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ABSTRACT

Context. Understanding the detailed structure of the interstellar gas is essential for our knowledge of the star formation process.
Aims. The small-scale structure of the interstellar medium (ISM) is a direct consequence of the galactic scales and making the link
between the two is essential.
Methods. We perform adaptive mesh simulations that aim to bridge the gap between the intermediate galactic scales and the self-
gravitating prestellar cores. For this purpose we use stratified supernova regulated ISM magneto-hydrodynamical simulations at
the kpc scale to set up the initial conditions. We then zoom, performing a series of concentric uniform refinement and then refining
on the Jeans length for the last levels. This allows us to reach a spatial resolution of a few 10−3 pc. The cores are identified using a
clump finder and various criteria based on virial analysis. Their most relevant properties are computed and, due to the large number
of objects formed in the simulations, reliable statistics are obtained.
Results. The cores’ properties show encouraging agreements with observations. The mass spectrum presents a clear powerlaw at high
masses with an exponent close to '−1.3 and a peak at about 1–2 M�. The velocity dispersion and the angular momentum distributions
are respectively a few times the local sound speed and a few 10−2 pc km s−1. We also find that the distribution of thermally supercritical
cores present a range of magnetic mass-to-flux over critical mass-to-flux ratios, typically between '0.3 and 3 indicating that they are
significantly magnetized. Investigating the time and spatial dependence of these statistical properties, we conclude that they are not
significantly affected by the zooming procedure and that they do not present very large fluctuations. The most severe issue appears
to be the dependence on the numerical resolution of the core mass function (CMF). While the core definition process may possibly
introduce some biases, the peak tends to shift to smaller values when the resolution improves.
Conclusions. Our simulations, which use self-consistently generated initial conditions at the kpc scale, produce a large number of
prestellar cores from which reliable statistics can be inferred. Preliminary comparisons with observations show encouraging agree-
ments. In particular the inferred CMFs resemble the ones inferred from recent observations. We stress, however, a possible issue with
the peak position shifting with numerical resolution.
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1. Introduction

One of the aspects limiting our understanding of the star for-
mation process is its multi-scale nature. While the conditions
that lead to the formation of molecular clouds, where star birth
takes place, are induced by the large and intermediate galactic
scales, the ultimate mass reservoir of stars, the prestellar cores,
are only a few 10−2 pc wide (e.g., Ward-Thompson et al. 2007;
Offner et al. 2014). This implies that ideally one would need to
obtain a continuous description of spatial scales going from at
least a few hundreds to a few hundredths of pc.

Various studies have investigated the core formation in sim-
ulations but fewer have attempted to provide statistics of the
core properties. Typically, a box of a few pc across is spec-
ified with a prescribed mean density and velocity dispersion
and the turbulence is either driven or free to decay. The simu-
lations are either hydrodynamical or magneto-hydrodynamical
(MHD; Klessen et al. 1998, 2005; Klessen & Burkert 2001;
Vázquez-Semadeni et al. 2005; Offner et al. 2008; Dib et al.
2010; Gong & Ostriker 2011, 2015) and some model the am-
bipolar diffusion (van Loo et al. 2008; Kudoh & Basu 2008,
2011; Chen & Ostriker 2014). While this kind of approach offers

a natural framework to study the core formation in detail, two
difficulties are encountered. First of all, the core properties, such
as their mass distribution, directly depend on the simulation pa-
rameters (e.g., Klessen & Burkert 2000; Gong & Ostriker 2015),
for example the mean Jeans mass, thus it is necessary to perform
an ensemble of simulations, and for the purpose of comparing
with observations, to convolve the core distribution by the dis-
tribution of large-scale initial conditions. Second, the number of
cores formed is often restricted to a small number limiting the
inferred statistics.

In an attempt to circumvent these two difficulties but also
to bridge the gap between the intermediate galactic scales, that
is to say, the scales of a few hundreds of pc, and the scales of
the self-gravitating prestellar cores, that is, on the order of 0.1 pc,
we perform zooming simulations starting from self-consistently
generated initial conditions. The benefit of this approach
is that there is no need to specify the initial conditions of the
dense molecular phase. A distribution of molecular clouds is
naturally produced from the diffuse atomic gas. The initial setup
is very similar to the studies described in Hennebelle & Iffrig
(2014) and Iffrig & Hennebelle (2017; see also Korpi et al.
1999; Slyz et al. 2005; de Avillez & Breitschwerdt 2005;
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Joung & Mac Low 2006; Hill et al. 2012; Kim et al. 2011,
2013; Gent et al. 2013; Gatto et al. 2015). These studies con-
sider a kpc stratified galactic box. The interstellar medium (ISM)
is self-regulated by the star formation process and the associated
supernova explosions, which inject energy and momentum and
sustain the turbulence. The finest spatial resolution obtained in
the simulations is a few 10−3 pc and allows us to describe the
formation of cores with masses larger than a few 0.1 M�, while
the region hundreds of pc in size, where full zooming is applied,
leads to a large number of cores from which reliable statistics
can be obtained.

We note that other zooming simulations have been per-
formed in the context of the star formation studies, such as
for example the ones by Offner et al. (2008) and Padoan et al.
(2014), which started from molecular cloud scales and zoom up
to scales of a few tens of AU. At the kpc scale, the deepest zoom
simulations have been performed by Butler et al. (2015), where
the spatial resolution goes up to 0.1 pc (see also Seifried et al.
2017). To our knowledge the simulation presented here is the
first to make the link between scales of a few hundred pc and
those of a few thousand AU.

The plan of the paper is as follows. In the second section, we
describe the numerical setup, the physics included in the simula-
tions, as well as the zooming procedure that we employed. The
third section explains the algorithm used to identify the cores in
3D space and gives the definition of the computed quantities. In
the fourth section we present the structure and the core statistics
obtained for various definition and criteria. In the fifth section,
we look at various subregions and a subset of cores to explore
their dependence to environments. In sixth section, we investi-
gate the time dependence of the statistics with the aim of assess-
ing the robustness of the results. We also compare the results
obtained with three different spatial resolutions. Finally Sect. 7
concludes the paper.

2. General setup

2.1. Code and processes

To perform our simulations, we employ the code RAMSES
(Teyssier 2002; Fromang et al. 2006), which is an adaptive mesh
refinement code working in Cartesian geometry and using finite
volume methods and Godunov solvers to solve the MHD equa-
tions. Ramses uses a constraint transport scheme for the mag-
netic field, which preserves divB to machine precision.

As described below, we make extensive use of the AMR
scheme and starting from level 9 we introduce another 8 to
10 AMR levels, therefore reaching levels 17–19.

The simulations include various physical processes known
to be important in the ISM. The ideal MHD equations with self-
gravity are solved and take into account the cooling and heat-
ing processes relevant to the ISM, which include UV heating
and a cooling function with the same low-temperature part as in
Audit & Hennebelle (2005) and the high-temperature part based
on Sutherland & Dopita (1993), resulting in a function similar to
the one used in Joung & Mac Low (2006).

An analytical gravity profile accounting for the distribution
of stars and dark matter is added. The corresponding gravita-
tional potential is given by (Kuijken & Gilmore 1989):

φext(z) = a1

(√
z2 + z2

0 − z0

)
+ a2

z2

2
, (1)

with a1 = 1.42 × 10−3 kpc Myr−2, a2 = 5.49 × 10−4 Myr−2

and z0 = 180 pc, as used by Joung & Mac Low (2006). The

gravitational potential Φ has thus two terms, the one due to stars
and dark matter φext, and the one due to the gas itself φ, hence
Φ = φ + φext.

2.2. Initial conditions

We initialize our simulations with a stratified disc: we use a
Gaussian density profile:

n(z) = n0 exp

−1
2

(
z
z0

)2 , (2)

where n0 = 1.5 cm−3 and z0 = 150 pc. This leads to a total col-
umn density, Σ, through the disc that is equal to

√
2πρ0z0 where

ρ0 = mpn0 and mp = 2.3 × 10−24 g is the mean mass per parti-
cle, which corresponds to a mixture of hydrogen and about 10%
of helium as in the ISM. We obtain Σ = 4 × 10−3 g cm−2 =
19.1 M� pc−2.

The temperature is set to a usual warm neutral medium
(WNM) temperature, around 8000 K. In order to prevent
this disc from collapsing, an initial turbulent velocity field is
generated with a dispersion of 5 km s−1 and a Kolmogorov
(Kolmogorov 1941) power spectrum with random phase. The
initial horizontal magnetic field is given by

Bx(z) = B0 exp

−1
2

(
z
z0

)2 , (3)

with B0 ' 3 µG.

2.3. Strategy for zooming simulations

The primary goal of the present study is to link the inter-
mediate scales of galaxies, that is to say the scales on the
order of 100 pc−1 kpc, with the ones of the dense cores,
thought to be the mass reservoir of stars. Dense cores have typ-
ical sizes on the order of, and possibly slightly below, 0.1 pc
(Ward-Thompson et al. 2007; Könyves et al. 2015). To properly
describe this scale, it is necessary to use, at the very least, 10 cells
across the cores and thus to reach a spatial resolution of at least
10−2 pc, which would give roughly 600 grid cells in a sphere
of radius equal to 0.05 pc. On the other hand, a reasonable de-
scription of the intermediate galactic scales requires to describe
typically a computational box of 1 kpc with at least 256 cells
(Kim et al. 2013; Hennebelle & Iffrig 2014; Gatto et al. 2015;
Iffrig & Hennebelle 2017), leading to a spatial resolution on the
order of 4 pc. Clearly, to make the connection between the few pc
scales and the 10−2 pc ones, intense zooming is required. To han-
dle this issue, we proceed as follows.

First we perform a supernovae regulated ISM simulation as
described in Hennebelle & Iffrig (2014) and Iffrig & Hennebelle
(2017). For that purpose we use a grid resolution of 5123. We
run it for about 32 Myr, which is typically what is required
to obtain a multi-phase ISM self-consistently generated by su-
pernova explosions. By this time about 1000 supernova explo-
sions have occurred. We note that unlike what was done in
Hennebelle & Iffrig (2014) and Iffrig & Hennebelle (2017) we
do not use sink particles because at this resolution of a few pc,
they represent large ensembles of stars (with masses on the or-
der of 104−5 M�) rather than single stars and they would affect
the calculation onto the refined grids. Therefore in these sim-
ulations, we prescribe a supernova rate. Since the supernova
rate in the Milky Way is about 1/50 yr−1 and since most su-
pernovae explode within the central 8 kpc, we take a supernova
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Table 1. Summary of the runs performed.

Name Run time (Myr) lmax Resolution (pc)
Z17 2.4 17 0.0072
Z18 4.3 18 0.0036
Z19 0.8 19 0.0018

Notes. The three runs start from the same point. The run time is the
duration of the numerical simulation. lmax is the maximum AMR level
used in this simulation and the resolution is the physical scale of small-
est computational cells.

rate of 1/50 yr−1/(π × 82) ' 10−4 yr, which is therefore roughly
equivalent to the Milky Way one for a region of 1 kpc2. The
supernovae are placed randomly in a sphere of 10 pc around
the densest cell in the simulation. This scheme is therefore
very close to the scheme “C” described in Hennebelle & Iffrig
(2014) except that the supernova rate is not temporally corre-
lated with the star formation rate. Let us stress that with this
approach, supernovae explosions start more rapidly than when
sink particles are used, since collapse is not required to gener-
ate them. This also implies that statistical equilibrium is reached
faster.

At time t = 32 Myr, we start zooming in a particular re-
gion. We increase the resolution on a square of half the total box
length in size and we perform a few tens of time steps (of coarse
levels) in order to let the small scales relax and adapt to the new
resolution. We repeat this procedure four times, increasing the
resolution by a factor two on a region two times smaller and per-
forming a few tens of time steps before increasing the resolution
again. We note that the size of the zooming region is made to be
at least 100 pc since the goal is to obtain adequate statistics. To
optimize computing resources, we have derefined the cells out-
side the first region of zooming bringing them to level 7 instead
of 9. By doing so, we avoid overly steep resolution jumps and
we insure uniform resolution on the regions of interest, which
optimizes the treatment of turbulence. In terms of resolution this
corresponds to a cell size of about 0.06 pc.

Finally, we allow for further refinements up to four more
AMR levels (for the fiducial run, see below), based on the
Jeans length criterion being described by at least ten cells. To
avoid significantly increasing the refinement too rapidly, we
first allow for two levels of refinement and run the simulation
for about 1.5 Myr which corresponds to a few free-fall and
crossing times for gas densities of n ' 103 cm−3. Altogether
the simulation is run for about 5.6 Myr between the end of
the unigrid calculation and the beginning of the full resolution
calculation. These numbers are similar to the ones quoted in
Seifried et al. (2017).

This provides (for the fiducial run) a finest spatial resolu-
tion of 0.0038 pc implying that the scale of 0.1 pc is solved
by about 25 cells. A core of diameter 0.05 pc contains about
9000 cells. While such a type a resolution is not sufficient to
describe the details within collapsing cores (e.g., Masson et al.
2016; Hennebelle et al. 2016), it is sufficient to identify the cores
and infer their masses. The resulting mesh is illustrated in Fig. 1,
that shows a series of zooms illustrating the high-resolution dy-
namics. Top-left panel shows the maximum AMR levels along
the z-axis. We note the first four levels of uniform refinement
and the four further ones based on Jeans criterion and therefore
centered around column density peaks.

Let us stress that in this work, we do not use sink particles,
even when full resolution is achieved, as the spatial resolution

is still not sufficient to provide a description of individual stars,
and sinks on the order of a few tens of solar masses would be
obtained. We note also that once we start refining, we stop in-
troducing supernovae remnants because the combination of very
high velocities (on the order of a 100 km s−1) and the high spa-
tial resolution leads to prohibitively low time steps. In any case,
since massive stars have a lifetime greater than 4 Myr, super-
novae are not expected to have a very strong impact in dense
star forming regions because they come too late. Moreover other
types of feedback such as ionizing radiation should in principle
be considered (e.g., Geen et al. 2017).

2.4. Runs performed

The influence of several aspects of the procedure we used need
to be investigated. On the other hand the runs are quite expensive
(typically several millions of CPU hours) and only a few can be
carried out.

We believe that the most important parameters are the maxi-
mum resolution and the influence of the time at which the zoom-
ing is performed. To tackle these questions we have performed
three runs as described in Table 1.

The runs have been performed on 4000 CPU and have typi-
cally several hundreds of millions of computing cells (depending
on resolution and time). Altogether they required about 10 mil-
lion CPU hours.

By comparing the results of the three runs (Sect. 6.2), we
are able to quantify the impact of the resolution, which is a
key aspect. Simulation Z17, and particularly Z18, which is our
fiducial run, were performed for a few Myr. This corresponds
to the freefall time for densities of about 100 cm−3. Therefore
for these two simulations, the most recent collapsed objects are
made from gas that was diffuse enough by the time the zooming
started. Thus by looking at the evolution of the structure proper-
ties, we can infer to what extent their properties are affected by
the time and also the resolution of the simulation immediately
before the zooming starts. Regarding the results of Sect. 6.1, we
find the statistics to be robust to time evolution suggesting that
the starting point at which zooming is performed is not too se-
vere an issue.

We note that because of computing-power limitations, the
Z19 simulation could not be run for longer. However since the
evolution of statistics with time remains limited in the Z18 run
(see Sect. 6.1), in principle this corresponds to a sufficiently long
time to obtain stationary statistics.

2.5. Missing physics

There are numerous important processes, which are not included
in this work. While we believe it is important to proceed step by
step to decipher their respective impacts, we briefly and qualita-
tively reiterate their possible effect.

First of all, we assume ideal MHD, that is, we do not
model the ion-neutral friction which probably has an impact on
the core formation (van Loo et al. 2008; Kudoh & Basu 2008,
2011; Chen & Ostriker 2014) and the turbulence (Li et al. 2008;
Tilley & Balsara 2011; Burkhart et al. 2015; Ntormousi et al.
2016). This implies that at the core scales, the magnetic field
structure could possibly be smoother and the magnetic intensity
lower than what the simulation predicts.

Second of all, once refinement starts, we do not include any
stellar feedback that would i) limit star formation by disrupting
molecular clouds through ionizing radiation (e.g., Walch et al.
2012; Dale et al. 2013, 2014; Geen et al. 2015, 2016, 2017); or
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Fig. 1. Top-left panel: AMR level used to perform the calculation in one quarter of the computing box. The zooming strategy is clearly visible.
The first levels use nearly uniform refinement while the last ones are based on the Jeans length and follow the dense gas. Top-right panel: column
density for the whole computing box and along the x-axis. Second, third and fourth rows display a series of zooms, going from 250 to 0.25 pc,
showing the column density along the y-axis. From the bottom rows, the interest and limit of the calculation clearly appear. The cores as entities
are reasonably described but their internal structure is poorly described.
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ii) modify the core distribution as has been reported, for exam-
ple, for the jets (e.g., Wang et al. 2010; Federrath 2015). These
effects may modify the statistics by generating a second gener-
ation of cores whose formation has been triggered, or at least
influenced by the feedback of the first generation.

2.6. Qualitative description

Figure 1 shows a series of zooms from the kpc box (top-right
panel) to a few 0.1 pc (bottom-right panel). The top-right panel
and the left panel of the second row show the stratification along
the z-axis. The typical thickness is about 50–100 pc (depend-
ing on the gas density, see Iffrig & Hennebelle (2017) for a de-
tailed discussion). Visually, the aspect of the gas looks broadly
similar from a scale of 50 pc (right second-row panel) to 10 pc
(left third-row panel). We see that the medium is highly struc-
tured with clumps at all scales, with very prominent filaments at
all scales. Less structure is seen at a scale of about 3 pc (right
third-row panel) and even less for bottom panels. This behavior
is possibly a consequence of gravity becoming more and more
important within the selected regions (concentric cubes around
x = 133.9 pc and y = 502.8 pc) while turbulent energy tends
on the contrary to be smaller and smaller (because of its scale
dependence). This may also indicate that the small scales are
not completely described since Jeans length-based refinement
instead of uni-grid is being used for the four last levels, as dis-
cussed above.

The two bottom panels show that the dense gas is very frag-
mented in relatively well defined cores. Some of them, however,
show signs of interactions or complex morphologies as seen in
the bottom-right panel. At this point, it may be difficult to decide
whether this should be described as a single core with a complex
inner structure or as two interacting cores. In the rest of the pa-
per we describe how these cores are being defined and we study
their statistics.

3. Structure extraction and properties

3.1. HOP algorithm

The main goal of the present paper is to study the prestel-
lar cores in the context of a self-consistently generated ISM
and we must proceed to their extraction. For this purpose, we
use the group finding algorithm, HOP, which has been widely
used in a cosmological context to detect dark matter haloes
(Eisenstein & Hut 1998). This algorithm is also used in the ISM
context by Bleuler & Teyssier (2014) to identify the possible lo-
cation of new sink particles. HOP finds the densest neighbour of
each particle, repeating the procedure this defines a path which
ends when each particle is its own densest neighbour. The en-
semble of particles which end at the same local density max-
imum is called a group. There are a few user parameters that
have been found to have little influence on the final result with
the notable exception of the density threshold above which par-
ticles are considered (Eisenstein & Hut 1998). Once the groups
are obtained, the algorithm also offers the possibility to merge
the groups, something that we do not use in the present study.

To use HOP we proceed as follows. First, we select in the
simulation all the cells that have a density above 3000 cm−3, lo-
cated inside the maximally refined regions (corresponding to the
green square visible in the top-left panel of Fig. 1). These spa-
tial coordinates and the density of these cells are then provided
to the HOP algorithm, which groups them following the pro-
cedure described above. We note that as discussed below, most

structures found this way are not self-gravitating and should not
be classified as cores, a point to which we return below, where
several criteria are being studied. The word cores will refer to
structures (i.e., groups of cells identified by HOP) which satisfy
a specific criterion (typically based on virial analysis).

We note that at this stage, we do not attempt to define and
extract the cores as the observers do. The reason is that this is
in itself a challenging process, which requires several steps in-
cluding a modelisation of the observations themselves as well as
the usage of specific software (Men’shchikov et al. 2012). This
goes beyond the scope of the present paper, which focuses on the
method and the physical analysis of the structures formed.

3.2. Computed quantities

Once we get the groups of cells, we calculate the mass M,
the velocity dispersion, σ, the cloud radius, R, the virial α
parameter and the mass-to-flux over critical mass-to-flux ratio
(Mouschovias & Spitzer 1976), µ. For some of these parameters,
there are several possible choices. The spatial coordinates used
in the equations below are with respect to the center of mass of
each individual structure.

The internal velocity dispersion is defined as

u0 =

∑
uρdx3∑
ρdx3 , (4)

σ2 =
1
3

∑
(u − u0)2ρdx3∑

ρdx3 · (5)

To define the radius, we first compute the inertia matrix

Ii j =
∑

xix jρdx3, (6)

that we diagonalise giving three eigenvalues λi. We then define

R =

(
λ1λ2λ3

M3

)1/6

· (7)

To characterize the dynamical state of the structures, we compute
several values of the virial parameter, α as stated by Eq. (8).
First, we compute the standard observational definition that we
will refer to as α. Then we compute the exact ratio between the
kinetic energy and the gravitational energy αvir. Finally, we also
compute the ratio between the thermal and gravitational energy,
αth.

α =
5σ2R
GM

,

αvir =
2Ekin

Egrav
=

∑
ρ(u − u0)2dx3∑
gi.riρdx3 , (8)

αth =
2Eth

Egrav
=

3
∑

Pdx3∑
gi.riρdx3 ,

where gi is the gravitational field.
The mass-to-flux ratio is widely used to estimate the strength

of the magnetic field with respect to gravity. To compute Φ, the
magnetic flux, we first compute the cloud center of mass, then
we compute the flux across the three planes parallel to xy, xz,
and yz and passing through the center of mass. We then take the
largest of these three fluxes. The exact definition of µ depends,
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Fig. 2. Physical properties of all structures identified in the simulation Z18 at time 10.04 Myr. Top-left panel: mass versus radius, top-right
panel: mean density versus mass. Bottom-left panel: αvir parameter (as stated by Eq. (8)) for all structures while bottom-right panel: αvir only for
the structures with a mean density larger than 105 cm−3. The latter confirms that most structures with a mean density larger than 105 cm−3 are
collapsed objects since αvir ' 1 (with little dispersion).

in principle, on the object geometry and flux distribution; here
we use the definition of Mouschovias & Spitzer (1976)

Φ =
∑

Bdx2, (9)

µ =
M
√

G
0.13Φ

·

4. Statistical properties of cores

We now turn to a description of the statistical properties of the
extracted structures and cores. In this section we present the re-
sults of run Z18, that is to say with a spatial resolution up to
3.6 × 10−3 pc and at time 10.04 Myr.

4.1. Mass, radius, and density of structures: core selections

Figure 2 shows a series of dimensional histograms displaying
various quantities as described in Sect. 3.2. Top-left panel shows
the mass as a function of the radius, R. While the radii span
about one decade, from 0.01 to a few 0.1 pc, the masses vary
over more than four decades reaching values below 0.01 M� and
above 100 M�. At first sight this seems to suggest that the ra-
dius weakly varies with the mass. However, this is not exactly
the case. From the mass-radius distribution, the structures can
be divided in two main populations. First, a significant fraction
of objects lies around a line starting at M ' 0.1 M�, R ' 0.02 pc
and ending at M ' 10 M�, R ' 0.1 pc. This population of struc-
tures roughly follows M ∝ R3. We call it region I. The second
population is located around M ' 10 M�, R ' 0.02 pc, which
we call region II.

This second population corresponds therefore to much
denser objects than the ones of the first population. This can be
more clearly seen on the top-right panel that displays the mean
density distribution. This latter is simply defined as the ratio of
the mass structure over its total volume. The structures of region
I have densities of about 104−5 cm−3 and masses of 0.1–10 M�.
The structures corresponding to region II are at much higher den-
sity. This latter is nearly proportional to their mass.

We believe that these two types of structures should be dis-
tinguished. The first one represents structures which have not
yet strongly collapsed, such as pre- and protostellar cores. The
second type corresponds to objects which have collapsed and
therefore, since, as explained above, we are not using sink parti-
cles, their mass has piled up on a few computing cells explaining
why the density increases with their mass. These objects there-
fore represent young stellar objects (YSO). We note however that
since merging is occurring, their distribution evolves with time
and bigger objects are gradually built up. This indicates that as
we are studying the statistical properties of cores, it is necessary
to separate the two populations.

Based on the density distribution, we see that a simple den-
sity threshold allows us to separate them easily. To demonstrate
this we have plotted the radius versus mass distribution for struc-
tures with nmean < 105 cm−3 (top-left panel of Fig. 3), where
it is clear that these structures lie in region I. This is also con-
firmed by the distribution of the αvir parameter, which is shown
for all structures (bottom-left panel of Fig. 2), structures with
mean density larger than 105 cm−3 (bottom-right panel of Fig. 2),
and those with mean density smaller than 105 cm−3 (middle-right
panel of Fig. 3). Most structures with nmean > 105 cm−3 have αvir
very close to 1 (we note that there is very little mass in structures
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Fig. 3. Physical properties of structures with mean density smaller than 105 cm−3 in simulation Z18 at time 10.04 Myr (as seen with Fig. 2
these structures are not dominated by collapsed objects). Top-left panel: mass-size relation (compared with top-left panel of Fig. 2 which shows
the same quantity for all structures). Top-right panel: velocity dispersion (see Eq. (4)) as a function of mass. Typical values are on the order of
σ ' 0.3 km s−1. Second row: α and αvir. Most cores have values on the order of, or smaller than, a few. Third row: Alfvénic Mach number and the
µ parameter.

with αvir > 1 compared to structures with αvir ' 1). On the con-
trary, the ones with nmean < 105 cm−3 have a distribution that is
broader and are not heavily dominated by an αvir ' 1 population.

We note that the collapsed structures (with high mean den-
sity) are very compact and sometimes only a few cells across.
The origin of αvir ' 1 is the numerical diffusion which spreads
the density peak over a few grid cells, while the typical velocity
dispersion that is induced by the numerical scheme is simply the
virial one.

In the following we therefore distinguish between objects of
various mean densities. In our simulations, only the ones with
mean densities below '105 cm−3 can possibly be considered
as pre- or protostellar cores. The objects with high mean den-
sities are subject to unphysical merging since in practice these
objects should have collapsed and formed a star population. As
we discuss below, their mass distribution is likely affected by this
process.

4.2. Velocity dispersion, Mach number, and virial parameter

The mass versus radius distribution for structures of densities
below 105 cm−3 is displayed in the top-left panel of Fig. 3. It
broadly follows an M ∝ R3 relation with masses on the order
of 10 M� for a radius of 0.1 pc. This is very similar with what
has been inferred in the simulations of Offner et al. (2008, see
their Fig. 1), more particularly their undriven case. We note that
the trend M ∝ R3 is likely an artifact of the finite resolution
and the density threshold of the clump finder. In particular, this
relation corresponds to the lower mass object at a specific radius.
As we discuss in Sect. 4.5.1, the thermally supercritical clumps,
that is, the dense cores, follow a different trend that is likely not
suffering from this bias.

The inner velocity dispersion of the objects with nmean <
105 cm−3 is displayed in the top-right panel of Fig. 3. The distri-
bution is broad, it peaks around 0.5 km s−1 but extends, for few
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objects, above 1 and below 0.1. Since the sound speed within the
dense gas is typically on the order of 0.2 km s−1, this corresponds
to a Mach number on the order of 2–2.5 (not displayed here for
conciseness). There is, as expected, a mild correlation between
the mass and the Mach number, M ∝ σ1/2 (see the yellow pix-
els which contain most of the mass). This is also similar to the
values inferred by Offner et al. (2008, their Fig. 3).

The virial parameter, αvir is displayed in the middle-right
panel. As can be seen there is, as expected a large spread but
most of the mass tends to lie in the vicinity of αvir on the order
of, or slightly larger than, 1. Since real observations do not have
access to αvir, we also estimated α using the standard definition
recalled in Eq. (8). The two distributions are similar without be-
ing identical. There is a trend toward slightly larger values of α.
Also its distribution is broader than the one of αvir.

4.3. Mass-to-flux ratio and Alfvénic Mach number

The Alfvénic Mach number (Malf) is displayed in the bottom-
left panel of Fig. 3. Typical values are '2 times below the Mach
number ones indicating that the magnetic support dominates
over the thermal one. Most objects are sub or trans-Alfvénic with
very few values larger than 3. There is a clear, though shallow,
trend for more massive objects to present largerMalf . Typically
we getMalf ∝ M1/4.

The mass-to-flux ratio, µ, is displayed in the bottom-right
panel. Objects for which µ is below 1 are magnetically subcrit-
ical and are not expected to undergo gravitational collapse at
least as long as they keep their magnetic flux. As can be seen,
there is a clear trend for µ to increase slightly sub-linearly with
the mass, although there is a broad distribution with variation
over about one order of magnitude. This behavior is significantly
different from studies performed on larger-scale clumps iden-
tified through simple density thresholds (Banerjee et al. 2009;
Inoue & Inutsuka 2012; Iffrig & Hennebelle 2017) where a shal-
lower relation µ ∝ M0.4 has been reported. A simple ge-
ometrical explanation of this relation has been proposed by
Iffrig & Hennebelle (2017).

The origin of this difference of behavior between the self-
gravitating cores and the diffuse clouds is not obvious. Strictly
speaking it implies that the magnetic flux is roughly constant
through the selected structures or increases very mildly with the
mass. Since the surface is proportional to R2 and therefore in-
creases with the mass, this means that for dense cores, the mag-
netic field decreases with their mass. The most likely explanation
is that matter preferentially flows along the field lines, therefore
leading a dependence of the mass-to-flux ratio shallower than the
one of the large-scale clumps whose formation is primarily due
to turbulence.

Another, not exclusive possibility is that magnetic diffu-
sion is effective. Indeed magnetic diffusion has clearly been
observed in the context of collapsing cores (Hennebelle et al.
2011; Joos et al. 2013) although only in the inner part of the
cores. Since the dense structures selected by the HOP algorithm
are local density maxima, there are also regions of the flow
which have a high magnetic field and since turbulence is signifi-
cant (being dominant over or comparable to the dominant source
of support), the clumps experience a few turbulent crossing times
before they collapse. We note that the possibility that numerical
diffusion is playing an important role in this process cannot be
ruled out although turbulent diffusion is certainly known to be
acting efficiently (Lazarian & Vishniac 1999).

The values of µ indicate that most structures above one so-
lar mass are supercritical. This certainly suggests that magnetic

field plays a significant role for the star formation process since
it stabilizes most of the small clumps that form, a point that
we discuss further in the following. It should also be stressed
that while the values of µ are typically larger than 1 for mas-
sive cores, most of them are still below 10 which indicates that
the magnetic field still has a significant influence during the
collapse (e.g., Hennebelle et al. 2011; Commerçon et al. 2011;
Myers et al. 2013). In particular, magnetic fields of such inten-
sities can play an active role in reducing the gravitational frag-
mentation that may occur during collapse.

4.4. Mass spectra

An important statistical property regarding the prestellar cores
is their mass spectrum. Indeed it has been found that the core
mass spectrum is very similar in shape to the IMF (Motte et al.
1998; Alves et al. 2007; André et al. 2010; Könyves et al. 2015)
and several theories assume that the core mass function
(CMF) is at the origin of the IMF (Padoan et al. 1997;
Hennebelle & Chabrier 2008; Hopkins 2012; Offner et al. 2014;
Lee et al. 2017). While the link between the CMF and the IMF
is still debated, the CMF provides an important statistical de-
scription of the dense and self-gravitating gas, that needs to be
reproduced and understood.

Figure 4 shows several mass spectra of various ensembles
of structures. The top panel displays the mass spectrum of all
structures identified by the HOP algorithm in the simulation and
with at least 100 computing cells. For reference, the solid lines
indicate the mass spectra dN/d log M ∝ M−1 and dN/d log M ∝
M−1.3. The mass spectrum of all structures ranges from masses
of about 0.01 M� to masses larger than 103 M�. The high mass
part (above 10 M�) presents a clear M−1 tail. The low mass part
peaks at about 0.1 M� and then steeply drops.

As seen from Figs. 2 and 3, many structures are not grav-
itationally bound or have already collapsed and should not be
considered as prestellar cores. Therefore we also show the mass
spectra of various sub-populations. The middle-left panel shows
the mass spectrum of structures that have a mass-to-flux ra-
tio, µ, smaller than 1, that is, subcritical structures, while the
middle-right panel shows the mass spectrum of super-critical
cores (black lines) and cores with µ > 0.3. Clearly the µ param-
eter controls the peak of the magnetized core distribution. The
subcritical structures present a peak at about 0.2 M� and do not
present a power-law distribution at high mass. Instead its shape
is roughly lognormal. We caution that, as already discussed, the
definition and therefore the physical meaning of many subcriti-
cal clumps, should be regarded with care. The peak in particular
depends on the numerical resolution. On the contrary, supercrit-
ical cores (with µ > 1) have a mass spectrum which peaks at
about 2 M� and present a high mass tail ∝M−1. Unsurprisingly
the peak shifts toward smaller mass for larger values of µ.

To remove the collapsed cores discussed in the previous sec-
tion, we have selected supercritical cores for which nmean <
105 cm−3 (bottom-left panel, black line) and nmean < 106 cm−3

(bottom-left panel, blue line). The low-mass part is nearly iden-
tical to the supercritical core mass spectrum displayed in the
middle-right panel but the high-mass tail is quite different. It
is still a power-law but is much closer to being ∝M−1.3 than
∝M−1.

Finally, we have also plotted the mass spectra for thermally
supercritical cores, that is to say for which αth < 1, keeping
again the ones for which nmean < 105 cm−3 (black line of bottom-
right panel) and nmean < 106 cm−3 (blue line). The motivation is
twofold. First of all as already mentioned, ambipolar diffusion
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Fig. 4. Mass spectra of the ex-
tracted cores at time 10.04 Myr
in simulation Z18. Top panel:
no selection applied. Second
panel: only subcritical cores,
that is, those with µ < 1 are
displayed. Third panel super-
critical cores (µ > 1, solid
line) and cores with µ >
0.3 (red dashed line). Bottom
panel supercritical cores with
central densities smaller than
105 cm−3 and 106 cm−3 (re-
spectively black and blue solid
curves).

is not included and could reduce the magnetic flux, second of
all, observationally it is hard to measure the magnetic intensity
and for this reason thermal support is usually considered to se-
lect gravitationally bound cores. As can be seen, the shape of the
high-mass part is identical to the supercritical cores. Both mass
spectra peak at about 1–2 M�. There are however more small
cores in the thermally supercritical distribution than in the mag-
netically supercritical one and the former is slightly broader than
the latter.

Altogether these results are reminiscent of the CMFs that
have been observationally obtained. In particular André et al.
(2010) found that in the Gould Belt survey, the CMF peaks
around or slightly below 1 M� and presents a power-law
∝M−1.3 at high mass. On the contrary, the mass spectrum of
the structures observed in the Polaris cloud, which are not
self-gravitating, peaks at smaller mass and has a lognormal
shape. This is reminiscent of the mass spectra obtained here.
The mass spectrum of subcritical structures (middle-left panel)
resembles the Polaris one and the mass spectrum of supercritical

ones (bottom-left panel) is similar to the CMF obtained for the
Gould Belt although the observational CMF may peak at a value
'2−3 smaller than the one inferred from the simulation (but see
Sect. 6.2 for a discussion on possible numerical convergence
issues).

Our results are also reminiscent of some of the CMFs
previously obtained in numerical simulations (Klessen et al.
1998; Klessen & Burkert 2001; Gong & Ostriker 2015) that also
present a peak and powerlaws at high masses. We stress how-
ever that since these studies are isothermal, the core masses
can be freely normalized. In the present simulation, cooling
is treated, and more generally the density distribution is a
consequence of several processes, such as the disc vertical
equilibrium itself related to the momentum injected by the
supernovae.

While this is encouraging, it is important to stress that
there may be difficult issues however regarding the numerical
resolution and the dependence of the peak position on it,
something that we discuss in Sect. 6.2.
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Fig. 5. Upper panel: mass-radius relation of thermally supercritical
cores. Lower panel: magnetic mass-to-flux of thermally supercritical
cores. While massive cores are all magnetically supercritical, there is
a significant number of intermediate- and low-mass cores, which are
magnetically dominated.

4.5. Properties of thermally supercritical cores

As our main interest is the supercritical cores, we now specifi-
cally investigate some of their properties.

4.5.1. Mass-radius of thermally supercritical cores

The upper panel of Fig. 5 shows the mass-radius relation for the
thermally supercritical cores. Apart for the very-low-mass ones,
the distribution is broadly encompassed between M ∝ R for the
most massive objects at a specific radius and M ∝ R2 for the
less massive ones, though the dispersion is quite large for log R
below –1.5. The overall distribution is broadly similar to the one
inferred by Könyves et al. (2015, see their Fig. 7).

4.5.2. Mass-to-flux ratio of thermally supercritical cores

We now examine the correspondence between the thermally and
magnetically supercritical cores. For that purpose we study the
distribution of the mass-to-flux ratio, µ, for cores having αth < 1
and mean density below 105 cm−3. The lower panel of Fig. 5
displays the result. As can be seen, while most massive cores are
clearly magnetically supercritical (i.e., have µ > 1), this is less
the case for low- and intermediate-mass cores for which a sig-
nificant fraction are actually dominated by magnetic field. While
this result was expected since the mass spectrum of thermally su-
percritical cores is broader than the mass spectrum of magneti-
cally supercritical ones, this nevertheless illustrates the difficulty
of defining exactly what a core is. Indeed, a thermally subcritical
object may accrete more mass or be compressed and this could
make it gravitationally unstable. Similarly magnetically subcrit-

Fig. 6. Distribution of angular momentum in magnetically supercritical
cores of mean density below 106 cm−3; the top panel displays this as
a function of the mass while bottom panel shows it as a function of
internal velocity dispersion.

ical cores may accrete mass along the field lines or lose some
magnetic flux through ambipolar diffusion if it is held by exter-
nal pressure for a few diffusion times.

We must highlight that we have not included kinetic energy
in the core selection, which may make some of the thermally
supercritical cores stable. The reason is that in this process,
one should carefully distinguish between collapsing motion that
should not be counted as kinematic support but rather counted
negatively. This would require careful analysis, something be-
yond the scope of the present paper. Qualitatively, the mass spec-
trum is similar but the peak position is even more uncertain.

Observationally, Crutcher (2012) inferred that most cores are
supercritical while only a few appears to be subcritical. While
this may simply be an effect of selected samples (most of the
selected observed cores may have already formed an object or
are on the verge of doing so while our “subcritical” cores sim-
ply expand without forming an object), this may also possibly
indicate that either ambipolar diffusion should be included as it
is playing a significant role at the scale on the order of 0.1 pc, or
the magnetic field is slightly too high in the present simulations.

4.5.3. Angular momentum

Angular momentum is an essential quantity in the context of
core collapse and disc formation and we therefore investigate
its distribution in our core population. The specific momentum
is given by

J =
‖
∫

(u − v0) × r dm‖∫
dm

· (10)

Figure 6 shows its distribution for supercritical cores with mean
density below 106 cm−3. The upper panel displays its value as
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a function of mass while the bottom one shows it as a func-
tion of the velocity dispersion. As can be seen, the inferred val-
ues go from 10−3 to 10−1 pc km s−1 and scale with the mass
roughly as M2/3. These values are in excellent agreement with
what has been inferred from observations (see for example Fig. 7
of Belloche 2013). They are also compatible with previous sim-
ulations such as the ones performed by Offner et al. (2008, their
Fig. 5) and Dib et al. (2010, their Fig. 13).

Interestingly, the correlation between J and σ is slightly bet-
ter than between J and M. This is in good agreement with the
idea that the rotation of pre- and protostellar cores is primarily
inherited from their initial turbulence.

5. Environmental dependencies

So far we have considered the statistics for all the extracted cores
present in the simulation. An important question is to what extent
the core properties may vary from region to region. Given the
relatively large simulated volume, there is indeed a wide range
of physical conditions. To tackle this question, we have selected
five subregions of the simulation Z18 at time 10.04 Myr as dis-
played in Fig. 7. These regions contain many cores, therefore
statistics can be drawn.

5.1. Physical characteristics

First we quantify key physical characteristics of the selected sub-
regions. Figure 8 displays the density PDF, the mass distribution
or, equivalently, the mass-weighted density PDF, and the mag-
netic intensity as a function of density in the five sub-regions as
well as in the whole fully refined zoom region.

As displayed by the top panel, the five regions present very
different masses going from a few 104 M� (region 1) to about
100 M� (region 5). They present density PDF (middle panels)
that have similar shape. They peak at low densities around 10
to 100 cm−3 (1 cm−3 for the whole refined region) and a power-
law 'ρ−1 − ρ−1.5 at high density. Similar distributions have been
found to be typical of gravitational collapse (Kritsuk et al. 2011;
Hennebelle & Falgarone 2012; Girichidis et al. 2014). The less
massive subregions (5) present however significant deviations
at high densities, possibly indicating that they contain less col-
lapsed objects.

The mean magnetic intensity is displayed as a function
of density in the bottom panel. For the whole region, the
usual behavior (Troland & Heiles 1986; Hennebelle et al. 2008;
Banerjee et al. 2009; Crutcher 2012) is recovered, that is to say
B weakly depends on n for n < 103 cm−3, where typical mag-
netic intensities are '10 µG, while at densities n > 104 cm−3,
B ∝

√
n. Let us remind that this behavior is a simple conse-

quence of the magnetic and gravitational forces. In the diffuse
gas, gravity is not dominant and the gas must flow along the field
lines to avoid high magnetic pressure. On the contrary, in the
dense gas, gravity can compensate for the high magnetic pres-
sure (Hennebelle et al. 2008). For subregions 1, 2 and 3, a simi-
lar behavior is inferred, although regions 2 and 3 present values
of B at low densities that are 3–10 times higher. This is due to
the fact that the magnetic field has been globally compressed by
gravity in these regions. Subregions 4 and 5 present a slightly
different behavior at high densities, particularly region 5, that
presents magnetic intensity values 2–3 times below the others.

We conclude that while the five subregions present rather dif-
ferent masses, their physical conditions are more similar, except
subregion 5, which presents lower magnetic intensities.

5.2. Mass spectra of the sub-regions

Figure 9 shows the CMF for the whole region and the five subre-
gions. The top panel shows the magnetically supercritical cores
while the bottom one displays the thermally supercritical cores.

Subregions 1 and 2 present mass spectra that are relatively
similar to the whole region one. The peak is approximately at
the same place, and the shape of the high-mass part of the distri-
bution also resembles the CMF of the whole region.

Subregion 3 presents more fluctuations, which is expected
since it contains less cores. Its CMF is nevertheless similar to
the ones of regions 1 and 2.

Subregions 4 and 5 present more systematic deviations.
There is an excess of low-mass magnetically supercritical cores
(top panel) of subregion 5 (which peaks at about 0.3 M�) as well
as a paucity of high-mass cores. A similar behavior is observed
for thermally supercritical cores of region 5. This is entirely con-
sistent with the magnetic intensity distribution discussed above.
Subregion 4 also shows an excess of thermally supercritical
cores but not of magnetically supercritical cores.

Altogether these results suggest that the core properties (note
that only the mass distribution has been displayed here for con-
ciseness but similar results are obtained for the other ones) do
not fluctuate very strongly from one region to another providing
the region is massive enough. We note that this lack of strong
variation is particularly important in the context of the appar-
ent universality of the IMF (e.g., Bastian et al. 2010) since cores
are believed to be the mass reservoir of stars; although the links
between the IMF and the CMF are still debated. At first sight
these weak variations are not straightforward to understand be-
cause there is a broad range of density, velocity dispersion, and
magnetic field in the zoomed region. We believe that the lim-
ited variations of the CMF may be a consequence of the virial
dynamical equilibrium that naturally develops in a collapsing
turbulent clump, and tends to self-regulate the initial condi-
tions of star forming clumps as proposed by Lee & Hennebelle
(2016a,b). In particular, the effects of the density and velocity
variations onto the CMF tend to compensate each other within
such regions (Hennebelle 2012; Lee & Hennebelle 2016b).

6. Time evolution and numerical convergence

In this section, we discuss the robustness of the results presented
above. Indeed the zooming strategy may introduce biases such
as a dependence on the time at which zooming starts or on the
zooming strategy itself. Here we investigate in detail the evolu-
tion of the statistics with time as well as the impact of the maxi-
mum resolution reached in the simulations on the statistics.

6.1. Time evolution

Figure 10 shows the CMF (the top panel uses the µ parame-
ter while the bottom one uses αtherm, for both of them nmean <
105 cm−3) for four time steps of the Z18 simulation. The differ-
ence between the first and the last time step presented is about
4 Myr, which represents about one freefall time for a gas density
of 100 cm−3. This therefore implies that gas typically denser
than 103 cm−3 at 5.841 Myr will have experienced about 4 dy-
namical times by 10.04 Myr. Thus the early cores present at
5.841 Myr have collapsed at 10.04 Myr, while the early cores
present at 10.04 Myr are made out of gas that was diffuse enough
at 5.841 Myr. By comparing the CMF at these two times, and
more generally the CMF evolution, we can therefore investigate
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Fig. 7. Column density for the five selected sub-regions.

to what extent the CMF we infer depends on the zooming time
and on the zooming strategy.

The first time step (t = 5.841 Myr) is only 0.2 Myr after the
full refinement starts, that is to say refinement based on Jeans
length up to level l = 18. As can be seen there is a visible evo-
lution between t = 5.841 and 6.832 Myr for small objects. In
particular the peak for the CMF based on µ is shifting by a factor
'2. At a later time, we see that the number of objects increases
by a factor of the order of 2 but that the shape of the distribution
does not evolve significantly. Since these objects form a few mil-
lions years after the full resolution starts, this clearly indicates
that the starting time does not drastically affect the statistics of
the cores.

The zooming strategy is likely responsible for the difference
between t = 5.841 and t = 6.832 Myr. However since there

is no strong evolution of the shape at a later time, the zooming
strategy we used seems to lead quickly to results equivalent to
those obtained with full refinement.

6.2. The issue of numerical convergence

Finally, we investigate the influence of the numerical conver-
gence, which is a central issue for the CMF. Figure 11 shows
the CMF for Z17, Z18 and Z19 at comparable times, that is,
0.8 Myr after the beginning of full refinement, which was the
latest we could achieve for the Z19 run. There is however a diffi-
cult point here. As discussed previously the mean density thresh-
old is playing an important role to remove the collapsed objects.
However, resolution obviously affects the mean density of col-
lapsed objects, which increases as dx−3, where dx is the finest
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Fig. 8. Top panel: mass distribution as a function of density (mass
weighted density PDF), bottom panel: mean magnetic intensity as a
function of density for the five sub-regions shown in Fig. 7.

spatial resolution. This implies that the threshold density should
increase by a factor 8 when the maximum resolution improves by
a factor 2 (for example from level 18 to level 19). Therefore two
thresholds are used for Z17 and Z19 runs. The dashed lines show
the CMF for cores with mean density below 105 cm−3 while the
solid lines show the CMF with a threshold of 106 cm−3 for Z19,
105 cm−3 for Z18 and 104 cm−3 for Z17.

As can be seen, the CMF of the Z17, Z18 and Z19 simula-
tions with a mean density threshold of 105 cm−3, are quite differ-
ent. They peak at 5, 1 and 0.2 M�, respectively. This is expected
since smaller structures are more numerous when the resolution
is higher. However the CMF of the Z17, Z18 ad Z19 simulations
with threshold respectively equal to 104, 105 and 106 cm−3 are
much closer and peak at about 2, 1.5 and 1 M�, respectively. In-
terestingly the high-mass part of the three CMF are also close
with differences of about a factor 2. The differences are more
pronounced for the thermally supercritical cores.

Fig. 9. CMF at time t = 10 Myr for the Z18 simulations and for five
sub-regions.

It is thus not possible to conclude at this stage whether or not
the numerical convergence has been reached. Clearly many cores
have pronounced internal structure and defining unambiguously
what a core is may be an elusive task. The question as to whether
the CMF will eventually converge is therefore not straightfor-
ward, although Gong & Ostriker (2015) seem to achieve numer-
ical convergence in their simulations (see their Fig. 10). It may
eventually depend on the small-scale processes that determine
whether cores fragment or not.

7. Conclusion

We have carried out zooming simulations using self-consistently
generated initial conditions from a self-regulated supernova ISM
at the kpc scale. Our strategy consists in performing a series of
concentric uniform refinement and then for the last levels using
the Jeans length as a refinement criterion. The spatial resolution
goes up to a few 10−3 pc which is enough to describe the forma-
tion of cores of masses on the order of a few 0.1 M�. We identify
the cores using a clump finder, requiring that the structures are
thermally or magnetically supercritical. Since the domain where
full refinement is applied extends over 100 pc, we get a few
thousand cores providing reliable statistics. The inferred CMF
present clear similarities with the observed ones. In particular,
the massive objects present a power law with an exponent close
to −1.3, similar to the IMF. The peak of the CMF is found to be
located around 1–2 M�, also similar to the observations (though
possibly higher by a factor 2–3). Its position may however vary
with the resolution and the significance of this peak must there-
fore be confirmed by future studies. Other statistics such as the
velocity dispersion, the angular momentum, and the magnetiza-
tion also present encouraging agreements. For instance, as in the

A24, page 13 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731071&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731071&pdf_id=9


A&A 611, A24 (2018)

Fig. 10. CMF for simulation Z18 at different timesteps.

observation, the velocity dispersion in cores is typically sonic
or mildly supersonic. The angular momentum increases with the
core radius and typical values are on the order of 10−2 pc km s−1.
The magnetization is significant, most cores having a mass-to-
flux ratio in the range 0.3 to 3. The statistics do not vary signifi-
cantly with time, seemingly suggesting that the zooming proce-
dure used in this paper does not introduce severe biases.
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