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Abstract

When using some analytical and semi-analytical scattering theories
such as Generalized Lorenz-Mie Theories (GLMTs) and Extended Bound-
ary Condition Method (EBCM) for structured beams, electromagnetic
fields, expanded over a set of vector wave functions, may be encoded in
some coeffi cients known as Beam Shape Coeffi cients (BSCs). In the case of
Laguerre-Gauss beams freely propagating, the evaluation of BSCs by using
numerical quadratures is time-consuming while localized approximations
have been shown to be of limited validity. The present paper therefore es-
tablishes finite series expressions to evaluate the BSCs of Laguerre-Gauss
beams freely propagating in a rigorous framework, which has the known
advantage of speeding up computations with respect to the use of a nu-
merical quadrature technique.

Keywords: Generalized Lorenz-Mie theories; structured beams; T-matrix;
beam shape coeffi cients; finite series; Laguerre-Gauss beams.
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1 Introduction.

When dealing with T-matrix methods for the scattering of light and other
electromagnetic radiation by particles, such as analytical Generalized Lorenz-
Mie Theories (GLMTs) for particles having a suffi cient degree of symmetry
to allow for the use of a method of separation of variables [1], [2], [3], or semi-
analytical Extended Boundary Condition Method (EBCM) for arbitrary shaped
particles [4], [5] particularly in the case of structured beams [6], [7], electromag-
netic fields may be expanded over a set of vector wave functions. In spherical
coordinates, expansions are carried out over a set of vector spherical wave func-
tions (VSWFs) and expansion coeffi cients are expressed in terms of coeffi cients
known as Beam Shape Coeffi cients (BSCs) usually denoted as gmn,TM and gmn,TE
(TM: Transverse Magnetic; TE: Transverse Electric).
The original method to evaluate the BSCs of electromagnetic beams is by

using quadratures, e.g. [8]. In some cases, quadratures may be analytically
solved to produce closed form expressions of the BSCs, such as in the cases of
zeroth-order Bessel beams [9], higher-order Bessel beams [10] or zeroth-order
Mathieu beams [11]. In the case of Gaussian beams, it has never been possible
to analytically solve the quadratures and, therefore, since these Gaussian beams
may be viewed as a special case of Laguerre-Gauss beams, there is little chance
to achieve analytical quadratures to the evaluation of BSCs of Laguerre-Gauss
beams as well. Hence, quadratures to the evaluation of BSCs of Laguerre-Gauss
beams have to be carried out numerically, which is a time-consuming process.
To circumvent this diffi culty, we may think of using a localized approximation
(with several variants) which may speed up the computations by several orders
of magnitude as reviewed in [12], see also [13] for an up-dated terminology, and
[14], [15] for complements. Unfortunately, it has recently been demonstrated
that any existing localized approximation has a limited domain of validity when
dealing with helical beams, i.e. having a topological charge [16], as is the case for
Laguerre-Gauss beams whether they are freely propagating [17] or focused by
a lens [18]. The arsenal of methods to evaluate BSCs however contains another
technique to speed up the evaluation of BSCs, namely the use of finite series
which is a rigorous analytical method [19], [20]. A disadvantage of the finite
series method is nevertheless its lack of flexibility insofar as it requires a fairly
heavy analytical work before numerical implementation when the description of
the beam is modified. Up to now, finite series expressions are known only in the
case of Gaussian beams. To circumvent the aforementioned diffi culties in the
evaluation of BSCs of Laguerre-Gauss beams, the present paper establishes the
finite series expressions required for the use of the finite series technique in the
case of Laguerre-Gauss beams freely propagating.
Up to now, we have expressed our motivation to the study of the finite se-

ries method to evaluate the BSCs of Laguerre-Gauss beams. This motivation is
reinforced by the many applications of such beams, in particular due to the fact
that they possess a helical wavefront allowing for the transfer of angular momen-
tum to an illuminated object, e.g. Padgett and Allen [21] who discussed orbital
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angular momentum associated with helical wavefronts and applications, Garbin
et al. [22] who experimentally and numerically studied the scattering of highly
focused Laguerre-Gauss beams by dielectric and metal spheres, O’Holleran et al.
[23] who provided a 3D view of optical vortices associated with Laguerre-Gauss
modes, Friese et al. [24] who studied the transfer of optical angular momentum
to trapped absorbing particles, a study relevant to the field of optical infor-
mation. Laguerre-Gauss beams were discussed as well in the framework of a
review devoted to optical tweezers by Molloy and Padgett [25]. Other applica-
tions concerned quantum information and the entanglement of the polarization
of a single photon with its orbital angular momentum by Nagali et al. [26],
entanglement again but involving many orthogonal quantum states rather than
only two states by Mair et al. [27], object identification by measuring the joint
orbital angular momentum spectrum of two-photon states by Uribe-Patarroyo
et al. [28], optical traps to study vortices in Bose-Einstein condensates by Tem-
pere et al. [29], optical communication systems in atmospheric turbulence by
Malik et al. [30], use of vortex masks to observe dim exoplanets by Foo et al.
[31], to provide a few examples without pretending to exhaustiveness.
The paper is organized as follows. Section 2 recalls a background concerning

the method to be used to establish finite series expressions and concerning the
electromagnetic fields of a Laguerre-Gauss beam freely propagating. Section 3
deals with the finite series expressions for TM- and TE-BSCs of a Laguerre-
Gauss beam freely propagating. Section 4 is a conclusion.

2 Background.

2.1 Neumann Expansion Theorem (NET).

Although the way to use the NET, relying on Neumann or Bessel function
expansions, has already been published in the literature, e.g. [3], pp. 121-124,
it is concisely reproduced here for the convenience of the reader. It starts with
a result published by Watson [32], pp. 524-525. Let us consider an equation of
the form:

x1/2g(x) =

∞∑
n=0

cnJn+1/2(x) (1)

in which Jn+1/2(.) are classical half-order Bessel functions. The Maclaurin
expansion of the function g(x) reads as:

g(x) =

∞∑
n=0

bnx
n (2)
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Then the NET states that the coeffi cients cn are given by:

cn = (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
bn−2m (3)

in which Γ is the celebrated Gamma function satisfying Γ(n) = (n− 1)! and
Γ(z+1) = zΓ(z). We then have two ways of expressing the coeffi cients cn, either
from the Bessel function expansion of Eq.1 or from the Maclaurin expansion of
Eq.2, using Eq.3. Equating the two resulting expressions will allow one to
establish finite series expressions for the BSCs. This is done using what may be
called the NET-procedure.

2.2 The NET-procedure.

The procedure starts with the expressions of the radial electric Er and
magnetic Hr field components in spherical coordinates (r, θ, ϕ) which may be
expressed as, e.g. Eqs.(3.10) and (3.19) of [3]:

(
Er
Hr

)
=

(
E0
H0

) ∞∑
n=1

+n∑
m=−n

cpwn

(
gmn,TM
gmn,TE

)
n(n+ 1)

r
Ψ(1)
n (kr)P |m|n (cos θ) exp(imϕ)

(4)

in which E0, H0 are field strengths, gmn,TM and gmn,TE are the BSCs to be
evaluated within the framework of the NET-procedure, k is the wavenumber,
Ψ
(1)
n (.) denote the first-order spherical Bessel functions also denoted as jn(.), and

P
|m|
n (.) are associated Legendre functions defined by using Hobson’s notation
[33]. Furthermore cpwn (with pw standing for "plane wave") denotes expansion
coeffi cients which appear in the Bromwich formulation of the classical Lorenz-
Mie theory [34] according to:

cpwn =
(−i)n
ik

2n+ 1

n(n+ 1)
(5)

Afterward, we discard the ϕ-dependency by using the orthogonality relation:

∫ 2π

0

exp[i(m−m′)ϕ]dϕ = 2πδmm′ (6)
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to obtain:

∫ 2π

0

(
Er
Hr

)
exp(−imϕ)dϕ (7)

= 2π

(
E0
H0

) ∞∑
n=|m|

cpwn

(
gmn,TM
gmn,TE

)
n(n+ 1)

r
Ψ(1)
n (kr)P |m|n (cos θ)

in which we took account of the fact that P |m|n = 0 if n < |m|. The next
step is to discard the θ-dependency as well. This may be done in two ways. The
first way is to specify θ = π/2 in Eq.7 and to invoke the following relations for
associated Legendre functions [33]:

Pmn (0) = (−1)
n+m
2

(n+m− 1)!!

2
n−m
2 (n−m2 )!

, (n−m) even (8)

Pmn (0) = 0, (n−m) odd (9)

in which:

n!! = 1.3.5...n
(−1)!! = 1

}
(10)

to be completed with, for a better-looking expression:

n!! =
2
n+1
2

√
π

Γ(
n

2
+ 1) (11)

Furthermore, we have [32], [35]:

Ψ(1)
n (kr) =

√
π

2kr
Jn+ 1

2
(kr) (12)

Eq.7 may then be rewritten as:
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(kr)1/2
∫ 2π

0

r

(
Er(θ = π/2)
Hr(θ = π/2)

)
exp(−imϕ)dϕ (13)

= π
√

2π

(
E0
H0

) ∞∑
n=|m|,(n−m) even

cpwn n(n+ 1)

(
gmn,TM
gmn,TE

)
P |m|n (0)Jn+1/2(kr)

Later on, this equation, specified for the Laguerre-Gauss beams under
study, will be given the form of Eq.1 and will allow one to express the BSCs
using finite series expressions, with however the restriction that we must have
(n −m) even. For (n −m) odd, Eq.7 is differentiated with respect to cos θ, in
order to take advantage of the relations:

[
dPmn (cos θ)

d cos θ
]cos θ=0 = 0, (n−m) even (14)

[
dPmn (cos θ)

d cos θ
]cos θ=0 = (−1)

n+m−1
2

(n+m)!!

2
n−m−1

2 (n−m−12 )!
, (n−m) odd (15)

Then, instead of Eq.13, we obtain:

(kr)1/2
∫ 2π

0

r[
∂

∂ cos θ

(
Er
Hr

)
]θ=π/2 exp(−imϕ)dϕ (16)

= π
√

2π

(
E0
H0

) ∞∑
n=|m|,(n−m) odd

cpwn n(n+ 1)

(
gmn,TM
gmn,TE

)
[
dPmn (cos θ)

d cos θ
]cos θ=0Jn+1/2(kr)

which will later be given the form of Eq.1 and will allow one to obtain finite
series expressions for the BSCs of Laguerre-Gauss beams freely propagating, for
(n−m) odd.

2.3 Laguerre-Gauss beams freely propagating.

The radial component of the electric field of a Laguerre-Gauss beam
freely propagating, relying on books by Siegmann [36], [37], for a harmonic beam
having a time-dependency of the form exp(+iωt), is given by [17]:
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Er(r, θ, ϕ) =
E0

kw(r cos θ)

(
r sin θ

√
2

w(r cos θ)

)ν
Lνµ(

2r2 sin2 θ

w2(r cos θ)
) (17)

exp[− ikr
2 sin2 θ

2q̃(r cos θ)
] exp[i(2µ+ ν + 1)ψ(r cos θ)] exp(iνϕ) exp(−ikr cos θ) sin θ cosϕ

in which:

w(r cos θ) = w0

√
1 +

(
2r cos θ

kw20

)2
(18)

q̃(r cos θ) = r cos θ +
ikw20

2
(19)

ψ(r cos θ) = tan−1
2r cos θ

kw20
(20)

in which w0 is the beam waist radius of the beam, while µ and ν define
the type of Laguerre-Gauss beam under study. Also, Lνµ denotes associated
Laguerre polynomials defined as follows [38], [39]:

Lνµ(x) =
1

µ!

µ∑
i=0

µ!

i!

(
ν + µ
µ− i

)
(−x)i (21)

in which () denotes a binomial coeffi cient. The "usual" Laguerre polyno-
mials Lµ(x) are L0µ(x). The associated Laguerre polynomials can be evaluated
recursively from the first two polynomials as follows:

Lα0 (x) = 1 (22)

Lα1 (x) = 1 + α− x (23)

Lαk+1(x) =
(2k + 1 + α− x)Lαk (x)− (k + α)Lαk−1(x)

k + 1
(24)
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The radial component of the electric field will allow one to provide finite
series expressions for the TM-BSCs. For the TE-BSCs, we need the correspond-
ing expression for the radial component of the magnetic field. For this, we have
to take into account the fact that Eq.17 represents a paraxial approximation
which therefore does not satisfy Maxwell’s equations. Hence, using the Faraday
law to express the magnetic field from the electric field will generate artefacts
which will have to be removed to obtain a proper paraxial approximation of the
radial component of the magnetic field. Having this in mind, the radial compo-
nent Er is actually obtained from an electric field E which may be written as
[17]:

E = (Ex, Ey, Ez) = (E0Ee−ikz, 0, 0) (25)

leading to:

Er = E0Ee−ikz sin θ cosϕ (26)

which, identifying with Eq.17, defines E . According to Faraday’s law, we
then have:

H =
1

−iωµ curlE =
1

−iωµ (0,
∂Ex
∂z

, 0) (27)

in which µ is the permeability, e.g. Eq.(1.41) in [3]. From Eqs.17, 25, 27
and removing artefacts which include ∂E/∂z, we obtain:

H = (0, H0Ee−ikz, 0) (28)

in which we have used E0/H0 = ωµ/k. Hence:

Hr = H0Ee−ikz sin θ sinϕ (29)

which will be used to determine the TE-BSCs. The removal of the artefacts
aimed to symmetrize expressions for the radial electric and radial magnetic
components, as shown in Eqs.26 and 29. They are easily identified because
their presence would break the symmetry exhibited by these equations.
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3 Expressions to evaluate BSCs.

3.1 TM-BSCS, (n−m) even.

For θ = π/2, we readily have w(r cos θ) = w0, q̃(r cos θ) = ikw20/2, and
ψ(r cos θ) = tan−1 0 = 0, see Eqs.18-20. Then Eq.17 becomes:

Er(θ = π/2) = F [ei(ν+1)ϕ + ei(ν−1)ϕ] (30)

in which:

F =
E0

2kw0

(
r
√

2

w0

)ν
Lνµ(

2r2

w20
) exp(

−r2
w20

) (31)

We then insert Eq.30 into Eq.13, so that, using Eq.6, the left-hand-side
of the electric part of Eq.13 becomes:

LHS = 2π(kr)1/2rF [δm,ν+1 + δm,ν−1] (32)

We now introduce x = kr (not to be confused with a Cartesian coor-
dinate) and the beam confinement factor s = 1/(kw0), and invoke Eq.5. Rear-
ranging, Eq.13 may then be written as:

x1/2g(x)[δm,ν+1 + δm,ν−1] (33)

=
∞∑

n=|m|

(−i)n(2n+ 1)gmn,TMP
|m|
n (0)Jn+1/2(x), (n−m) even

which is of the form of Eq.1 to be used in the NET-procedure, with the
function g(x) given by:

g(x) =
i√
2π
xs(x

√
2s)νLνµ(2x2s2) exp(−x2s2) (34)

Note that Eq.33 shows that we shall only deal with the modes m = ν+1 and
m = ν − 1 in agreement with what we already learnt in [17]. In this Ref., p.46,
correcting an obvious typo, we noted: "we provided results only form = ν±1, in
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agreement with the fact that BSCs for m 6= ν ± 1 are zero for localized beams".
This property could not be positively stated by using numerical quadratures
because there is necessarily the possibility of round-off errors , but it is indeed
here obtained formally within the framework of the NET-procedure.
To account for the modulus of m in Eq.33, restricting ourselves to ν ≥ 0,

we have to distinguish three cases: (i) m = ν + 1, ∀ν ≥ 0 (ii) m = ν − 1, ν > 0
(iii) m = ν − 1, ν = 0 i.e. m = −1. Furthermore, we shall complement various
quantities already introduced with an extra-subscript µ, for convenience. We
then have:

(i) m = ν + 1, ∀ν ≥ 0

x1/2[g(x)]µ =

∞∑
n=ν+1

(−i)n(2n+1)[gν+1n,TM ]µP
ν+1
n (0)Jn+1/2(x), (n−ν) odd (35)

which, using Eq.1, leads to:

cn = (−i)n(2n+ 1)[gν+1n,TM ]µP
ν+1
n (0), n ≥ ν + 1, n− ν odd (36)

cn = 0, otherwise (37)

(ii) m = ν − 1, ν > 0

x1/2[g(x)]µ =

∞∑
n=ν−1

(−i)n(2n+1)[gν−1n,TM ]µP
ν−1
n (0)Jn+1/2(x), (n−ν) odd (38)

leading to:

cn = (−i)n(2n+ 1)[gν−1n,TM ]µP
ν−1
n (0), n ≥ ν − 1, n− ν odd (39)

cn = 0, otherwise (40)

(iii) m = ν − 1, ν = 0

10



x1/2[g(x)]µ =

∞∑
n=1

(−i)n(2n+ 1)[g−1n,TM ]µP
1
n(0)Jn+1/2(x), n odd (41)

leading to:

cn = (−i)n(2n+ 1)[g−1n,TM ]µP
1
n(0), n ≥ 1, n odd (42)

cn = 0, otherwise (43)

We then have a first set of expressions for the coeffi cients cn. We are now
going to establish a second set of expressions for the same coeffi cients relying
on Eqs.2 and 3. For this, we rewrite [g(x)]µ under the form:

[g(x)]µ = GνL
ν
µ(2x2s2) exp(−x2s2)xν+1 (44)

in which Gν , which does not depend on µ, reads as:

Gν =
is√
2π

(s
√

2)ν (45)

We shall use the recurrence relations for Lνµ, Eqs.22—24, under the form:

Lν0(2x2s2) = 1 (46)

Lν1(2x2s2) = 1 + ν − 2x2s2 (47)

Lνk+1(2x
2s2) =

(2k + 1 + ν − 2x2s2)Lνk(2x2s2)− (k + ν)Lνk−1(2x
2s2)

k + 1
(48)

the last one being better rewritten as:
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Lvµ(2x2s2) =
2µ− 1 + ν

µ
Lνµ−1(2x

2s2)−µ− 1 + ν

µ
Lνµ−2(2x

2s2)−2x2s2

µ
Lνµ−1(2x

2s2)

(49)

Let us first consider the cases µ = 0 and 1 which have to be used to
initialize a recurrence process. From Eqs.46 and 44:

[g(x)]0 = Gν exp(−x2s2)xν+1 = Gν

∞∑
t=0

(−x2s2)t
t!

xν+1 = Gν

∞∑
t=0

(−s2)t
t!

x2t+ν+1

(50)

To display this in the form of Eq.2, we set n = 2t+ ν + 1 to obtain:

[g(x)]0 = Gν

∞∑
n=ν+1

E(1)xn (51)

in which we introduced the notation:

E(u) =
(−s2)n−ν−u2

(n−ν−u2 )!
(52)

Eq.51 is of the form of Eq.2:

[g(x)]0 =

∞∑
n=0

[bn]0x
n (53)

with:

[bn]0 = ε(n; 0, 1, ..., ν)GνE(1) (54)

in which ε(n;αj)=0 if n is equal to one of the αj’s, and is equal to 1 otherwise.
For µ = 1, we use Eq.47 instead of 46 and, after a few manipulations

similar to the ones used previously, we obtain:

[bn]1 = Gν [ε(n; 0, 1, ..., ν)(1 + ν)E(1)− 2s2ε(n; 0, 1, ..., ν + 2)E(3) (55)
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We now deal with a general recurrence relation. Using Eqs.44 and 49,
we have:

[g(x)]µ =
2µ− 1 + ν

µ
[g(x)]µ−1 −

µ− 1 + ν

µ
[g(x)]µ−2 −

2s2

µ
{x2[g(x)]µ−1} (56)

Let us focus on the term {.} denoted A. Recalling Eq.2, it can be
evaluated as follows:

A =x2
∞∑
n=0

[bn]µ−1x
n =

∞∑
n=0

[bn]µ−1x
n+2 =

∞∑
t=0

[bt]µ−1x
t+2 (57)

which, using (n = t+ 2), becomes:

A =

∞∑
n=2

[bn−2]µ−1x
n =

∞∑
n=0

ε(n; 0, 1)[bn−2]µ−1x
n (58)

Eq.56 then reads as:

∞∑
n=0

[bn]µx
n =

2µ− 1 + ν

µ

∞∑
n=0

[bn]µ−1x
n − µ− 1 + ν

µ

∞∑
n=0

[bn]µ−2x
n (59)

−2s2

µ

∞∑
n=0

ε(n; 0, 1)[bn−2]µ−1x
n

We then obtain a recurrence relation for the bn-coeffi cients:

[bn]µ =
2µ− 1 + ν

µ
[bn]µ−1 −

µ− 1 + ν

µ
[bn]µ−2 −

2s2

µ
ε(n; 0, 1)[bn−2]µ−1 (60)

As an example, let us evaluate [bn]2 knowing [bn]1 and [bn]0. For µ = 2,
Eq.60 becomes:

[bn]2 =
ν + 3

2
[bn]1 −

ν + 1

2
[bn]0 − s2ε(n; 0, 1)[bn−2]1 (61)
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This may be evaluated by using the expressions for [bn]0 and [bn]1. For
the last term, [bn−2]1 involves ε(n−2; 0, 1, ..., ν) and ε(n−2; 0, 1, ..., ν+ 2). The
evaluation of this last term then relies on the obvious expression:

ε(n; 0, 1)ε(n− 2; 0, 1, ..., k) = ε(n; 0, 1)ε(n; 2, 3, ..., k + 2) = ε(n; 0, 1, ..., k + 2)
(62)

We then obtain:

[bn]2 = Gν [ε(n; 0, 1, ..., ν)
(ν + 1)(ν + 2)

2
E(1)− 2s2ε(n; 0, 1, ..., ν + 2)(ν + 2)E(3)(63)

+2s4ε(n; 0, 1, ..., ν + 4)E(5)]

.
Once the coeffi cients bn are known, we readily know the coeffi cients

bn−2m and obtain new expressions for the coeffi cients cn using Eq.3. These
new expressions are equated with the ones we have obtained previously, e.g.
Eqs.35-43. This leads to:

cn = (−i)n(2n+ 1)[gν+1n,TM ]µP
ν+1
n (0) (64)

= (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ, for n > ν + 1, (n− ν) odd, ν > 0

cn = (−i)n(2n+ 1)[gν−1n,TM ]µP
ν−1
n (0) (65)

= (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ, for n > ν − 1, (n− ν) odd, ν > 0

cn = (−i)n(2n+ 1)[g−1n,TM ]µP
1
n(0) (66)

= (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ, for n > +1, n odd

Next, from Eqs.8 and 11, we have:
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Pmn (0) =
2m√
π

(−1)
n+m
2

(n−m2 )!
Γ(
n+m+ 1

2
), (n−m) even (67)

allowing one to evaluate the expressions for the Pmn ’s in Eqs.64-66, and to
obtain explicit expressions for the TM-BSCs gmn,TM , (n −m) even. They read
as:

[gν+1n,TM ]µ =
in
√
π

2ν+2
(−1)

n+ν+1
2

Γ(n+ν2 + 1)
(
n− ν − 1

2
)!

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ,(68)

for n > ν + 1, (n− ν) odd, ν > 0

[gν−1n,TM ]µ =
in
√
π

2ν
(−1)

n+ν−1
2

Γ(n+ν2 )
(
n− ν + 1

2
)!

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ,(69)

for n > ν − 1, (n− ν) odd, ν > 0

[g−1n,TM ]µ =
in
√
π

4

(−1)
n+1
2

Γ(n2 + 1)
(
n− 1

2
)!

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ,(70)

for n > +1, n odd

3.2 TM-BSCS, (n−m) odd.

The procedure for this case, namely (n − m) odd, being quite similar to
the one used for the previous case, we shall be content with a few intermediary
relations aiming to help the reader who would like to check the derivations, and
with the final results. Instead of Eq.7, we now deal with Eq.13 which requires
us to evaluate the derivative [∂Er/∂ cos θ]θ=π/2. After a few pages of careful
computations, we obtain, from Eq.17:

[
∂Er(cos θ)

∂ cos θ
]θ=π/2 =

E0
k
eiνϕ cosϕ

1

w0
(
r
√

2

w0
)νLνµ(

2r2

w20
) exp(

−r2
w20

) (71)

{−2ir3

kw40
+ ikr[

2

k2w20
(2µ+ ν + 1)− 1]}

15



Afterward, instead of Eq.33, we obtain:

x1/2g(x)[δm,ν+1 + δm,ν−1] (72)

=

∞∑
n=|m|

(−i)n(2n+ 1)gmn,TM [
dP
|m|
n (cos θ)

d cos θ
]θ=π/2Jn+1/2(x), (n−m) odd

with the function g(x) now given by:

g(x) =
i√
2π
xs(xs

√
2)νLνµ(2x2s2) exp(−x2s2){−2ix3s4+ix[2s2(2µ+ν+1)−1]}

(73)

To account for the modulus of m in Eq.72, still with ν ≥ 0, we again have
to distinguish three cases: (i) m = ν + 1, ∀ν ≥ 0 (ii) m = ν − 1, ν > 0 (iii)
m = ν − 1, ν = 0 i.e. m = −1. Furthermore, still adding a subscript µ to
conveniently decorate various quantities, we have:

(i) m = ν + 1, ∀ν ≥ 0

x1/2[g(x)]µ =

∞∑
n=ν+1

(−i)n(2n+1)[gν+1n,TM ]µ[
dP ν+1n (cos θ)

d cos θ
]θ=π/2Jn+1/2(x), (n−ν) even

(74)

cn = (−i)n(2n+ 1)[gν+1n,TM ]µ[
dP ν+1n (cos θ)

d cos θ
]θ=π/2, n ≥ ν + 1, n− ν even (75)

cn = 0, otherwise (76)

(ii) m = ν − 1, ν > 0

x1/2[g(x)]µ =

∞∑
n=ν−1

(−i)n(2n+1)[gν−1n,TM ]µ[
dP ν−1n (cos θ)

d cos θ
]θ=π/2Jn+1/2(x), (n−ν) even

(77)
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cn = (−i)n(2n+ 1)[gν−1n,TM ]µ[
dP ν−1n (cos θ)

d cos θ
]θ=π/2, n ≥ ν − 1, n− ν even (78)

cn = 0, otherwise (79)

(iii) m = ν − 1, ν = 0

x1/2[g(x)]µ =

∞∑
n=2

(−i)n(2n+ 1)[g−1n,TM ]µ[
dP 1n(cos θ)

d cos θ
]θ=π/2Jn+1/2(x), n even

(80)

cn = (−i)n(2n+ 1)[g−1n,TM ]µ[
dP 1n(cos θ)

d cos θ
]θ=π/2, n ≥ 2, n even (81)

cn = 0, otherwise (82)

Next, instead of Eq.44, we rewrite [g(x)]µ under the form:

[g(x)]µ = Lνµ(2x2s2) exp(−x2s2)[Hvx
ν+4 +Kνx

ν+2] (83)

in which:

Hv = −2is4Gν (84)

Kν = i[2s2(2µ+ ν + 1)− 1]Gν (85)

Gν =
is√
2π

(s
√

2)ν (86)

Let us first again consider the cases µ = 0 and 1 to be used to start a
recurrence. Instead of 51, we now have:
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[g(x)]0 = Hv

∞∑
n=ν+4

F (2)xn +Kv

∞∑
n=ν+2

F (1)xn (87)

[bn]0 = ε(n; 0, 1, ..., ν + 3)HνF (2) + ε(n; 0, 1, ..., ν + 1)KνF (1) (88)

in which we introduced the notation:

F (u) =
(−s2)n−ν2 −u
(n−ν2 − u)!

(89)

Similarly, for µ = 1:

[g(x)]1 = (1 + ν)[g(x)]0 − 2s2{x2g(x)0} (90)

[bn]1 = ε(n; 0, 1, ..., ν + 1)(1 + ν)KνF (1) (91)

+ε(n; 0, 1, ..., ν + 3)[(1 + ν)Hν − 2s2Kν ]F (2)

−2s2ε(n; 0, 1, ..., ν + 5)HνF (3)

For the general case, Eqs.56 and 60 are still valid, as conveniently
repeated below:

[g(x)]µ =
2µ− 1 + ν

µ
[g(x)]µ−1 −

µ− 1 + ν

µ
[g(x)]µ−2 −

2s2

µ
{x2[g(x)]µ−1} (92)

[bn]µ =
2µ− 1 + ν

µ
[bn]µ−1 −

µ− 1 + ν

µ
[bn]µ−2 −

2s2

µ
ε(n; 0, 1)[bn−2]µ−1 (93)

which, however, lead to expressions for the coeffi cients [bn]µ which are dif-
ferent from the ones for the case (n−m) even, due to the different expressions
for [bn]0 and [bn]1 which are used to initialize the recurrence process. As an
example, instead of Eq.63, we now have:
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[bn]2 = 2s4ε(n; 0, 1, ..., ν + 7)HνF (4) (94)

−2s2ε(n; 0, 1, ..., ν + 5)[(ν + 2)Hν − s2Kν ]F (3)

+(ν + 2)ε(n; 0, 1, ..., ν + 3)[
ν + 1

2
Hν − 2s2Kν ]F (2)

+
(ν + 1)(ν + 2)

2
ε(n; 0, 1, ..., ν + 1)KνF (1)

Thereafter, instead of Eqs.64-66, we obtain:

cn = (−i)n(2n+ 1)[gν+1n,TM ]µ[
dP ν+1n (cos θ)

d cos θ
]θ=π/2 (95)

= (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ, for n > ν + 1, (n− ν) even, ν > 0

cn = (−i)n(2n+ 1)[gν−1n,TM ]µ[
dP ν−1n (cos θ)

d cos θ
]θ=π/2 (96)

= (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ, for n > ν − 1, (n− ν) even, ν > 0

cn = (−i)n(2n+ 1)[g−1n,TM ]µ[
dP 1n(cos θ)

d cos θ
]θ=π/2 (97)

= (n+
1

2
)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ, for n > +2, n even

Next, from Eqs.15 and 11, we establish:

[
dP ν+1n (cos θ)

d cos θ
]θ=π/2 =

(−1)
n+ν
2 2ν+2√

π(n−ν2 − 1)!
Γ(
n+ ν

2
+

3

2
) (98)

[
dP ν−1n (cos θ)

d cos θ
]θ=π/2 =

(−1)
n+ν
2 −12ν√

π(n−ν2 )!
Γ(
n+ ν

2
+

1

2
) (99)
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[
dP 1n(cos θ)

d cos θ
]θ=π/2 =

4(−1)
n
2

√
π(n2 − 1)!

Γ(
n

2
+

3

2
) (100)

and eventually obtain:

[gν+1n,TM ]µ =
in
√
π

2ν+3
(−1)

n+ν
2

Γ(n+ν2 + 3
2 )

(
n− ν

2
− 1)! (101)

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ,

for n > ν + 1, (n− ν) even, ν > 0

[gν−1n,TM ]µ =
in
√
π

2ν+1
(−1)

n+ν
2 −1

Γ(n+ν2 + 1
2 )

(
n− ν

2
)!

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ,(102)

for n > ν − 1, (n− ν) even, ν > 0

[g−1n,TM ]µ =
in
√
π

8

(−1)
n
2

Γ(n2 + 3
2 )

(
n

2
− 1)!

≤n/2∑
m=0

2
1
2+n−2m

Γ( 12 + n−m)

m!
[bn−2m]µ,(103)

for n > +2, n even

3.3 TE-BSCs.

To deal with the TE-BSCs, we have to use Hr in Eqs.7 and 16 instead
of Er. Computations then run in the same way but for the replacement of a
cosϕ by a sinϕ, see Eqs.26 and 29. This implies that, in Eqs.33 and 72, we
simply have to change [δm,ν+1 + δm,ν−1] to [δm,ν+1 − δm,ν−1]/i. Then, without
redoing the computations, we obtain the following results relating the TM- and
the TE-BSCs, valid whatever the parity of (n−m):

gmn,TM = igmn,TE , m = ν + 1,∀ν ≥ 0 (104)

gmn,TM = −igmn,TE , m = ν − 1, ν > 0 (105)

g−1n,TM = −ig−1n,TE , m = ν − 1, ν = 0 (106)
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4 Conclusion.

For use in some analytical or semi-analytical light scattering theories, like
GLMTs or EBCM, the electromagnetic fields may be encoded in a set of coef-
ficients named beam shape coeffi cients (BSCs). In the case of Laguerre-Gauss
beams (either freely propagating or focused by a lens), the usual quadrature
technique which allows one to evaluate the BSCs has to be carried out numeri-
cally, leading to time-consuming evaluations. Localized approximations, which
are traditionally used to speed-up the computations of the BSCs by orders of
magnitude, unfortunately have a limited domain of validity for Laguerre-Gauss
beams and have to be considered with care and suspicion. Therefore, borrowing
another technique from the arsenal of methods available to evaluate BSCs, the
present paper establishes rigorous expressions to the evaluation of BSCs using
finite series. It must be noted that, although the procedure used is rigorous,
it is, in the present paper, applied to a paraxial approximation of Laguerre-
Gauss beams freely propagating, i.e. using a beam description which does not
perfectly satisfies Maxwell’s equations. Relying on our experience concerning
paraxial Gaussian beams, either using finite series ([3], pp. 164-171) or quadra-
tures [8], the non-Maxwellian character of the paraxial beam should be reflected
by a blowing-up of BSCs values for high-order partial waves. These faulty BSCs
could be set to zero or they would have no consequence because they would
appear for partial waves which, in any case, convey vanishing amplitudes. Once
this is implemented, the BSCs obtained define a beam which perfectly satis-
fies Maxwell’s equations, resulting from the internal coherency of the theory
based on the fact that it uses a basis of regular VSWFs, independently of the
particular technique used to evaluate the BSCs. In the present case, however,
the finite series procedure allows one to transform a non-Maxwellian beam to a
Maxwellian beam, illustrating the remodeling process involved in the evaluation
of BSCs using finite series. Beams generated by the BSCs evaluated by finite se-
ries therefore automatically provide a Maxwellian description of Laguerre-Gauss
beams freely propagating. Subsequent papers will be devoted to the algorith-
mic implementation of the formulas obtained in this paper, and later on, to the
application of the finite series technique to the case of Laguerre-Gauss beams
focused by a lens.
It is furthermore to be noted that the derivations of BSCs in the present

paper have been carried in spherical coordinates for parallel illumination, in
on-axis situations. BSCs for other kinds of curvilinear systems of coordinates
can afterward be obtained from the BSCs in spherical coordinates by using an
extrinsic method, see [40] for the definition of intrinsic and extrinsic methods,
and the introduction of [41] for a review of extrinsic methods in spheroidal and
cylindrical coordinates. BSCs for oblique illumination may be deduced from
the BSCs for parallel illumination by using rules of transformations of BSCs
under rotation of coordinate systems [42], [43], [44], [45], [46]. BSCs for off-
axis situations can be obtained from the BSCs for on-axis situations by using
translation theorems [47] or by introducing the off-axis expressions of the fields

21



right at the beginning of the algebraic treatment, as actually done in the case of
Gaussian beams, see [20]. The last procedure however requires an extra-algebraic
work. It is indeed a defect of the finite series technique that each modification of
the field expressions requires an extra-algebraic work before implementation in
computer programs, although it has been stated that the "whole process may
be in principle carried out in an automatic way by using a formal computation
procedure which would furthermore generate FORTRAN sources" ([3], p. 121).
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