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We study the temporal dynamics of photoexcited carriers in distributed Bragg reflector based semiconductor
micropillars at room temperature. Their influence on the process of coherent phonon generation and detection
is analyzed by means of pump-probe microscopy. The dependence of the measured mechanical signatures on
laser-cavity detuning is explained through a model that accounts for the varying light-cavity coupling existent
during the ultrashort times that pump and probe pulses dwell within the structure. To do so, we first explain the
optical mode dynamics with an electron-hole diffusion model that accounts for the escape of carriers from the
probed area, as well as their recombination in the bulk and on the free surfaces. We thus show that the latter is
the most influential factor for pillars below ∼10 μm, where 3D confinement of the optical and mechanical fields
becomes relevant.

DOI: 10.1103/PhysRevA.98.013816

I. INTRODUCTION

Motivated by the race for reaching the quantum regime
in mesoscopic mechanical systems [1–5], research in cavity
optomechanics has focused on the development of resonators
with higher mechanical working frequencies [6–10]. Recent
reports [11,12] on resonators working beyond 10 GHz reveal a
new challenge in the field: the development of experimental
techniques to study such high-frequency regimes. Suitable
experimental techniques to study optomechanical resonators at
mechanical frequencies of tens of GHz in the NIR-visible range
are not yet accessible. Classical optomechanical experiments at
low frequencies are based on Brownian motion measurements,
which are done by impinging the sample with a continuous
wave laser and measuring the RF noise spectral density of the
transmitted/reflected light. These kinds of experiments give
information about the displacement intensities. The method,
provided the photodetector is fast and sensitive enough, could
indeed allow the detection of vibrations up to tens of GHz.
State-of-the-art telecom wavelength photodetectors can be
quite fast (up to 50 GHz) and by cooling them, it could be
possible to lower their thermal noise, thus improving their sen-
sitivity. NIR-visible light photodetectors, however, have not yet
attained such a performance. Information about the vibrational
dynamics can be obtained from ring-down techniques [13],
recently applied in the domain of optomechanics [14–17]. In
this case the use of ultrafast detectors is also necessary; hence
the technique suffers the same bandwidth limitation as that of
the Brownian motion measurements. Stroboscopic techniques
appear as a potential solution, but their use remains limited in
the context of optomechanics.

Usually used in nanophononics, pump-probe coherent
phonon generation provides valuable information about the

*Corresponding author: afains@cab.cnea.gov.ar

eigenstates of the system, and their temporal evolution. This
technique can provide full information about the coherent
phonon dynamics up to THz frequencies [18–20]. However,
in contrast to the other mentioned techniques, it requires a
detailed knowledge of the system under study. Historically,
this technique was used to qualitatively characterize phonon
dynamics and for nondestructive testing [21]. Nevertheless,
the complexity of the processes involved in the experiments (in
both generation and detection of coherent phonons) prevents
a straightforward characterization of the phonon dynamics
[22–24]. To be able to extract all the information available from
the experiments, it is essential to understand the optoelectronic
system as well as the mechanisms involved in the measure-
ments. In this paper we give the tools to decouple what are the
effects of the carrier dynamics on the optical behavior of the
system, from the mechanically induced modulation of the sig-
nals, showing the potential of the technique for optomechanics.

II. RESULTS

Since the interaction between electromagnetic fields in the
NIR-visible range and mechanical vibrations are mediated, one
way or the other, by electrons [19], understanding their behav-
ior and what is exactly their influence on the measurements is
imperative. In this work we focus on the photoexcited carrier
dynamics and their relation with those of the mechanical and
optical cavity modes. This is achieved by means of pump-
probe microscopy experiments, performed on square section
micropillars with side lengths ranging from 2 μm to 60 μm,
and for several different laser detunings with respect to the
fundamental optical cavity mode. The resonators studied here
were dry-etched from a λ/2 bulk-GaAs planar cavity enclosed
between two distributed Bragg reflectors (DBRs) consisting of
alternating Ga0.9Al0.1As/Ga0.05Al0.95As λ/4 layers, 28 pairs
at the bottom, and 24 on top. The resulting pillars can
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FIG. 1. Top: Pump-probe microscopy experimental setup. The
polarizing beam splitter allows us to separate the reflections corre-
sponding to pump and probe pulses, which are cross-polarized. The
reflected probe pulse is guided either to a photodiode (to measure
the differential reflectivity) or to a spectrometer (to measure the
reflectivity spectrum). Bottom: Outline representing the effect the
optical cavity mode has on the reflected probe spectra (left) and how
the shifting mode changes the differential reflectivity measurement
(right), which is based on the spectral integral of the reflected probe
pulse. The reflectivity is minimum when the optical cavity mode
is better coupled with the laser and the sample absorbs more. Any
phonons present will also modulate the reflectivity [11].

confine the electromagnetic field and mechanical vibrations in
the three dimensions [11], corresponding to the optical and
acoustic cavity modes, respectively. To study the evolution
of these systems after pulsed laser excitation, we implement

a time-resolved differential optical reflectivity (pump-probe)
measurement [25,26] with micrometer resolution. In these
experiments, two ∼2 ps pulses (∼2 nm spectral width) of
different intensity and crossed polarization are focused on
the same spot. The pump (5 mW of incident power) is used
to excite the sample, while the probe (0.5 mW of incident
power), delayed from the former, is used to measure the change
generated in the optical reflectivity. The reflected probe pulse
can be either guided to a photodiode or to a spectrometer. In the
first case, the measurement will correspond to the total intensity
change of the pulse (differential reflectivity), while in the latter
a spectral analysis of the sample reflectivity can be obtained
(see Appendix A). This is schematized in Fig. 1. Modifying
the delay between the pump and probe pulses, it is possible to
reconstruct the temporal evolution of the optical reflectivity.

When working with a laser wavelength near the GaAs
electronic transition (∼872 nm), the pump pulse promotes
electron-hole (e-h) pairs in the GaAs spacer in an area given
by the excited spot. These carriers modify the refractive index
of the material, changing the spectral position of the optical
mode “seen” by the probe, which is sensing the same area.
The reflected probe, being cross-polarized with respect to the
pump by design, is separated from the latter using a polarizing
beam splitter and is guided to a photodiode, to measure the
differential reflectivity, or to a spectrometer, to measure the
reflectivity spectrum within the spectral width of the probe
pulse. In Fig. 2 we present the reflectivity of a 5 μm square
pillar [panel (a)], as well as the corresponding differential
reflectivity [panel (b)], both as a function of delay time (t). Here
t = 0 corresponds to the moment when the pump pulse hits the
sample. Hence, at negative times the reflectivity corresponds to
the unexcited state of the pillar, while at positive times we can
see the temporal evolution of the reflectivity after excitation.
The inset in Fig. 2(b) shows the laser spectrum, which is the
same for the pump and the probe pulses. Four characteristic

FIG. 2. (a) Optical mode spectral position and reflectivity as a function of time (map). The encircled numbers mark the spectral position of
the optical mode for 4 characteristic times. (b) Differential reflectivity (�R/R0) as a function of time. The black encircled numbers mark the
same times and spectral positions as in (a). Inset: Pulsed laser spectrum (orange line). The red arrows are guides to the eye showing the spectral
path followed by the optical mode between the characteristic times.
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times were marked with black encircled numbers to better
understand the interrelation between the spectral dynamics
and the differential reflectivity measurements. At t < 0 the
optical cavity mode at λc = λ0 ∼ 884.6 nm is red-detuned
(λc > λlaser) with respect to the laser (label 0 in Fig. 2). When
the pump pulse excites the sample the mode undergoes a strong
shift, passing rapidly above the maximum of the laser spectral
density and ending up blue-detuned (label 1) with respect to
it. A deepening and narrowing of the optical mode resonance
is observed right after pumping, which is due to a related
decrease in the absorption of the spacer (see Appendix B).
As the electronic system gradually recovers, the optical mode
spectral position slowly returns to the maximum of the laser
spectral density (label 2) and proceeds towards its initial state
(label 3). These dynamics can be approximated with a steplike
onset, followed by an exponential recovery:

λc(t) = λ0, t < 0,

λc(t) = λ0 + ��e−t/τe , t � 0,
(1)

λ0 being the initial mode position, τe the characteristic recovery
time, and �� the initial shift experienced by the mode.

In addition to the change in the optical properties, the
photoexcited carriers generate coherent vibrations [19], cor-
responding to the mechanical eigenmodes of the structure
[11]. These vibrations also perturb the optical mode, though
to a much lesser degree than the carriers. Even though their
effect is not observable in a spectroscopic measurement like
the one presented in Fig. 2(a), they are readily detected
when processing the differential reflectivity signal as shown
in Fig. 2(b).

In Fig. 3 we present a set of differential reflectivity pump-
probe measurements performed on square section pillars with
side lengths ranging from 2 μm to 60 μm. Several curves per
pillar are shown (same color), corresponding to different laser
wavelengths, i.e., different detuning with respect to the optical
cavity mode. A strong decrease of τe (indicated with the gray
dashed curve) with decreasing pillar size is observed. Even
though the traces are strongly dominated by the electronic
contribution, hidden in them there are faint oscillations induced
by the confined acoustic vibrations. These vibrations are
generated by the photoexcited carriers through deformation
potential interaction [27,28], and can be singled out through
Fourier analysis. To further understand the effect of lateral
confinement on these vibrations, we selected, for each pillar,
the trace corresponding to the specific detuning that leads
to the absolute maximum in the amplitude of the measured
oscillations. To these traces we then apply a rectangular
bandpass spectral filter in order to select the fundamental
mode alone (∼19 GHz). Through this process, we get the
traces shown in Fig. 4. The amplitudes as well as the lifetime
of the mechanical modes show a significant dependence on
size, something that will be the subject of a following article.
Here we focus on the electronic response and the detuning
dependence of the coherent generation and detection process.
The traces show a π phase shift [29] and a necking at a given
delay tπ (black circles in Fig. 4), which coincides with the
passage of the optical mode over the maximum of the laser
spectral density (labeled as 2 in Fig. 2), where the modulation
on the reflected intensity due to the vibrations is negligible [29].
The exact delay at which it occurs depends both on the initial

FIG. 3. Differential reflectivity as a function of time for pillars
of different side lengths. The curves with the same color correspond
to the same pillar at different detunings. The curves corresponding
to different pillars are vertically shifted with respect to the rest
for clarity. The gray dashed line marks the characteristic recovery
time τe.

detuning and on the recovery time τe, and since τe depends
on size, so does tπ . This dependence is especially clear for
the smaller pillars in Fig. 4. The correlation is not so clear for
the bigger pillars. In fact, tπ for the two bigger pillars should
appear at a time longer than the measuring window, for the
detuning used in these experiments.

As is clear from Fig. 3 and Fig. 4, the optical mode dynamics
strongly affect the sensitivity of the pump-probe technique
to the lattice vibrations generated. This is evidenced by the
fact that the vibrational modes’ temporal dependencies, which
should approximately follow an exponential decay, show a sort
of beating instead, with a phase shift at tπ . This is only observed
while the optical mode is spectrally shifting; once the mode
is stable, the exponential decay behavior is evidenced, as is
clearer for the smaller pillars (a more detailed explanation can
be found in the Supplemental Material of Ref. [11]). We will
focus on the carriers excited by the pump pulse, which are the
responsible of the observed optical response. Once the carriers
are excited, they diffuse in every direction within the GaAs
spacer (the Al-rich slabs act as barriers) until they recombine.
The recombination can happen in the bulk or the interfaces
(with a given characteristic time τe,0 that we assume accounts
for both) or on the free lateral surfaces of the pillars (τe,1). Since
on the latter the defect concentration is considerably higher
than in the bulk or in the interfaces (which have molecular beam
epitaxy quality), we assume τe,1 � τe,0 [30]. Additionally to
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FIG. 4. Differential reflectivity oscillations due to the fundamen-
tal acoustical cavity mode (∼19 GHz) for square section pillars of
different sizes. Only the trace corresponding to optimum detuning is
shown for each pillar. The curves corresponding to different pillars are
vertically shifted with respect to the rest for clarity. The gray dashed
line marks the characteristic recovery time τe. The black circles mark
the phase shift time tπ , corresponding to a π phase change in the
oscillations.

these recombination times, there is an effective decay time of
the measured reflectivity signal (τe,2), given by the carriers that
diffuse out of the probed area. From measurements on a planar
sample with a spot size of ∼50 μm, where there are no free
surfaces and the latter diffusion effect is negligible, a value of
τe ≈ 7 ns was obtained. In addition, from measurements done
in the same sample, but with a spot size of ∼4 μm, we found
that τe ≈ 2.2 ns. This evidences the relevance of transverse
diffusion of the photoexcited carriers (τe,2) for the optical mode
recovery, when a small spot size is used.

In Fig. 5 we show the experimental values (yellow cir-
cles) obtained for the characteristic recovery time τe as a
function of pillar size (corresponding to the dashed curve
in Fig. 3 and Fig. 4). An increase is observed as the side
length grows, up to L ∼ 10 μm, above which no further
variation is observed. To explain this behavior, we will
propose a simple model which takes into account all the
mechanisms described above (bulk and interface recombina-
tion, lateral diffusion, and free surface recombination). An
initial Gaussian carrier distribution with a 4 μm FWHM
is considered, given by the shape of the pump laser spot.
Regarding bulk and interface recombination, we use the ex-
perimental value obtained for the planar sample (τe,0 = 7 ns).
To fit the data, a diffusion constant D = 0.8 μm2

ns is assumed

FIG. 5. Optical mode characteristic recovery time τe as a function
of the side length L. Measurements (yellow circles) and theory (red
dashed line).

[31]. The fast recombination on the free surfaces is simulated
by forcing a zero concentration boundary condition, which
corresponds to τe,1 = 0. In order to estimate the characteristic
recovery time, we integrate the density of e-h pairs present in
the area sensed by the probe pulse (same spot size as the pump
pulse) as a function of time, and then fit the curve with an
exponential decay, thus obtaining an estimate value for τe (see
Appendix C). The theoretical result is displayed in Fig. 5 with
the red dashed line. The agreement between data and theory is
remarkable. The approximately constant value of τe observed
for pillars with L > 10 μm is determined, as in the case of the
planar sample, by e-h diffusion out of the probed area. Below
L ≈ 10 μm, the free surfaces start to play a more important
role. As the side length decreases, the length the carriers have to
travel in order to get there gets shorter. When the free surfaces
are close enough for the e-h pairs to reach them in a time of the
same order as the one they need to escape from the probed area
(τe ≈ 2 ns), their effect starts to be observable, and, hence, the
effective decay time decreases. Note the detail in the transition
zone, where the data show some spread and the simulated
curve appears to have a maximum. This feature arises in a zone
where the calculated curve for the carrier density as a function
of time is not well fitted by a simple exponential decay. It
happens because for those values of L there is a change of
regime, as we already mentioned, where the two characteristic
times compete. Below and above that point the exponential
decay approximation is quite accurate. The importance of the
recovery time will be better understood later on. We will show
how the ability to detect the vibrations present in the sample
is closely related to it.

Regarding the mechanical vibrations, in Fig. 6 we present
the intensity of the signature of the first acoustical cavity mode
(∼19 GHz) for four different pillar sizes as a function of laser
wavelength (i.e., detuning). These intensities are obtained from
the Fourier transform of the temporal traces. The intensities are
normalized so that their maximum value is 1. Except for the
blueshift of the curves due to the optical mode confinement in
the smaller pillar sizes, there does not appear to be a significant
difference in the behavior of the different pillars. Each curve
presents two relative maxima separated by a dip, the one at
higher energies being greater than the low-energy one. To
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FIG. 6. Fundamental acoustic cavity mode dependence with laser
wavelength for square pillars with side length of 3 μm, 5 μm, 10 μm,
and 60 μm. The gray dotted line is a guide to the eye showing the
approximate spectral position of the optical cavity mode. The curves
were vertically shifted for clarity.

explain the observed behavior, we need to separate the origin
of the measured coherent phonon intensity into two factors:
generation efficiency and measurement sensitivity [22–24].
The former should be proportional to the photons absorbed by
the sample from the pump pulse, while the latter is proportional
to the change in the effective reflectivity due to any small
change in the optical mode position (induced by the mechanical
vibrations) with respect to the laser spectrum. Therefore, in a
pulsed experiment, the generation would be expected to be
more efficient at zero detuning, while the sensitivity should be
maximum at zones of higher derivative, i.e., at the flanks of
the laser spectral density. The two maxima seen in Fig. 6 are
therefore related to the detection efficiency; the dip in between
appears because of the null derivative at the laser maximum
and is thus also a detection sensitivity feature.

The above conceptual arguments assume a frozen picture
of the optical mode position. However, we have already shown
that the cavity mode follows a complex dynamical behavior
after pump excitation. Similar dynamics to those observed
during recovery are expected to happen, though much faster
and in the inverse direction, during excitation. In the following,
we will address what is the consequence of these rapid dynam-
ics on the efficiency of coherent phonon generation in pillar
microcavities, as well as the role of the detection efficiency
on the measured signals. To better understand this system, we
will model the problem in a comprehensive way, taking into
account the dynamics of the optical mode during the coherent
phonon generation and detection, and the temporal dependence
of the pump pulse inside the sample. We will assume that the
number of phonons generated (Gen) is proportional to the total
number of photoexcited carriers N (�t) (�t being the total
permanence time of the pump pulse in the cavity), which in
turn is proportional to the total mode shift �λc(�t) = ��

[30]:

Gen ∝ ��. (2)

The total number of carriers excited after pumping, and there-
fore the total mode shift, depends on the initial mode position
(λ0). Thus, the phonon generation will also depend on it:

Gen(λ0) ∝ ��(λ0). (3)

To calculate this dependence, we consider a Gaussian pump
pulse with a duration of ∼2 ps and, using the transfer matrix
method, we compute the electric field inside the GaAs spacer as
a function of time [E(t)]. The electrons respond and are excited
by the electric field with a delay time on the order of attosec-
onds [32]. Since we use picosecond pulses, we can assume
their response to be instantaneous. The excited carriers change
the refractive index of the sample, which in turn changes the
spectral position (λi) of the optical cavity modes [30]:

�λi(t) ∝
∫

|Ei(r)|2N (r,t)dr = N (t)
∫

|Ei(r)|2n(r)dr,

�λi(t) ∝ N (t)Ii, (4)

where the subscript i corresponds to the optical mode number,
Ei(r) its corresponding spatial distribution, and N (r,t) is the
temporal and spatial dependence of the photocarrier density,
which we assume separable into two functions, n(r) and N (t).
Ii thus defined is the overlap integral between the optical
mode i and the carrier distribution. The spectral change of the
fundamental optical cavity mode at a given time t will then be
given by

∂λc(t)

∂t
∝ Ic

∂N (t)

∂t
= Ic|E(t)|2 N (t) − Nmax

Nmax
, (5)

E(t) being the electric field of the incident pump pulse and
Nmax the maximum photocarrier density, due to a possible
saturation of the final states. Equation (4) expresses that the
shift of the cavity mode at a given time t is proportional to the
density of photocarriers excited by the electric field. Applying
this same concept to Eq. (5), it can rewritten as

∂λc(t)

∂t
= α Ic|E(t)|2 �λc(t) − �λmax

�λmax
, (6)

where

�λc(t) = λc(t) − λ0. (7)

Summing up, the variables that participate in the proposed
model are the dependence on time of the electromagnetic field,
given by the structure and the laser pulse (both known), the
overlap integral Ic, the proportionality constant α, and the
maximum attainable mode shift (�λmax). �λmax corresponds
to the maximum spectral shift which could be undergone by
the optical mode, if Nmax carriers were excited. This value
is not necessarily reached experimentally, since the excitation
depends both on the spectral distribution of the pump pulse and
on the temporal dynamics of the optical mode. For example,
if the excitation is initially very efficient, the optical mode
will quickly pass over the region of high intensity of the
laser (mode detuning ≈ 0), and will end up in a region of
low intensity (mode detuning � 0), where the excitation will
decrease significantly. The strongest shift actually generated
corresponds, in Fig. 7, to a detuning of λ0 − λlaser ≈ 0.85 nm
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FIG. 7. Top: Generation (red) and detection (black) functions as
calculated with the proposed model. Bottom: ∼19 GHz acoustical
cavity mode relative intensity as a function of optical mode detuning
(λ0 − λlaser) for a 3 μm square pillar (circles). The red dashed line
corresponds to the theoretical calculation, given by the product
between the generation (Gen) and detection (Det) functions.

(defined by the maximum of the red curve in the top panel).
This value can be determined from spectral experiments such
as the one shown in Fig. 2(a), which allows us to estimate
the complete dependence for all detunings using the proposed
approximations. Figure 7 shows the normalized (so that the
maximum value is 1) generation function. A strong asymmetry
is evident, which arises from the fact that the optical mode
shifts to negative detunings. Therefore, if the initial detuning
is positive the interaction between the cavity and the laser will
be more efficient. On the other hand, if the initial detuning is
negative, as soon as the mode shifts the laser cannot get into
the cavity, and, therefore, the interaction will be weaker.

Having calculated ��(λ0), which provides the detuning
dependence of the amplitude of the generated vibrations, we
need to find the dependence of the detection function Det(λ0),
given by the sensitivity of the probe pulse to these vibrations.
This problem has already been considered by Sesin et al. [29]
and Lanzillotti-Kimura et al. [22,23] in the low-Q case (laser
linewidth < cavity mode width), for a planar structure. We
apply the same concepts for our high-Q (laser linewidth >

cavity mode width) micropillar, considering the other limit;
i.e., taking the optical mode as infinitely narrow with respect
to the laser linewidth. Furthermore, we take into account the
fact that the optical cavity mode is not static, but is shifting
due to the carrier population recovery after excitation. This
means that the sensitivity is changing continuously over time,
until the unexcited condition is recovered. Using the calculated
optical shift and the experimental characteristic recovery time
τe we calculate Det(λ0). To do so, we average the detection

sensitivity (| ∂g(λ)
∂λ

|) during the measurement:

Det(λ0) ∝
∫ tm

0

∣∣∣∣∂g(λ)

∂λ

∣∣∣∣
λc(t)

dt, (8)

where g(λ) is the spectral distribution of the laser intensity
and tm is the experimental full-scan time. The resulting curve
(also normalized so that its maximum value is 1) is presented
in Fig. 7 (top) in black. It shows a more symmetric behavior as
compared to the generation efficiency (red), with a minimum
close to zero detuning due to the null derivative of the laser
spectrum. A slightly higher relative maximum for negative
detuning is observed. This can be understood from the fact
that during recovery, if the initial detuning is positive, the mode
will pass through the zero derivative zone, thus diminishing the
average sensitivity.

Finally, we have an expression for both the generation
and detection functions. Therefore, the intensity I(λ0) of the
measured vibrations can be obtained taking their product:

I(λ0) ∝ Gen(λ0)Det(λ0). (9)

In Fig. 7 we show Gen(λ0), Det(λ0), and I(λ0), obtained for
a 3 μm square pillar, together with the experimental values.
The generation and detection functions show, as was already
remarked, very different behaviors. Their product, which gives
the dependence of the intensity, shows an excellent agreement
with the experimental data, as can be seen in Fig. 7 (bottom).
Particularly, the different slopes at positive and negative
detuning, as well as the relative intensity between the two
maxima and the position of the central dip, are well reproduced.
Moreover, this calculation enables us to understand what is the
contribution to the measured signal coming from the generated
vibrations, and what is due to the detection capability of the
system.

III. CONCLUDING REMARKS

We have shown that the observed dynamics of the optical
cavity mode are dominated by the diffusion of the photoexcited
carriers out of the probed area for pillars bigger than 10 μm,
and by surface recombination in the smaller ones. Using a
diffusion model, we were able to reproduce this behavior with
great accuracy. Moreover, we have been able to qualitatively
explain the detuning dependence of the measured optome-
chanical response, separating the effects due to the dynamics
of the optical mode on the phonon generation and on the
detection efficiency. Our results explain satisfactorily well the
experimental features observed. Particularly, the asymmetry
in phonon intensity with detuning was shown to be due to
the generation efficiency. In contrast with a static optical
mode model during excitation, we show that the maximum
in generation efficiency does not occur at zero detuning, but at
positive detuning, because the mode shift follows the carrier
excitation speed, thus being able to follow the fast electric
field evolution inside the cavity due to the pump pulse. The
detailed description of the generation and detection processes
in DBR semiconductor micropillar cavities is an important
step in the path to using these pump-probe techniques for the
study of vibrational dynamics in a more quantitative way and
in the study of complex phonon dynamics in semiconductor
optomechanical systems at the micro- and nanoscales.

013816-6



OPTICAL CAVITY MODE DYNAMICS AND COHERENT … PHYSICAL REVIEW A 98, 013816 (2018)

ACKNOWLEDGMENTS

This work was partially supported by ANPCyT Grants
PICT 2012-1661 and 2013-2047, the Labex NanoSaclay, the
International Franco-Argentinean Laboratory LIFAN (CNRS-
CONICET), the French Agence Nationale pour la Recherche
(grant ANR QDOM), the French RENATECH network, and
ERC Starting Grant No. 715939 NanoPhennec.

APPENDIX A: TIME-RESOLVED REFLECTION
SPECTROSCOPY

This technique is based on the spectral change that the
probe pulses undergo when interacting with the sample. To
extract useful information, the measurements must be properly
processed. To this end, it is critical to understand the origin of
the measured spectra and have a good representation of the
unperturbed probe pulse.

The pump beam passes through an acousto-optic modulator,
which lets through trains of ∼50 pulses, with identical intervals
without pulses. The probe beam is not modulated, and thus
consists of a continuous train of pulses. For each time of the
measurement, which lasts ∼1 s millions of probe pulses are
collected and integrated, some that interacted with the excited
sample, and others that interacted with the unexcited sample.
That is, the measured spectrum will have both contributions
simultaneously for all times. This is schematized in Fig. 8,
where for simplicity, each train of pulses is represented with
a single pulse. It shows how the spectra of the reflected probe

FIG. 8. Outline of the fundamentals of the experiment. The pump
pulses (top) are blocked intermittently, while the probe pulses (center)
are not. Because of this, the optical cavity mode, marked with an
asterisk, is in different positions, and the probe pulses reflected from
the sample (bottom) present a different spectrum, with a periodicity
given by the modulation of the pump pulses. Since during the
experiment we integrate during a timescale much longer than the
period of the modulation, the measured spectra (bottom, right) are
given by the average between the excited and unexcited reflectivity.

pulses undergo a change given by the instantaneous position
of the optical cavity mode (marked with an asterisk). The
bottom rightmost box represents what is measured, due to the
integration of the successive pulses. Let ιi(λ) be the incident
probe spectrum, ι0(λ) = R0 ιi(λ) the reflected probe spectrum
when the sample is not excited (first and third pulse in Fig. 8),
and ι(λ,t) = R(t)ιi(λ) the reflected probe spectrum when the
sample is being excited by the pump pulse (second and fourth
pulse in Fig. 8).

The measured spectrum will, therefore, take the form

ιm(λ,t) = P0 ι0(λ) + P ι(λ,t)

P0 + P
, (A1)

P (P0) being the number of pulses integrated with (without)
excitation. Since the trains of pulses with and without excita-
tion are integrated in series, the maximum possible difference
between P0 and P is ∼100. The total number of pulse trains
integrated, on the other hand, is several million. Therefore, it
is sensible to approximate P0 = P :

ιm(λ,t) = ι0(λ)

2
+ ι(λ,t)

2
. (A2)

The measurement is done as a function of time, displacing the
delay line. Therefore, there are probed times for which ι(λ,t) ≈
ι0(λ). This occurs when the time delay of the probe pulse is
maximum (∼12.5 ns), which experimentally corresponds to
the moment just before the pump-probe coincidence (t = 0−).
At that moment the measurement will have the form

ιm(λ,0−) ≈ ι0(λ)

2
+ ι0(λ)

2
= ι0(λ). (A3)

Therefore, using the t = 0− data it is possible to correct the
measurement for every other time. The corrected measurement
ιc(λ,t) takes the form

ιc(λ,t) = 2

(
ιm(λ,t) − ι(λ,0−)

2

)
,

ιc(λ,t) ≈ 2

(
ι0(λ)

2
+ ι(λ,t)

2
− ι0(λ)

2

)
,

ιc(λ,t) ≈ ι(λ,t). (A4)

In this way, the contribution sought can be isolated and, finally,
by dividing this corrected signal by the incident spectrum, the
reflectivity of the sample at that time delay is obtained:

R(λ,t) = ιc(λ,t)

ιi(λ)
. (A5)

To determine the reference incident pulse spectrum [ιi(λ)],
while maintaining the alignment and focus as stably as possible
during the measurement, the following procedure was imple-
mented. An algorithm was used that compares the spectrum
before the coincidence (t = 0−) with the spectrum after the
coincidence (t = 0+). In this way, sections of the spectrum are
selected where there are no disturbances due to the optical
mode and the original spectrum is then reconstructed. The
requirement that must be met so that this algorithm is accurate
is that the spectral shift of the optical cavity mode must be
greater than its linewidth. This is so, because if the comparison
does not reveal the existing differences, it is not possible to
correctly extract the incident spectrum, and therefore neither
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FIG. 9. The right panel shows the reflectivity spectrum as a function of time during the 200 ps previous to the pump excitation, and the 400 ps
posterior to it. The left panel displays the temporal dependence of the real (top) and imaginary (bottom) components of the refractive index, as
extracted from the reflectivity spectra.

the reflectivity. In our case, this means that the technique
is limited to the study of pillars of side length smaller than
10 μm and to spectral positions where the sample shows little
absorption.

The major challenge of this method, beyond the difficulty
in obtaining the incident spectrum, is that variations in the
intensity of the probe, due to laser instabilities or to changes
in the incidence position on the sample or in focus (mostly
due to a small movement of the sample or to the unavoidable
movement of the delay line), will make the normalization less
effective for times far away from the coincidence.

APPENDIX B: DETERMINATION OF THE REFRACTIVE
INDEX TEMPORAL DEPENDENCE

From the time-resolved reflection spectroscopy, it is possi-
ble to extract valuable information. For example, by fitting the
experimental results with a matrix-method-based reflectivity
model, the complex refractive index temporal dependence can
be obtained. Typical results are presented in Fig. 9, along with
the reflectivity measurements used for the fit. Because of the
temporal constraints mentioned in the previous section, only
200 ps before and 400 ps after the coincidence were used for the
fit. A time previous to the coincidence is chosen to set the fixed
parameters of the model. Namely, the refractive index of GaAs
at room temperature is taken from the literature [33] and the
spacer and DBR layer thicknesses are proportionally adjusted
to fit the position of the calculated mode to the experimental
one. The imaginary component of the refractive index is then
adjusted to fit the width of the mode. This done, the variable
parameters used are the changes in the real and imaginary parts
of the refractive index as a function of time delay. These are
fitted by the least squares method for every time considered.
The results show a decrease in both the real and imaginary
components of the refractive index as the pump hits the sample,

with a subsequent recovery to the unexcited condition. The
change in the real part governs the negative shift in the spectral
position of the mode, while the change in the imaginary part
(directly related to the absorption) dominates the narrowing of
the optical mode just after excitation (right panel in Fig. 9).

APPENDIX C: CHARACTERISTIC RECOVERY TIME
AND CARRIER DIFFUSION MODEL

As shown in Appendix B, the refractive index of the GaAs
spacer is subject to a strong change during pump excitation,
followed by a relatively slow recovery. In this section we will
consider the processes that govern this recovery. In particular,
we will focus on the real component of the refractive index,
as it is the one that has the stronger impact on the differential
reflectivity measurements.

The signals measured by ultrafast reflectometry depend
strongly on the size of the pillars; in the following, we will
delve into this topic. First, we will address the dependence of
the characteristic recovery time of the electronic system. The
time it takes a pillar of a certain side length to recover its initial
optical properties increases for bigger pillars. To parametrize
this “recovery time,” numerical fits were performed on the
differential reflectivity measurements, assuming that the laser
has a Gaussian spectral distribution and, as shown in Fig. 9,
that the refractive index of the spacer changes sharply when the
pump pulse excites the sample (the DBRs are left unchanged),
and then recovers its original value with an exponential decay
function with a characteristic recovery time τe:

n(t) = n0 − �n
(t) e− t
τe , (C1)


(t) being the Heaviside step function. To perform the fit, the
reflectivity of the sample as a function of time is calculated by
the transfer matrix method, and the result is convoluted with a
Gaussian (obtained by fitting the laser spectrum) to obtain the
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FIG. 10. 5 μm square section pillar differential reflectivity mea-
surement (black dots) and fit (red dashed line).

differential reflectivity as a function of time. An example of the
result for a 5 μm square section pillar is presented in Fig. 10.
In this way, we derive from the differential reflectivity traces
the GaAs spacer refractive index temporal dependence, which
follows the characteristic recovery times of the electronic
system. The obtained values for τe are presented in Fig. 5 as a
function of side length (circles).

In the following we will address the model behind the
theoretical results shown in Fig. 5 (red dashed line). The
simulation takes into account the diffusion and recombination
of the photoexcited carriers. To address this model, we first
comment on some experimental results obtained in a planar
sample. Differential reflectivity measurements were performed
on a planar sample with two different experimental setups. In
one experiment, we used a spot with a diameter of ∼50 μm,
while in the other the spot was only ∼4 μm in diameter
(obtained by focusing the laser with a microscope objective).
The characteristic recovery time of the electronic system was
observed to depend on the spot diameter. Namely, τe ≈ 7 ns for
the 50 μm spot, while τe ≈ 2.3 ns for the 4 μm one. Because
we measure the specular reflection of the probe beam, the only
relevant changes are those that occur within the probed area.
Since the observed changes in the refractive index occur due
to the presence of excited carriers in the spacer, if they diffuse
laterally from the measured area, as far as the reflectivity is
concerned, it will be equivalent to them having recombined.
This is observed as a faster recovery of the refractive index. If
the laser spot is sufficiently large, the effects of diffusion will be
negligible (since the circumference to area ratio is smaller), and
the changes observed will be due mainly to the recombination
of the carriers.

Having established that the lateral carrier diffusion is rele-
vant for the measurements obtained with the microscopy setup,
we address next the situation evidenced in the micropillar
samples. In this case, in addition to the lateral carrier diffusion,
there also exists a physical limit, given by the edges. In Fig. 11
a scheme representing the initial distribution of photoexcited
carriers and their rapid diffusion is presented. A key factor
to consider is the lateral surfaces of the pillars. Due to the
manufacturing process, they have a higher concentration of
defects, which act as preferential centers for scattering and
nonradiative recombination. The half-life of an electron-hole
pair in the presence of these defects is on the order of a few
ps [30]. Therefore, since our measurements last several ns,

FIG. 11. Scheme of the distribution of the electron-hole pairs
excited by the pump pulse (left), after diffusing for a short time
(center), and a long time (right). The drawing is not to scale.

we will approximate this half-life to 0. This is equivalent to
considering a zero carrier concentration boundary condition at
the lateral surfaces.

For the calculations we adopt the following hypothesis: (a)
the carriers are initially distributed laterally with a Gaussian
function given by the area excited by the pump pulse (coordi-
nates referenced to the center of the pillar):

N (x,y,t = 0) = N0 e
− (x2+y2)

2σ2
0 , (C2)

σ0 being the initial standard deviation of the distribution; (b)
the carrier concentration on the lateral surfaces is kept constant
and equal to 0:

N

(
±L

2
,y,t

)
= N

(
x, ± L

2
,t

)
= 0; (C3)

(c) the change in the spectral position of the optical cavity
mode is proportional to the number of carriers in the probed
area A:

�λ(t) ∝
∫∫

A

N (x,y,t)dxdy. (C4)

Starting from these hypotheses, we must solve the diffusion
equation:

∂N (x,y,t)

∂t
= D

(
∂2N (x,y,t)

∂x2
+ ∂2N (x,y,t)

∂y2

)
, (C5)

where D is the diffusion constant of electron-hole pairs in
GaAs. The solution to this equation that complies with the
initial conditions proposed has the form [34]

N (x,y,t) = σ0
2N0

σ 2(t)
e
− (x2+y2)

2σ2(t) ,

σ 2(t) = σ 2
0 + 2Dt, (C6)

where σ (t) is the temporal dependence of the standard devia-
tion of the carrier distribution. To obtain an analytical solution
to this equation taking into account the boundary conditions
we use virtual images outside the sample [34]. The solution
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FIG. 12. Calculation of the temporal dependence of the optical
cavity mode (normalized by the maximum shift) using Eq. (C9) (black
thick line) and an exponential decay fit with a characteristic recovery
time τe ≈ 1.3 ns (red dotted line).

takes the form

N (x,y,t) =σ0
2N0

σ 2(t)

[ ∞∑
n,m=−∞

(
e
− (x+2nL)2+y2

2σ2(t) + e
− x2+(y+2mL)2

2σ2(t)

− e
− [x+(2n−1)L]2+y2

2σ2(t) − e
− x2+[y+(2m−1)L]2

2σ2(t)
) − e

− x2+y2

2σ2(t)

]
,

(C7)

where the first two terms of the summation are positive images
and the next two terms are negative images. For mathematical
convenience the real distribution is included inside this sum-
mation as a positive image. Since it is considered twice (n = 0
and m = 0), the last negative term is added to correct this. The
need for multiple virtual sources of different sign arises from
the fact that there are two edges per axis, so the images of
one disturb the boundary condition of the other and vice versa,
requiring corrections of higher order.

In addition to the diffusion we must take into account the
recombination within the material. We will represent it by

means of an experimentally obtained half-life, τe,0 = 7 ns. The
distribution of carriers will then have the final form:

N (x,y,t) =σ0
2N0

σ 2(t)

[ ∞∑
n,m=−∞

(
e
− (x+2nL)2+y2

2σ2(t) + e
− x2+(y+2mL)2

2σ2(t)

− e
− [x+(2n−1)L]2+y2

2σ2(t) −e
− x2+[y+(2m−1)L]2

2σ2(t)
)−e

− x2+y2

2σ2(t)

]
e
− t

τe,0.

(C8)

In order to obtain the temporal dependence of the spectral
position of the optical cavity mode, it is then necessary to
replace Eq. (C8) in Eq. (C4) and integrate, obtaining

�λ(t) ∝
{
�

(
R√

2σ (t)

)
+ 1

2

∞∑
n=1

(−1)n
[
�

(
nL + R√

2σ (t)

)

−�

(
− nL+R√

2σ (t)

)
+�

(
− nL−R√

2σ (t)

)
−�

(
nL−R√

2σ (t)

)]}

× e
− t

τ0 . (C9)

Here R is the radius of the probed area and � the error function.
Plotting Eq. (C9) as a function of time we obtain a curve like
the one presented in black in Fig. 12. The red dotted line is
an exponential decay fit with a characteristic recovery time
τe ≈ 1.3 ns. The example presented in Fig. 12 corresponds to
a 5 μm pillar, corresponding to one point of the red dashed
curve shown in Fig. 5. The parameters used to generate Fig. 12
were

L = 5 μm, R = 1.7 μm,

D = 0.8
μm2

ns
, σ0 = 1.7 μm,

τ0 = 7 ns.

Applying Eq. (C9) for different values of L (keeping all
other parameters fixed) and repeating the procedure exempli-
fied in Fig. 12, the red dashed line presented in Fig. 5 was
obtained.
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