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Abstract

This paper is devoted to an inverse Steklov problem for a particular class of n-dimensional

manifolds having the topology of a hollow sphere and equipped with a warped product metric.

We prove that the knowledge of the Steklov spectrum determines uniquely the associated

warping function up to a natural invariance.
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1 Introduction

1.1 The Calderón and Steklov problems.

Let (M, g) be a smooth compact manifold of dimension n ≥ 2 with smooth boundary ∂M . We
consider the Dirichlet problem

{

−∆gu = λu in M

u = ψ on ∂M,
(1)

where ψ ∈ H1/2(∂M) and λ ∈ R is assumed to lie outside the Dirichlet spectrum σ(−∆g) of the
Laplace-Beltrami operator −∆g. In a local coordinate system (xi)i=1,...n, −∆g has the expression

−∆g = −
∑

1≤i,j≤n

1
√

|g|
∂i
(√

|g|gij∂j
)
,

where we have set |g| = det(gij) and (gij) = (gij)
−1.

If λ /∈ σ(−∆g), the Dirichlet problem (1) has a unique solution u ∈ H1(M), and we can define the
so-called Dirichlet-to-Neumann (DN) operator as the map

Λg(λ) : H1/2(∂M) → H−1/2(∂M)

ψ 7→ ∂u

∂ν

∣
∣
∂M

,

where ∂ν is the unit normal derivative with respect to the unit outer normal vector on ∂M . This
normal derivative has to be understood in the weak sense by :

∀(ψ, φ) ∈ H1/2(∂M)2 : 〈Λg(λ)ψ, φ〉 =
∫

M

〈du, dv〉g dVolg + λ

∫

M

uv dVolg,

where u is the unique weak solution of the Dirichlet problem (1), and where v is any element of
H1(M) such that v|∂M = φ. When ψ is sufficiently smooth, this definition coincides with the usual
one in local coordinates, that is

∂νu = νi∂iu. (2)

The anisotropic Calderón problem can be initially stated as: does the knowledge of the DN map
Λg(λ) at a fixed frequency λ determine uniquely the metric g ?

Due to a number of gauge invariances, it is well-known that the answer to the above question is
negative in general. An observation made by Luc Tartar ([10], p.2) leads to the equality :

Λg(λ) = Λψ∗g(λ),

where ψ : M → M is any smooth diffeomorphism which is equal to the identity on the boundary,
(here ψ∗g is the pullback of g by ψ). Moreover, in dimension n = 2 and for λ = 0, there is one more
gauge invariance. Indeed, thanks to the conformal invariance of the Laplacian, for every positive
function c, we have

∆cg =
1

c
∆g.

Consequently, the solutions of the Dirichlet problem (1) associated to the metrics g and cg are the
same when λ = 0. Moreover, if we assume that c ≡ 1 on the boundary, the unit outer normal
vectors on ∂M are also the same for both metrics. Therefore,

Λcg(0) = Λg(0),

and it is not possible to determine uniquely the metric from the DN map.
Hence, the appropriate question to adress is :
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Assume n ≥ 3 (resp. n = 2 and λ 6= 0). If Λg(λ) = Λg̃(λ), is there a smooth diffeomorphism
ψ :M → M with ψ|∂M = id and ψ∗g = g̃ ?

This problem is still largely open. Some special cases have been answered positively (see [17] and
[20] for a presentation of the latest developments) but the general case seems to be very difficult
to tackle. However, the question becomes simpler if we assume that (M, g) and (M, g̃) belong to
the same conformal class. Precisely :

For c ∈ C∞(M), assume Λg(λ) = Λcg(λ). Then, is there a smooth diffeomorphism ψ : M →M
such that ψ|∂M = id and ψ∗(g) = cg ?

Actually, we can precise the above question thanks to the following result due to Lionheart ([11])
: any diffeomorphism ψ :M →M which satisfies ψ∗(cg) = g and ψ|∂M = id must be the identity.
Then, the anisotropic Calderón inverse problem within the same conformal class can be replaced
by

If Λg(λ) = Λcg(λ), is it true that c = 1 ?

Some deep results have been obtained in [6] for conformally transversally anisotropic manifolds
(M, g) of dimension n ≥ 3, i.e for manifolds

M ⊂⊂ R×K, g = c(x, yK)(dx2 + gK)

where (K, gK) is a smooth compact manifold of dimension n−1. Under some geometrical conditions
on K, such as simplicity (a compact manifold K is said simple if any two points of K are connected
by a unique geodesic and if its boundary is strictly convex) the conformal factor c is entirely
determined by the DN map at frequency λ = 0.

In the same way, for a class of manifolds M = [0, 1] × K which have the topology of a cylinder,
various results of uniqueness (or non-uniqueness when the Dirichlet data and the Neumann data
are measured on disjoint sets) have been obtained in ([3, 4]). The proofs make use of separation
of variables and introduces a connection between the DN map and the Weyl-Titchmarsh functions
associated to a separated ordinary differential equation corresponding to the horizontal variable of
the cylinder. This connection allows to use some nice results from complex analysis.

In this paper, we are interested in a relative inverse problem within the conformal class of certain
warped product manifold M = [0, 1]×Sn−1 (where Sn−1 is the (n− 1)-sphere) but under a weaker
assumption :

does the spectrum of the DN map characterize the conformal factor ?

We recall that Λg(λ) is an elliptic pseudodifferential operator of order 1 and is self-adjoint on
L2(∂M, dSg) where dSg is the metric induced by g on the boundary ∂M . Thus, the DN operator
Λg(λ) has a discrete spectrum denoted σ(Λg(λ)) accumulating at infinity

σ(Λg(λ)) = {λ0 ≤ λ1 ≤ λ2 ≤ ... ≤ λk → +∞}.

This spectrum is called the Steklov spectrum (see [9], p.2). In the particular case where λ = 0,
using the Green’s formula, we see that the DN operator is positive and we have λ0 = 0. The
properties of the Steklov spectrum are highy sensitive to the smoothness of the boundary ∂M .
For example (see [8]): if ∂M is smooth, the eigenvalues satisfy the Weyl formula for the Steklov
spectrum:

λj = 2π

(
j

Vol(Bn−1)Vol(∂M)

) 1
n−1

+O(1) (3)

A much more refined asymptotic holds if M is a smooth surface, involving the lengths of the
connected components of M , with a rate of decay of O(j−∞) (see [7]), but this formula fails for
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polygons ([8]). In some particular cases, when the boundary ∂M is just C1, it is also possible
to find a one term asymptotic of the Steklov spectrum counted with multiplicity (see [1]). For
more specific domains with Lipschitz boundary, a recent paper ([7]) proves a two-term asymptotic
formula for cuboids, i.e domains defined, for n ≥ 3, as

M = (−a1, a1)× ...× (−an, an) ∈ R
n.

The formula for the counting function N(λ) of Steklov eigenvalues is the following (C1, C2 ∈ R):

N(λ) = C1Voln−1(∂M)λn−1 + C2Voln−2(∂
2M)λn−2 +O(λη),

where ∂2M denotes the union of all the n − 2 dimensional facets of M , η =
2

3
if n = 3 and

η = n − 2 − 1

n− 1
if n ≥ 4. As a corollary, the authors deduce also that, for a rectangle, the

Steklov spectrum determines its side lengths: in other words they are Steklov spectrum invariants.
Moreover, it is well-known that some other geometrical quantities of the boundary of a Riemannian
manifold surface are Steklov spectrum invariants. Let us mention for instance (see [7, 8] for details
and reference therein):

a) the dimension of the manifold and the volume of its boundary.
b) When dimM ≥ 3, the integral of the mean curvature on ∂M .
c) When dimM = 2, the number and the lengths of the connected components of ∂M .

1.2 The main result

In this section, we give the main results of the paper. Let M = [0, 1]×Sn−1 be a manifold equipped
with the metric

g = f(x)(dx2 + gS), (4)

where Sn−1 is the unit sphere in Rn, gS is the metric induced by the euclidean metric on Rn, and
where the conformal factor f is a smooth positive function of the variable x ∈ [0, 1] only. Note that
the manifold M has two boundaries Γ0 = {0} × Sn−1 and Γ1 = {1} × Sn−1. Thus, the DN map
will be shown to have the structure of a matrix operator defined on H1/2(Sn−1)⊕H1/2(Sn−1).

In this setting, we want to answer the following question : does the Steklov spectrum determine
uniquely the warping function f(x)? This question has been answered positively in [5] when
K = (0, 1] × Sn−1 equipped with the metric (4). The difference between this case and the one
we are studying here is that the boundary of K is connected whereas that of M is made of two
connected components. Due to a natural gauge invariance, we emphasize it is hopeless to recover
the metric from the spectrum data. Indeed, let ψ : M → M be a smooth diffeomorphism. We
have ([9]):

Λψ∗g(λ) = ϕ∗ ◦ Λg(λ) ◦ ϕ∗−1,

where ϕ := ψ|∂M and where ϕ∗ : C∞(∂M) → C∞(∂M) is the application defined by ϕ∗h := h ◦ϕ.
As a by-product, one has:

σ(Λψ∗g(λ)) = σ(Λg(λ)).

Thus, if we can find a diffeomorphism ψ preserving the warped product structure of the manifold
M given by (4), we are able to find a counterexample to uniqueness from the knowledge of the
Steklov spectrum. For instance, consider the map

ψ : (x, y) ∈ [0, 1]× S
n−1 7→ (1− x, y) ∈ [0, 1]× S

n−1.

A straightforward computation gives ψ∗g = f(1− x)(dx2 + gS). Thus, the above discussion shows
that Λg(λ) and Λψ∗g(λ) have the same Steklov spectrum. Now, we can reformulate more precisely
our initial question. Let g and g̃ be two Riemannian metrics given by (4) with conformal factor
f(x), (resp. f̃(x)). Assume that Λg(λ) and Λg̃(λ) are Steklov isospectral. Then, is it true that :
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f(x) = f̃(x) or f(x) = f̃(1− x)?

In what follows, we answer positively this question in dimension n = 2 with λ 6= 0, and in dimension
n ≥ 3 for any frequency λ with an additional hypothesis on the metrics on the boundary ∂M .

We choose the sphere Sn−1 as the transversal manifold of our cylinder for a purely technical
reason. Indeed, we need a precise (in fact an exact) asymptotic of the eigenvalues of the Laplace
Beltrami operator ∆gS on (Sn−1, gS) in order to get our uniqueness on the conformal factor f .
Moreover, it is important to understand that we fix the transversal metric gS in our inverse problem.
Otherwise, it is known that we could find two non isometric transversal metrics such that the
associated Riemannian manifolds are isospectral. This would lead to Steklov isospectral cylinders.
Similarly, when dim(M) ≥ 3, it is known (see [7, 12]) that we can find Steklov isospectral manifolds
M = [0, L] × K and M̃ = [0, L] × K̃ (with K and K̃ not connected) such that the areas of the
connected components of M and M̃ are not the same.

Our main result is the following:

Theorem 1.1. Let M = [0, 1]×Sn−1 be a smooth Riemanniann manifold equipped with the metric

g = f(x)(dx2 + gS) , (resp. g̃ = f̃(x)(dx2 + gS)),

and let λ be a frequency not belonging to the Dirichlet spectrum of −∆g and −∆g̃ on M . Then,

1. For n = 2 and λ 6= 0,

(
σ(Λg(λ)) = σ(Λg̃(λ))

)
⇔

(
f = f̃ or f = f̃ ◦ η

)

where η(x) = 1− x for all x ∈ [0, 1].

2. For n ≥ 3, and if moreover

f, f̃ ∈ Cb :=
{

f ∈ C∞([0, 1]),

∣
∣
∣
∣

f ′(k)

f(k)

∣
∣
∣
∣
≤ 1

n− 2
, k = 0 and 1

}

,

(
σ(Λg(λ)) = σ(Λg̃(λ))

)
⇔

(
f = f̃ or f = f̃ ◦ η

)

Let us explain briefly the outline of the proof. In both cases n = 2 or n ≥ 3, the proof consists in
four steps. We emphasize that in the first three steps, we do not use explicitly that the transversal
manifold is the unit sphere Sn−1.

Step 1 : we follow the same approach as in [3]. Since the manifold M has the topology of a cylinder
and is equipped with a warped product metric, we can use separation of variables and write the
solution u of the Dirichlet problem (1) as

u(x, y) =

+∞∑

m=0

um(x)Ym(y),

reducing this problem to a countable family of Sturm-Liouville equations with boundary conditions
:

{

− v
′′

m + qvm = −µmvm, on ]0, 1[

vm(0) = f
n−2

4 (0)ψ0
m, vm(1) = f

n−2

4 (1)ψ1
m,

∀m ∈ N (5)

where

q =
(f

n−2

4 )′′

f
n−2

4

− λf and vm = f
n−2

4 um, ∀m ∈ N.
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The sequence (Ym) refers to an orthonormal basis of eigenvectors of the Laplace-Beltrami operator
−∆gS on the unit sphere.

Step 2 : we use the above decomposition to write the DN operator as an infinite matrix which is
block diagonal. More precisely, let us introduce the basis B=({e1m, e2m})m∈N, where e1m = (Ym, 0)
and e2m = (0, Ym). For each m ∈ N, we denote Λmg (λ) the restricted operator of Λg(λ) on the
subspace spanned by {e1m, e2m}. We can write Λg(λ) in the basis B as the infinite matrix:

[Λg]B =















Λ1
g(λ) 0 0 · · ·

0 Λ2
g(λ) 0 · · ·

0 0 Λ3
g(λ) · · ·

...
...

...
. . .















Each (2, 2) matrix Λmg (λ) has a simple interpretation involving the so-called Weyl-Titchmarsh
theory associated to the Sturm-Liouville equation (5). More precisely, if we denote

σ(−∆gS) = {0 = µ0 < µ1 ≤ µ2 ≤ ... ≤ µm ≤ ... → +∞},

the spectrum of −∆gS and h := fn−2, we shall see that :

Λmg (λ) =







−M(µm)√
f(0)

+ 1

4
√
f(0)

h′(0)
h(0) − 1√

f(0)

h1/4(1)
h1/4(0)

1
∆(µm)

− 1√
f(1)

h1/4(0)
h1/4(1)

1
∆(µm) −N(µm)√

f(1)
− 1

4
√
f(1)

h′(1)
h(1)






.

where M(z), N(z) are the Weyl-Titchmarsh functions and ∆(z) is the characteristic function
associated to (5). In particular, the trace (respectively the determinant) of these operators Λmg (λ)
are meromorphic functions evaluated in µm. Moreover, one can prove that the Steklov Spectrum
is made of two subsequences

(
λ−(µm)

)

m∈N
and

(
λ+(µm)

)

m∈N
satisfying the following asymptotic

expansion






λ−(µm) = −N(µm)
√

f(1)
− 1

4
√

f(1)

h′(1)

h(1)
+O

(√
µme

−√
µm

)

λ+(µm) = −M(µm)
√

f(0)
+

1

4
√

f(0)

h′(0)

h(0)
+O

(√
µme

−√
µm

)

Step 3 : we prove that the knowledge of the trace and the determinant of all restricted operators
Λmg (λ), for m large enough, characterizes f up to an involution: there is m0 ∈ N such that :

(
Tr Λmg (λ) = Tr Λmg̃ (λ) and detΛmg (λ) = detΛmg̃ (λ) for all m ≥ m0

)

⇔ (f = f̃ or f = f̃ ◦ η.)

Note that the third step requires to know the asymptotic expansion of the Steklov spectrum.

Step 4 : in this step, we use explicitely that the transversal manifold is the unit sphere Sn−1

equipped with the metric induced by the euclidean metric on Rn. From the equality between the
sets σ

(
Λg(λ)

)
=

(
λ±(µm)

)

m∈N
and σ

(
Λg̃(λ)

)
=

(
λ̃±(µm)

)

m∈N
, we want to deduce the equalities

{

λ−(µm) = λ̃−(µm)

λ−(µm) = λ̃+(µm)
or

{

λ−(µm) = λ̃+(µm)

λ+(µm) = λ̃−(µm),

for integers m belonging to a set L satisfying the Müntz conditions
∑

m∈L

1

m
= +∞. Clearly, for

every λ±(µm) in σ
(
Λg(λ)

)
, there is λ̃−(µℓ) or λ̃+(µℓ) in σ

(
Λg̃(λ)

)
such that
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λ±(µm) = λ̃−(µℓ) or λ±(µm) = λ̃+(µℓ).

The assumption

∣
∣
∣
∣

f ′(k)

f(k)

∣
∣
∣
∣
≤ 1

n− 2
for k ∈ {0, 1} is used here to ensure that m = ℓ if is m is large

enough. This step leads to distinguish the cases f(0) = f(1) and f(0) 6= f(1). Then we prove that
Tr Λmg (λ) = Tr Λmg̃ (λ) and detΛmg (λ) = det Λmg̃ (λ) for all m large enough. The result follows from
the Step 3.

2 Reduction to ordinary differential equations

In this section, (K, gK) is an arbitrary closed manifold of dimension n − 1 and M = [0, 1]×K is
equipped with the metric g = f(x)(dx2 + gK).

2.1 The separation of variables

The boundary ∂M of the manifold M has two distinct connected components

Γ0 = {0} ×K and Γ1 = {1} ×K,

so we can decompose H1(∂M) as the direct sum :

H1/2(∂M) = H1/2(Γ0)
⊕
H1/2(Γ1).

Each element ψ of H1/2(∂M) can be written as

ψ =







ψ0

ψ1






, ψ0 ∈ H1/2(Γ0) and ψ1 ∈ H1/2(Γ1).

The Laplacian −∆gK is a self-adjoint operator on L2(K) and has pure point spectrum (µm), with
µ0 = 0 < µ1 ≤ µ2 ≤ ... µm → +∞. We denote (Ym)m∈N the associated orthonormal Hilbert basis
of the eigenvectors.

Now, we decompose ψ0 and ψ1 as:

ψ0 =
∑

m∈N

ψ0
mYm, ψ1 =

∑

m∈N

ψ1
mYm.

Then, we are looking for the unique solution u(x, y) of the Dirichlet problem (1) in the form:

u(x, y) =

+∞∑

m=0

um(x)Ym(y).

Proposition 2.1. The equation (1) is equivalent to the following countable system of Sturm-
Liouville equations :

{

− v
′′

m + qvm = −µmvm, on ]0, 1[

vm(0) = f
n−2

4 (0)ψ0
m, vm(1) = f

n−2

4 (1)ψ1
m,

∀m ∈ N, (6)

where

q =
(f

n−2

4 )′′

f
n−2

4

− λf and vm = f
n−2

4 um, ∀m ∈ N.
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Proof. The transformation law for the Laplacian operator under conformal change of metric gives

−∆g = f−n+2

4 (−∆g0 + qf )f
n−2

4 ,

where g0 = dx2 + gK and qf =:
(f

n−2

4 )′′

f
n−2

4

. Thus, we have :

−∆gu(x, y) = λu(x, y) ⇔ f−n+2

4

(
− ∂2

∂x2
−∆gK + qf

)
f

n−2

4 u(x, y) = λu(x, y)

⇔
(
− ∂2

∂x2
−∆gK + qf

)
v(x, y) = λf(x)v(x, y)

thanks to the change of variable v = f
n−2

4 u. Writing v as

v(x, y) =
+∞∑

m=0

vm(x)Ym(y),

we get :

−∆gu(x, y) = λu(x, y) ⇔
+∞∑

m=0

(
− ∂2

∂x2
−∆gK + qf

)
vm(x)Ym =

+∞∑

m=0

λf(x)vm(x)Ym

⇔
+∞∑

m=0

(
− v′′m(x) + µmvm(x) + qf (x)vm(x)

)
Ym

=
+∞∑

m=0

λf(x)vm(x)Ym

⇔ ∀m ∈ N, −v′′

m(x) + q(x)vm(x) = −µmvm(x),

where q =: qf − λf . Finally, vm satisfies the above boundary conditions. �

It turns out that this family of Sturm-Liouville equations fits into the so-called Weyl-Titchmarsh
theory which we recall in the next section for the convenience of the reader.

2.2 The Weyl-Titchmarsh functions

Consider the differential equation:

−u′′ + qu = −zu, z ∈ C. (7)

Let {c0, s0} and {c1, s1} be the two fundamental systems of solutions of (7) with boundary condi-
tions {

c0(0) = 1, c′0(0) = 0

c1(1) = 1, c′1(1) = 0
and

{

s0(0) = 0, s′0(0) = 1

s1(1) = 0, s′1(1) = 1.
(8)

Since the wronskian W (f, g) = fg′ − f ′g of two solutions f and g of (7) depends only on the
parameter z, we can define the following holomorphic functions:

Definition 2.2. The characteristic function ∆(z) of the equation (7) is defined for every z ∈ C

by :
∆(z) :=W (s0, s1) = s0(1) = −s1(0).

We also set D(z) :=W (c0, s1) = c0(1) and E(z) :=W (c1, s0) = c1(0).

Now, we recall the three following results, (see for instance [3] and [13] for details).
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Proposition 2.3. Set Π+ = {z ∈ C, ℜ(z) > 0} the half-right plane of the complex plane. The
functions ∆, D and E are analytic on C and have on Π+ the following asymptotics as |z| → +∞:

∆(z) =
sinh(

√
z)√

z
+ O

(
e|ℜ(

√
z)|

z

)

, D(z) = cosh(
√
z) + O

(
e|ℜ(

√
z)|

√
z

)

,

E(z) = cosh(
√
z) +O

(
e|ℜ(

√
z)|

√
z

)

.

where
√
z is the principal square root of z. In particular, ∆(z), D(z) and E(z) are entire functions

of order
1

2
.

Proposition 2.4. The roots (αj) of the function z 7→ ∆(z) are real and simple. they are the

opposite of the eigenvalues of the operator − d2

dx2
+q =: H on L2

(
(0, 1), dx

)
with Dirichlet boundary

conditions.

Proposition 2.5. For all z ∈ C, ∆(z) can be written as an infinite product. There is a constant
C ∈ R such that :

∆(z) = C

∞∏

k=0

(

1− z

αk

)

.

Proof. As a consequence of Proposition 2.3 and Hadamard’s factorization theorem, we can write
∆(z) as the infinite product :

∆(z) = Czp
∞∏

k=0

(

1− z

αk

)

,

with p ∈ {0, 1}. In order to prove that z = 0 is not a root of ∆, we use the same argument as in
[3] (Remark 3.1 p.19). If ∆(0) = 0, it follows from Proposition 2.4, that there is an eigenfunction

u0 associated to the eigenvalue 0 for the operator H = − d2

dx2
+ q. But, from Proposition 2.1, the

function u := u0Y0 is then a nontrivial solution of the Dirichlet problem :

{

−∆gu = λu in M

u = 0 on ∂M,

which is not possible since λ /∈ σ(−∆g). �

Remark 1. As a by-product, we see that ∆(z) is uniquely determined by its (simple) roots (up to
a multiplicative constant).

Now, consider the Weyl-Titchmarsh solutions ψ and φ of (7) having the form :

ψ(x) = c0(x) +M(z)s0(x), φ(x) = c1(x) −N(z)s1(x)

and satisfying the Dirichlet boundary condition at x = 1 and x = 0 respectively. M(z), (resp.
N(z)) are called the Weyl-Titchmarsh functions associated to (7) and, using Wronskian identities,
we have:

Proposition 2.6. The Weyl-Titchmarsh functions M and N can be written as :

∀z ∈ C, M(z) = −D(z)

∆(z)
, N(z) = −E(z)

∆(z)
.
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Proof. Since ψ(1) = 0 and φ(0) = 0, we have :

M(z) = − c0(1, z)
s0(1, z)

= −D(z)

∆(z)
, N(z) =

c1(0, z)

s1(0, z)
= −E(z)

∆(z)
.

�

The four previous propositions are the key points to solve our uniqueness result. We will see
that the Steklov spectrum can be expressed in terms of the Weyl-Titchmarsh and characteristic
functions defined above. We will take advantage of the holomorphic properties of ∆(z), D(z) and
E(z) and we will use to the Nevanlinna theorem, (see the next section for details).

2.3 Link between the DN map and the Weyl-Titchmarsh functions

First, we remark that, thanks to separation of variables, Λg(λ) leaves invariant each subspace
spanned by

{
(Ym, 0), (0, Ym)

}
. Indeed, if u is the solution of (1), we have for each ψ ∈ H1/2(∂M):

Λg(λ)ψ = Λg(λ)







ψ0

ψ1







=







(∂νu)|Γ0

(∂νu)|Γ1







=







− 1√
f(0)

(∂xu)|x=0

1√
f(1)

(∂xu)|x=1







Consequently, for every m ∈ N :

Λg(λ)







ψ0
m

ψ1
m







⊗ Ym =







− 1√
f(0)

u′m(0)

1√
f(1)

u′m(1)







⊗ Ym.

Its restriction on each space spanned by (1, 0) ⊗ Ym and (0, 1) ⊗ Ym is denoted Λmg (λ). We can
write Λmg (λ) the 2× 2 matrix
Set : 





Lm(λ) TmR (λ)

TmL (λ) Rm(λ)







and we have by definition:







Lm(λ) TmR (λ)

TmL (λ) Rm(λ)













ψ0
m

ψ1
m







=







− 1√
f(0)

u′m(0)

1√
f(1)

u′m(1)






.

The full Steklov spectrum is then equal to the union of the eigenvalues of each operator Λmg (λ). In
the next Proposition, we express the restricted operator Λmg (λ) in terms of the Weyl-Titchmarsh
functions.

Proposition 2.7. For all m ∈ N, we have :

Λmg (λ) =







−M(µm)√
f(0)

+ ln′(h)(0)

4
√
f(0)

− 1√
f(0)

h1/4(1)
h1/4(0)

1
∆(µm)

− 1√
f(1)

h1/4(0)
h1/4(1)

1
∆(µm) −N(µm)√

f(1)
− ln′(h)(1)

4
√
f(1)







where h =: fn−2
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Proof. Recall that vm is the m-th Fourier coefficient of v = h1/4u with respect to Ym. We have :

Λmg (λ)







ψ0
m

ψ1
m







=







− 1√
f(0)

u′m(0)

1√
f(1)

u′m(1)







=







− v′m(0)

h1/4(0)
√
f(0)

+ 1

4
√
f(0)

h′(0)
h(0) um(0)

v′m(1)

h1/4(1)
√
f(1)

− 1

4
√
f(1)

h′(1)
h(1) um(1)







=







− v′m(0)

h1/4(0)
√
f(0)

v′m(1)

h1/4(1)
√
f(1)







+







1

4
√
f(0)

h′(0)
h(0) ψ

0
m

− 1

4
√
f(1)

h′(1)
h(1) ψ

1
m







It remains to find a simple expression of the first term of the (RHS). Since vm is a solution of (6),
it can be written as a linear combination of the fundamental solutions

{
c0, s0

}
or

{
c1, s1

}
defined

in (8), i.e there exists (α, β, γ, δ) ∈ C4 such that :

vm = αc0 + βs0 = γc1 + δs1.

Consequently:






vm(0)

vm(1)







=







α

γ







=







γc1(0) + δs1(0)

αc0(1) + βs0(1)







The second equality can be rewritten as:







α− γc1(0)

γ − αc0(1)







=







δs1(0)

βs0(1)






,

which is equivalent to :






1 −c1(0)

−c0(1) 1













α

γ







=







δs1(0)

βs0(1)






.

As 





α

γ







=







h1/4(0)um(0)

h1/4(1)um(1)







=







h1/4(0)ψ0
m

h1/4(1)ψ1
m







we obtain:







h1/4(0)
s1(0)

−h1/4(1)c1(0)
s1(0)

−h1/4(0)c0(1)
s0(1)

h1/4(1)
s0(1)













ψ0
m

ψ1
m







=







δ

β






.

But δ = v′m(1) and β = v′m(0). Thus:
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Λmg (λ)







ψ0
m

ψ1
m







=







− v′m(0)

h1/4(0)
√
f(0)

v′m(1)

h1/4(1)
√
f(1)







+







1

4
√
f(0)

h′(0)
h(0) ψ

0
m

− 1

4
√
f(1)

h′(1)
h(1) ψ

1
m







=







1√
f(0)

c0(1)
s0(1)

− 1√
f(0)

h1/4(1)
h1/4(0)s0(1)

1√
f(1)

h1/4(0)
h1/4(1)s1(0)

− 1√
f(1)

c1(0)
s1(0)













ψ0
m

ψ1
m







+







1

4
√
f(0)

h′(0)
h(0) ψ

0
m

− 1

4
√
f(1)

h′(1)
h(1) ψ

1
m







=







1√
f(0)

c0(1)
s0(1)

+ 1

4
√
f(0)

h′(0)
h(0) − 1√

f(0)

h1/4(1)
h1/4(0)s0(1)

1√
f(1)

h1/4(0)
h1/4(1)s1(0)

− 1√
f(1)

c1(0)
s1(0)

− 1

4
√
f(1)

h′(1)
h(1)













ψ0
m

ψ1
m







Recalling that:

M(µm) = − c0(1)
s0(1)

, N(µm) =
c1(0)

s1(0)
et ∆(µm) = −s1(0) = s0(1),

we get finally:

Λmg (λ) =







−M(µm)√
f(0)

+ 1

4
√
f(0)

h′(0)
h(0) − 1√

f(0)

h1/4(1)
h1/4(0)

1
∆(µm)

− 1√
f(1)

h1/4(0)

h1/4(1)
1

∆(µm) −N(µm)√
f(1)

− 1

4
√
f(1)

h′(1)
h(1)






.

�

3 A characterisation by the trace and the determinant

In this section, (K, gK) is still an arbitrary closed manifold of dimension n− 1 and M = [0, 1]×K
is equipped with the metric g = f(x)(dx2 + gK). We have the following result:

Proposition 3.1. Assume that, for every m ∈ N, we have :

det(Λmg (λ)) = det(Λmg̃ (λ)) and Tr(Λmg (λ))=Tr(Λmg̃ (λ)).

Then :
f = f̃ or f = f̃ ◦ η

where, for all x ∈ [0, 1], η(x) = 1− x.

Remark 2. This Proposition is still true if the equalities about the trace and the determinant of
Λmg (λ) are are satisfied for m ≥ m0, with m0 ∈ N.

In order to prove this proposition, let us calculate the eigenvalues of the operator Λmg (λ) and their
asymptotics.

Lemma 3.2. Λmg (λ) has two eigenvalues λ−(µm) and λ+(µm) whose asymptotics are given by :







λ−(µm) =
m→∞

√
µm

√

f(1)
− ln(h)′(1)

4
√

f(1)
+O

(
1√
µm

)

λ+(µm) =
m→∞

√
µm

√

f(0)
+

ln(h)′(0)

4
√

f(0)
+O

(
1√
µm

)

.

13



Remark 3. If f(0) < f(1), we have λ−(µm) < λ+(µm). This assumption will be made, without
loss of generality, each time that f(0) 6= f(1). The notations λ−(µm) and λ+(µm) refer to that
choice.

Remark 4. The Weyl’s law for the eigenvalues of the Laplace-Beltrami operator gives the following
asymptotic :

µm = 4π2

(

Vol(Bn−1)Vol(K)

)− 2
n−1

m
2

n−1 +O(1),

so, by replacing it in Lemma 3.2, one has :

λ−(µm) =
m→∞

√
µm

√

f(1)
+O(1)

=
2π

√

f(1)

(

Vol(Bn−1)Vol(K)

)− 1
n−1

m
1

n−1 +O(1).

The boundary component Γ1 consists in copy ofK equipped with the metric γ1 = f(1)gK . It follows

that we have Vol(Γ1) =

∫

Γ1

dVolγ1 = f(1)
n−1

2 Vol(K), hence
1

√

f(1)
=

Vol(K)
1

n−1

Vol(Γ1)
1

n−1

. Consequently

:

λ−(µm) = 2π

(
m

Vol(Bn−1)Vol(Γ1)

) 1
n−1

+O(1).

In other words, an asymptotic of λ−(µm) is exactly given by the Weyl’s law restricted to the
connected component boundary Γ1. In the same way, one can prove :

λ+(µm) = 2π

(
m

Vol(Bn−1)Vol(Γ0)

) 1
n−1

+O(1).

We recognize again the Weyl’s law, restricted to the connected component boundary Γ0.

Remark 5. The equalities proved in Lemma 3.2 highlight the link that exists between the Steklov
spectrum and the spectrum of −∆gS . Let us denote the eigenvalues of the Laplace-Beltrami
operator on

(
S, f(0)gS

)
by

µ
(0)
0 ≤ µ

(0)
1 ≤ µ

(0)
2 ≤ ...→ +∞

with µ(0)
m =

µm
f(0)

for m ∈ N. Lemma 3.2 implies in particular that there is a constant C
(0)
f > 0

only depending on the conformal factor f at x = 0 such that

∣
∣λ+(µm)−

√

µ
(0)
m

∣
∣ ≤ C

(0)
f

This can be related to results obtained in [14] (Theorem 1.7 p.2) where it is proved that, for a
bounded domain ∂Ω ⊂ Rn with boundary of class C2 which has only one boundary component,
there is a bound CΩ > 0 depending on Ω such that

|λm −√
µm| ≤ CΩ ∀m ∈ N.

where λm and µm are respectively the mth eigenvalue of the DN map and the the mth eigenvalue

of the Laplace-Beltrami operator on the boundary. One can notice that, in our case, C
(0)
f only

depends on the metric on the boundary component (Sn−1, f(0)gS). This fact can be compared to a
recent result (see [2]) where it is proved that the previous bound CΩ can be chosen uniformly with
respect to a class of manifolds M satisfying some geometrical conditions only in a neighborhood
of the boundary (Theorem 3, p.3).

In the same way, Lemma 3.2 implies also the existence of C
(1)
f > 0 only depending on the conformal

factor f at x = 1 such that
∣
∣λ−(µm)−

√

µ
(1)
m

∣
∣ ≤ C

(1)
f

where µ(1)
m =

µm
f(1)

is the mth eigenvalue of the Laplace-Beltrami operator on
(
S, f(1)gS

)
.
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Let us prove Lemma 3.2.

Proof. We distinguish two cases :

• Assume f(0) 6= f(1) (for instance f(0) < f(1)).

The characteristic polynomial P (X) of Λmg (λ) is :

P (X) = X2 − Tr(Λmg (λ))X + det(Λmg (λ)).

To simplify the notation, we set :

C0 =
ln(h)′(0)

4
√

f(0)
, C1 =

ln(h)′(1)

4
√

f(1)
.

Thanks to Propositions 2.3 and 2.7, for m large enough, Tr(Λmg (λ)) and det(Λmg (λ)) satisfy:







Tr(Λmg (λ)) = −M(µm)
√

f(0)
− N(µm)

√

f(1)
+ C0 − C1.

det(Λmg ) =

(

− M(µm)
√

f(0)
+ C0

)(

− N(µm)
√

f(1)
− C1

)

+O(µme
−2

√
µm).

The asymptotics of the discriminant δ of P (X) depending on M(µm) and N(µm) can thus be
written :

δ =

(

− M(µm)
√

f(0)
+ C0 −

N(µm)
√

f(1)
− C1

)2

− 4

(

− M(µm)
√

f(0)
+ C0

)(

− N(µm)
√

f(1)
− C1

)

+O(µme
−2

√
µm).

=

(

− M(µm)
√

f(0)
+ C0 +

N(µm)
√

f(1)
+ C1

)2

+O(µme
−2

√
µm).

Now, let us recall the result obtained by Simon in [19] :

Theorem 3.3. M(z2) has the following asymptotic expansion :

∀A ∈ N, −M(z2) =
z→∞

z +

A∑

j=0

βj(0)

zj+1
+ o

(
1

zA+1

)

where, for every x ∈ [0, 1], βj(x) is defined by :







β0(x) =
1

2
q(x)

βj+1(x) =
1

2
β′
j(x) +

1

2

j
∑

l=0

βl(x)βj−l(x).

Of course, by symmetry, one has immediately:

Corollary 3.4. N(z2) has the following asymptotic expansion :

∀A ∈ N, −N(z2) =
z→∞

z +

A∑

j=0

γj(0)

zj+1
+ o

(
1

zA+1

)

where, for all x ∈ [0, 1], γj(x) is defined by :







γ0(x) =
1

2
q(1− x)

γj+1(x) =
1

2
γ′j(x) +

1

2

j
∑

l=0

γl(x)γj−l(x).
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We deduce from Theorem 3.3 and Corollary 3.4:

−M(µm)
√

f(0)
+
N(µm)
√

f(1)
=

(
1

√

f(0)
− 1

√

f(1)

)

︸ ︷︷ ︸

>0

√
µm +O

(
1√
µm

)

.

Thus, recalling that

δ =

(

− M(µm)
√

f(0)
+ C0 +

N(µm)
√

f(1)
+ C1

)2

+O(µme
−2

√
µm).

we obtain:

√
δ =

(
N(µm)
√

f(1)
− M(µm)

√

f(0)
+ C0 + C1

)
√

1 +O

(

e−2
√
µm

)

=
N(µm)
√

f(1)
− M(µm)

√

f(0)
+ C0 + C1 +O

(√
µme

−2
√
µm

)
.

Hence :







λ−(µm) =
1

2

[(

− M(µm)
√

f(0)
− N(µm)

√

f(1)
+ C0 − C1

)

−
√
δ

]

λ+(µm) =
1

2

[(

− M(µm)
√

f(0)
− N(µm)

√

f(1)
+ C0 − C1

)

+
√
δ

]

,

and therefore, substituting C1 and C2 by their values and M(µm) and N(µm) by their asymptotics,
we get :







λ−(µm) =

√
µm

√

f(1)
− ln(h)′(1)

4
√

f(1)
+O

(
1√
µm

)

λ+(µm) =

√
µm

√

f(0)
+

ln(h)′(0)

4
√

f(0)
+O

(
1√
µm

)

.

• Assume now f(0) = f(1). In this case, the restricted DN map

Λmg (λ) =







−M(µm)√
f(0)

+ ln(h)′(0)

4
√
f(0)

− 1√
f(0)

1
∆(µm)

− 1√
f(0)

1
∆(µm) −N(µm)√

f(1)
− ln(h)′(1)

4
√
f(1)







is a symmetric matrix and we can use the well-known result:

Lemma 3.5. Let H be a Hilbert space, A ∈ L(H) be a selfadjoint operator. Let ǫ > 0. Assume
there exists λ0 ∈ R and u0 ∈ H a unit vector such that ‖(A− λ0Id)u0‖ ≤ ǫ. Then there exists an
element λ in the spectrum of A such that |λ− λ0| ≤ ǫ.

We apply this theorem with A = Λmg (λ), λ0 = −M(µm)
√

f(0)
+

ln(h)′(0)

4
√

f(0)
and U0 =







1

0







.

We have :

A− λ0I2 =







0 − 1√
f(0)

1
∆(µm)

− 1√
f(0)

1
∆(µm) −N(µm)√

f(1)
− ln(h)′(1)

4
√
f(1)

− λ0
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Hence :

(A− λ0I2)U0 = − 1
√

f(0)







0

1
∆(µm)







= O(
√
µme

−√
µm).

Lemma 3.5 gives λ+m ∈ σ(Λmg (λ)) such that :

λ+m = −M(µm)
√

f(0)
+

ln(h)′(0)

4
√

f(0)
+O(

√
µme

−√
µm)

=

√
µm

√

f(0)
+

ln(h)′(0)

4
√

f(0)
+O

(
1√
µm

)

from Theorem 3.3. The second eigenvalue λ2m (which is distinct from λ1m otherwhise Λmg (λ) would
be a homothety) can be deduced from the first one :

λ−m = Tr
(
Λmg (λ)

)
− λ+m

= −N(µm)
√

f(1)
− ln(h)′(1)

4
√

f(1)
+O(

√
µme

−√
µm)

=

√
µm

√

f(1)
− ln(h)′(1)

4
√

f(1)
+O

(
1√
µm

)

.

�

Lemma 3.6. Under the hypothesis of Proposition 3.1, we have the following alternative :
{

f(0) = f̃(0)

f(1) = f̃(1)
or

{

f(0) = f̃(1)

f(1) = f̃(0).

Proof. We begin with:
Tr(Λmg (λ))

√
µm

=
Tr(Λmg̃ (λ))

√
µm

, ∀m ∈ N.

Thus, it follows from Lemma 3.2 that

1
√

f(0)
+

1
√

f(1)
=

1
√

f̃(0)
+

1
√

f̃(1)
.

In the same way, thanks to the relations:

det(Λmg (λ))

µm
=

det(Λmg̃ (λ))

µm
∀m ∈ N,

we get :
1

√

f(0)f(1)
=

1
√

f̃(0)f̃(1)
,

and the proof is complete. �

Case 1 : f(0) = f̃(0) et f(1) = f̃(1).

Lemma 3.7. Under the hypotheses of Proposition 3.1, we have:

∆(z) = ∆̃(z), ∀z ∈ C. (9)
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Proof. We write the equality Tr(Λmg (λ))=Tr(Λmg̃ (λ)) as follows : for all µm ∈ σ(−∆gK ),

(

− M(µm)
√

f(0)
+

ln(h)′(0)

4
√

f(0)

)

+

(

− N(µm)
√

f(1)
− ln(h)′(1)

4
√

f(1)

)

=

(

− M̃(µm)
√

f(0)
+

ln(h̃)′(0)

4
√

f(0)

)

+

(

− Ñ(µm)
√

f(1)
− ln(h̃)′(1)

4
√

f(1)

)

.

Thus, using Theorem 3.3, one gets when m→ +∞,

ln(h)′(0)

4
√

f(0)
− ln(h)′(1)

4
√

f(1)
=

ln(h̃)′(0)

4
√

f(0)
− ln(h̃)′(1)

4
√

f(1)
. (10)

It follows that
M(µm)
√

f(0)
+
N(µm)
√

f(1)
=
M̃(µm)
√

f(0)
+
Ñ(µm)
√

f(1)
,

or equivalently

∆̃(µm)

(
D(µm)
√

f(0)
+
E(µm)
√

f(1)

)

= ∆(µm)

(
D̃(µm)
√

f(0)
+
Ẽ(µm)
√

f(1)

)

. (11)

In the same way, using det(Λmg (λ))=det(Λmg̃ (λ)), we have:

(
M(µm)
√

f(0)
− ln′(h)(0)

4
√

f(0)

)(
N(µm)
√

f(1)
+

ln′(h)(1)

4
√

f(1)

)

− 1
√

f(0)f(1)∆2(µm)

=

(
M̃(µm)
√

f(0)
− ln(h̃)′(0)

4
√

f(0)

)

×
(
Ñ(µm)
√

f(1)
+

ln′(h̃)(1)

4
√

f(1)

)

− 1
√

f(0)f(1)∆̃2(µm)
.

Multiplying on both sides by ∆2(µm)∆̃2(µm), we obtain:

∆̃2(µm)

[(

− D(µm)
√

f(0)
−∆(µm)

ln′(h)(0)

4
√

f(0)

)(

− E(µm)
√

f(1)
+ ∆(µm)

ln′(h)(1)

4
√

f(1)

)

− 1
√

f(0)f(1)

]

= ∆2(µm)

[(

− D̃(µm)
√

f(0)
− ∆̃(µm)

ln(h̃)′(0)

4
√

f(0)

)(

− Ẽ(µm)
√

f(1)
+ ∆̃(µm)

ln′(h̃)(1)

4
√

f(1)

)

− 1
√

f(0)f(1)

]

(12)

Now, let us show that the equalities (11) and (12) can be analytically extended with respect to µm
in the half-right complex plane. First, let us recall the definition of the so-called Nevanlinna class:

Definition 3.8. Set Π+ = {z ∈ C, ℜ(z) > 0} the half-right plane of the complex plane. The
Nevanlinna class N (Π+) is the set of analytic functions f on Π+ such that

sup
0<r<1

∫ π

−π
ln+

∣
∣
∣
∣
f

(
1− reiθ

1 + reiθ

)∣
∣
∣
∣
dθ <∞,

with:

ln+(x) =

{

lnx if ln(x) ≥ 0

0 if ln(x) < 0.

We have the following result [15]:

Proposition 3.9. Let h ∈ H(Π+) an analytic function on Π+, A and C two constants. Assume :

|h(z)| ≤ CeAℜ(z), ∀z ∈ Π+.

Then h ∈ N (Π+).
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Thus, thanks to the asymptotics of Proposition 2.3, the holomorphic functions defined by δ : z 7→
∆(z2), d : z 7→ D(z2) and e : z 7→ E(z2) belong to N (Π+). Let us recall now a useful uniqueness
theorem involving functions in the Nevanlinna class (see [15] for instance):

Theorem 3.10. Let h ∈ N (Π+) and L ⊂ R+ be a countable set such that

∑

µ∈L

1

µ
= +∞.

Then :
(
h(µ) = 0, ∀µ ∈ L

)
⇒ h ≡ 0 on Π+.

Now, by the Weyl law, (cf [16]), we get:

µm =
m→+∞

c(K)m
2

n−1 +O(1)

where c(K) =
(2π)2

(
ω1vol(K)

) 2
n−1

and ω1 is the volume of the unit ball in Rn−1. Thus, for a fixed

T ∈ N, we have :
µ(mT )n−1

c(K)T 2
= m2 +

O(1)

c(K)T 2
.

As a consequence, for m and T large enough, the real numbers µ(mT )n−1 are always distinct. Now,
we set :

L = {√µ(mT )n−1 , m ∈ N}.

Using
√
µ(mT )n−1 ∼

m→+∞

√

c(K)Tm, one has:

∑

µ∈L

1

µ
= +∞.

Thus, thanks to Theorem 3.10, the relations (11) and (12) are still true if one replaces µm by
z2 ∈ C, then by z.

Now, let us prove that ∆(z) = ∆̃(z) for any z ∈ C. We recall that these functions are entire of

order
1

2
and their roots are simple. So, using Hadamard’s factorization theorem (see Proposition

2.5), we deduce that these functions are entirely described by their roots (up to a multiplicative
constant). Consequently, in order to prove that ∆ = ∆̃, it is enough to show that their roots are
the same.

Set P = {αj ∈ C, ∆(αj) = 0}. Let αk be in P and let us show that ∆̃(αk) = 0. By

definition, −αk is an eigenvalue of the Sturm Liouville operator H = − d2

dx2
+ q with Dirichlet

boundary conditions. Thus, from Proposition 2.4, αk is real and since the potential q is real, the
quantities D(αk) and E(αk) are also real. Using (11) and (12) with µm replaced with αk, we
obtain the following system:







(
D(αk)
√

f(0)
+
E(αk)
√

f(1)

)

∆̃(αk) = 0

(
D(αk)E(αk)− 1

√

f(0)f(1)

)

∆̃(αk)
2 = 0.

To finish the proof, we distinguish two cases:

• If
D(αk)
√

f(0)
+
E(αk)
√

f(1)
6= 0 then ∆̃(αk) = 0.
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• Otherwise
D(αk)
√

f(0)
= −E(αk)

√

f(1)
. Then, substituting in the second equality, we have:

(
D(αk)

2

f(0)
+

1
√

f(0)f(1)

)

∆̃(αk)
2 = 0

Since D(αk) ∈ R, we conclude that ∆̃(αk) = 0. By a standard symmetric argument, it follows ∆
and ∆̃ have the same zeros. So, there exists C such that ∆ = C∆̃. But, as ∆(z) and ∆̃(z) have
the same asymptotics :

∆(z), ∆̃(z) ∼ sinh(
√
z)√

z
,

we deduce that C = 1 and the proof is complete.
�

Remark 6. It is interesting to note that ∆(z) = ∆̃(z) for all z ∈ C implies that (in fact is equivalent
to) q and q̃ are isospectral.

As a consequence, we can simplify (12) (with µm replaced by z), and we get on C :







(
M(z)
√

f(0)
− ln′(h)(0)

4
√

f(0)

)

+

(
N(z)
√

f(1)
+

ln′(h)(1)

4
√

f(1)

)

=

(
M̃(z)
√

f(0)
− ln(h̃)′(0)

4
√

f(0)

)

+

(
Ñ(z)
√

f(1)
+

ln′(h̃)(1)

4
√

f(1)

)

(
M(z)
√

f(0)
− ln′(h)(0)

4
√

f(0)

)(
N(z)
√

f(1)
+

ln′(h)(1)

4
√

f(1)

)

=

(
M̃(z)
√

f(0)
− ln(h̃)′(0)

4
√

f(0)

)

×
(
Ñ(z)
√

f(1)
+

ln′(h̃)(1)

4
√

f(1)

)

.

Thus, for each z ∈ C, we have the following alternative:







M(z)
√

f(0)
− ln′(h)(0)

4
√

f(0)
=

M̃(z)
√

f(0)
− ln(h̃)′(0)

4
√

f(0)

N(z)
√

f(1)
+

ln′(h)(1)

4
√

f(1)
=

Ñ(z)
√

f(1)
+

ln′(h̃)(1)

4
√

f(1)
,

or






M(z)
√

f(0)
− ln′(h)(0)

4
√

f(0)
=

Ñ(z)
√

f(1)
+

ln′(h̃)(1)

4
√

f(1)

N(z)
√

f(1)
+

ln′(h)(1)

4
√

f(1)
=

M̃(z)
√

f(0)
− ln(h̃)′(0)

4
√

f(0)
.

• As a first step, assume that the first system is satisfied for all z in C. Then, using the asymptotics
of M(z), (resp. M̃(z)), we get:

ln′(h)(0)

4
√

f(0)
=

ln(h̃)′(0)

4
√

f(0)

and therefore :
M(z) = M̃(z) for all z ∈ C\R.

Thus, thanks to the Borg-Marchenko’s theorem (see [19] for instance), we deduce:
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q = q̃ sur [0, 1]. (13)

Recall that :

q =
(h1/4)′′

h1/4
− λf

where we have set h = fn−2 (respectively q̃ and h̃ = f̃n−2). In particular, in the 2 dimensional
case, we get immediateley f = f̃ since λ 6= 0. In dimension n ≥ 3, we see that f and f̃ same verify
the same ODE with f(0) = f̃(0). Moreover, the relation

ln′(h)(0)

4
√

f(0)
=

ln(h̃)′(0)

4
√

f̃(0)
,

implies :
f ′(0) = f̃ ′(0).

Thus, the Cauchy-Lipschitz’s theorem says that f = f̃ ..

• Secondly, assume there exists z0 ∈ C satisfying :

M(z0)
√

f(0)
− ln′(h)(0)

4
√

f(0)
6= M̃(z0)

√

f(0)
− ln(h̃)′(0)

4
√

f̃(0)
.

By a standard continuity argument, there is a ball B of center z0 such that :

M(z)
√

f(0)
− ln′(h)(0)

4
√

f(0)
6= M̃(z)

√

f(0)
− ln(h̃)′(0)

4
√

f̃(0)
, ∀z ∈ B.

Then, necessarily, we have:

M(z)
√

f(0)
− ln′(h)(0)

4
√

f(0)
=

Ñ(z)
√

f(1)
+

ln(h̃)′(1)

4
√

f̃(1)
, ∀z ∈ B. (14)

Then, using the analytic continuation principle, the previous equality is true for every z ∈ C\P ,
where P is the set of roots of ∆(z). Thanks to the asymptotics of M(z) and Ñ(z), one gets :

f(0) = f(1)
(
= f̃(1)

)
and

ln′(h)(0)

4
√

f(0)
= − ln(h̃)′(1)

4

√

f̃(1)
.

Hence, simplifying in (14), we obtain

M(z) = Ñ(z) for all z ∈ C\R.

By symmetry, Ñ has the same role as M̃ for the potential x 7→ q̃(1− x). Now, it follows, from the
Borg-Marchenko’s theorem that:

q(x) = q̃(1 − x) ∀x ∈ [0, 1],

and as previously, one gets:
f = f̃ ◦ η.

Case 2 : f(0) = f̃(1) and f(1) = f̃(0).

The proof is identical interchanging the roles of M and N .
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4 Uniqueness results on the trace and the determinant

In this section, we assume that (K, gK) = (Sn−1, gS), and our main result is the following:

Proposition 4.1. Assume that σ(Λg(λ)) = σ(Λg̃(λ)). Then, there is m0 ∈ N such that :

∀m ∈ N, m ≥ m0 ⇒ det(Λmg (λ)) = det(Λmg̃ (λ)) and Tr(Λmg (λ)) =Tr(Λmg̃ (λ)).

Before giving the proof of this proposition, let us begin by the following lemma:

Lemma 4.2. Under the hypothesis σ(Λg(λ)) = σ(Λg̃(λ)), we have the alternative :
{

f(0) = f̃(0)

f(1) = f̃(1)
or

{

f(0) = f̃(1)

f(1) = f̃(0).

Proof. First, let us define the set:

Σ
(
Λg(λ)

)
= {λ±(κm), m ∈ N}

where κm is the m−th eigenvalue of the usual Laplace-Beltrami operator on the sphere Sn−1 and
counted without multiplicity. Thanks to our hypothesis, one has obviously

Σ
(
Λg(λ)

)
= Σ

(
Λg̃(λ)

)
.

When K = Sn−1, we have an explicit formula for κm (see for instance [18]) :

κm = m(m+ n− 2), ∀m ∈ N.

The proof involves two steps.

Step 1. First we have :

f(0)
n−1

2 + f(1)
n−1

2 = f̃(0)
n−1

2 + f̃(1)
n−1

2 . (15)

Indeed, it is known that the Steklov spectrum determines the volume of the boundary of M :
this is an immediate consequence of the Weyl’s law (3) for Steklov eigenvalues (see [8]). We have
∂M = Γ0 ∪ Γ1 where, for i ∈ {0, 1}, Γi is the sphere Sn−1 equipped with the metric γi = f(i)gS.
Hence :

Vol
(
∂M

)
= Vol

(
∂M̃

)
⇔

∫

Γ0

dVolγ0 +

∫

Γ1

dVolγ1 =

∫

Γ0

dVolγ̃0 +

∫

Γ1

dVolγ̃1

⇔
(

f(0)
n−1

2 + f(1)
n−1

2

)

Vol(Sn−1) =

(

f̃(0)
n−1

2 + f̃(1)
n−1

2

)

Vol(Sn−1),

and this proves the claim.

Step 2. We show that : f(0) ∈ {f̃(0), f̃(1)}.
Assume this statement is false. Without loss of generality, assume that f(0) < min{ ˜f(0), f̃(1)}.
Then the equality (15) implies : f(1) > max{f̃(0), f̃(1)}.

Our strategy is the following : we prove that one of the elements of Σ
(
Λg(λ)

)
is not in Σ

(
Λg̃(λ)

)

and this shall give a contradiction.

Let ε and A two positive numbers. Set :

αA = inf{|λ+(κn)− λ−(κm)| |m,n ≥ A}.

We claim that αA ≤ 1

2
√

f(1)
+ ε for a sufficiently large A.

Indeed, let n ∈ N and set
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m = max

{

j ∈ N
∣
∣ λ−(κj) < λ+(κn)−

1

2
√

f(1)
− ε

2

}

By definition of m, λ−(κm+1) ≥ λ+(κn)−
1

2
√

f(1)
− ε. But :

λ−(κm+1) = λ−(κm) +
1

√

f(1)
+O

(
1

m

)

< λ+(κn)−
1

2
√

f(1)
− ε

2
+

1
√

f(1)
+O

(
1

m

)

< λ+(κn) +
1

2
√

f(1)
+
ε

2
+O

(
1

m

)

Hence

αA ≤ |λ+(κn)− λ−(κm+1)| ≤
1

2
√

f(1)
+ ε, for m,n ≥ A sufficiently large.

From the above, we can now choose (m,n) ∈ N2 such that :

− 1

2
√

f(1)
− ε ≤ λ+(κn)− λ−(κm) ≤ 1

2
√

f(1)
+ ε. (16)

The equality of the sets Σ
(
Λg(λ)

)
and Σ

(
Λg̃(λ)

)
gives two elements λ̃1 and λ̃2 of Σ

(
Λg̃(λ)

)
such

that {λ−(κm), λ+(κn)} = {λ̃1, λ̃2}. Remark that if λ−(κm) 6= λ+(κn) then the elements λ̃1 and
λ̃2 can not both belong to the same sequence (λ̃−(κℓ)) or (λ̃+(κp)) because, for indexes m and n
large enough, one would get :

|λ̃1 − λ̃2| ≥ min

{
1

√

f̃(0)
,

1
√

f̃(1)

}

− ε

and, by choosing ε small enough, this would contradict (16). Consequently, we have the existence
of (ℓ, p) ∈ N2 such that

{λ−(κm), λ+(κn)} = {λ̃−(κℓ), λ̃+(κp)}.
Let us assume first that {

λ−(κm) = λ̃−(κℓ)

λ+(κn) = λ̃+(κp).
(17)

∗ Case 1 : λ−(κm) ≤ λ+(κn). Then λ−(κm+1) is not equal to any element of Σ(Λg̃(λ)). Indeed
we have on one hand :

λ−(κm+1) = λ−(κm) +
1

√

f(1)
+O

(
1

m

)

= λ̃−(κℓ) +
1

√

f(1)
+O

(
1

m

)

= λ̃−(κℓ+1) +

[
1

√

f(1)
− 1

√

f̃(1)
︸ ︷︷ ︸

<0

]

+O

(
1

m

)

+O

(
1

ℓ

)

Hence, for m and ℓ large enough : λ̃−(κℓ) < λ−(κm+1) < λ̃−(κℓ+1). On the other hand :

23



λ−(κm+1) = λ−(κm) +
1

√

f(1)
+O

(
1

m

)

≤ λ+(κn) +
1

√

f(1)
+O

(
1

m

)

= λ̃+(κp) +
1

√

f(1)
+O

(
1

m

)

= λ̃+(κp+1) +

[
1

√

f(1)
− 1

√

f̃(0)
︸ ︷︷ ︸

<0

]

+O

(
1

m

)

+O

(
1

p

)

.

Moreover, from (16) and (17) :

λ−(κm+1) = λ−(κm) +
1

√

f(1)
+O

(
1

m

)

= λ−(κm) +
1

2
√

f(1)
+ ε+O

(
1

m

)

+
1

2
√

f(1)
− ε

≥ λ̃+(κp) +
1

2
√

f(1)
− 2ε

As a result, for m and p large enough : λ̃+(κp) < λ−(κm+1) < λ̃+(κp+1)

The sequences (λ̃−(κm)) and (λ̃+(κm)) being strictly increasing (at least for m large enough),
none of the elements of Σ(Λg̃(λ)) can be equal to λ−(κm+1). This refutes Σ(Λg̃(λ)) =
Σ(Λg(λ)).

∗ Case 2 : λ−(κm) > λ+(κn). With similar arguments, one can prove :

max
(
λ̃−(κℓ−1), λ̃

+(κp−1)
)
< λ−(κm−1) < min

(
λ̃−(κℓ), λ̃

+(κp)
)
.

Now, if we assume that
{

λ−(κm) = λ̃+(κp)

λ+(κn) = λ̃−(κℓ),

one can also prove, by interchanging the roles of f̃(0) and f̃(1), that λ−(κm+1) or λ−(κm−1) does
not belong to the set Σ(Λg̃(λ)).

Thus f(0) ∈ {f̃(0), f̃(1)}. Associated to the equality (15), this gives the wanted conclusion.
�

From now on, we assume that f(0) = f̃(0) and f(1) = f̃(1), since the case f(0) = f̃(1) and
f(1) = f̃(0) is obtained by substituting the roles of λ̃−(κm) and λ̃+(κm). First, let us begin by a
simple case:
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4.1 The case f(0) = f(1)

Without loss of generality, we can assume that f(0) = f(1) = 1. Thanks to Lemma 3.2, Λmg (λ)
has two eigenvalues λ−(µm) and λ+(µm) whose asymptotics are given by :







λ−(µm) =
√
µm − ln(h)′(1)

4
√

f(1)
+O

(
1√
µm

)

λ+(µm) =
√
µm +

ln(h)′(0)

4
√

f(0)
+O

(
1√
µm

)

.

We recall that :
√
κm = m+

n− 2

2
+O

(
1

m

)

,

and for m ∈ N, we set Vm =

{

λ−(κm), λ+(κm)

}

and Ṽm :=

{

λ̃−(κm), λ̃+(κm)

}

.

• The two dimensional case

In this case, the eigenvalues λ±(κm) have the following asymptotics :







λ−(κm) = m+O

(
1

m

)

λ+(κm) = m+O

(
1

m

)

.

For m large enough, the sets Vm and Ṽm are both included in the interval
[
m − 1

4
,m +

1

4

]
. In

particular Vm ∩ Ṽm′ = ∅ if m 6= m′. The equality Σ
(
Λg(λ)

)
= Σ

(
Λg̃(λ)

)
leads to the equalities

Vm = Ṽm if m is greater than some index m0. Consequently, there is m0 such that, for m ≥ m0 :

{

λ−(κm) + λ+(κm) = λ̃−(κm) + λ̃+(κm)

λ−(κm)λ+(κm) = λ̃−(κm)λ̃+(κm).

Of course, the previous equalities are still true when κm is replaced by µm. Thus, we have proved:

∀m ∈ N, m ≥ m0 ⇒ Tr(Λmg ) = Tr(Λmg̃ ) and det(Λmg ) = det(Λmg̃ ).

• The n ≥ 3 dimensional case

In this case, we use the following asymptotics of the eigenvalues λ±(κm):







λ−(κm) = m+
n− 2

2
− h′(1)

4
+O

(
1

m

)

λ+(κm) = m+
n− 2

2
+
h′(0)

4
+O

(
1

m

)

.

Contrary to the two dimensional case, we can not conclude that the sets Vm and Ṽm are equal.
This is due to the presence of the constants h′(0) and h′(1) in these asymptotics. We have the
following Proposition:
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Proposition 4.3. There is L ⊂ N such that
∑

m∈L

1

m
= +∞ satisfying :

∀m ∈ L,
{

λ−(κm) + λ+(κm) = λ̃−(κm) + λ̃+(κm)

λ−(κm)λ+(κm) = λ̃−(κm)λ̃+(κm)

Proof. We start with the following Lemma:

Lemma 4.4. There is L1 ⊂ N such that
∑

m∈L1

1

m
= +∞ satisfying :

(

λ−(κm) = λ̃−(κm), ∀m ∈ L1

)

or

(

λ−(κm) = λ̃+(κm), ∀m ∈ L1

)

Proof. Since Σ
(
Λg(λ)

)
= Σ

(
Λg̃(λ)

)
, we have the inclusion :

{λ−(κm), m ∈ N} ⊂ {λ̃−(κm), m ∈ N} ∪ {λ̃+(κm), m ∈ N}.

Thus, there exists a sequence of integers (am) such that
∑

m∈N

1

am
= +∞ and :

{λ−(κam), m ∈ N} ⊂ {λ̃−(κm), m ∈ N} or {λ−(κam), m ∈ N} ⊂ {λ̃+(κm), m ∈ N}.

For instance, let us study the first case (since the second case is similar). We can find another
sequence of integers (ãm) such that :

λ−(κam) = λ̃−(κãm), ∀m ∈ N.

Thanks to Lemma 3.2, one obtains :

am − ãm =
h̃′(1)

4
− h′(1)

4
+O

(
1

am

)

.

Therefore, the sequence of integers (am−ãm) converges to the integer
h̃′(1)

4
− h′(1)

4
=
n− 2

4

f ′(1)

f(1)
−

n− 2

4

f̃ ′(1)

f̃(1)
.

Recalling that f, f̃ ∈ Cb =
{

f ∈ C∞([0, 1]),

∣
∣
∣
∣

f ′(i)

f(i)

∣
∣
∣
∣
≤ 1

n− 2
, i ∈ {0, 1}

}

, we get:

∣
∣
∣
∣

n− 2

4

f ′(1)

f(1)
− n− 2

4

f̃ ′(1)

f̃(1)

∣
∣
∣
∣
≤ 1

2
.

As this quantity must be an integer, we have proved that, for m ≥ m0 :

am = ãm.

We conclude the proof of the Lemma setting L1 = {am, m ≥ m0}.
�

Now, we can finish the proof of the Proposition. For instance, assume that:

λ−(κm) = λ̃−(κm), ∀m ∈ L1.

Repeating the previous argument with λ+(κm), m ∈ L1, we have the inclusion:

{λ+(κm), m ∈ L1} ⊂ {λ̃−(κm), m ∈ N} ∪ {λ̃+(κm), m ∈ N}

There is a sequence of integers, denoted (bm) ∈ L1, such that
∑

m∈N

1

bm
= +∞ and :
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{λ+(κbm), m ∈ N} ⊂ {λ̃−(κm), m ∈ N} or {λ+(κbm), m ∈ N} ⊂ {λ̃+(κm), m ∈ N}.

• In the second case, there is a sequence (b̃m) such that :

λ+(κbm) = λ̃+(κb̃m)

which implies as previously that bm = b̃m. Then, setting L = {bm, m ∈ N} we have for all
m ∈ L : {

λ−(κm) = λ̃−(κm)

λ+(κm) = λ̃+(κm)

• In the first case, we still could show that :

λ+(κbm) = λ̃−(κbm)
(
= λ−(κbm)

)

But this is not possible because Λbmg (λ) would then be an homothety, which contradicts the

matrix expression of Λbmg (λ).

Hence the proof of Proposition 4.3 is complete.
�

We recall that P is the set of roots of ∆(z). For every z ∈ C\P , let us set

B(z) = −D(z) + E(z)

∆(z)
+ C0 − C1 (18)

C(z) =

(

− D(z)

∆(z)
+ C0

)(

− E(z)

∆(z)
− C1

)

− 1
√

f(0)f(1)∆(z)2
, (19)

where

C0 =
ln(h)′(0)

4
√

f(0)
, C1 =

ln(h)′(1)

4
√

f(1)
.

For every m in N, we have (cf proof of Lemma 3.2):

B(κm) = λ−(κm) + λ+(κm) and C(κm) = λ−(κm)λ+(κm).

We introduce the functions g1 and g2 on Π+ as follows:

g1(z) = ∆(z2)∆̃(z2)
[
B(z2)− B̃(z2)

]

g2(z) = ∆(z2)2∆̃(z2)2
[
C(z2)− C̃(z2)

]
.

We claim that g1 and g2 are identically zero. Indeed :

• g1, g2 are holomorphic on Π+.

• g1, g2 ∈ N (Π+) thanks to the estimates of Proposition 2.3.

• Thanks to Proposition 4.3, we have g1(
√
κm) = g2(

√
κm) = 0 for every m ∈ L. As

√
κm ∼ m,

one has
∑

m∈L

1√
κm

= +∞. Thus, we can conclude, by Nevanlinna’s theorem :

g1 ≡ g2 ≡ 0 on Π+.

In particular, for every m in N :

{

λ−(κm) + λ+(κm) = λ̃−(κm) + λ̃+(κm)

λ−(κm)λ+(κm) = λ̃−(κm)λ̃+(κm)

and, by replacing κm by µm we have for every m in N :

Tr(Λmg ) = Tr(Λmg̃ ) and det(Λmg ) = det(Λmg̃ ).
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4.2 The case f(0) 6= f(1)

Without loss of generality, assume that f(0) < f(1). Thanks to the asymptotics:

√
κm = m+

n− 2

2
+O

(
1

m

)

and Lemma 3.2, we have :







λ−(κm) =
m

√

f(1)
+

n− 2

2
√

f(1)
− ln(h)′(1)

4
√

f(1)
+O

(
1

m

)

λ+(κm) =
m

√

f(0)
+

n− 2

2
√

f(0)
+

ln(h)′(0)

4
√

f(0)
+O

(
1

m

)

.

Since f(0) 6= f(1), the proof is a little more delicate. As previously, we have to find a subset L ⊂ N

such that
∑

m∈L

1

m
= +∞ and such that λ−(κm) = λ̃−(κm) or λ+(κm) = λ̃+(κm) for all m ∈ L.

We have the following Proposition:

Proposition 4.5. There is L ⊂ N satisfying
∑

m∈L

1

m
= +∞ and such that :

{λ−(κm), m ∈ L} ⊂ {λ̃−(κm), m ∈ N}

Proof. If the subset of the elements of {λ−(κm), m ∈ N} belonging to {λ̃+(κm), m ∈ N} is finite,
the proposition is true. If not, there exist two strictly increasing sequences ϕ, ψ : N → N such that:

λ−(κψ(m)) = λ̃+(κϕ(m)). (20)

We emphasize that the functions ϕ and ψ are built so that an integer m ∈ N which is not in the
image of ψ (respectively in that of ϕ) satisfies λ−(κm) = λ̃−(κn) for some n ∈ N (respectively
λ+(κn) = λ̃+(κm) for some n ∈ N).

Replacing λ+(κϕ(m)) and λ̃−(κψ(m)) by their asymptotics in the equality (20), we have :

ϕ(m)
√

f(0)
+

ln(h)′(0)

4
√

f(0)
+

n− 2

2
√

f(0)
+O

(
1

ϕ(m)

)

=
ψ(m)
√

f(1)
− ln(h)′(1)

4
√

f(1)
+

n− 2

2
√

f(1)
+O

(
1

ψ(m)

)

.

Setting C = − ln(h)′(1)

4
√

f(1)
− ln(h)′(0)

4
√

f(0)
+

n− 2

2
√

f(1)
− n− 2

2
√

f(0)
and noticing that the previous equality

implies that O

(
1

ψ(m)

)

= O

(
1

ϕ(m)

)

, one can write (20) as follows:

ϕ(m)
√

f(0)
=

ψ(m)
√

f(1)
+ C +O

(
1

ϕ(m)

)

. (21)

Now, we have the following Lemma:

Lemma 4.6. There exists m0 ∈ N such that for all m ≥ m0, ψ(m+ 1) ≥ ψ(m) + 2.

Proof. Set A =

√

f(1)
√

f(0)
> 1 and C′ = −

√

f(1)C. It follows from (21) that:

ψ(m) = Aϕ(m) + C′ +O

(
1

ϕ(m)

)

.
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Assume ψ(m+ 1) = ψ(m) + 1. Then :

ψ(m) + 1 = ψ(m+ 1) = Aϕ(m+ 1) + C′ +O

(
1

ϕ(m)

)

≥ A(ϕ(m) + 1) + C′ +O

(
1

ϕ(m)

)

= Aϕ(m) + C′ +A+O

(
1

ϕ(m)

)

= ψ(m) +A+O

(
1

ϕ(m)

)

.

Thus, we get:

1 ≥ A+ O

(
1

ϕ(m)

)

which is clearly false for m large enough. �

Consequently, the range of ψ doesn’t contain two consecutive integers. We deduce from this the
following Lemma :

Lemma 4.7. Denote a1, a2, ... the sequence of all integers that are not in the range of ψ. There
exists C > 0 such that this sequence satisfies :

am ≤ 2m+ C. (22)

Proof. We set p0 = ψ(m0) and C := ap0 − 2p0. Clearly, (22) is true for m = p0. Now, assume that
(22) is satisfied for a fixed m ≥ p0. Then :

• either am + 1 is not in the range of ψ and so : am+1 = am + 1,

• or am+1 is in the range of ψ. Then am+2 is not in the image of ψ since it does not contain
consecutive integers and consequently am+1 = am + 2.

In both cases, we get am+1 ≤ 2(m+ 1) +C. Then, the proof of the Lemma follows by a standard
induction argument. �

In particular, Lemma 4.7 shows that :

∑

n∈N

1

an
= +∞.

Thus, setting L = {an, n ∈ N}, we have :

{λ−(κm), m ∈ L} ⊂ {λ̃−(κm), m ∈ N}
which concludes the proof of the Proposition. �

As previously, we have to treat differently the case of the dimension n = 2 and n ≥ 3.
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The two dimensional case:

Lemma 4.8. For all m ∈ L, one has:

λ−(κm) = λ̃−(κm).

Proof. By construction, for each element m of L, there exists ℓ(m) ∈ N such that :

λ−(κm) = λ̃−(κℓ(m)).

Using Lemma 3.2, we get:

m = ℓ(m) +O

(
1

m

)

+O

(
1

ℓ(m)

)

,

which implies m = ℓ(m) for m large enough. �

Let us consider again the functions B and C defined in (18) and (19). Setting

R(z) = B(z)2 − 4C(z),

we get:

λ±(κm) =
1

2

(

B(κm)±
√

R(κm)

)

.

We can define on Π+ the function λ−(z) by λ−(z) =
1

2

(

B(z)−
√

R(z)

)

.

Lemma 4.9. For every t ∈ R+ large enough, we have the alternative :

λ−(t) = λ̃−(t) or λ+(t) = λ̃+(t).

Proof. From Lemma 4.8, there is L ⊂ N satisfying
∑

m∈L

1

m
= +∞ and such that

∀m ∈ L, B(κm)−
√

R(κm) = B̃(κm)−
√

R̃(κm).

One has
(

B(κm)− B̃(κm)

)2

=

(
√

R(κm)−
√

R̃(κm)

)2

,

and then
[(

B(κm)− B̃(κm)

)2

−R(κm)− R̃(κm)

]2

− 4R(κm)R̃(κm)

︸ ︷︷ ︸

:=g1(κm)

= 0.

For z ∈ Π+, let us define:
g2(z) = ∆(z2)4∆̃(z2)4g1(z

2).

Then g2 is identically zero. Indeed :

• g2 is holomorphic on Π+.

• g2 ∈ N (Π+) thanks to the estimates of Proposition 2.3.

• We have g2(
√
κm) = 0 for every m ∈ L, which enable us to conclude, by Nevanlinna’s theorem,

that
g2 ≡ 0 on Π+.
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We have obtained:

∀z ∈ Π+,

[(

B(z2)− B̃(z2)

)2

−R(z2)− R̃(z2)

]2

− 4R(z2)R̃(z2) = 0.

It easily follows that for z ∈ Π+, we have four alternatives:

λ−(z2) = λ̃−(z2), λ+(z2) = λ̃−(z2), λ−(z2) = λ̃+(z2) or λ+(z2) = λ̃+(z2).

We can note that the asymptotics of Lemma 3.2, involving λ±(κm), can be extended on R+ for
λ±(t) (the proof remains exactly the same). Now, if a real sequence of positive numbers (tm)
satisfies, for instance, λ+(t2m) = λ̃−(t2m) with tm → +∞, then, using Lemma 3.2 with t2m instead of
κm we get f(0) = f(1), and that contradicts our hypothesis. We use the same argument to exclude
the third case when z is a positive real number large enough. Finally, we have for t positive large
enough :

λ−(t) = λ̃−(t) or λ+(t) = λ̃+(t).

�

Case 1 : Assume now there exists x ∈ R+ as large as we want such that λ−(x) 6= λ̃−(x). By a
standard continuity argument, we can find an interval I centered in x such that :

∀t ∈ I, λ−(t) 6= λ̃−(t),

which implies necessarily that ∀t ∈ I, λ+(t) = λ̃+(t). Moreover, there is L > 0 such that the real
function

t 7→ λ+(t)− λ̃+(t)

is analytic on the interval [L,+∞[. Thus, ∀t ≥ L, one has λ+(t) = λ̃+(t) by the analytic continu-
ation principle. One deduces there exists m0 ∈ N such that, for m ∈ L and m ≥ m0:

λ+(κm) = λ̃+(κm) and λ−(κm) = λ̃−(κm).

Without loss of generality, assume that minL is greater than m0. As a by product, one gets:

∀m ∈ L,
{

λ−(κm) + λ+(κm) = λ̃−(κm) + λ̃+(κm)

λ−(κm)λ+(κm) = λ̃−(κm)λ̃+(κm)

Hence, we have proved the same result as the one of Proposition 4.3. We can deduce similarly that
both previous equalities are in fact true for every m ∈ N, i.e

∀m ∈ N, Tr(Λmg ) = Tr(Λmg̃ ) and det(Λmg ) = det(Λmg̃ ).

We are thus brought back to the third section.

Case 2 : For all t ∈ R, t large enough, we have λ−(t) = λ̃−(t). In particular, for all m ∈ N

large enough, λ−(κm) = λ̃−(κm). Hence, for m large enough, one also has λ+(κm) = λ̃+(κm).
Indeed, let m ∈ N. If λ+(κm) ∈

(
λ̃+(κℓ)

)
, there is ℓ(m) ∈ N such that λ+(κm) = λ̃+(κℓ(m)).

One can prove, as in the proof of Lemma 4.8 that ℓ(m) = m. The same holds if we assume that
λ̃+(κm) ∈

(
λ+(κℓ)

)
. The only other option is that there are integers p and ℓ such that

{

λ+(κm) = λ̃−(κp)

λ̃+(κm) = λ−(κℓ)

Then λ+(κm)− λ̃+(κm) = λ̃−(κp)− λ−(κℓ), which implies

O

(
1

m

)

=
p− ℓ
√

f(1)
+O

(
1

p

)

+O

(
1

ℓ

)

.

Hence p = ℓ for m, p, ℓ large enough and so λ+(κm) = λ̃+(κm). There is then m0 ∈ N such that

∀m ≥ m0, Tr(Λmg ) = Tr(Λmg̃ ) and det(Λmg ) = det(Λmg̃ ).

We are brought back again to the third section (see Remark 2 p. 13).
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The case of the dimension n ≥ 3.

The following arguments are more or less immediate adaptations of the two dimensional case. We
just refer to it for details.

Lemma 4.10. There exists L ⊂ N such that
∑

m∈L

1

m
= +∞ and :

λ̃−(κm) = λ−(κm), ∀m ∈ L.

Proof. By definition of the sequence (an) defined in Lemma 4.7, there is another sequence of
integers (ãn) such that :

λ−(κan) = λ̃−(κãn)

As in the proof of Lemma 4.4, we show that am = ãm and we set L = {am, m ∈ L}. �

We have the following Lemma (the proof is identical to the two dimensional case).

Lemma 4.11. For all t ∈ R+ large enough, we have the alternative :

λ−(t) = λ̃−(t), λ+(t) = λ̃+(t).

We deduce then, for all m ∈ L :

λ−(κm) = λ̃−(κm) and λ+(κm) = λ̃+(κm).

It follows that :

∀m ∈ N, Tr(Λmg ) = Tr(Λmg̃ ) and det(Λmg ) = det(Λmg̃ ).
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