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Abstract

We prove that flag versions of quiver Grassmannians (also knows as
Lusztig’s fibers) for Dynkin quivers (types A, D, E) have no odd coho-
mology over Z. Moreover, for types A and D we prove that these varieties
have a-partitions into affine spaces. We also show that to prove the same
statement for type E, it is enough to check this for indecomposable rep-
resentations.

We also give a flag version of the result of Irelli-Esposito-Franzen-
Reineke on rigid representations: we prove that flag versions of quiver
Grassmannians for rigid representations have a diagonal decomposition.
In particular, they have no odd cohomology over Z.
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1 Introduction

1.1 Motivation

The motivation of this paper comes from the study of KLR (Khovanov-Lauda-
Rougier) algebras in [11]. KLR algebras, also called quiver-Hecke algebras,
were introduced by Khovanov-Lauda [9] and Rouquier [14] for categorification
of quantum groups. Let I" be a quiver without loops and let v be a dimension
vector for this quiver. Let k be a field. Then we can construct the KLR algebra
R, over k associated with I and v.

To motivate our reaserch, we recall some facts about the geometric study of
KLR algebras. The reader can see [11] for more details.

A geometric construction of KLR algebras is given in [14] and [15] (over a
field of characteristic zero). The positive characteristic case is done in [11]. Let
us describe the idea of this geometric construction. There is a complex algebraic
group G and complex algebraic varieties X and Y (depending on I" and v) with
a G-action and a proper G-invariant map m: X — Y such that the KLR algebra
R, is isomorphic to the extension algebra Extf(m.ky,mky). Here ky is the
constant G-equivariant sheaf on X. The sheaf 7.k is the pushforward of ky,
this pushforward is an element of the G-equivariant bounded derived category
of sheaves of k-vector spaces on Y. Abusing the terminology, we say sometimes
"a sheaf" for "a complex of sheaves".

For understanding the algebra R,, it is important to understand the de-
composition of the sheaf m.ky into indecomposables. Now, assume that I' is
a Dynkin quiver. In this case the number of G-orbits in Y is finite. Assume
first that the characteristic of k is zero. We can deduce from the decomposition
theorem [1, Thm. 6.2.5] and from [13, Thm. 2.2] that the indecomposable direct
summands of 7w,k y up to shift are exactly the sheaves of the form IC(O), where
O is a G-orbit in Y and IC(O) is the simple perverse sheaf associated with the
orbit O.

Now, we want to understand what happens if the characteristic of k is posi-
tive. In this case the decomposition theorem fails, so the theory of perverse
sheaves does not help us to understand w.ky. However, Juteau-Mautner-
Williamson [8] introduce a new tool for this: parity sheaves. For the variety
Y as above, their construction yields some new sheaves £(O) on Y. It hap-
pens, that in characteristic zero we have IC(OQ) = £(0O). However, in positive
characteristics, the sheaves £(0O) behave better than IC(O). In particular, [8]



gives a version of the decomposition theorem for parity sheaves that also works
for positive characteristics. However, this version needs an extra-condition: the
fibers of m must have no odd cohomology groups over k. Note that the fibers of
the map 7 are isomorphic to flag versions of quiver Grassmannians.

A version of the following conjecture is considered in [11].

Conjecture 1.1. Assume that ' is a Dynkin quiver. Then for each field k and
each y € Y we have H°4 (7~ 1(y), k) = 0.

It is proved in [11] that if Conjecture 1.1 holds, then in any characteristic the
indecomposable direct summands of m.kyx up to shift are exactly the sheaves
of the form £(O). In particular, this yields a new basis in the quantum group
U, (g) for types A, D, E in terms of parity sheaves.

Conjecture 1.1 is proved in [11] only in type A. It remained open for types
D and F.

Recently, Conjecture 1.1 was proved by McNamara [12]. The paper [12]
studies algebras of the form Extf (m.ky,m.ky) for more general G, X and Y.
This paper relates the condition H°(7~1(y), k) = 0 with an algebraic property
of the algebra Extg; (m.k y, m.kx): it should be polynomial quasi-hereditary. On
the other hand, KLR algebras R, for Dynkin quivers are known to be polynomial
quasi-hereditary due to [2]. This allows to prove Conjecture 1.1.

As we see, McNamara’s proof uses essentially the representation theory of
KLR algebras. In the present paper we give a more direct proof of Conjecture
1.1. We don’t use KLR algebras, we work directly with the geometric description
of the fibers of m. These fibers are flag versions of quiver Grassmannians. Our
result is stronger because we also show that the fibers have no odd cohomology
over Z. Moreover, in types A and D we also show that the fibers have a-
partitions into affine spaces. Note that this result is also stronger than the
similar result from [11] in type A.

There is an example of a situation where it is important to know that the
fibers of m have no odd cohomology over a ring (not only over a field). In the
Williamson’s contre-exemple [16] in type A to the Kleshchev-Ram conjecture,
he uses the modular system (Q,, Z,,F,). In particular, for this, it is important
to know that we have H°(r~1(y),Z,) = 0. Now, it is possible to have a
similar construction in types D and FE.

See also [11, Sec. 3.10] for some other consequences of Conjecture 1.1. One
more application of Conjecture 1.1 to Kato’s reflection functors is given in [12,
Sec. 7].

1.2 Results

The fibers of 7 have an explicit geometric description: they are flag versions
of quiver Grassmannians for complete flag types. However, all the methods
of the present paper work well for non-complete flags. So we will also allow
non-complete flags below.

Let T' = (I, H) be a quiver, where I and H are the sets of its vertices and ar-
rows respectively. Fix an increasing sequence of dimension vectors v = (vy,...,vy)



and set v = vy. Let V be a representation of I' of dimension v. A flag version
of the quiver Grassmannian is the following variety:

Fo(V)={V! cV?cC...Cc V!=V; V" is a subrepresentation of V of dimension v, }.

Quiver Grassmannians are special cases of F, (V) with d = 2. Note that the
fibers = 1(y) discussed above are always of the form F, (V).

The main results of the paper are the following two theorems.

Theorem 1.2. Assume that I' is a Dynkin quiver of type A or D. Then the
variety Fy (V) is either empty or has an a-partition into affine spaces.

Theorem 1.3. Assume that T' is a Dynkin quiver (types A, D, E). Then we
have H44(F,(V),Z) = 0.

This paper is inspired by [7], where these theorems are proved for quiver
Grassmannians. Moreover, for quiver Grassmannians the analogue of Theorem
1.2 also holds for type E and for affine quivers. The present paper gives gen-
eralizations of some results from [7]| to flag versions. These generalizations are
not straightforward, they need some new ideas that we explain below.

Let us first summarize the idea of the proof in [7] for usual quiver Grass-
mannians. Let V be a representation of I' with dimension vector v and let v’
be a dimension vector. The quiver Grassmannian is the following variety

G (V) ={V' CV; dimV’' =4, V' is a subrepresentation of V}.

Let 0 = V = U — W — 0 be a short exact sequence of representations of I'.
Set
Gow = {U" € Gy (U); dim(U' NV) ="}

The key step of their proof is the following proposition, see [7, Thm. 26] and its
proof.

Proposition 1.4. If Exth(W,V) =0, then
gv/,w’(U) — gv’(V) X gw’ (W)
is a vector bundle.

For a Dynkin quiver, its indecomposable representations can be ordered in
such a way that there are no extensions in one direction. So, Proposition 1.4
reduces the statement to indecomposable representations. This allows to prove
Theorems 1.2 and 1.3 for quiver Grassmannians in [7].

Now, let us explain how the present paper generalizes this approach for flag
versions. We need to find a generalization of Proposition 1.4 for flags. We start
from the following observation. For each representation V of I' and each v, the
variety F (V) can be seen as a quiver Grassmannian for some bigger quiver I'y
and some representation ®(V) of T'y. However, we cannot deduce our result
directly from [7] because the quiver 'y has no reason to be Dynkin.



One more obstruction is that the natural functor ®: Rep(I') — Rep(fd) does
not preserve extensions. To fix this difficulty, we introduce a full subcategory
Rep’(T'y) of Rep(Ty) such that the image of ® is in Rep”(T'y) and such that
the functor ®: Rep(I') — Rep”(L'y) preserves extensions. However, this creates
a new obstruction: the category RepO(F) may have nonzero second extensions
(while the category Rep(I'y) has no second extensions). The absence of second
extensions in the category Rep(I") was an important point in the proof of Propo-
sition 1.4. To overcome this problem, we prove some Ext-vanishing properties
of the category Rep”(T'y) in Section 2.5. This allows us to get an analogue of
Proposition 1.4, see Proposition 2.17.

This allows us to reduce the proof of Theorems 1.2 and 1.3 to indecomposable
representations. For types A and D, the indecomposable representations are
very easy to describe. So Theorem 1.2 can be done by hand for indecomposables.
Type E is more complicated. We don’t know how to check Theorem 1.2 for
indecomposables in this case. Note, however, that in type £ the number of cases
to check is finite (we have a finite number of indecomposable representations
and a finite number of flag types for each indecomposable representation).

In type E, we manage to prove a weaker statement: Theorem 1.3. It is also
enough to check it only for indecomposable representations. We do this in more
generality. We prove the following result.

Theorem 1.5. Let T be an arbitrary quiver. Assume that V € Rep(T') satisfies
Ext{(V,V) =0. Then F,(V) is either empty or has a diagonal decomposition.
In particular, we have H°44(F,(V),Z) = 0.

The theorem above generalizes a similar result from [7] about quiver Grass-
mannians.

2 Flag versions of quiver Grassmannians

We assume that all quivers have a finite number of vertices and arrows. We also
assume that all representations of quivers are finite dimensional and are over C.
For a C-algebra A we denote by mod(A) the category of finite dimensional
representations of A.
For integers a and b such that a < b we set [a;b] = {a,a+1,...,b—1,b}.

2.1 Quivers

Let ' = (I, H) be a quiver. We denote by I and H the sets of its vertices and
arrows respectively. For each arrow h € H we write b’ and h” for its source and
target respectively.

Definition 2.1. A dimension vector v for T' is a collection of positive integers
(vi)icr- A representation 'V of T' is a collection of finite dimensional complex
vector spaces V; for ¢ € I and a collection of linear maps V5 — V. for each
h € H. We denote by Rep(I') the category of representations of I'. We say that



v is the dimension vector of V if we have dim V; = v; for each ¢ € I. In this
case we can write dim'V = v.

2.2 Extended quiver
Let I' = (I, H) be a quiver. Fix an integer d > 0.

Definition 2.2. The extended quiver Ty = (IA, H ) is the quiver obtained from T"
in the following way. The vertex set I of I'y is a union of d copies of the vetrex
set I of I, i.e., we have I = I x [1;d]. The quiver I'y has the following arrows:

e an arrow (i,7) — (j,r) for each arrow ¢ — j in I and each r € [1;d].

e an arrow (i,r) — (i,r + 1) for each ¢ € I and r € [1;d — 1].

2.3 The functor ¢

Let Repo(fd) be the full category of Rep(fd) containing the objects V €
Rep(T'y) that satisfy the following condition: for each arrow ¢ — j in ' and
each r € [1;d — 1], the following diagram is commutative.

Vi — Vin

l l

Viir+1) — V(i)

Fix r € [1;d]. Consider the functor ®:Rep(I') — Rep”(L'y) defined in the
following way.

e For each i € I and r € [1;d], we have ®(V)(; ) = V.

e For each arrow i — j in I' and each ¢ € [1;d], the map ®(V);,) —
®(V)(j,r) is defined as V; — V.

(gr

e For each i € I and each r € [1;d — 1], the map ®(V)(; ) — ®(V)(,r41) is
Idvy,.

Lemma 2.3. The functor ® is exact and fully faithful.

Proof. 1t is obvious from the construction that the functor is exact. It is also
clear that the functor @ is injective on morphisms. Let us prove that it is also
surjective on morphisms.

Consider a morphism ¢ € Homg (®(V), ®(W)). By definition, for each
i € I and r € [1;d — 1], we have the following commutative diagram.

¢i,r

O(V)iry — (W)
Plir

(I)(V)(i,rJrl) & (I)(W)(i,rJrl)



After the identification V; = ®(V)( ) = ®(V)(;,41) and Wy = (W) .y =
D(W) (i r41), we get the diagram

Di,r
vV, /L W,

T

¢i,7‘
VvV, 2w,

This shows that after the identification, the maps ¢;,) and ¢(; 1) are the
same. This proves that ¢ is in the image of ®. O

2.4 The functor ® as a bimodule

The category Rep(T') is equivalent to mod(CTI"), where CT" is the path algebra
for the quiver I'. Similarly, we have an equivalence of categories Rep(fd) o~
mod(CLy). The subcategory Rep’(I'y) of Rep(I'y) is equivalent to mod(Q),
where @ is the quotient of the path algebra (Cfd by the ideal generated by the
commutativity relations

(7;’ 7‘) E— (.]7 T)

! l

(i,r+1) —— (j,r+1)
for each arrow ¢ — j and each r € [1,d — 1].

Let us give another description of Q). Let Ly by the quiver having d vertices
1,2,...,d and an arrow r — (r+ 1) for each r € [1;d — 1]. The set of vertices of
the quiver fd can be considered as a direct product of sets of vertices of I' and
Lg. Tt is easy to see that we have an identification Q = CI"' ® CL,. The algebra
CT has idempotents e; for i € I, the algebra CL4 has idempotents e, r € [1;d],
the algebra @ has idempotents e(; ) = e;e,.

Now, we describe the functor ®: mod(CI') — mod(Q) in terms of bimodules.
The following lemma is obvious.

Lemma 2.4. For each V € mod(CT"), we have ®(V) = Qe; Qcr V.
The description of the functor ® above makes obvious the following.

Lemma 2.5. The functor ®:Rep(I') — Repo(fd) sends projective objects to
projective objects.

Let us write Exth for the ith extension functor in the category Rep(I).
We will also often need the extension functor in the category Rep’(T'y) (not in
Rep(['g)). We will denote this extension functor Ext,.

Corollary 2.6. For each V,W € Rep(I') and each i > 0, we have an isomor-
phism 4 4
Extg (®(V), ®(W)) ~ Extp(V, W).

Proof. This follows from Lemmas 2.3 and 2.5. U



2.5 Ext vanishing properties

For each representation U € Repo(fd) =mod(Q) and r € [1;d], set U, = ¢, U.
We can consider U,. as a representation of I.

Lemma 2.7. Assume V,W & Rep(I') are such that Extj.(W,V) = 0. For
each subrepresentation W' C ®(W), we have Extf(W', ®(V)) = 0.

Proof. Consider a short exact sequence 0 — ®(V) - U - W' — 0 in

Rep’(T'y). Let us show that it splits. For each r € [1;d], we have a short
exact sequence in Rep(T").

0—->V-=>U,— W, 0.

Moreover, this sequence splits because Extf.(W,V) = 0 and W/ ¢ W implies
Exth (W', V) = 0 (recall that the category Rep(I') has no second extensions).
We have to show, the the split morphisms s,: W, — U, can be chosen in such
a way that their direct sum for r € [1;d] gives a morphism s: W' — U in
Rep’(T'a).

For each r € [1;d — 1] we have a commutative diagram.

0 V"4 U s W. — 0
Idvj/ frj/ ng/
0 VS Uy S W, ——— 0

The right vertical map g, is injective and the left vertical map is the identity.
Then it is clear that the middle vertical map f,. is injective. Let s,.1: W/ | —
U,4+1 be a morphism in Rep(T") that splits the bottom short exact sequence.
We claim that we have s,119,(W,) C f.(U,). Indeed, fix w, € W.. Let us
show $,41¢g,-(w,) € f.(U,). Since m, is surjective, we can find u, € U, such that
7 (Uy) = w,.. Since we have 7,41 fr(u,) = gr(w,) and w41 8,4197(wr) = g (w;.),
the difference s,41g-(w;) — fr(u,) is in the kernel of m,.;. Then this difference
is of the form 4,41 (v) for some v € V. Then we get s,y19,(w,) = fr(u,) +
ir+1(v) = fr(uy) + frir(v). This shows that s,41¢-(w,) is in the image of f,.

This implies that s,;41 induces a morphism s,: W/, — U, in Rep(I") such
that the following diagram is commutative

U, +>— W.

frl grl
Sr41 /
U, 2 W,

Now we use the construction above recursively in the following way. We fix a
split morphism sq: W/, — Uy. It yields, a split morphism sq—1: W/,_; — Ug_1.
It yields in its order a split morphism sg4_o: W:j—2 — Uy_o, etc. Together, these
split morphisms s1, s9, ..., sS4 yield a split morphism s: W/ — U in RepO(Fd).

O



It is well-known, that each module W € Rep(T') has a two-step projective
resolution. In particular, this implies, that we have Ext;. (W, V) =0 for i > 2.
The same is true for Rep(fd), but not necessary for Rep® (fd). However, the
category Repo(fd) has a weaker property.

Lemma 2.8. For eachi > 3 and V, W € Rep”(L'y), we have Extzé(W7V) =0.

Proof. As explained above, the algebras CI' and CL4 have projective dimensions
at most 1. Then the algebra Q = CI"' ® CL, has projective dimension at most
2. O

Lemma 2.9. For each W € Rep(I'), each V' € Repo(fd) and 1 > 2, we have
Extg(®(W), V') = 0.

Proof. As explained above, the representation W has a 2-step projective reso-
lution 0 — P; — Py — W. Applying the functor ®, we get a 2-step projective
resolution 0 — ®(P;) — ®(Py) — ®(W). This implies the statement. O

Lemma 2.10. For each W € Rep(T'), each subrepresentation W' C ®(W),
each V' € Rep®(T'y) and i > 2, we have ExtiQ(W/,V') =0.

Proof. Apply the functor Homg (e, V') to the short exact sequence
00— W = (W) - &(W)/W' — 0.
We get an exact sequence
Extg (®(W), V') — Extg (W', V') — Ext (&(W) /W', V).

The left term is zero by Lemma 2.9 and the right term is zero by Lemma 2.8.
This implies that the middle term is also zero. O

Corollary 2.11. Let V, W € Rep(I") be such that Extt(W, V) = 0. Then for
each subrepresentations V! C ®(V), W’ C ®(W) we have Ext%?(W', o(V)/ V') =
0.

Proof. Apply the functor Homg (W', e) to the short exact sequence
0=V = d(V)—=d(V)/V —0.
We get an exact sequence
Ext (W', ®(V)) = Exty(W/, (V) /V') = Extd (W', V).

The left term is zero by Lemma 2.7 and the right term is zero by Lemma 2.10.
Then the middle term is also zero. O



2.6 Some exact sequences
Fix W € Rep”(T'y).

Lemma 2.12. There is a short exact sequence

0— @ Qer41 @cr Wy— @ Qe, @cr W,—W — 0.
re[l;d—1] i€l re(l;d]

Proof. The proof is very similar to [4, p.7]. O

Corollary 2.13. For each V,W € Repo(fd), we have a long exact sequence

0 — Homg (W,V) —» € Homp(W,,V,) = @ Homp(W,,V, 1) = Ext5(W, V)
r€(l;d] re[l;d—1]

Proof. We apply the functor Homg (e, V) to the short exact sequence above. [

2.7 Flags

Let V=@,;

Definition 2.14. A flag type of weight v is a d-tuple of dimension vectors v =
(V1,-+-,V4d), Vv = (Vri)ier such that vq = v and for each ¢ € I we have
Vi; SVe; < ... < Vg

A flag in V of type v is a sequence of subrepresentations VI ¢ V2 C ... C
V¢ =V of V such that dim V" = v,..

Denote by F, (V) the set of all flags of type v in V. This set has an obvious
structure of a projective algebraic variety over C.

'V, be a representation of I' with dimension vector v = (v;);e;.

2.8 Reduction to the indecomposable case

For two dimension vectors v and w we set < w,v >= Y ;Wi - Uy — ) p oy Whe = Uprr.
We start from the following well-known lemma, see [4, §1].

Lemma 2.15. Let V, W € Rep(I") be two representations. Let v and w be their
dimension vectors. Then we have an exact sequence

0 — Homp(W, V) = @D Hom(W;, V;) = @5 Hom(Wy, Vi) = Exth (W, V) = 0.
el heH
In particular, we have
dim Homp (W, V) — dim Ext{ (W, V) =< w,v > .

Corollary 2.16. If additionally we have Ext%(V, W) =0, then we have a short
exact sequence

0 — Homp(W, V) — @ Hom(W;, V;) = @ Hom(Wy,, Vi) 0 (1)
i€l heH

In particular, we have dim Homp (W, V) =< w,v >.

10



Let V and W be representations of I' with dimension vectors v and w re-
spectively. Let v and w be flag types (with respect to v and w respectively).
Assume that 0 — V — U 5> W — 0 is a short exact sequence in Rep(I"). For
each flag ¢ in U we denote by ¢ NV the flag in V obtained by the intersection
of components of ¢ with V and we denote by 7(¢) the flag in W obtained by
the images in W of the components of ¢. Set

Fvw(U) ={¢ € Fouw(U); oNV € F(V)}

It is clear from the definition that if ¢ is in Fy w(U), then 7(¢) is in Fy (W).
For a flag type v, we set V. = v, —v,._1 for r € [2;d] and ¥V; = v;. Similarly,
we define w,. for a flag type w.

Proposition 2.17. Assume that we have Exti.(W, V) = 0. Then
Fow(U) = F (V) X Fw(W), ¢ (¢NV,7(¢))

s a vector bundle of rank

d-1 d
YN <vw >
r=1t=r+1
Proof. Fix an isomorphism U ~ V & W. This is possible by the assumption on
Ext!.
First, we want to understand the fibers of the given map. Fix (¢v, dw) €
Fuv (V) x Fo (W),

pv=({0}cVicVvic...cVvi=V), ow={0}cW cW?c...cWi=W),

Let us describe the fiber of (¢v, ¢pw). For each r € [1;d], we want to construct
a subrepresentation U” of U such that U"N'V = V" and 7(U") = W". The
choices of such a subrepresentation are parameterized by Homp(W", V/VT").
Indeed, to each map f € Homp(W?”,V/V") we can associate a subrepresenta-
tion U” C V @ W generated by the elements (v,w) € V& W7 such that the
image of v in V/V7 is f(w).

Moreover, for each r € [1;d — 1], we must have U™ C U"*!. This condition
is equivalent to the commutativity of the following diagram

W —— V/VT

| !

Wl V/VTHL

To sum up, a point of the fiber of (¢v,dw) is described by a family of
homomorphisms Homp (W, V/V7) for r € [1;d] such that for each r € [1;d—1]
the diagram above commutes.

Now, we change the point of view to describe this fiber in a different way.

We can consider the flag ¢v as a subrepresentation V' = €D, ¢(1.4:e1 V{

A€l ¥ (r)

11



of ®(V). The component V" of the flag ¢y is now considered as a part
Vi = @ic; V(i of the representation V' of I';. The flag dimension v can

be considered as a dimension vector for the quiver fd. Moreover, the repre-
sentation V' of I'y has dimension v. Similarly, we consider the flag ¢w as a
subrepresentation W’ of ®(W) of dimension w. Then the fiber of (¢v, pw) is
simply Homg (W', @(V)/V’).

We have an obvious inclusion of vector spaces Homg (W', @(V)/V') C
D, c1,q) Homp (W7, V/V7). Let us show that Fy w(U) is a subbundle of the
vector bundle on Fy (V) X Fw (W) with fiber @, ¢, Homr (W7, V/V7). For
this, it is enough to present Fy w (U) as a kernel of a morphism of vector bundles
of constant rank.

Indeed, since we assumed Ext{.(W, V) = 0, Corollary 2.11 implies Ex‘cé‘z(W’7 o(V)/ V') =
0. Then the exact sequence in Corollary 2.13 yields a short exact sequence

0 — Homg (W', @(V)/V') = @ Homp(W,,V/V])— & Hompr(W,,V/V,,,) =0
re(l;d] re[l;d—1]
(2)

This short exact sequence implies that Fy «(U) is a kernel of a surjective
morphism of vector bundles. In particular, it is also a vector bundle. (Note that
the vector bundles with fibers Homp (W7, V/V) and Homp (W, V/V] ) are
defined via the same procedure. They are kernels of surjective morphisms of
vector bundles coming from the short exact sequence (1). See also the proof of
[7, Thm. 26].)

Let us calculate the rank of this vector bundle. It is clear from the short
exact sequence above that it is equal to

d d—1
> dimHomp (W}, V/V}) = > dimHomp (W}, V/V ).
r=1 r=1

By Corollary 2.16, this rank is equal to

d a1
Doy < W, U — V> — Z 1<W7«,’U—V7«+1> = > < W, Vpy >

d—1 d [
= Zr:l Zt=r+1 < Wr, Vi >

2.9 a-partition

Definition 2.18. Let X be a complex algebraic variety. We say that X admits an
a-partition into affine spaces if X has a finite partition X = X3 [[ X2 [[... ]I Xn
such that

1. for each 1 < r < m, the union X; []... ][ X, is closed,

2. each X, is isomorphic to an affine space.

12



Proposition 2.19. Let I" be a Dynkin quiver. Let V be a representation of T'.
Let us decompose it in a direct sum of indecomposable representations

V=Viag. oV

Assume that for each r € [1; k] and each flag type v" of weight (dim V), the
variety Fyr(V,.) is either empty or has an a-partition into affine spaces. Then
for each flag type of weight (dim'V), the variety F (V) is either empty or has
an a-partition into affine spaces.

Proof. We can assume that Vq,..., Vi are ordered in such a way that Ext! (V,, V) =
0 if » < t. Then the statement follows easily from Proposition 2.17 by induc-
tion. ]

2.10 Types A and D

The goal of this section is to prove the following theorem.

Theorem 2.20. Assume that ' is a Dynkin quiver of type A or D. Then the
variety Fy (V) is either empty or has an a-partition into affine spaces.

Proof. By Proposition 2.19, it is enough to prove the statement for indecom-
posable representations. This is done in two lemmas below. O

Lemma 2.21. Assume that I' is a Dynkin quiver of type A and that V is an
indecomposable representation. Then the variety Fy (V) is either empty or is a
singleton.

Proof. The statement follows from the fact that for each i € I the dimension of
V;isOor 1. ]

Lemma 2.22. Assume that I is a Dynkin quiver of type D. Then the variety
Fv(V) is either empty or is a singleton or is a direct product of some copies of
PL.

Proof. For each i € I the dimension of V; is 0, 1 or 2. Then it is clear that
the variety F, (V) is naturally included to a direct product of ]P’é. Indeed, a
point of F, (V) is given by a choice of 1-dimensional subspaces V/, inside of some
2-dimensional V;’s, these choices must satisfy some list of conditions. We may
have the following types of conditions.

e For a given ¢ with dimV; = 2, we may have a condition that the 1-
dimensional subspace V/ of V, is equal to a fixed 1-dimensional sub-
space (i.e., this condition imposes some choice of V/ inside of some two-
dimensional V).

e For some arrow ¢ — j, the map V; — V; may be an isomorphism and
dimV; = dim V; = 2. We may have a condition that the map V; — V;
sends V; to V.

13



e We may have an impossible condition, implying that F, (V) is empty.

It is clear that the conditions above just reduce the number of IP’(l: in the direct
product (or make the variety empty). This proves the statement. O

Remark 2.23. 1t is clear from the proof of Theorem 2.20 that for proving an
analogue of this theorem for type F, it is enough to prove it for indecomposable
representations.

We are going to prove a weaker statement in type E: the variety Fy, (V) has
no odd cohomology over Z. The same argument as above shows that for proving
this statement, it is enough to check this only for indecomposable representa-
tions.

3 Rigid representations

The goal of this section is to show that the variety (V) has no odd coho-
mology over Z. It is enough to check this statement only for indecomposable
representations, see Remark 2.23. In fact, we are going to prove this fore more
general class of representations. In is well-known that for each indecomposable
representation V of a Dynkin quiver we have Ext%(V, V) =0, see for example
the proof of [4, Thm. 1]. We will prove that if some representation of a quiver
satisfies this condition, then the variety F, (V) has no odd cohomology over
V. Moreover, we will prove that in this case the variety F.,(V) has a diagonal
decomposition if it is not empty.

3.1 Rigid representations

Let I' be an arbitrary quiver.

Definition 3.1. We say that a representation V of T is rigid if we have Extf(V, V) = 0.
Choose a vertex ¢ € I. For each flag type v, the d-tuple v; = (v;.1,Vi2,...,V;.q)

can be seen as a flag type for a quiver with one vertex. The vector space V;

can be seen as a representation of this quiver. The variety Fy,(V;) is a usual

(non-complete) flag variety. The variety F, (V) is obviously included to a direct

product of usual (non-complete) flag varieties in the following way:

Fo(V) c [ Fo. (Vo).
icl
Set Rep,, (') = @), y Hom(C"»",C"»"). We can see an element X € Rep, (T")
as a representation of I' with dimension vector v.
Let Q be the subvariety of Rep, (') x [];c; Fv,(C") given by
Q= {(X,¢); X €Rep,(), ¢ € Fy(X)}.

Lemma 3.2. Assume that V is rigid. Let v be a flag type such that Fy (V) is
not empty. Then the variety Fy (V) is a smooth projective variety of dimension

Dot < Vi, Vi >

14



Proof. The proof is similar to [3, Cor. 4].
The map
0 [[Fu(@),  (X,6)—0
iel

is clearly a vector bundle of rank

d
E g Vi Vpt p = g E Vi Vit

heH r=1 heH r>t

On the other hand, the map
m: Q@ — Rep, (), (X,9) > X

is proper. If some representation X € Rep, (I') is isomorphic to V, then the fiber
7~1(X) is isomorphic to F, (V). Since V is rigid, the subset of representations
in Rep, (T") isomorphic to V is open, see [4, Lem. 1]. On the other hand, since
we assumed that Fy, (V) is not empty, we see that the image of 7 is dense. Since
the image of 7 is closed, the map 7 is surjective. Then the generic fiber of 7 is
smooth and has dimension dim @ — dim Rep,(T").

This implies that F, (V) is a smooth projective variety of dimension

EhGH Zr}t Vh’,’r . vh”,t + dlm H'LGI ]:Vi (Cvl) — dlm Repv(l")
doheH 2orst Vi Vit D et 2ot Vi * Vit = Dopem 2art Vit Vit
Dot <V, Vi >

O

3.2 Diagonal decomposition

In is proved in [7, Thm. 36| that quiver Grassmannians associated with rigid rep-
resentations have zero odd cohomology groups over Z. The goal of this section
is to prove the same statement for flag generalizations of quiver Grassmannians.
In fact, [7, Thm. 36] proves a stronger property, that they call property (S),
see [7, Def. 11]. The key point of their proof is that to check property (5), it is
enough to construct a diagonal decomposition.

Let X be a smooth complete complex variety. We denote A*(X) the Chow
ring of X. Let A C X x X be the diagonal. Denote by 71, m5: X x X — X the
two natural projections.

Definition 3.3. We say that X has a diagonal decomposition if the class [A] of
the diagonal A C X x X in A*(X x X) has the following decomposition

[A] = wia; - w58, (3)

jeJ

where J is a finite set and o, 8; € A*(X).
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It is proved in [5, Thm. 2.1] that if X has a diagonal decomposition, then it
satisfies property (S). Then, in particular, we have H°(X,Z) = 0.

For a vector bundle £ on X we denote by ¢;(€) its ith Chern class, ¢;(£) €
A'(X). Denote by ¢(€,t) the Chern polynomial ¢(€,t) = >, ¢;(E)t.

Theorem 3.4. Assume that V € Rep(T') is rigid and that v is a flag type.

Then Fy (V) is either empty or has a diagonal decomposition. In particular, we
have H°(F,(V),Z) = 0.

Proof. The proof is similar to [7, Thm. 3.6]. Similarly to their proof, we are
going to construct a vector bundle on Fy (V) x F,,(V) of rank (dim F (V)) that
has a section that is zero exactly on the diagonal. We manage to construct such
a bundle due to Proposition 2.17.

Indeed, since Ext{(V, V) = 0, we can apply Proposition 2.17 directly. We
obtain a vector bundle & of the desired dimension, its fiber over (V/, V") €
Fo(V) x Fu(V) is Homg (V',®(V)/V"). As above, we see V' and V" as
representations of fd that are subrepresentations of ®(V). The composition
V' = &(V) = &(V)/V” yields a section is this vector bundle. This section
is zero exactly on the diagonal. Then by [6, Prop. 14.1, Ex. 14.1.1], we can
describe the class of the diagonal in term of the top Chern class of the bundle:
[A] = cuop(©).

Let D C A*(Fv(V) x Fy(V)) be the vector subspace formed by the elements
of the form as in the right hand side of (3) for X = F, (V). It is easy to see
that D is a subring.

We want to prove that [A] € D. Let us prove that all the coefficients of the
Chern polynomial ¢(€,t) are in D. Recall from (2) that £ is a part of a short
exact sequence of vector bundles 0 — & — F — G — 0, where

F = @ Frs F; has fiber Homp(V], V/V/)
re(l;d]
and
G= @ Gr, G, has fiber Homp(V], V/V] ).
rell;d—1]
So we have ¢(€,t) = ¢(F,t) - ¢(G,t)~t. In particular, it is enough to prove
that the coefficients of ¢(F;,t) and ¢(G,,t) are in D.

Let us show this for 7., the proof for G, is similar. By (1), the bundle F, is
a part of a short exact sequence

0—=F =& =V —0,

where
X, = EB Xir, X;,, has fiber Hom(V/

i,

Vi/Vi,)
iel
and
Ve =EP Vur.  Ynr has fiber Hom(V}, ., Vi/V}, ).
heH
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Then we have c¢(F,,t) = c(X.,t) - ¢(Vr,t)~L. So it is enough to prove that
the coefficients of ¢(X; ., t) and ¢(Vp,,t) are in D. This is clear from [10], [6,
Ex. 14.5.2). 0

3.3 Type E

Theorem 3.5. Assume that I' is a Dynkin quiver (types A, D, E). Then we
have H°Y(F,(V),Z) = 0.

Proof. For types A and D the statement already follows from Theorem 2.20.
Let us prove the statement for type E. As explained in Remark 2.23, it is
enough to check the statement only for indecomposable representations. Since
indecomposable representations are rigid, the statement follows from Theorem
3.4. O
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