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When using some analytical and semi-analytical scattering theories such as Generalized Lorenz-Mie Theories (GLMTs) and Extended Boundary Condition Method (EBCM) for structured beams, electromagnetic …elds, expanded over a set of vector wave functions, may be encoded in some coe¢ cients known as Beam Shape Coe¢ cients (BSCs). In the case of Laguerre-Gauss beams freely propagating, the evaluation of BSCs by using numerical quadratures is time-consuming while localized approximations have been shown to be of limited validity. The present paper therefore establishes …nite series expressions to evaluate the BSCs of Laguerre-Gauss beams freely propagating in a rigorous framework, which has the known advantage of speeding up computations with respect to the use of a numerical quadrature technique.

1 Introduction.

When dealing with T-matrix methods for the scattering of light and other electromagnetic radiation by particles, such as analytical Generalized Lorenz-Mie Theories (GLMTs) for particles having a su¢ cient degree of symmetry to allow for the use of a method of separation of variables [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Maheu | A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident pro…le[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], or semianalytical Extended Boundary Condition Method (EBCM) for arbitrary shaped particles [START_REF] Waterman | Symmetry, unitarity, and geometry in electromagnetic scattering[END_REF], [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF] particularly in the case of structured beams [START_REF] Mackowski | Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams[END_REF], [START_REF] Wang | Light scattering from an optically anisotropic particle illuminated by an arbitrary shaped beam[END_REF], electromagnetic …elds may be expanded over a set of vector wave functions. In spherical coordinates, expansions are carried out over a set of vector spherical wave functions (VSWFs) and expansion coe¢ cients are expressed in terms of coe¢ cients known as Beam Shape Coe¢ cients (BSCs) usually denoted as g m n;T M and g m n;T E (TM: Transverse Magnetic; TE: Transverse Electric).

The original method to evaluate the BSCs of electromagnetic beams is by using quadratures, e.g. [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF]. In some cases, quadratures may be analytically solved to produce closed form expressions of the BSCs, such as in the cases of zeroth-order Bessel beams [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], higher-order Bessel beams [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF] or zeroth-order Mathieu beams [START_REF] Cha…q | On the validity of the integral localized approximation for on-axis zeroth-order Mathieu beams[END_REF]. In the case of Gaussian beams, it has never been possible to analytically solve the quadratures and, therefore, since these Gaussian beams may be viewed as a special case of Laguerre-Gauss beams, there is little chance to achieve analytical quadratures to the evaluation of BSCs of Laguerre-Gauss beams as well. Hence, quadratures to the evaluation of BSCs of Laguerre-Gauss beams have to be carried out numerically, which is a time-consuming process. To circumvent this di¢ culty, we may think of using a localized approximation (with several variants) which may speed up the computations by several orders of magnitude as reviewed in [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF], see also [START_REF] Gouesbet | Comments on localized and integral localized approximations in spherical coordinates[END_REF] for an up-dated terminology, and [START_REF] Wang | Note on the use of localized beam models for light scattering theories in spherical coordinates[END_REF], [START_REF] Gouesbet | Second modi…ed localized approximation for use in generalized Lorenz-Mie theories and other theories revisited[END_REF] for complements. Unfortunately, it has recently been demonstrated that any existing localized approximation has a limited domain of validity when dealing with helical beams, i.e. having a topological charge [START_REF] Gouesbet | On the validity of the use of a localized approximation for helical beams. I. Formal aspects[END_REF], as is the case for Laguerre-Gauss beams whether they are freely propagating [START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF] or focused by a lens [START_REF] Ambrosio | On localized approximations for Laguerre-Gauss beams focused by a lens[END_REF]. The arsenal of methods to evaluate BSCs however contains another technique to speed up the evaluation of BSCs, namely the use of …nite series which is a rigorous analytical method [START_REF] Gouesbet | Computations of the gn coe¢cients in the generalized Lorenz-Mie theory using three di¤erent methods[END_REF], [START_REF] Gouesbet | Expressions to compute the coe¢ cients gnm in the generalized Lorenz-Mie theory, using …nite series[END_REF]. A disadvantage of the …nite series method is nevertheless its lack of ‡exibility insofar as it requires a fairly heavy analytical work before numerical implementation when the description of the beam is modi…ed. Up to now, …nite series expressions are known only in the case of Gaussian beams. To circumvent the aforementioned di¢ culties in the evaluation of BSCs of Laguerre-Gauss beams, the present paper establishes the …nite series expressions required for the use of the …nite series technique in the case of Laguerre-Gauss beams freely propagating.

Up to now, we have expressed our motivation to the study of the …nite series method to evaluate the BSCs of Laguerre-Gauss beams. This motivation is reinforced by the many applications of such beams, in particular due to the fact that they possess a helical wavefront allowing for the transfer of angular momentum to an illuminated object, e.g. Padgett and Allen [START_REF] Padgett | Light with a twist in its tail[END_REF] who discussed orbital angular momentum associated with helical wavefronts and applications, Garbin et al. [START_REF] Garbin | Mie scattering distinguishes the topologic charge of an optical vortex : a homage to Gustav Mie[END_REF] who experimentally and numerically studied the scattering of highly focused Laguerre-Gauss beams by dielectric and metal spheres, O'Holleran et al. [START_REF] O'holleran | Illustrations of optical vortices in three dimensions[END_REF] who provided a 3D view of optical vortices associated with Laguerre-Gauss modes, Friese et al. [START_REF] Friese | Optical angular-momentum transfer to trapped absorbing particles[END_REF] who studied the transfer of optical angular momentum to trapped absorbing particles, a study relevant to the …eld of optical information. Laguerre-Gauss beams were discussed as well in the framework of a review devoted to optical tweezers by Molloy and Padgett [START_REF] Molloy | Lights, action: optical tweezers[END_REF]. Other applications concerned quantum information and the entanglement of the polarization of a single photon with its orbital angular momentum by Nagali et al. [START_REF] Nagali | Quantum information transfer from spin to orbital angular momentum of photons[END_REF], entanglement again but involving many orthogonal quantum states rather than only two states by Mair et al. [START_REF] Mair | Entanglement of orbital angular momentum states of photons[END_REF], object identi…cation by measuring the joint orbital angular momentum spectrum of two-photon states by Uribe-Patarroyo et al. [START_REF] Uribe-Patarroyo | Object identi…cation using correlated orbital angular momentum states[END_REF], optical traps to study vortices in Bose-Einstein condensates by Tempere et al. [START_REF] Tempere | Vortices in Bose-Einstein condensates con…ned in a multiply connected Laguerre-Gaussian optical trap[END_REF], optical communication systems in atmospheric turbulence by Malik et al. [START_REF] Malik | In ‡uence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[END_REF], use of vortex masks to observe dim exoplanets by Foo et al. [START_REF] Foo | Optical vortex corona graphs[END_REF], to provide a few examples without pretending to exhaustiveness.

The paper is organized as follows. Section 2 recalls a background concerning the method to be used to establish …nite series expressions and concerning the electromagnetic …elds of a Laguerre-Gauss beam freely propagating. Section 3 deals with the …nite series expressions for TM-and TE-BSCs of a Laguerre-Gauss beam freely propagating. Section 4 is a conclusion.

2 Background.

Neumann Expansion Theorem (NET).

Although the way to use the NET, relying on Neumann or Bessel function expansions, has already been published in the literature, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], pp. 121-124, it is concisely reproduced here for the convenience of the reader. It starts with a result published by Watson [START_REF] Watson | A treatise of the theory of Bessel functions[END_REF], pp. 524-525. Let us consider an equation of the form:

x 1=2 g(x) = 1 X n=0 c n J n+1=2 (x) (1) 
in which J n+1=2 (:) are classical half-order Bessel functions. The Maclaurin expansion of the function g(x) reads as:

g(x) = 1 X n=0 b n x n (2) 
Then the NET states that the coe¢ cients c n are given by:

c n = (n + 1 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! b n 2m ( 3 
)
in which is the celebrated Gamma function satisfying (n) = (n 1)! and (z +1) = z (z). We then have two ways of expressing the coe¢ cients c n , either from the Bessel function expansion of Eq.1 or from the Maclaurin expansion of Eq.2, using Eq.3. Equating the two resulting expressions will allow one to establish …nite series expressions for the BSCs. This is done using what may be called the NET-procedure.

2.2

The NET-procedure.

The procedure starts with the expressions of the radial electric E r and magnetic H r …eld components in spherical coordinates (r, , ') which may be expressed as, e.g. Eqs.(3.10) and (3.19) of [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]:

E r H r = E 0 H 0 1 X n=1 +n X m= n c pw n g m n;T M g m n;T E n(n + 1) r (1) 
n (kr)P jmj n (cos ) exp(im')

in which E 0 , H 0 are …eld strengths, g m n;T M and g m n;T E are the BSCs to be evaluated within the framework of the NET-procedure, k is the wavenumber,

n (:) denote the …rst-order spherical Bessel functions also denoted as j n (:), and P jmj n (:) are associated Legendre functions de…ned by using Hobson's notation [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]. Furthermore c pw n (with pw standing for "plane wave") denotes expansion coe¢ cients which appear in the Bromwich formulation of the classical Lorenz-Mie theory [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF] according to:

c pw n = ( i) n ik 2n + 1 n(n + 1) (5) 
Afterward, we discard the '-dependency by using the orthogonality relation:

Z 2 0 exp[i(m m 0 )']d' = 2 mm 0 (6) 
to obtain:

Z 2 0 E r H r exp( im')d' (7) = 2 E 0 H 0 1 X n=jmj c pw n g m n;T M g m n;T E n(n + 1) r (1) 
n (kr)P jmj n (cos )

in which we took account of the fact that P jmj n = 0 if n < jmj. The next step is to discard the -dependency as well. This may be done in two ways. The …rst way is to specify = =2 in Eq.7 and to invoke the following relations for associated Legendre functions [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]:

P m n (0) = ( 1) n+m 2 (n + m 1)!! 2 n m 2 ( n m 2 )! , (n m) even (8) 
P m n (0) = 0, (n m) odd (9) 
in which:

n!! = 1:3:5:::n ( 1)!! = 1 (10) 
to be completed with, for a better-looking expression:

n!! = 2 n+1 2 p ( n 2 + 1) (11) 
Furthermore, we have [START_REF] Watson | A treatise of the theory of Bessel functions[END_REF], [START_REF] Stratton | Electromagnetic theory[END_REF]:

(1)

n (kr) = r 2kr J n+ 1 2 (kr) (12) 
Eq.7 may then be rewritten as:

(kr) 1=2 Z 2 0 r E r ( = =2) H r ( = =2) exp( im')d' (13) 
= p 2 E 0 H 0 1 X n=jmj;(n m) even c pw n n(n + 1) g m n;T M g m n;T E P jmj n (0)J n+1=2 (kr)
Later on, this equation, speci…ed for the Laguerre-Gauss beams under study, will be given the form of Eq.1 and will allow one to express the BSCs using …nite series expressions, with however the restriction that we must have (n m) even. For (n m) odd, Eq.7 is di¤erentiated with respect to cos , in order to take advantage of the relations:

[ dP m n (cos ) d cos ] cos =0 = 0, (n m) even (14) [ dP m n (cos ) d cos ] cos =0 = ( 1) n+m 1 2 (n + m)!! 2 n m 1 2 ( n m 1 2 )! , (n m) odd (15) 
Then, instead of Eq.13, we obtain:

(kr) 1=2 Z 2 0 r[ @ @ cos E r H r ] = =2 exp( im')d' (16) 
= p 2 E 0 H 0 1 X n=jmj;(n m) o dd c pw n n(n + 1) g m n;T M g m n;T E [ dP m n (cos ) d cos ] cos =0 J n+1=2 (kr)
which will later be given the form of Eq.1 and will allow one to obtain …nite series expressions for the BSCs of Laguerre-Gauss beams freely propagating, for (n m) odd.

2.3

Laguerre-Gauss beams freely propagating.

The radial component of the electric …eld of a Laguerre-Gauss beam freely propagating, relying on books by Siegmann [START_REF] Siegman | An introduction to lasers and masers[END_REF], [START_REF] Siegman | Lasers[END_REF], for a harmonic beam having a time-dependency of the form exp(+i!t), is given by [START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF]:

E r (r; ; ') = E 0 kw(r cos ) r sin p 2 w(r cos ) ! L ( 2r 2 sin 2 w 2 (r cos ) ) (17) 
exp[ ikr 2 sin 2 2e q(r cos ) ] exp[i(2 + + 1) (r cos )] exp(i ') exp( ikr cos ) sin cos ' in which:

w(r cos ) = w 0 s 1 + 2r cos kw 2 0 2 (18) e q(r cos ) = r cos + ikw 2 0 2 (19) (r cos ) = tan 1 2r cos kw 2 0 ( 20 
)
in which w 0 is the beam waist radius of the beam, while and de…ne the type of Laguerre-Gauss beam under study. Also, L denotes associated Laguerre polynomials de…ned as follows [START_REF] Arfken | Mathematical methods for physicists[END_REF], [START_REF] Abramowitz | Handbook of mathematical functions[END_REF]:

L (x) = 1 ! X i=0 ! i! + i ( x) i (21) 
in which () denotes a binomial coe¢ cient. The "usual" Laguerre polynomials L (x) are L 0 (x): The associated Laguerre polynomials can be evaluated recursively from the …rst two polynomials as follows:

L 0 (x) = 1 (22) L 1 (x) = 1 + x (23) L k+1 (x) = (2k + 1 + x)L k (x) (k + )L k 1 (x) k + 1 (24) 
The radial component of the electric …eld will allow one to provide …nite series expressions for the TM-BSCs. For the TE-BSCs, we need the corresponding expression for the radial component of the magnetic …eld. For this, we have to take into account the fact that Eq.17 represents a paraxial approximation which therefore does not satisfy Maxwell's equations. Hence, using the Faraday law to express the magnetic …eld from the electric …eld will generate artefacts which will have to be removed to obtain a proper paraxial approximation of the radial component of the magnetic …eld. Having this in mind, the radial component E r is actually obtained from an electric …eld E which may be written as [START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF]:

E = (E x ; E y ; E z ) = (E 0 Ee ikz ; 0; 0) (25) 
leading to:

E r = E 0 Ee ikz sin cos ' (26) 
which, identifying with Eq.17, de…nes E. According to Faraday's law, we then have:

H = 1 i! curl E = 1 i! (0; @E x @z ; 0) ( 27 
)
in which is the permeability, e.g. Eq.(1.41) in [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]. From Eqs.17, 25, 27 and removing artefacts which include @E/@z, we obtain:

H = (0; H 0 Ee ikz ; 0) (28) 
in which we have used E 0 =H 0 = ! =k. Hence:

H r = H 0 Ee ikz sin sin ' (29) 
which will be used to determine the TE-BSCs. The removal of the artefacts aimed to symmetrize expressions for the radial electric and radial magnetic components, as shown in Eqs.26 and 29. They are easily identi…ed because their presence would break the symmetry exhibited by these equations.

3 Expressions to evaluate BSCs.

3.1

TM-BSCS, (n m) even.

For = =2, we readily have w(r cos ) = w 0 , e q(r cos ) = ikw 2 0 =2, and (r cos ) = tan1 0 = 0, see Eqs.18-20. Then Eq.17 becomes:

E r ( = =2) = F[e i( +1)' + e i( 1)' ] (30) 
in which:

F = E 0 2kw 0 r p 2 w 0 ! L ( 2r 2 w 2 0 ) exp( r 2 w 2 0 ) (31) 
We then insert Eq.30 into Eq.13, so that, using Eq.6, the left-hand-side of the electric part of Eq.13 becomes:

LHS = 2 (kr) 1=2 rF[ m; +1 + m; 1 ] (32) 
We now introduce x = kr (not to be confused with a Cartesian coordinate) and the beam con…nement factor s = 1=(kw 0 ), and invoke Eq.5. Rearranging, Eq.13 may then be written as:

x 1=2 g(x)[ m; +1 + m; 1 ] (33) = 1 X n=jmj ( i) n (2n + 1)g m n;T M P jmj n (0)J n+1=2 (x), (n m) even
which is of the form of Eq.1 to be used in the NET-procedure, with the function g(x) given by:

g(x) = i p 2 xs(x p 2s) L (2x 2 s 2 ) exp( x 2 s 2 ) (34) 
Note that Eq.33 shows that we shall only deal with the modes m = +1 and m = agreement with the fact that BSCs for m6 = 1 are zero for localized beams". This property could not be positively stated by using numerical quadratures because there is necessarily the possibility of round-o¤ errors , but it is indeed here obtained formally within the framework of the NET-procedure.

To account for the modulus of m in Eq.33, restricting ourselves to 0, we have to distinguish three cases: (i) m = + 1, 8 0 (ii) m = 1, > 0 (iii) m = 1, = 0 i.e. m = 1. Furthermore, we shall complement various quantities already introduced with an extra-subscript , for convenience. We then have:

(i) m = + 1, 8 0 x 1=2 [g(x)] = 1 X n= +1 ( i) n (2n + 1)[g +1 n;T M ] P +1 n (0)J n+1=2 (x), (n ) odd (35)
which, using Eq.1, leads to:

c n = ( i) n (2n + 1)[g +1 n;T M ] P +1 n (0); n + 1, n odd (36) 
c n = 0, otherwise (37) 
(ii) m = 1, > 0 x 1=2 [g(x)] = 1 X n= 1 ( i) n (2n + 1)[g 1 n;T M ] P 1 n (0)J n+1=2 (x), (n ) odd (38)
leading to:

c n = ( i) n (2n + 1)[g 1 n;T M ] P 1 n (0), n 1, n odd ( 39 
)
c n = 0, otherwise (40) 
(iii) m = 1, = 0 x 1=2 [g(x)] = 1 X n=1 ( i) n (2n + 1)[g 1 n;T M ] P 1 n (0)J n+1=2 (x), n odd (41) 
leading to:

c n = ( i) n (2n + 1)[g 1 n;T M ] P 1 n (0), n 1, n odd (42) 
c n = 0, otherwise (43) 
We then have a …rst set of expressions for the coe¢ cients c n . We are now going to establish a second set of expressions for the same coe¢ cients relying on Eqs.2 and 3. For this, we rewrite [g(x)] under the form:

[g(x)] = G L (2x 2 s 2 ) exp( x 2 s 2 )x +1 (44) 
in which G , which does not depend on , reads as:

G = is p 2 (s p 2) (45) 
We shall use the recurrence relations for L , Eqs.22-24, under the form:

L 0 (2x 2 s 2 ) = 1 (46) L 1 (2x 2 s 2 ) = 1 + 2x 2 s 2 (47) L k+1 (2x 2 s 2 ) = (2k + 1 + 2x 2 s 2 )L k (2x 2 s 2 ) (k + )L k 1 (2x 2 s 2 ) k + 1 (48)
the last one being better rewritten as:

We now deal with a general recurrence relation. Using Eqs.44 and 49, we have:

[g(x)] = 2 1 + [g(x)] 1 1 + [g(x)] 2 2s 2 fx 2 [g(x)] 1 g (56)
Let us focus on the term f:g denoted A. Recalling Eq.2, it can be evaluated as follows:

A =x 2 1 X n=0 [b n ] 1 x n = 1 X n=0 [b n ] 1 x n+2 = 1 X t=0 [b t ] 1 x t+2 (57)
which, using (n = t + 2), becomes:

A = 1 X n=2 [b n 2 ] 1 x n = 1 X n=0 "(n; 0; 1)[b n 2 ] 1 x n (58) 
Eq.56 then reads as:

1 X n=0 [b n ] x n = 2 1 + 1 X n=0 [b n ] 1 x n 1 + 1 X n=0 [b n ] 2 x n (59) 2s 2 1 X n=0 "(n; 0; 1)[b n 2 ] 1 x n
We then obtain a recurrence relation for the b n -coe¢ cients:

[b n ] = 2 1 + [b n ] 1 1 + [b n ] 2 2s 2 "(n; 0; 1)[b n 2 ] 1 (60)
As an example, let us evaluate [b n ] 2 knowing [b n ] 1 and [b n ] 0 . For = 2, Eq.60 becomes:

[b n ] 2 = + 3 2 [b n ] 1 + 1 2 [b n ] 0 s 2 "(n; 0; 1)[b n 2 ] 1 (61) 
This may be evaluated by using the expressions for [b n ] 0 and [b n ] 1 . For the last term, [b n 2 ] 1 involves "(n 2; 0; 1; :::; ) and "(n 2; 0; 1; :::; + 2). The evaluation of this last term then relies on the obvious expression: "(n; 0; 1)"(n 2; 0; 1; :::; k) = "(n; 0; 1)"(n; 2; 3; :::; k + 2) = "(n; 0; 1; :::; k + 2) (62)

We then obtain: .

[b n ] 2 = G [
Once the coe¢ cients b n are known, we readily know the coe¢ cients b n 2m and obtain new expressions for the coe¢ cients c n using Eq.3. These new expressions are equated with the ones we have obtained previously, e.g. Eqs. 35-43. This leads to:

c n = ( i) n (2n + 1)[g +1 n;T M ] P +1 n (0) (64) = (n + 1 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] , for n > + 1; (n ) odd, > 0 c n = ( i) n (2n + 1)[g 1 n;T M ] P 1 n (0) (65) 
= (n + 1 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] , for n > 1; (n ) odd; > 0 c n = ( i) n (2n + 1)[g 1 n;T M ] P 1 n (0) (66) 
= (n + 1 2 ) n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] , for n > +1; n odd
Next, from Eqs.8 and 11, we have:

P m n (0) = 2 m p ( 1) 
n+m 2

( n m 2 )! ( n + m + 1 2 ), (n m) even (67) 
allowing one to evaluate the expressions for the P m n 's in Eqs.64-66, and to obtain explicit expressions for the TM-BSCs g m n;T M , (n m) even. They read as:

[g +1 n;T M ] = i n p 2 +2 ( 1) 
n+ +1 2

( n+ 2 + 1) ( n 1 2 )! n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] , (68) 
for n > + 1; (n ) odd, > 0 [g 1 n;T M ] = i n p 2 ( 1) 
n+ 1 2 ( n+ 2 ) ( n + 1 2 )! n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] , (69) 
for n > 1; (n ) odd; > 0 [g 1 n;T M ] = i n p 4 ( 1) n+1 2 
( n 2 + 1)

( n 1 2 )! n=2 X m=0 2 1 2 +n 2m ( 1 2 + n m) m! [b n 2m ] , (70) 
for n > +1; n odd 3.2 TM-BSCS, (n m) odd.

The procedure for this case, namely (n m) odd, being quite similar to the one used for the previous case, we shall be content with a few intermediary relations aiming to help the reader who would like to check the derivations, and with the …nal results. Instead of Eq.7, we now deal with Eq.13 which requires us to evaluate the derivative [@E r =@ cos ] = =2 . After a few pages of careful computations, we obtain, from Eq.17:

[ @E r (cos ) @ cos ] = =2 = E 0 k e i ' cos ' 1 w 0 ( r p 2 w 0 ) L ( 2r 2 w 2 0 ) exp( r 2 w 2 0 ) (71) 
f 2ir 3 kw 4 0 + ikr[ 2 k 2 w 2 0 (2 + + 1) 1]g
Afterward, instead of Eq.33, we obtain:

x 1=2 g(x)[ m; +1 + m; 1 ] (72) = 1 X n=jmj ( i) n (2n + 1)g m n;T M [ dP jmj n (cos ) d cos ] = =2 J n+1=2 (x), (n m) odd
with the function g(x) now given by:

g(x) = i p 2 xs(xs p 2) L (2x 2 s 2 ) exp( x 2 s 2 )f 2ix 3 s 4 + ix[2s 2 (2 + + 1) 1]g (73) 
To account for the modulus of m in Eq.72, still with 0, we again have to distinguish three cases:

(i) m = + 1, 8 0 (ii) m = 1, > 0 (iii) m =
1, = 0 i.e. m = 1. Furthermore, still adding a subscript to conveniently decorate various quantities, we have:

(i) m = + 1, 8 0 x 1=2 [g(x)] = 1 X n= +1 ( i) n (2n+1)[g +1 n;T M ] [ dP +1 n (cos ) d cos ] = =2 J n+1=2 (x), (n ) even (74) 
c n = ( i) n (2n + 1)[g +1 n;T M ] [ dP +1 n (cos ) d cos ] = =2 ; n + 1, n even (75) c n = 0, otherwise (76) 
(ii) m = 1, > 0 x 1=2 [g(x)] = 1 X n= 1 ( i) n (2n+1)[g 1 n;T M ] [ dP 1 n (cos ) d cos ] = =2 J n+1=2 (x), (n ) even (77) c n = ( i) n (2n + 1)[g 1 n;T M ] [ dP 1 n (cos ) d cos ] = =2 , n 1, n even (78) c n = 0, otherwise (79) 
(iii) m = 1, = 0 x 1=2 [g(x)] = 1 X n=2 ( i) n (2n + 1)[g 1 n;T M ] [ dP 1 n (cos ) d cos ] = =2 J n+1=2 (x), n even (80) c n = ( i) n (2n + 1)[g 1 n;T M ] [ dP 1 n (cos ) d cos ] = =2 , n 2, n even (81) 
c n = 0, otherwise (82) 
Next, instead of Eq.44, we rewrite [g(x)] under the form:

[g(x)] = L (2x 2 s 2 ) exp( x 2 s 2 )[H v x +4 + K x +2 ] (83) 
in which:

H v = 2is 4 G (84) 
K = i[2s 2 (2 + + 1) 1]G (85) G = is p 2 (s p 2) (86) 
Let us …rst again consider the cases = 0 and 1 to be used to start a recurrence. Instead of 51, we now have:

[g(x)] 0 = H v 1 X n= +4 F (2)x n + K v 1 X n= +2 F (1)x n (87) 
[b n ] 0 = "(n; 0; 1; :::; + 3)H F (2) + "(n; 0; 1; :::;

+ 1)K F (1) (88) 
in which we introduced the notation:

F (u) = ( s 2 ) n 2 u ( n 2 u)! (89) 
Similarly, for = 1:

[g(x)] 1 = (1 + )[g(x)] 0 2s 2 fx 2 g(x) 0 g (90) 
[b n ] 1 = "(n; 0; 1; :::;

+ 1)(1 + )K F (1) (91) 
+"(n; 0; 1; :::;

+ 3)[(1 + )H 2s 2 K ]F (2)
2s 2 "(n; 0; 1; :::; + 5)H F (3)

For the general case, Eqs.56 and 60 are still valid, as conveniently repeated below:

[g(x)] = 2 1 + [g(x)] 1 1 + [g(x)] 2 2s 2 fx 2 [g(x)] 1 g (92) [b n ] = 2 1 + [b n ] 1 1 + [b n ] 2 2s 2 "(n; 0; 1)[b n 2 ] 1 (93)
which, however, lead to expressions for the coe¢ cients [b n ] which are different from the ones for the case (n m) even, due to the di¤erent expressions for [b n ] 0 and [b n ] 1 which are used to initialize the recurrence process. As an example, instead of Eq.63, we now have:

Conclusion.

For use in some analytical or semi-analytical light scattering theories, like GLMTs or EBCM, the electromagnetic …elds may be encoded in a set of coef-…cients named beam shape coe¢ cients (BSCs). In the case of Laguerre-Gauss beams (either freely propagating or focused by a lens), the usual quadrature technique which allows one to evaluate the BSCs has to be carried out numerically, leading to time-consuming evaluations. Localized approximations, which are traditionally used to speed-up the computations of the BSCs by orders of magnitude, unfortunately have a limited domain of validity for Laguerre-Gauss beams and have to be considered with care and suspicion. Therefore, borrowing another technique from the arsenal of methods available to evaluate BSCs, the present paper establishes rigorous expressions to the evaluation of BSCs using …nite series. It must be noted that, although the procedure used is rigorous, it is, in the present paper, applied to a paraxial approximation of Laguerre-Gauss beams freely propagating, i.e. using a beam description which does not perfectly satis…es Maxwell's equations. Relying on our experience concerning paraxial Gaussian beams, either using …nite series ([3], pp. 164-171) or quadratures [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF], the non-Maxwellian character of the paraxial beam should be re ‡ected by a blowing-up of BSCs values for high-order partial waves. These faulty BSCs could be set to zero or they would have no consequence because they would appear for partial waves which, in any case, convey vanishing amplitudes. Once this is implemented, the BSCs obtained de…ne a beam which perfectly satis-…es Maxwell's equations, resulting from the internal coherency of the theory based on the fact that it uses a basis of regular VSWFs, independently of the particular technique used to evaluate the BSCs. In the present case, however, the …nite series procedure allows one to transform a non-Maxwellian beam to a Maxwellian beam, illustrating the remodeling process involved in the evaluation of BSCs using …nite series. Beams generated by the BSCs evaluated by …nite series therefore automatically provide a Maxwellian description of Laguerre-Gauss beams freely propagating. Subsequent papers will be devoted to the algorithmic implementation of the formulas obtained in this paper, and later on, to the application of the …nite series technique to the case of Laguerre-Gauss beams focused by a lens.

It is furthermore to be noted that the derivations of BSCs in the present paper have been carried in spherical coordinates for parallel illumination, in on-axis situations. BSCs for other kinds of curvilinear systems of coordinates can afterward be obtained from the BSCs in spherical coordinates by using an extrinsic method, see [START_REF] Gouesbet | List of problems for future research in generalized Lorenz-Mie theories and related topics, review and prospectus; commemorative invited paper, for the 50th anniversary of "Applied Optics[END_REF] for the de…nition of intrinsic and extrinsic methods, and the introduction of [START_REF] Han | Intrinsic method for the evaluation of beam shape coe¢ cients in spheroidal coordinates for oblique illumination[END_REF] for a review of extrinsic methods in spheroidal and cylindrical coordinates. BSCs for oblique illumination may be deduced from the BSCs for parallel illumination by using rules of transformations of BSCs under rotation of coordinate systems [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. I. General formulation[END_REF], [START_REF] Wang | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. II. Axisymmetric beams[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. III. Special values of Euler angles[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. V. Localized beam models[END_REF]. BSCs for o¤axis situations can be obtained from the BSCs for on-axis situations by using translation theorems [START_REF] Doicu | Computation of the beam-shape-coe¢ cients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions[END_REF] or by introducing the o¤-axis expressions of the …elds right at the beginning of the algebraic treatment, as actually done in the case of Gaussian beams, see [START_REF] Gouesbet | Expressions to compute the coe¢ cients gnm in the generalized Lorenz-Mie theory, using …nite series[END_REF]. The last procedure however requires an extra-algebraic work. It is indeed a defect of the …nite series technique that each modi…cation of the …eld expressions requires an extra-algebraic work before implementation in computer programs, although it has been stated that the "whole process may be in principle carried out in an automatic way by using a formal computation procedure which would furthermore generate FORTRAN sources" ([3], p. 121).

in agreement with what we already learnt in[START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF]. In this Ref., p.46, correcting an obvious typo, we noted: "we provided results only for m = 1, in

Let us …rst consider the cases = 0 and 1 which have to be used to initialize a recurrence process. From Eqs.46 and 44:

To display this in the form of Eq.2, we set n = 2t + + 1 to obtain:

in which we introduced the notation:

Eq.51 is of the form of Eq.2:

with:

in which "(n; j )=0 if n is equal to one of the j 's, and is equal to 1 otherwise. For = 1, we use Eq.47 instead of 46 and, after a few manipulations similar to the ones used previously, we obtain:

2s 2 "(n; 0; 1; :::;

+( + 2)"(n; 0; 1; :::;

Thereafter, instead of Eqs.64-66, we obtain:

Next, from Eqs.15 and 11, we establish:

and eventually obtain:

( 1)

( 1)

n 2

for n > +2; n even

TE-BSCs.

To deal with the TE-BSCs, we have to use H r in Eqs.7 and 16 instead of E r . Computations then run in the same way but for the replacement of a cos ' by a sin ', see Eqs.26 and 29. This implies that, in Eqs. [START_REF] Robin | Fonctions sphériques de Legendre et fonctions sphéroidales[END_REF]