits a selection u = (ui)i∈N , such that each ui is quasiconcave in player i’s
strategy.

Theorem 2 Any economy with externalities and endogenous sharing rules satisfying A1
to A4 admits a solution.

This can be related to Simon and Zame existence result [16]: they prove the existence
of a solution in mixed strategies in every strategic games under A1, A2, A3 and convexity
of U(x) for every x ∈ X. Theorem 2 proves the existence of a solution in pure strategies,
even when the strategies of each player are constrained by the strategies of his opponent.
In strategic games where Bi(x−i) = Xi for every x−i ∈ X−i and every i ∈ I, we get the
existence of a solution à la Simon-Zame in pure strategies. This was an open question
in Jackson et al. [10] and was solved recently in Bich and Laraki [5] by using as a tool
Reny ’s [13] better-reply security condition. But we shall see that adding externalities
makes the proof more complex. Indeed, the result relies on a recent condition for Nash
equilibrium existence in discontinuous games by Barelli and Meneghel [3].

3 Applications

3.1 Incomplete Preferences

Let us give an interpretation of Theorem 2 in terms of incomplete preferences. If G =
((Xi)i∈N ,U) is a game with endogenous sharing rules, then we can define the following
preorders2 on X.

Definition 3 We say that y ∈ X is U-preferable to x ∈ X for player i, denoted x .i y,
if and only if ui(x) ≤ ui(y) for every selection3 u of U .

When x and y are distinct, x .i y is equivalent to supUi(x) ≤ inf Ui(y), where Ui(x)
denotes the projection of U(x) ⊂ RN on the i-th component. In short, x .i y if and
only if y is at least as good as x, whatever the indeterminacy of payoffs modeled by U .
Formally, to every economy with externalities (G, (Bi)i∈N), one can associate an economy
with externalities and incomplete preferences E = ((Xi)i∈N , (.i)i∈N , (Bi)i∈N), where the
preorders .i are derived from U as described above.

2A preorder is a reflexive and transitive binary relation.
3Every preorder . on X admits a multi-utility representation (see [11]), that is there exists a family

(vj)j∈J of real-valued functions defined on X such that: x . y ⇔ for every j ∈ J , vj(x) ≤ vj(y). Thus,
there is no loss of generality in working with a cardinal multi-representation.
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It is then standard to define a generalized Nash equilibrium of E as a profile x ∈
Πi∈NBi(x−i) such that there is no player i ∈ N and no deviation yi ∈ Bi(x−i) with4

x �i (yi, x−i). The following example proves that, in general, E fails to have a generalized
Nash equilibrium, even if the initial game G satisfies assumptions A1 to A4.

Example 4 Consider a strategic game with endogenous sharing rules and two players.
The strategy spaces are X1 = X2 = [0, 1]. The endogenous sharing rules are defined
by U(x1, x2) = (1 − x1(1 − x2), 1 − (1 − x1 − x2)

2) if (x1, x2) 6= (0, 1) and U(0, 1) =
{(−1, 1), (1, 1)}. This satisfies assumption A1 to A4. In particular, any selection u of U
satisfies the quasiconcavity requirement A4. As described above, this defines a game with
incomplete preferences E = ((Xi)i=1,2, (.i)i=1,2). Clearly, for player 2, the unique best-
response to x1 is x2 = 1− x1. Thus, for every x1 > 0, (x1, x2) is not a Nash equilibrium
of E , since it would imply x2 = 1− x1 < 1, but then the only best-response of player 1 is
x1 = 0, a contradiction. Thus, the only candidate to be a Nash equilibrium is (0, 1), but it
is not, since (0, 1) �1 (ε, 1) for every ε ∈]0, 1]. Indeed, 1 = supU1(0, 1) ≤ inf U1(ε, 1) = 1
and 1 = supU1(ε, 1) > inf U1(0, 1) = −1. Hence, E has no Nash equilibria. In particular,
it is not generalized correspondence secure (see [8]), a condition that would imply the
existence of a Nash equilibrium of E .

Thus, one cannot apply recent generalized Nash existence results to E (e.g., Yannelis,
He [17] or Carmona and Podzeck5 [8]) simply because the game may fail to have a Nash
equilibrium. We now study the possibility of restoring existence after some completion of
the preferences. Recall that a completion of the preorder .i defined on X is a complete
preorder .′

i on X such that:
(i) ∀(x, y) ∈ X2, x .i y ⇒ x .′

i y;
(ii) ∀(x, y) ∈ X2, x �i y ⇒ x �′

i y.
When the preorders .i, i ∈ N , are defined from U as above, then for every selection

q of U , one can define a q-completion of .i as the complete preorder .q
i on X such that:

x .q
i y ⇔ qi(x) ≤ qi(y). This is a weak completion of .i, in the sense that it satisfies

property (i) but not property (ii). This is because x �i y is defined by: vi(x) ≤ vi(y) for
every selection v of U , and wi(x) < wi(y) for at least one selection of U , and this may not
imply qi(x) < qi(y).

Corollary 5 Consider an economy with externalities and endogenous sharing rule which
satisfies assumptions A1 to A4, and let .i be the preorders associated to U as described
above. Then there exists a q-completions .q

i of the preorders .i (i ∈ N) for some selection
q of U , such that ((Xi)i∈N , (.

q
i )i∈N , (Bi)i∈N) has a generalized Nash equilibrium x∗ ∈ X.

4Here, �i denotes the strict preorder associated to .i, that is: for every (x, y) ∈ X2, x �i y if and
only if x .i y and not (y .i x).

5Remark that conversely, our paper does not generalize the existence results of these two papers.
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Remark 6 As said above, the completion above may not preserve the strict order. More
precisely, it is possible (though not automatic) that the generalized Nash equilibrium x∗ ∈
X and the selection q in Corollary 5 satisfy ui(x) ≤ ui(y) for every selection u of U
with at least one strict inequality, although qi(x) = qi(y). It is not surprising, since the
endogenous sharing rule q can be seen as ”summarizing actions taken by unseen agents
whose behavior is not modelled explicitely” (see [16]). This unmodeled behaviour implies
that the new sharing rule q can really change the preferences of the players (at least
at indeterminacy points), and there is no reason why the associated q-completion would
preserve the strict order.

Anyway, a possibility to preserve the strict order is to strengthen the definition of the
preorders �i as follows. Say that y ∈ X is U-strongly preferable to x ∈ X for player i,
denoted x ≪i y, if and only if ui(x) < ui(y) for every selection u of U . This leads to a
new notion of profitable deviation for player i (more restrictive than this defined by �i),
thus to a weaker notion of Nash equilibrium. Under assumptions A1 to A4, the existence
of a Nash equilibrium for such preorders ≪i is a consequence of Shafer-Sonnenschein’s
Theorem (see [15]). Indeed, if yi ∈ Pi(x) := {yi ∈ Xi : (xi, x−i) ≪i (yi, x−i)}, then,
by definition of ≪i, and because U has a closed graph, we get x′ ≪ (y′i, x

′
−i) for every

(x′, y′i) in some neighborhood of (x, yi). This proves that Pi has an open graph. Moreover,
xi /∈ coPi(x) for every i ∈ I (from assumption A4). Consequently, we can apply Shafer-
Sonnenschein’s Theorem to get the existence of x∗ ∈ X such that Pi(x

∗) = ∅ for every
i ∈ N , i.e. x∗ is a Nash equilibrium in the game defined by the preorders ≪i. This can
be extended to the case of an economy with endogenous sharing rules.

3.2 Generalized Games with Discontinuous Payoffs

For every generalized game G = ((Xi)i∈N , (ui)i∈N),B) where each utility function ui is
assumed to be bounded and quasiconcave with respect to xi, we can restore existence of
a generalized Nash equilibrium by changing the payoff functions at discontinuity points
under the constraint that the graph of the new game remains in the closure of the graph
of the original game. More precisely, we can construct new payoff functions q = (qi)i∈N
such that:

(a) the economy with externalities G′ = ((Xi)i∈N , (qi)i∈N),B) admits a generalized
Nash equilibrium x∗.

(b) for every y ∈ X with yi ∈ Bi(y−i) for every i ∈ N , there is a sequence (yn)n∈IN

converging to y such that yni ∈ Bi(y
n
−i) for every i ∈ N and q(y) = limn→+∞ u(yn);

This extends the sharing rule existence result in [5] (Theorem 2). The proof is a
direct consequence of Theorem 2. Indeed, for every profile y ∈ X, define U(y) to be the
set of limit points of (u(yn))n∈IN for all possible sequences (yn)n∈IN converging to y and
such that yni ∈ Bi(y

n
−i) for all i ∈ N . Clearly, U satisfies all the assumptions A1 to A4.

Consequently, from Theorem 2, there is a solution (x, q), which satisfies conditions (a)
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and (b) above.

3.3 Exchange Economies

Consider n consumers and m commodities. The initial endowment ei of consumer i
is assumed to be an interior point in Rm

+ . Consumer i’s consumption set is equal to
Xi = {xi ∈ Rm

+ : xi ≤
∑

j∈N ej + (1, ..., 1)}.
Following the interpretation of subsection 3.1, consumer’s incomplete preferences are

assumed to be represented by a multivalued function6 Ui from Xi to R+ with a closed
graph, nonempty bounded values on every compact set and admitting at least one quasi-
concave selection ui. An example, for m = 2, could be:

(1) U1(x1, x2) =







x1 + x2 if x1 + x2 < 2,
x1 + x2 + 1 if x1 + x2 > 2,
[x1 + x2, x1 + x2 + 1] if x1 + x2 = 2.

In this economy, there is a bonus of 1 unit if the consumer has a sufficient quantity
of goods, because he may have a substantial benefit if he has more than some minimal
level. Moreover, consumer 1’s payoff is indetermined when x1 + x2 = 2, and there are
many ways to complete the preferences .

Under the above assumptions, there exists a selection (qi)i∈N of (Ui)i∈N satisfying (a),
(b) and (c) below:

(a) the economy {Xi, qi, ei}i∈N admits a walrasian equilibrium (x∗, p∗) ∈
∏

i∈N Xi ×
∆(Rm

+ ), that is:
7

(1)
∑

i∈N x∗
i ≤

∑

i∈N ei, and
(2) x∗

i maximizes the utility function qi of agent i on his budget set Bi(p
∗) = {xi ∈

Xi : p
∗ · (xi − ei) ≤ 0}.

(b) for every xi ∈ Bi(p
∗), there is a sequence (xn

i , p
n)n∈IN converging to (xi, p

∗), with
xn
i ∈ Bi(p

n), and such that limn→+∞ ui(x
n
i ) = qi(xi).

(c) for every xi ∈ Xi and xi /∈ Bi(p
∗), qi(xi) = ui(xi).

Conditions (b) and (c) guarantee that the payoff function qi is not too far from ui

(modifications occur only at discontinuity points that are inside the budget set). In
particular, ui(xi) = qi(xi) if ui is continuous at xi. The proof can be found in appendix
B. Let us illustrate the result with an example.

6Here, to simplify the exposition, we do not allow externalities, that is Ui depends only of player i’s
strategies.

7The set ∆(Rm
+ ) denotes the unit simplex of Rm

+ .

6



Example 7 Consider the following walrasian economy with externalities and discontin-
uous payoffs: m = 2, e1 = e2 = (1, 1) and U1 = U2 defined as above in (1). The following
payoff functions u1 and u2 are quasiconcave selections of U1 = U2:

u1(x1, x2) = u2(x1, x2) =







x1 + x2 if x1 + x2 < 2,
x1 + x2 + 1 if x1 + x2 > 2,
3x1

2
+ x2 if x1 + x2 = 2

However, the exchange economy defined by u1 and u2 has no walrasian equilibrium.
Indeed, suppose p = (p1, p2) is an equilibrium price vector. If p1 ≤ p2, then no consumer
demands x1, if p1 > p2 no consumer demands x2. Now, if we consider the selection:

q1(x1, x2) = q2(x1, x2) =

{

x1 + x2 if x1 + x2 ≤ 2,
x1 + x2 + 1 if x1 + x2 > 2

Then x∗ = (1, 1), p∗ = (1, 1) is a walrasian equilibrium.

4 Appendix A: Proof of Theorem 2

The proof consists in several steps: first, we turns G into an auxiliary discontinuous
strategic game G′. Second (steps 2 and 3), we prove the existence of a relaxed Nash
equilibrium of G′. This is used to construct in step 4 a sharing rule solution of G′ that
satisfies some desirable properties. Finally, such a sharing rule solution is used to build
a solution of G. This methodology follows the one developed in [5] and [4] to prove
existence of Nash, approximate and sharing rule equilibria in discontinuous games. But
it is more complicated because of the externalities. Importantly, the existence results
contained in steps 3 and 4 are valid for any quasiconcave compact discontinuous strategic
game ((Xi)i∈N , (ui)i∈N).

By assumption, U admits a single-valued selection φ = (φi)i∈I where each φi is quasi-
concave in player i’s strategy.

Step 1. Associate to G a discontinuous game G′.
Following an idea of Reny [13], we associate to the economy with externalities G =

((Xi)i∈N , (φi)i∈N),B) a strategic game G′ as follows. Because U is bounded, there exists
Λ ∈ R such that φi(x) ≥ Λ + 1 for every i ∈ N and every profile x ∈ X. The game G′

has N players. For every i ∈ N , strategy set of player i is Xi, and his payoff is

ui(x) =

{

φi(x) if xi ∈ Bi(x−i),
Λ otherwise.

These new payoff functions are also quasiconcave.
Step 2. Generalized regularization of payoff functions of G′.
Throughout this proof, for every i ∈ N , x ∈ X, and U in V(x−i) (the set of open subsets
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of X−i), denote by WU(xi, x−i) the set of Kakutani-type8 multivalued mappings di from
U to Xi such that xi ∈ di(x−i) for every x−i ∈ U . Let ui : X → R be the following

regularization9 of the utility function ui

(2) ui(x) := supU∈V(x−i)
supdi∈WU (x) infx′

−i
∈U,x′

i
∈di(x′

−i
) ui(x

′).

Remark that ui(x) ≤ ui(x) for every x ∈ X, since in the infimum above one can take

x′ = x.

Step 3. Existence of a refined Reny solution of G′.
Let us prove that there exists a pair (x∗, v∗) ∈ Γ (where Γ := {(x, u(x)) : x ∈ X}) such
that:

(3) ∀i ∈ N, sup
xi∈Xi

ui(xi, x
∗

−i) ≤ v∗i .

Such pair (x∗, v∗) refines the Reny solution concept introduced in [5]. When ui is
continuous for every i ∈ N , x∗ is a Nash equilibrium and v∗ = u(x∗) is the associated
payoff vector.

By contradiction, assume that there is no such pair, and let us prove that G′ is
generalized better-reply secure. Recall that G′ is generalized better-reply secure (Barelli
and Meneghel [3]) if whenever (x, v) ∈ Γ and x is not a Nash equilibrium, there exists
a player i and a triple (di, Vx−i

, αi), where Vx−i
is an open neighborhood of x−i, di is a

Kakutani-type multivalued function from Vx−i
to Xi and αi > vi is a real number such

that for every x′
−i in Vx−i

and x′
i ∈ di(x

′
−i), one has ui(x

′
i, x

′
−i) ≥ αi.

For, consider (x, v) ∈ Γ such that x is not a Nash equilibrium. By assumption,
(x, v) does not satisfy inequality (3), thus there exists some player i ∈ N such that
supyi∈Xi

ui(yi, x−i) > vi. From the definition of ui, there is ε > 0, U ∈ V(x−i), di ∈ WU(x)

such that for every x′
−i ∈ U and every x′

i ∈ di(x
′
−i), ui(x

′
i, x

′
−i) ≥ vi + ε : this implies

generalized better-reply security. Consequently, from Barelli and Meneghel [3], since G′

is generalized better-reply secure, it admits a Nash equilibrium. But this is a contra-
diction, since if x ∈ X is a Nash equilibrium, (x, u(x)) satisfies inequality (3) (because
ui(x) ≤ ui(x) for every x ∈ X). By contradiction, this proves the existence of (x∗, v∗) ∈ Γ

satisfying inequality (3).

Step 4. Existence of a sharing rule solution of G′.
We now prove that there exists some new payoff functions (qi)i∈I and a pure Nash equi-
librium x∗ ∈ X of G′′ = ((Xi)i∈N , (qi)i∈N), with the additional properties:
(i) for every i and di ∈ Xi, qi(di, x

∗
−i) ≥ ui(di, x

∗
−i).

8A Kakutani-type multivalued mapping is a multivalued mapping with nonempty convex values and
a closed graph.

9This function was introduced by Carmona (see [7]).
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(ii) For every y ∈ X , there exists some sequence (yn) converging to y such that u(yn)
converges to q(y).

For every i ∈ N , denote by Si(y) the space of sequences (y
n)n∈N of X converging to y

such that limn→+∞ ui(y
n) = ui(y). Then, define q : X → RN by

q(y) =











v∗ if y = x∗,

any limit point of u(xn)n∈N if y = (di, x
∗
−i) for some i ∈ N, di 6= x∗

i , (x
n)n∈N ∈ Si(di, x

∗
−i),

q(y) = u(y) otherwise.

Since (x∗, v∗) ∈ Γ, and by definition of q, condition (ii) above is satisfied at x∗. Clearly,
by definition, it is also satisfied at every y different from x∗ for at least two components,
and finally also at every (di, x

∗
−i) with di 6= x∗

i (for some i ∈ N), from the definition of
q(di, x

∗
−i) in this case. Condition (i) is true at every y different from x∗ for at least two

components (from ui ≤ ui), is true at every (di, x
∗
−i) with di 6= x∗

i by definition, and is

finally true at x∗ from inequality (3). This ends the proof of Step 4.

Step 5. Existence of a solution of G.
Now, we finish the proof of Theorem 2. Take di ∈ Bi(x

∗
−i) 6= ∅. For every x′

−i in
some neighborhood of x∗

−i and every x′
i ∈ Bi(x

′
−i), we have, by definition, ui(x

′
i, x

′
−i) =

φi(x
′
i, x

′
−i) ≥ Λ + 1. Since Bi is a Kakutani-type mapping, this implies, by definition,

ui(di, x
∗
−i) ≥ Λ + 1 (where ui is the regularization of ui, defined in the beginning of this

proof). Thus, from condition (i) in step 4 above, we get

(4) ∀di ∈ Bi(x
∗

−i), qi(di, x
∗

−i) ≥ ui(di, x
∗

−i) ≥ Λ + 1.

Since x∗ is a Nash equilibrium of G′′, we have:

∀i ∈ N, qi(x
∗) ≥ sup

di∈Xi

qi(di, x
∗

−i) ≥ Λ + 1.

From condition (ii) in step 4 above, there is a sequence (xn) converging to x∗ such that
u(xn) converges to q(x∗). Since qi(x

∗) ≥ Λ+1 for every i ∈ N , we cannot have ui(x
n) = Λ

for n large enough. Consequently, from the definition of ui, we get ui(x
n) = φi(x

n) and
xn
i ∈ Bi(x

n
−i) for n large enough. Passing to the limit, we get x∗

i ∈ Bi(x
∗
−i) for every i ∈ I

(because Bi has a closed graph). A similar argument can be applied to any (yi, x
∗
−i) ∈ X

for which yi ∈ Bi(x
∗
−i): there is a sequence (xn) converging to (yi, x

∗
−i) such that u(xn)

converges to q(yi, x
∗
−i). Since qi(yi, x

∗
−i) ≥ Λ + 1 (from inequality (4)), we cannot have

ui(x
n) = Λ for n large enough. Consequently, ui(x

n) = φi(x
n) and xn

i ∈ Bi(x
n
−i) for n

large enough. In particular, since φ is a selection of U and since U has a closed graph, we
get

(5) ∀yi ∈ Bi(x
∗

−i), q(yi, x
∗

−i) ∈ U(yi, x
∗

−i).

Now, define q̃(yi, x
∗
−i) = q(yi, x

∗
−i) whenever yi ∈ Bi(x

∗
−i) for some i ∈ N , and q̃(y) = φ(y)

elsewhere. The proof that x∗ is a equilibrium of ((Xi)i∈N , (q̃i)i∈N , B) is a straightforward
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consequence of x∗ being a Nash equilibrium of ((Xi)i∈N , (qi)i∈N). Last, we have to prove
that q̃(y) ∈ U(y) for every y ∈ X. This is clear at y = (yi, x

∗
−i) for yi ∈ Bi(x

∗
−i), from (5)

above. For others y, we have q̃(y) = φ(y) ∈ U(y) by definition. This ends the proof of
Theorem 2.

5 Appendix B: proof of the statements in Section 3.3

From the exchange economy, define an economy with externalities and discontinuous
payoffs (G,B) as follows:

1. There are (N + 1) players.

2. For i = 1, ..., N , player i’s convex compact strategy space is Xi = {xi ∈ Rm
+ : xi ≤

∑N

i=1 ei + (1, ..., 1)} and his payoff function is ui.

3. The strategy space of player (N +1) (called the auctioneer) is XN+1 = ∆(Rm
+ ), and

his payoff function is vN+1(x, p) = p.
∑

i∈N(xi − ei).

4. Last, define the strategy correspondences as follows: for every i ∈ N , Bi(x, p) =
Bi(p) = {xi ∈ Xi : p · xi ≤ p · ei}, and finally define BN+1(x, p) = XN+1.

Following section 3.2, this economy has a solution (x∗, p∗, q̃). This means that:

1. For every (x, p) ∈
∏

i Xi × ∆(Rm
+ ) such that xi ∈ Bi(p) for every i ∈ N , there

is a sequence (xn, pn)n∈IN converging to (x, p) such that xn
i ∈ Bi(p

n) for every
i ∈ N and q̃i(x, p) = limn→+∞ ui(x

n
i ). In particular, from the continuity of vN+1,

q̃N+1(x, p) = vN+1(x, p) = p.
∑

i∈N(xi − ei).

2. (i) For every i ∈ N , x∗
i ∈ Bi(p

∗).
(ii) For every i ∈ N , for every xi ∈ Bi(p

∗), q̃i(xi, x
∗
−i, p

∗) ≤ q̃i(x
∗, p∗).

(iii) For every p ∈ ∆(Rm
+ ), p.

∑

i∈N(x
∗
i − ei) ≤ p∗.

∑

i∈N(x
∗
i − ei).

Let us now define qi(xi) := q̃i(xi, x
∗
−i, p

∗) for every xi ∈ Bi(p
∗), and qi(xi) = ui(xi)

otherwise. From 1 and 2 above, there is a sequence (xn, pn)n∈IN converging to (xi, x
∗
−i, p

∗)
such that xn

i ∈ Bi(p
n) for every i ∈ N and

(6) q̃i(xi, x
∗

−i, p
∗) = lim

n→+∞
ui(x

n
i ) = qi(xi).

Thus condition (b) and (c) in section 3.3 hold. Let us prove that condition (a) also
holds, that is, (x∗, p∗) is a walrasian equilibrium of the economy with payoff functions
(qi)i∈N .
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First, assume that we do not have
∑

i∈N(x
∗
i − ei) ≤ 0. Then, let us define p =

(p(1), ..., p(k), ..., p(m)) ∈ ∆(Rm
+ ) with p(k) = 0 when

∑

i∈N(x
∗
i − ei)(k) ≤ 0 (where

∑

i∈N(x
∗
i −ei)(k) denotes k-component of

∑

i∈N(x
∗
i −ei)), and p(k) = λ.

∑

i∈N(x
∗
i −ei)(k)

otherwise (where λ > 0 is a normalization coefficient that insures that p ∈ ∆(Rm
+ )). By

definition, we get p.
∑

i∈N(x
∗
i − ei) > 0, thus from (iii) above, p∗.

∑

i∈N(x
∗
i − ei) > 0. But

from condition (i) above, the budget constraint yields p∗(x∗
i −ei) ≤ 0 for every i ∈ N , and

summing these inequalities, we get p∗.
∑

i∈N(x
∗
i − ei) ≤ 0, a contradiction. This proves

∑

i∈N(x
∗
i − ei) ≤ 0.

From (ii) above, for every xi ∈ Bi(p
∗), we have qi(xi) = q̃i(xi, x

∗
−i, p

∗) ≤ q̃i(x
∗, p∗) =

qi(x
∗
i ). Thus, for every i ∈ N , x∗

i maximizes qi in Bi(p
∗), which ends the proof.
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