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This work proposes a feedback-loop strategy to suppress intrinsic oscillations of resonat-
ing flows in the fully nonlinear regime. The frequency response of the flow is obtained from
the resolvent operator about the mean flow, extending the framework initially introduced
by McKeon & Sharma (2010) to study receptivity mechanisms in turbulent flows. Using
this linear time-invariant model of the nonlinear flow, modern control methods such as
structured H∞-synthesis can be used to design a controller. The approach is successful
in damping self-sustained oscillations associated to specific eigenmodes of the mean
flow spectrum. Despite excellent performance, the linear controller is however unable
to completely suppress flow oscillations, and the controlled flow is effectively attracted
towards a new dynamical equilibrium. This new attractor is characterized by a different
mean flow, which can in turn be used to design a second controller. The method can then
be iterated on subsequent mean flows, until the coupled system eventually converges to
the base flow. An intuitive parallel can be drawn with Newton’s iteration: at each step, a
linearized model of the flow response to a perturbation of the input is sought, and a new
linear controller is designed, aiming at further reducing the fluctuations. The method is
illustrated on the well-known case of two-dimensional incompressible open-cavity flow at
Re = 7500, where the fully developed flow is initially quasiperiodic (two-torus state). The
base flow is reached after five iterations. The present work demonstrates that nonlinear
control problems may be solved without resorting to nonlinear reduced-order models.
It also shows that physically relevant linear models can be systematically derived for
nonlinear flows, without resorting to black-box identification from input-output data;
the key ingredient being frequency-domain models based on the linearized Navier–Stokes
equations about the mean flow. Applicability to amplifier flows and turbulent dynamics
has, however, yet to be investigated.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.eps for the full list)

1. Introduction

Despite significant progress over the past decades, taming flow instabilities and tur-
bulence remains an area of fundamental investigation (Kim & Bewley 2007; Brunton
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& Noack 2015; Sipp & Schmid 2016). The potential impact of flow control is however
tremendous: drag reduction, lift increase, mixing enhancement, noise reduction, lean
combustion to name a few industrial applications. Control strategies fall into two broad
categories: active or passive, depending whether energy is expended to drive an actuator
or not. Actuation may be used in an open-loop framework, in order to drive the system
away from its natural state by exciting its nonlinearities. For this strategy to be effective,
a large power input may be required. On the other hand, closing the loop has a direct
impact on the intrinsic dynamics of a linear system, hence the actuation amplitude may
be significantly reduced (Cattafesta III et al. 2008). However, uncertainties in the form of
noise or modelling errors may cause instabilities or performance loss of the closed-loop,
which in turn render the approach ineffective.

1.1. On the relevance of linear methods for closed-loop control of nonlinear flows

In the particular case of fluid flows, modelling issues arise from the dimensionality
of the system and the strong nonlinearity of the governing equations. Dimensionality
reduction is often achieved by projecting the dynamics onto a set of well-chosen modal
structures, and well-established techniques exist to systematically find such bases, e.g.
global modes, proper orthogonal decomposition (POD) modes, balanced modes (BPOD),
dynamic modes (DMD), etc. (Bagheri et al. (2009); Semeraro et al. (2011); Barbagallo
et al. (2009); Rowley & Dawson (2017) for a comprehensive review). Alternatively, if
system identification is used to derive a reduced-order model (ROM) directly from input-
output data (Cattafesta et al. 1999; Kegerise et al. 2002; Illingworth et al. 2011; Hervé
et al. 2012; Dahan et al. 2012; Dalla Longa et al. 2017), the resulting models will typically
be of manageable dimension. Suitable ROMs for closed-loop control may also be obtained
by gradually increasing the spatial discretization from a coarse mesh (Jones et al. 2015).
Nonlinearity, on the other hand, remains a major issue as the standard control tool set

relies extensively on the hypothesis of a linear time-invariant (LTI) plant. Early studies
therefore focussed on the linear dynamics of small perturbations around a base flow, i.e.
a fixed point of the Navier–Stokes equations. Techniques were successfully developed to
suppress intrinsic instabilities or prevent extrinsic noise amplification: oscillator flows
may be controlled by damping their unstable modes using a feedback controller, while
amplifier flows may be controlled by rejecting incoming perturbations using an upstream
sensor (see Sipp & Schmid (2016) for a review). In some cases, the designed controllers
may also be robust to nonlinearities; for instance if the Reynolds number is weakly
supercritical, in the case of an unstable base flow (Flinois & Morgans 2016), or if incoming
perturbations are large, in the case of a stable base flow (Hervé et al. 2012). However,
for strong enough nonlinearity, linearization about the base flow becomes irrelevant and
control fails (Schmid & Sipp 2016).
In the case of self-sustained oscillations, which are of interest in this paper, there

are indeed (at least) two distinct dynamical equilibria: the steady fixed point, and the
unsteady attractor. In the uncontrolled flow, the fixed point is linearly unstable and the
attractor lies at a finite distance from it in phase space. In this situation, the goal of
a controller is not just to locally stabilize the base flow but to ensure that any initial
condition on the attractor is within the basin of attraction of the base flow. If the attractor
is not too far away from the base flow, then a robust LTI controller based on some mean
LTI model may suffice (Li & Morgans 2016). But again, for strong enough nonlinearity,
modelling the plant as a single LTI operator may be too crude an approximation, and
even robust control methods based on it may fail.
Significant efforts were therefore directed towards nonlinear reduced-order modelling.

Physics-based nonlinear ROMs usually rely on Galerkin projection of the full Navier–
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Stokes equations (as opposed to the linearized version around the fixed point), most often
using POD modes. However, such models typically require fine tuning and calibration
because of instabilities stemming from the structure of the expansion and its truncation
(Noack et al. 2011). While designing nonlinear ROMs is a challenge of fundamental
interest by itself, it is however not immediately clear that their enhanced fidelity can
be made profitable for closed-loop control applications. Indeed, optimal control based
on such ROMs represent an enormous computational load (Bergmann et al. 2005) for
realistic application in experiments. Besides, adjoint-looping only yields a specific control
command optimized over a given time horizon for a given initial condition of the system.
An alternative to nonlinear Galerkin models is nonlinear identification from input-

output data (2nd order Volterra and bilinear filters, Pillarisetti & Cattafesta III (2001);
NARX, Dandois et al. (2013); NARMAX, Semeraro et al. (2017), cluster-based ROM,
Kaiser et al. (2014); SINDy, Loiseau & Brunton (2018), etc.) but the resulting models
are usually not used for feedback control. Artificial neural networks have been trained to
learn complex input-output relations (Lee et al. 1997; Efe et al. 2005), but a controller
design simply based on inversion of the neural net does not bring any improvement
compared to existing LTI controllers. Another novel approach to tackle nonlinearity is
machine-learning control (Duriez et al. 2014; Gautier et al. 2015): a model-free approach
which seeks a nonlinear control law through trial-and-error. Although promising, the
approach is not amenable to physical analysis and interpretation, which may hinder
further improvements in case of failure.
Systematic methods for deriving nonlinear control laws, i.e. relations from outputs to

inputs applicable at any time, although more useful, are in fact rarely implemented in
practice. It has only been done so far with analytically-tractable ‘mean-field’ ROMs of
order 4 at most, for flows dominated by at most two frequencies, i.e. a single one for the
unforced flow plus one for the actuator (King et al. 2005; Luchtenburg et al. 2010; Aleksić
et al. 2010; Aleksić-Roeßner et al. 2014). Furthermore, although superior in some cases
(Aleksić-Roeßner et al. 2014), nonlinear controllers do not systematically show obvious
improvements compared to their linear counterparts. More complex nonlinear ROMs are
in fact generally linearized about their fixed point, in order to design traditional LTI
controllers (Samimy et al. 2007; Nagarajan et al. 2013). While this procedure removes
a lot of information from the initial model, the physical meaning of the fixed-point is
unclear, as it is not directly related to either the mean flow nor the base flow of the true
system.
Finally, passivity-based methods are suited to finite-amplitude perturbations of the

base flow and, therefore, hold great promise for the problem of nonlinear flow control
(Sharma 2009; Sharma et al. 2011; Heins et al. 2016). The key idea is to see the fluid
flow as a Lur’e system (Khalil 2002), i.e. the nonlinearity of the governing equations is
a feedback forcing to the linearised dynamics about the base flow (more details will be
given in §2.1 and 2.2). Since nonlinearity in the Navier–Stokes equations arises from con-
servative processes, it cannot contribute to the energy growth of external perturbations;
i.e. it is passive. Therefore, one is only concerned with energy growth arising from the
linear processes. Methods are available to design LTI controllers preventing linear energy
growth altogether (Sharma et al. 2011) or, if impossible, at least minimising it (Heins
et al. 2016), but these methods have only been applied to linearly stable flows so far.
This brief overview of available nonlinear flow control methods explains why, to date,

the vast majority of successful studies rely on LTI models and controllers, even though
the underlying plant is nonlinear.

1.2. A physics-based linear framework relevant to nonlinear flows:



4 C. Leclercq, F. Demourant, C. Poussot-Vassal and D. Sipp

mean-flow perturbation analysis

In the following, we distinguish the base flow, defined as a fixed-point of the Navier–
Stokes equations, and the mean flow, which is the temporal average of a fully-developped
flow.

1.2.1. Modal analysis

Since Hammond & Redekopp (1997), many authors have considered mean-flow stability
analysis as a means to retrieve both the nonlinear oscillation frequency of globally
unstable base flows and the coherent structure oscillating at that fundamental frequency.
Most studies were concerned with wake flows (Hammond & Redekopp 1997; Pier 2002;
Barkley 2006; Sipp & Lebedev 2007; Mittal 2007; Leontini et al. 2010; Meliga et al.
2012; Camarri et al. 2013; Mettot et al. 2014b; Mantič-Lugo & Gallaire 2016; Carini
et al. 2017), where mean-flow distortion leads to a significant reduction of the length
of the recirculation region behind the solid body, compared to the base flow. Other
configurations have been considered as well, among which open-cavity flow (Sipp &
Lebedev 2007; Meliga 2017), gas turbine fuel injectors (Juniper 2012) and thermosolutal
convection (Turton et al. 2015). We note that in resonant flows, coherent structures are
rigorously described by Koopman modes, and the oscillation frequencies correspond to
Koopman eigenfrequencies (Arbabi & Mezić 2017).

1.2.2. Resolvent analysis

For globally stable flows, the temporal instability framework does not properly account
for the noise amplifier dynamics. In parallel flows, spatial stability analysis may be
used to predict the response to localized harmonic forcing. In non-parallel flows, the
resolvent operator may be used instead, to predict the linear response of the flow to any
spatially-distributed forcing. Connections between local and global analyses obviously
exist for weakly non-parallel flows. Global spatial modes obtained from solving parabo-
lized stability equations may approximate optimal response modes obtained by singular
value decomposition (SVD) of the resolvent operator (Beneddine et al. 2016). But the
resolvent operator is more than a mere extension of spatial stability analysis to the global
framework. It fully describes the input-output behaviour of the flow. In particular, SVD
of the resolvent operator not only yields a set of optimal response modes approximated
by spatial instability modes, it also provides the associated set of optimal forcing modes
and optimal gains giving insight into the receptivity mechanisms at play in the flow.
When high-amplitude noise excites the nonlinearities in amplifier flows, coherent

motions seem to extract energy from the mean flow, rather than the base flow (Butler
& Farrell 1993; Chomaz 2005; Del Álamo & Jimenez 2006; Cossu et al. 2009; Pujals
et al. 2009). And just like mean-flow temporal modes capture the dominant coherent
structures of resonator flows, mean-flow spatial modes or optimal response modes (often
called resolvent modes) seem to capture the dominant coherent structures of amplifier
flows. In that context, the coherent structures may be rigorously defined as spectral POD
modes (Gudmundsson & Colonius 2011; Beneddine et al. 2016; Towne et al. 2018), i.e.
the set of orthogonal modes optimally correlated in both space and time (Towne et al.
2018).
Resolvent analysis has been extensively used for investigating noise sources in turbulent

jets (Garnaud et al. 2013; Jeun et al. 2016; Semeraro et al. 2016; Schmidt et al. 2017;
Tissot et al. 2017). The method, initially introduced in the context of pipe flow (McKeon
& Sharma 2010; Sharma & McKeon 2013; Luhar et al. 2014), has also been applied to
channel flow (Moarref et al. 2014; Luhar et al. 2015; Nakashima et al. 2017), backward-
facing step flow (Beneddine et al. 2016) and shock-wave boundary-layer over a bump
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(Sartor et al. 2015a) among other flows. Resolvent analysis of convectively unstable
flows has also been used in order to identify the physical mechanisms underlying existing
passive and open-loop control strategies for drag reduction. Jacobi & McKeon (2011)
and McKeon et al. (2013) considered the effect of dynamic roughness actuation on a
zero-pressure gradient turbulent boundary layer in the resolvent framework. Luhar et al.
(2014) considered the case of opposition control in pipe flow while Luhar et al. (2015) and
Nakashima et al. (2017) respectively studied the effect of compliant walls and suboptimal
control by blowing and suction in channel flow.

Interestingly, the resolvent operator about the mean flow also appears to be relevant
to globally unstable flows. Resolvent analysis has been applied to lid-driven cavity flow
(Gómez et al. 2016), open-cavity flow (Liu et al. 2018), the buffeting transonic flow over
an airfoil (Sartor et al. 2015b) (although in that case the perturbed flow is the fixed-
point of a RANS model, not the time-average of an unsteady RANS simulation) or the
flow past a square cylinder (Gómez & Blackburn 2017). In the latter paper, the authors
analyzed the structure of the optimal forcing modes in order to design passive control
devices able to optimally disrupt the self-sustaining process of wake oscillation. More
recently, Liu et al. (2018) also used resolvent analysis to guide the design of an open-loop
control strategy in open cavity flow. In essence, the resolvent operator about the mean
flow seems to characterize the input-output behaviour of many fully-developped flows,
regarless of their amplifier or resonator character. But despite compelling evidence of
the relevance of this operator to control problems, this tool does not seem to have been
included in the framework of closed-loop control yet (McKeon et al. 2013).

1.3. Using the resolvent operator to control open-cavity flow in a closed-loop framework

In the present paper, we propose to control the fully-developed flow over a globally
unstable open cavity, using the resolvent operator about the mean flow and a feedback-
loop setup (see figure 1 and §3.1-§3.2 for a comprehensive description of the model). The
configuration under study has a unique fixed point, the base flow, which is unstable at
the operating Reynolds number of Re = 7500. As we shall see in this paper, the system
naturally evolves towards a quasiperiodic regime with two fundamental incommensurate
frequencies (2-torus). Our aim is to bring the system back to the base flow, using sole
knowledge of the mean flow, a single probe, a single actuator and linear methods only.
The resolvent operator about the mean flow will be used to model the transfer function
of the fully-developed flow, while modal analysis will be used to interpret the results
and guide the design of a robust linear controller, in the framework of structured H∞

synthesis (Apkarian & Noll 2006). As the controlled flow latches onto a new dynamical
equilibrium, which is not the expected base flow, we will iterate the method on the new
mean flow, and so on with subsequent mean states, until convergence. The choice of
open-cavity flow is motivated by its frequent occurrence in the literature, as a convenient
test-bed for validating new ideas; the cavity flow model used in this paper, in particular,
has been used in many past studies (Rowley et al. 2006; Sipp & Lebedev 2007; Barbagallo
et al. 2009, 2011; Dergham et al. 2011; Illingworth et al. 2012; Poussot-Vassal & Sipp
2015; Schmid & Sipp 2016; Sipp & Schmid 2016). Open-cavity flow also has many pratical
applications, in particular in the aerospace field: weapon bays, wheel wells and fuselage
openings for telescopes and sensors, etc. (Rowley & Williams 2006; Cattafesta III et al.
2008).

The plan of the paper is as follows. In section §2, we introduce the theoretical framework
for our iterative control strategy. In section §3, we present the cavity flow setup and
describe the uncontrolled dynamics. The design methodology for the first controller is
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Figure 1. Numerical model of open cavity flow, with upstream (volume force) actuator B (in
yellow) and downstream (shear-stress) sensor (C, Y ) (in blue). The shear-layer instability and
cavity recirculation are symbolized with red lines. There are three x2-velocity probes in the shear
layer at x2 = 0 and respectively x1 = 1/4, 1/2, 3/4. Grey thick lines indicate no-slip boundary
conditions.

then explained in §4. The controlled flow is analyzed in §5 and a short discussion section
follows in §6. Finally, the main results are recalled in the conclusion section §7.

2. Theoretical framework

In this section, we cast the governing laws of motion in an input-output form convenient
for feedback control. We then introduce a novel iterative method for stabilizing linearly
unstable flows with a sequence of linear models and controllers. The methodology for
designing robust controllers is explained later in §4.

2.1. The Navier–Stokes equations as a Lur’e system

We start by considering the nondimensional, incompressible, Navier–Stokes equations
governing the velocity and pressure fields u and p

∂tu+ (u · ∇)u = −∇p+Re−1∇2u, ∇ · u = 0, (2.1)

without external forcing. The Reynolds number Re := UL/ν is based on characteristic
velocity and length scales U and L of the problem, and on the kinematic viscosity ν of the
fluid. Equations (2.1) are, of course, supplemented by appropriate boundary conditions
and an initial condition. Next, we decompose the unknown field q := (u, p)T (T denoting
the conjugate transpose) into an arbitrary steady incompressible reference field Q :=
(U, P )T satisfying the boundary conditions and a perturbation q′ := (u′, p′)T with zero
boundary conditions, such that q = Q + q′. The unsteady perturbation q′ is governed
by the following time-evolution equation

B∂tq
′ = [AQ + ΨQ]q′ (2.2)

where

Bq′ :=

(
∂tu

′

0

)
, (2.3)

AQq′ :=

(
−(U · ∇)u′ − (u′ · ∇)U+Re−1∇2u′ −∇p′

∇ · u′

)
, (2.4)

ΨQq′ :=

(
−(U · ∇)U−∇P +Re−1∇2U− (u′ · ∇)u′

0

)
. (2.5)

The Jacobian AQ and the operator ΨQ respectively account for the linear and nonlinear
parts of the evolution operator associated with the flow. Since Q is assumed to be time-
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ψQ

q′

t=0 q′RQ(s)+B

Figure 2. The Navier–Stokes equations as a Lur’e system.

independent, the dynamical system is autonomous ; AQ is a linear time-invariant (LTI)
operator and ΨQ is a static nonlinearity. Taking the Laplace transform of (2.2) leads to
the relation

q′(s) = RQ(s)[ΨQq′(s) + Bq′
t=0], (2.6)

where s is the Laplace variable, q′
t=0 is the initial condition on the perturbation and

RQ(s) := (sB −AQ)−1 (2.7)

is called the resolvent operator about the reference field Q. Such interconnection of an
LTI operator RQ with a static nonlinearity ΨQ, illustrated in figure 2, is called a Lur’e
system in nonlinear control theory (Khalil 2002; Sharma 2009; McKeon & Sharma 2010).
The resolvent operator is defined for any s which is not an eigenvalue of the Jacobian
operator, i.e. a solution of

(sB −AQ)q′ = 0 (2.8)

with non-zero q′. Interestingly, the output q′ remains bounded even if AQ has unstable
eigenvalues, thanks to the presence of the nonlinear feedback operator. Moreover, we
stress that the resolvent operator itself is well-defined along the imaginary axis as long
as AQ has no marginally unstable eigenvalues. The choice of the arbitrary reference field
Q is discussed in the next paragraph.

2.2. Open-loop and closed-loop transfer functions of fully-developped flows

In panels (a) and (c) of figure 3, we now consider the effect of external forcing due to
an actuator and modelled by a time-independent spatial field B multiplied by a time-
varying scalar amplitude n switched on at t = 0. We also introduce a sensor characterized
by the time-independent pair (C, Y ) providing the local measurement

y(t) := 〈C,q′(t)〉+ Y, (2.9)

where

〈q1,q2〉 :=

∫

D

q∗
1 · q2 dD (2.10)

defines an inner product over the domain D and ∗ denotes complex conjugation. The
output y is linear with respect to the fluctuation q′ and the constant Y represents
an arbitrary offset. Panel (a) represents the case of open-loop forcing, while panel (c)
represents a feedback-loop configuration with a total actuation amplitude u+ n, where

u := Ky (2.11)

is due to an LTI controller of transfer function K(s). With external forcing, the output
q′ is respectively given by

q′ = RQ[ΨQq′ + Bq′
t=0 +Bn] (2.12)
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ψQ

q′
RQ(s)+n B +

K(s)
u

+

ψQ

q′

t=0

q′
RQ(s)+n B +

(b)

(c)

(a)

w

+n

w

y+n

K(s)

+

(d)

GQ(s)

GQ(s)

B

q′

t=0

B

y〈C, ·〉

1/s

+

Y

y〈C, ·〉

1/s

+

Y

sensor

sensor

Figure 3. Block diagram of the forced Navier–Stokes equations in the (a) open-loop case and
the (c) closed-loop case. Equivalent representation with an open-loop transfer function GQ from
n to y and an output disturbance w in (b) the open-loop and (d) the closed-loop.

in the open-loop case, and

q′ = (I −RQBK〈C, ·〉)−1RQ

[
ΨQq′ + Bq′

t=0 +Bn+BK
Y

s

]
(2.13)

in the closed-loop case. The latter expression can be rewritten as

q′ = RK
Q

[
ΨQq′ + Bq′

t=0 +Bn+BK
Y

s

]
, (2.14)

where

RK
Q(s) := (sB −AK

Q(s))−1 (2.15)

is the resolvent operator associated with the Jacobian operator

AK
Q(s) := AQ +K(s)B〈C, .〉. (2.16)

of the coupled-system fluid/controller. Because of the nonlinear feedback term, the
concept of a transfer function from n to q′ is ill-defined. However, using the resolvent
operators introduced above and lumping all the terms independent of n in an output
disturbance term w, we can recast the governing equations (2.12) and (2.14) in a form
that resemble input-output relations:

q′ = RQBn+w and q′ = RK
QBn+w (2.17)

in the open-loop and closed-loop cases respectively. Similar to the unforced case, the
output q′ is bounded despite the potential presence of unstable eigenvalues in AQ or
AK

Q , thanks to the nonlinear feedback term (included in w) ensuring saturation.
An important point to note at this point is that the definition of the Lur’e system

associated with the flow depends on the arbitrary choice of a steady reference field Q.
The passivity theorem states that if the two interconnected blocksRK

Q and ΨQ are passive,
i.e. can only store or dissipate energy, then the fixed-point of the closed-loop is stable
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with respect to perturbations of any amplitude. For Q = qb, the static nonlinearity

Ψqb
q′ =

(
−(u′ · ∇)u′

0

)
(2.18)

happens to be conservative, hence passive. Therefore, a possible strategy to reach the base
flow from the regime of fully-developped oscillations consists in designing an LTI feedback
controller making the closed-loop linear dynamics about the base flow passive. That
means designing a controller K suppressing both modal growth and transient growth
arising from the non-normality of the Jacobian operator Aqb

. This strategy has been
pursued in recent works by Sharma et al. (2011) and Heins et al. (2016), for globally stable
flows (i.e. no modal growth). However, as discussed in the introduction, the resolvent
operator about the mean flow appears to be a better choice for describing the behaviour
of unforced flows in the fully-developped regime. McKeon & Sharma (2010) therefore
proposed to consider the mean flow q as an appropriate alternative choice of reference
field Q in (2.6), in order to define the unforced Navier–Stokes as a Lur’e system. In that
case, the nonlinear output

Ψqq
′ =

(
(u′ · ∇)u′ − (u′ · ∇)u′

0

)
(2.19)

was interpreted as an endogenous forcing term. We decide to follow the same approach
here and also choose

Q := q (2.20)

to model the flow receptivity to the exogenous forcing field B.
In the case of unforced flows, the mean flow is unambiguously defined as the temporal

average of q in the fully-developped regime. The case of externally forced flow is not as
straightforward, as starting the forcing at t = 0 (either u or n) triggers nonlinear effects
which lead to a change in the flow dynamics. Instead of one, we have two relevant mean
flows: a) that associated with the initial attractor characterizing the unforced system at
t = 0, and b) that characterizing the final attractor of the forced system as t → ∞.
During the transient, the mean flow is not defined. If we want to extend the framework
of McKeon & Sharma (2010) to externally forced flows, we therefore need to be very
careful about choosing the appropriate reference mean flow. Using the resolvent operator
about the mean flow, we can only derive input-output models relevant at the initial and
final times. In the open-loop case, we simply have

y = Gqn+ w, (2.21)

where

Gq(s) := 〈C,Rq(s)B〉 (2.22)

models the transfer function from n to y and w collects the various remaining terms
in the form of an ‘output disturbance’. This simple relation is represented by the block
diagram in figure 3(b). In the closed-loop case, the transfer function model becomes

GK
q (s) := 〈C,RK

q (s)B〉 (2.23)

and depends on both q and the controller K. This pseudo-transfer function can also be
computed from the expression

GK
q =

Gq

1−GqK
, (2.24)

which corresponds to the linear plant Gq in feedback loop with the controller K, as can
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be seen in figure 3(d). The reference field q either characterizes the mean flow of the
initial attractor or the final attractor. The discrete evolution of the reference mean flow,
and therefore of the input-output model of the system as we add control action, may be
used to design an iterative control strategy as explained below.

2.3. Iterative control strategy

In this section, we introduce an iterative control strategy to reach the base flow from
the permanent regime of oscillation of an uncontrolled resonating flow. Assume we know
how to design a first controller K1 able to decrease the amplitude of oscillation of the
unforced flow, but unable to completely stabilize it, can we design a controller correction
K ′

2 such that the total controller K2 := K1+K ′
2 is able to damp the oscillations further?

In general, from a sequence of m successive controller corrections

Km :=

{
0, if m = 0,

K ′
1 +K ′

2 + · · ·+K ′
m, if m > 0,

(2.25)

leading to a permanent oscillatory regime, how can we design the next controller correc-
tion K ′

m+1 such that Km+1 = Km +K ′
m+1 leads to even smaller oscillation amplitude?

The key idea is to consider an input-output model based on the mean flow qm obtained
in the presence of the controller Km. Indeed, as shown in the previous section, the
response of the coupled system to a perturbation n of the forcing signal is given by the
resolvent operatorRKm

qm
, involving both qm and Km. The corresponding transfer function

from n to y is then given by GKm

qm
. To simplify notations, we denote from now on

Gj
i := G

Kj

qi
. (2.26)

At each step m+ 1, the plant to control is therefore denoted Gm
m. The goal is to design

a controller correction K ′
m+1 such that the target plant

Gm+1
m =

Gm
m

1−Gm
mK ′

m+1

(2.27)

has some desired properties, leading to smaller oscillations of the output y. When the
additional controller K ′

m+1 is added in feedback loop, the flow transiently evolves until
a new dynamical equilibrium is reached, characterized by a new mean state qm+1. Since
the effective controller is now Km+1 = Km + K ′

m+1, the transfer function of the new

plant is Gm+1
m+1. The iteration then proceeds until convergence, i.e. until some fixed point

is hopefully reached.
The momentum equation with feedback reads

∂tu+ (u · ∇)u = −∇p+Re−1∇2u+Bu

∫ t

0

κm(τ)y(t− τ) dτ, (2.28)

where Bu is the component of B forcing the momentum equation and κm is the impulse
response of the controller Km. If a fixed-point q∞ := (u∞, p∞) is reached in the limit
t → ∞, then it must satisfy

(u∞ · ∇)u∞ = −∇p∞ +Re−1∇2u∞ +BuKm(0)(〈C,q∞ −Q〉+ Y ). (2.29)

In order to reach the base flow, i.e. q∞ = qb, we must ensure that qb is a solution of
(2.29), and that it is the only one. This is the case if the controller has zero static gain
Km(0) = 0, and we therefore choose to impose

K ′
j(0) = 0 (2.30)
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Figure 4. Evolution of the block diagram representation of the system during the iterative
procedure: (a) t = t+1 , K

′

1 has juste been added so the flow alone is still characterized by the
plant G0

0; (b) t = t−2 the feedback loop between the fluid and the controller K1 := K′

1 has
converged to a new mean state; (c) t = t+2 , K

′

2 has juste been added so the flow alone is still
characterized by the plant G0

1; (d) t = t−2 the feedback loop between the fluid and the controller
K2 := K′

1 +K′

2 has converged to a new mean state.

at every step j. In the special case where the sensor measures a deviation with respect
to the base flow by satisfying

Y = 〈C,Q− qb〉, (2.31)

then qb remains a fixed-point of (2.29) even if Km(0) 6= 0, but there may be alternative
fixed points q∞ as well. It is therefore crucial to ‘disconnect’ the controller in the steady
regime by imposing (2.30); then qb is for sure the only fixed point for any choice of sensor
(C, Y ).
Although the iterative method bears resemblance with the gain scheduling approach

of Khalil (2002) and Högberg et al. (2003), there are fundamental differences which are
emphasized later in the discussion, see section §6.2. We stress again that the concept
of a transfer function from n to y is ill-defined in the context of nonlinear flows. Our
method relies on the assumption that the system responds to external forcing in a LTI
fashion when it is close to a state of dynamical equilibrium. The quantity that we will call
‘transfer function’, and that we will denote G in general, is therefore only defined in two
limit cases: either a) the system is in a dynamical equilibrium characterized by qm and
Km, or b) the system is out of equilibrium because a controller correction K ′

m+1 has just
been added, but the flow has not yet evolved so the mean flow qm remains relevant over
some period of time. Denoting tm+1 the instant when the controller correction K ′

m+1

is added, we have G = Gm
m at t = t−m+1 and G = Gm+1

m at t = t+m+1. And then we



12 C. Leclercq, F. Demourant, C. Poussot-Vassal and D. Sipp

reach G = Gm+1
m+1 at t = t−m+2. But between the two instants tm+1 and tm+2, the transfer

function model G cannot be defined as there is no mean state relevant to the transiently
evolving flow.
Finally, according to equations (2.24) and (2.25), each transfer function Gj

i can be seen
as the interconnection

Gj
i =

G0
i

1−G0
i (K

′
1 + · · ·+K ′

j)
(2.32)

between the plant G0
i characterizing the mean flow alone (even though it cannot be

sustained without controllers for i 6= 0), and the controller corrections K ′
1 to K ′

j plugged

in parallel. The block diagrams at times t = t+1 , t
±

2 and t−3 are shown in figure 4.

2.4. Relation between poles of the transfer operators Gj
i and instability modes

In the present context, modal analysis of the Jacobian operator Aj
i is used to find the

pole singularities of the resolvent operator Rj
i (with obvious notations), and therefore

of the transfer function Gj
i . We are concerned with the solutions of the generalized

eigenvalue problem

(slB −Aj
i (sl))q

′
l = 0, (2.33)

with complex eigenvalues sl = iωl+σl of growth rate σl, frequency ωl and eigenmodes q′
l

(the method used to obtain approximate solutions of (2.33) will be explained in §4.1). In
our case, resonant frequencies will be associated with specific eigenmodes of the mean-flow
qi, coupled with controller Kj. These modes cannot be directly interpreted as instability
modes if the mean flow is different from the base flow. However, the Jacobian operator
Aj

i may be seen as a perturbation of operator A0
i with a correction term proportional to

Kj according to equation (2.16), i.e.

Aj
i = A0

i +KjB〈C, ·〉. (2.34)

A continuous connection can therefore be established between the eigenvalues of the
two operators. The Jacobian operator A0

i may in turn be seen as a perturbation of the
Jacobian operator about the base flow A0

qb
, with a correction term due to mean flow

distortion ∆qi, where

∆q := q− qb. (2.35)

Therefore, all instability modes of the base flow may be unambiguously identified with
some poles of Gj

i , thereby providing the latter with a physical meaning. This key
advantage of our resolvent-based model will be illustrated in §3.5.

3. Unforced flow

3.1. Numerical model and methods

The control strategy is implemented on a well-known open-cavity flow configuration,
which was considered in a series of past papers (Barbagallo et al. 2009, 2011; Dergham
et al. 2011; Poussot-Vassal & Sipp 2015; Schmid & Sipp 2016; Sipp & Schmid 2016)
following Sipp & Lebedev (2007). The reader is referred to this initial paper for a
comprehensive description of the numerical setup. The cavity of length L = 1 and
depth D has an aspect ratio L/D = 1, as shown in figure 1. In the cartesian coordinate
system (x1, x2), the velocity components are denoted u = (u1, u2). With the upstream
edge of the cavity defining the origin (0, 0) and the incoming flow aligned with the
x1-direction, the upstream boundary layer starts forming at x1 = −0.4 by switching
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the lower-wall boundary condition from stress-free ∂2u1 = 0 to no-slip u1 = 0 (in
both cases, the walls are impermeable, i.e. u2 = 0). The inlet velocity (U = 1, 0) at
x1 = −1.2 is uniform and a standard outflow condition is prescribed at the outlet,
which is located at x1 = 2.5. A stress-free boundary condition is implemented on the
upper wall at x2 = 0.5 and at the downstream-end of the lower wall, from x1 = 1.75 to
x1 = 2.5. The two-dimensional incompressible Navier–Stokes equations are solved using
the freely available finite-element software FreeFem++ (www.freefem.org). The primitive
variables (u1, u2, p) are discretized on a mesh of ∼ 200, 000 (P1b, P1b, P1) Taylor–Hood
elements, yielding a total of ∼ 700, 000 degrees of freedom. The time-stepping code, which
was made available online (https://github.com/denissipp/AMR Sipp Schmid 2016) as
complementary material to the review article by Sipp & Schmid (2016), is semi-implicit,
with the nonlinear terms extrapolated with a second order Adams–Bashforth scheme.

We consider the nonlinear dynamics of the linearly unstable flow at a Reynolds number
of Re = 7500. The dynamical equilibrium that we consider for our control problem is
obtained by initializing the simulation with the base flow qb – which was computed
using Newton’s iteration (Sipp & Schmid 2016) – plus a small contribution from the
most unstable linear mode. After a long transient, characterized in §3.3, the flow reaches
a quasiperiodic attractor, characterized in §3.4.

Modal analyses were carried out using the ARPACK implementation of Arnoldi’s
method (Lehoucq et al. 1997), coupled with the multifrontal sparse LU solver MUMPS
(Amestoy et al. 2001, 2006). The shift-invert mode was used to find eigenvalues of the
Jacobian operator in the vicinity of a given shift.

3.2. Actuator and flow measurements

The upstream-edge actuator is modelled by a Gaussian-shaped volume force term

B =

[
0, η exp

(
−
(x1 − x0

1)
2 + (x2 − x0

2)
2

2σ2

)
, 0

]T
, (3.1)

centered around (x0
1, x

0
2) = (−0.1, 0.02), with a scalar η such that 〈B,B〉 = 1. With the

choice of spatial variance σ = 0.0849, the volume force reaches 50% of its maximum value
at a radial distance of ≈ 0.1 from (x0

1, x
0
2), and 1% at ≈ 0.26.

In order to characterize the strength of the nonlinearity, we define different measures
of the distance between the instantaneous field q and the base flow qb, based on the
perturbation field ∆q. The downstream-edge sensor is modelled by a pair (C, Y ) such
that

y =

∫ 1.1

x1=1

∂2∆u1|x2=0 dx1 (3.2)

measures the perturbation wall friction at the downstream edge of the cavity. Note that
this sensor satisfies (2.31), hence the base flow is a fixed-point of the closed-loop system,
even if the controller has non-zero static gain. However, as discussed in §2.3, we will still
need to impose K ′

j(0) = 0 at every iteration, in order to guarantee that there are no
alternative fixed points.

In order to build phase portraits, we also consider three x2-perturbation velocity probes
located within the shear layer at x2 = 0 and x1 = 1/4, 1/2, 3/4. Finally, to characterize
the system globally, we consider the perturbation kinetic energy

E :=
〈∆q,B∆q〉

〈qb,Bqb〉
. (3.3)
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Figure 5. Timeseries of (a, b, c) perturbation kinetic energy E and (d, e, f) shear-stress
measurement y of the unforced flow, with sliding mean shown as a black dotted line. Zooms on
the initial and final stages are shown in insets.

3.3. Transient dynamics

Figure 5 shows timeseries of the global and local measures E and y of the uncontrolled
flow. We recall that the simulation is initialized with the base flow + a small perturbation
parallel to the most unstable base flow eigenmode. There is a short initial phase of
linear growth associated with that mode (see inset (a)), before saturating effects of
nonlinearity become active. This phase lasts a few convective time units, after which
the flow undergoes a long transient evolution of a few hundred time units before a
dynamical equilibrium is eventually reached, that we call state 0. This state appears
to contain multiple frequencies, as can be seen in insets (b) and (e). Mean flow distortion
is caused by nonlinear interactions between these finite-amplitude oscillatory modes.
The deviation is significant since the mean value of y is comparable with its oscillation
amplitude, confirming strong nonlinearity. The mean perturbation energy E is of the
order of 2% (see figure 5(c)), which corresponds to perturbation velocities of the order
of 0.1.

3.4. Attractor

The resulting mean flow is shown in figure 6(a), together with the base flow in (b),
for comparison. We display streamfunction contours on top of filled contours of the
total velocity norm. The growth of a boundary layer at the lower wall is apparent from
x1 = −0.4. This boundary layer becomes a shear layer on top of the cavity, which
thickens as it is convected towards the downstream edge. The flow recirculates at low
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Figure 6. Comparison between (a, c) state 0 and (b, d) the base flow. (a, b) Velocity 2-norm of
(a) uncontrolled mean flow u0 (computed by averaging over 200 time units, after the transient)
and (b) base flow ub, with associated contours of the streamfunction ψ. The streamfunction is
defined by the relations ∂2ψ = v1, ∂1ψ = −v2 and ψ = 0 on the lower wall (solid contours for
positive increments δψ = 0.05 from ψ = 0; dashed contours for negative increments δψ = −0.01
from ψ = 0). (c, d) Vorticity fields: (c) snapshot at a time of maximum shear-stress y at the
downstream sensor and (d) base flow.

speeds within the cavity, as the incoming flow impacts the downstream wall of the cavity.
We note two main differences between mean and base flows: (a) the spreading of the shear
layer is more pronounced for the mean flow, (b) from inspection of the streamlines, the
recirculating flow rate is also stronger in that case. The enhanced flow rate is caused by
stronger entrainment due to the unsteady shear layer.
Figure 6(c) shows a vorticity snapshot of state 0 yielding maximal instantaneous shear-

stress y, compared to the steady vorticity field of the base flow in panel (d). We notice the
spatial development of the Kelvin–Helmholtz instability on top of the shear layer, which is
responsible for its enhanced spreading in figure 6(a). The maximum shear stress is caused
by the impact of a vortical structure at the downstream corner of the cavity. Another
vorticity sheet of opposite sign is visible within the cavity, and marks the border of the
recirculating zone. The vorticity levels within that sheet are higher in state 0 than in the
base flow, which is consistent with the stronger recirculation in the former case. Finally,
the average distance between the mean flow and any instantaneous snapshot measured
as 〈q′,q′〉/〈q0,q0〉 ≈ 1.1 × 10−3 is very low, so the mean flow can be considered as a
good approximation of the full flow at any instant.
The dynamical state may be further characterized in the frequency domain by consider-

ing the spectrum of Koopman modes. For fully-developped flows, these can be computed
using harmonic averages

q̂′(ω) := lim
T→∞

1

T

∫ T

0

q′(t)e−iωt dt (3.4)

(Arbabi & Mezić 2017). The limit is non-zero for Koopman eigenfrequencies only, and
yields the associated Koopman modes of the observable q′. In practice, the spectrum of
amplitude of the Koopman modes may be approximated using DFT on a finite timeseries
of perturbation fields. The discrete set of peaks in the DFT spectrum of y correspond
to Koopman eigenfrequencies, visible in figure 7(a). There is no continuous spectrum in
the signal and the non-zero values between the peaks correspond to noise arising from
the estimation by DFT. The precise nature of the attractor is made clear by embedding
the dynamics in a 3-dimensional phase space, using the three x2-velocity probes in the
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Figure 7. Characterization of the attractor without actuation: (a) spectrum of amplitude of
the Koopman modes of y, estimated using DFT over a finite timeseries of 300 time units (no
windowing), with frequency resolution ∆ω ≈ 2×10−2; (b) phase portrait using three x2-velocity
probes in the shear-layer at x2 = 0 and x1 = 1/4, 1/2, 3/4 (see figure 1); (c) Poincaré section of
(b) for u2(1/2, 0) = 0 (crossing from below); the section plane is also indicated in (b). The three
plots indicate quasiperiodic behaviour with two incommensurate frequencies (2-torus) ωl ≈ 2.89
and ωh ≈ 11.74.

shear layer. The resulting attractor has a toroidal topology, as can be seen in figure
7(b). Slicing the attractor when trajectories cross the plane ∆u2(1/2, 0) = 0 from below
yields a Poincaré map in the [∆u2(1/4, 0), ∆u2(3/4, 0)]-plane, shown in figure 7(c). The
resulting closed curve confirms the nature of the attractor as a 2-torus: a quasiperiodic
regime with 2 incommensurate ‘fundamental’ frequencies that we denote ωl and ωh for
low-frequency and high-frequency respectively. The discrete set of peaks in the spectrum
is generated by all the nonlinear interactions between these two modes:

{ωk} := {klωl + khωh | k := (kl, kh) ∈ Z
2} (3.5)

Note that the choice of the ‘fundamental’ frequencies is somewhat arbitrary, as any pair of
incommensurate frequencies is appropriate to define the quasiperiodic frequency set (3.5).
However, the choice can be physically motivated by selecting two frequencies associated
with natural time scales occurring in the flow, as explained below.
Recall that the base flow was initially perturbed with a ‘drop’ of the leading eigenmode,

i.e. that of largest temporal growth rate. This shear-layer mode initially has a natural
frequency of ω = 10.9 (Barbagallo et al. 2009), as can be verified from the spectrogram in
figure 8 (the part of the figure for t > t1 will be discussed later in §5.2). As the instability
develops, the frequency shifts to higher values, reaching a value of 11.74 when the flow
is fully developed. We use this value to define a high-frequency scale ωh associated with
shear-layer oscillations. During the transient, we also observe the development of a low-
frequency peak at ωl ≈ 2.89. The flow structures associated with ωl and ωh are shown
in figure 9(a, b). Panel (b) confirms that the Koopman mode at ωh is associated with a
shear-layer mode. On the other hand, the low-frequency mode in panel (a) is localized
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Figure 9. Comparison between real part of streamwise velocity component of Koopman modes
at (a) ω = ωl, (b) ω = ωh and eigenmodes (c) b, (d) α of the uncontrolled mean flow. Koopman
modes q̂′ were approximated using DFT on a timeseries of 4013 snapshots equally sampled over
a total duration of 128.416 time units. The complex amplitude of the mean flow eigenmodes was
tuned to minize the L2-error with respect to the Koopman modes. The colormap spans from the
minimum to the maximum value in each plot, so bounds can be compared between Koopman
modes and eigenmodes.

within the cavity. The frequency is low because the recirculating mean flow within the
cavity is slow. The two ‘fundamental’ frequencies ωh and ωl give rise to harmonics and
interaction peaks visible in the spectrogram and the spectrum of state 0 in figure 7(a).

3.5. Modal analysis

We illustrate in figure 10 the key property of our resolvent-based model explained in
§2.4, i.e. that eigenvalues of the mean flow q0 correspond to poles of the transfer function
G0

0, which can be related to instability modes of the base flow qb. On the top panels, we
plot the gain of the frequency response associated with the unforced mean flow G0

0(iω)
(panel (a)) and base flow Gb(iω) (panel (b)), the latter being defined as

Gb := 〈C,Rqb
B〉. (3.6)
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Figure 10. Frequency responses (a) G0
0 and (b) Gb of the mean and base flows, and

corresponding sets of poles (c, d) calculated by modal analysis. Eigenvalues are coloured
according to criterion (3.7) quantifying the relative contribution of each pole to the input-output
relation. The (almost) one-to-one relation between resonance peaks and specific poles is
highlighted with dashed vertical lines. These resonant poles can be grouped into a single family
for the base flow, highlighted with a grey line in panel (d). This family contains the four unstable
modes of the base flow, labelled with greek characters α, β, γ and δ in decreasing order of growth
rate and encircled in black. This family of resonant modes can also be identified, by continuity,
in the mean flow spectrum. A distinct family of modes a–f , also highlighted with a grey line in
panel (c), is responsible for the low-frequency peaks present in |G0

0|.

In both cases, we notice the presence of peaks indicating strong receptivity to external
forcing on a discrete set of frequencies. In the case of panel (a), these peaks correspond
to the frequencies of the Koopman modes. Hence, the unforced flow is most receptive
to external forcing at its intrinsic oscillation frequencies, which is an indication that the
mean flow model captures relevant properties of the nonlinear system. The peaks of Gb,
on the other hand, do not match with nonlinear frequencies. In the two cases though, the
peaks are associated with resonant poles of the respective model, corresponding to mean-
flow or base-flow eigenvalues. We therefore plot the spectra of the associated Jacobian
operators in panels (c) and (d), below the frequency responses. In order to identify which
eigenvalues are responsible for the receptivity peaks, we color the spectra by the criterion

Γj =
|〈C,q′

j〉||〈p
′
j ,B〉|

|σj |
, (3.7)

quantifying the contribution of each mode to the input-output relation (Antoulas 2005;
Bagheri et al. 2009; Barbagallo et al. 2009). The criterion takes into account the distance
1/|σl| of each eigenvalue to the imaginary axis, the observability of the direct mode
|〈C,q′

l〉| and the controllability of the adjoint mode |〈p′
l,B〉|. We recall that the adjoint

modes (p′
l) are solutions of the eigenvalue problem (µlB − Ãj

i (µl))p
′
l = 0, where Ãj

i is

the adjoint of Aj
i with respect to the inner product (2.10). Eigenvalues of the adjoint

operator are complex conjugate of the eigenvalues (sl) of the direct operator, i.e. µl = s∗l ,
and adjoint modes satisfy the biorthogonality relation 〈p′

k,q
′
l〉 = δkl with the normalized

direct modes (q′
l). Using the criterion (3.7), we find two families of modes responsible

for the resonance peaks of G0
0, and a single family of modes responsible for the peaks of

Gb. The modes are highlighted with grey lines in panel (c) and (d), intended to guide
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the eye. Four poles, labelled α, β, γ, δ are responsible for the peaks at ω > 5 in G0
0,

corresponding to oscillations at ωh, ωh±ωl and ωh+2ωl. The other family of mean-flow
modes a, b, c, d, e, f are responsible for the low frequency peaks at ω < 5, among which
the peak at ωl, coinciding with mode b. The five resonance peaks of the base flow are
generated by a single family of 5 poles. From the time-frequency analysis, we know that
the high frequency ωh is connected to the most unstable mode of the base flow. Therefore,
mode α is the mean-flow analog of that specific base flow eigenmode. The other mean-
flow modes β, γ, δ may then be identified with the remaining unstable modes of the base
flow, hence the labelling in figure 10(c, d).
Conversely, the mean flow mode b responsible for the receptivity peak at ωl in G0

0 does
not have an obvious base flow analog. In fact, the emergence of mode b in the mean-
flow spectrum seems to arise from a purely nonlinear mechanism comparable to ‘lock-in’.
Indeed, we notice that the frequency difference between each pair of modes within the set
{α, β, γ, δ} is a multiple of the frequency ωl associated with mode b. Distortion of the base
flow by the nonlinearities allows these four modes to synchronize with the low-frequency
mode b, resulting in a quasiperiodic attractor. A similar observation has already been
made regarding low-frequency oscillations of large laminar separation bubbles behind a
two-dimensional bump (Cherubini et al. 2010).
In figure 9, we compare the structure of the mean-flow eigenmodes α and b (panels

(c, d)) with the Koopman modes of the unforced flow at ωh and ωl (panels (a, b)).
We notice striking similarities between eigenmodes and Koopman modes, in line with
observations from past studies recalled in the introduction. In the literature though,
the success of mean flow stability analysis is often associated with the presence of
marginal eigenvalues (Turton et al. 2015; Mantič-Lugo & Gallaire 2016), the so-called
RZIF property (real-zero imaginary-frequency) in Turton et al. (2015). We highlight the
fact that the RZIF property is not verified here: modes b, α, β, γ and δ have non-zero,
positive growth rates, yet they are associated with the correct frequencies and Koopman
modes. This was already noticed by Mettot et al. (2014a) and Meliga (2017) in open-
cavity flows (although in the former paper the mean flow was obtained as a fixed-point
of a RANS model, not a temporal average of an unsteady RANS simulation). Here, the
approximation works because the mean flow yields an excellent approximation of the full
flow at any instant (Mezić 2013), as previously said in §3.4.
Finally, we observe in figure 10 receptivity peaks at low frequencies different from ωl,

due to the presence of poles c, a and f close to the imaginary axis. The corresponding
eigenmodes are localized within the cavity and resemble mode b. Despite strong receptiv-
ity to external forcing, there is no signature of the associated frequencies in the spectrum
of the unforced flow. To understand this, we need to consider the endogenous forcing
term

f ′ := Ψqq
′ (3.8)

due to the nonlinear feedback operator. Since the operator Ψq is time-invariant, its output
f ′ is quasi-periodic with the same discrete set of frequencies as its input q′, i.e. {ωk}
defined in (3.5). More precisely, we can introduce the sets of Koopman modes

{q̂′
k} := {q̂′(ωk)}, {f̂ ′k} := {f̂ ′(ωk)} (3.9)

respectively associated with q′ and f ′. In the fully-developped regime, the governing
equations (2.2) can be recast in the form of a harmonic balance relation (Khalil 2002)

q̂′
k = Rq(iωk)f̂

′
k, (3.10)

between these two sets of Koopman modes (harmonic averages are zero otherwise).
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Figure 11. Comparison between resolvent-based model G0
0 (solid red line/solid symbols) and

the ROM G̃0
0 (dashed black line/open symbols) obtained by subspace identification: frequency

response (a) gain and (b) phase (the shaded region corresponds to | arg(G)− arg(G0
0)| 6 π); (c)

poles α, β, γ, δ.

Clearly, strong receptivity at frequencies outside the set {ωk} has no impact on the
intrinsic dynamics because the endogenous forcings are zero at these frequencies. In
short, the resolvent operator displays strong receptivity to external forcing at the natural
oscillation frequencies of the unforced flow, but not exclusively.

4. Designing controller K ′

1

We explain here the methodology used to synthesize controller K ′
1, but all subsequent

controller corrections are designed using the same methodology. There are two consec-
utive steps: first model reduction from frequency domain data G0

0(iω), then structured
H∞-synthesis using the ROM.

4.1. Model reduction

We convert the frequency response G0
0 in the form of a state-space model (Ã, B̃, C̃, D̃).

Although many points O(100) are typically needed to capture the fine details of the
frequency response, we seek a state-space model approximating G0

0 with a lower order
O(10) to focus on the essential characteristics of the system that we would like to

manipulate. A strictly proper (i.e. D̃ = 0) reduced-order model (ROM) of order 16 is
obtained using subspace identification methods (Liu et al. 1996; McKelvey et al. 1996).
For subsequent iterations, the order of the ROM varies between 16 and 32. The frequency
response of the ROM is given by

G̃0
0(iω) = C̃(iωI− Ã)−1B̃ (4.1)

and the associated poles correspond to eigenvalues of Ã. In general, all quantities related
to ROMs will be denoted with a tilde. In figure 11(a, b), we check that the frequency

response G̃0
0(iω) (black dotted curve) coincides with the original model G0

0 (solid red
curve) over the frequency range 5 < ω < 20. This range contains the main resonance
peaks at ωh, ωh ± ωl and ωh + 2ωl, but not the low frequency ones at ω < 5 which
we choose to ignore in order to ensure sufficient order reduction. In panel (c), we check
that the poles α, β, γ and δ corresponding to the main resonance peaks are correctly
approximated by some eigenvalues of Ã.
We note in passing the monotonically decreasing phase (except for ‘upward jumps’

corresponding to unstable modes) with a nearly constant negative slope in panel (b),
which characterizes a time-delay between the actuator and the sensor. This time-delay
corresponds to advection of the perturbations over the cavity of length L = 1 at the
mean velocity κU in the shear layer. Fitting the data with a straight line in the range
range 5 6 ω 6 25 leads to a value of κ ≈ 0.73, consistent with the mean flow in figure
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6(a). This value of κ is larger than the value 0.53 obtained by Barbagallo et al. (2009)
for the advection of pressure perturbations by the base flow at x2 = 0 above the cavity.
This difference is mainly due to the fact that the forcing field B is localized within the
incoming boundary layer at x0

2 = 0.02 > 0 and not directly at the wall.

4.2. Structured H∞-synthesis

After designing a ROM, we seek a controller K ′
1 outputting the forcing signal

u′
1 := K ′

1y (4.2)

from the measurement y. When the plant G̃0
0 is interconnected with K ′

1, the closed-loop
is characterized by four transfer functions

[
y
u′
1

]
=

[
G̃0

0S S
T K ′

1S

] [
n
w

]
, (4.3)

linking the two inputs n and w to the two outputs y and u′
1. These four transfers

are combinations of only two interconnected blocks G̃0
0 and K ′

1, therefore they are not
independent of each other. In particular, the sensitivity function S and complementary
sensitivity function T , respectively defined as

S =
1

1− G̃0
0K

′
1

and T =
G̃0

0K
′
1

1− G̃0
0K

′
1

, (4.4)

satisfy the relation S − T = 1. The controller K ′
1 is designed in order to achieve desired

specifications on the four closed-loop transfer functions. But because the four transfer
functions are not independent of each other, we can only constrain each of them in a
limited frequency range. Four filters WS ,WT ,WGS ,WK′S are therefore designed in order
to shape each closed-loop transfer function adequately and achieve specific design goals
to be listed in the next subsections. The procedure amounts to minimizing a positive
constant ρ bounding the H∞-norm of the four weighted transfer functions

‖WSS‖∞ 6 ρ, (4.5)

‖WTT ‖∞ 6 ρ, (4.6)

‖WGSG̃
0
0S‖∞ 6 ρ, (4.7)

‖WK′SK
′
1S‖∞ 6 ρ, (4.8)

while simultaneously ensuring that the closed-loop transfers and the controllerK ′
1 remain

stable. We recall that for a single-input single-output (SISO) system, the H∞-norm of
a stable transfer function H is given by the maximum of the modulus of the frequency
response

‖H‖∞ = max
ω∈R

|H(iω)|, (4.9)

hence, conditions (4.5–4.8) are equivalent to

|S(iω)| 6 ρ/|WS(iω)|, (4.10)

|T (iω)| 6 ρ/|WT (iω)|, (4.11)

|G̃0
0S(iω)| 6 ρ/|WGS(iω)|, (4.12)

|K ′
1S(iω)| 6 ρ/|WKS(iω)|, (4.13)

for all real values of ω. The design of controller K ′
1 therefore rests on the definition

of four inequality constraints on the closed-loop transfer functions. The constraints are
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enforced by designing well-chosen frequency domain templates 1/WS , 1/WT , 1/WGS and
1/WKS . These are defined as filters depending on free parameters which are calibrated
manually before ρ is minimized. If one of the closed-loop constraints is not met, the free
parameters are adjusted and ρ optimized again, in an iterative fashion until all constraints
are satisfied.
The present approach targets the shaping of all four closed-loop transfer functions and

differs from the mixed-sensitivity method, which only targets S, T and sometimes K ′
1S

(Henning & King 2007; Henning et al. 2007; Williams et al. 2010), but not G̃0
0S. The

advantage of the four-block method over mixed-sensitivity will become clear in §4.2.1. We
note that directly shaping the closed-loop transfer functions is a much more challenging
task than shaping the loop gain G̃0

0K
′
1, as done in the loop-shaping approach (Dahan

et al. 2012; Jones et al. 2015; Dalla Longa et al. 2017; Li & Morgans 2016). Loop shaping
takes advantage of the linearity of the loop gain with respect to the controller K ′

1 in
order to indirectly achieve constraints on the closed-loop at low cost, whereas both the
mixed-sensitivity and the four-block frameworks target the closed-loop in a more direct
fashion.
Here we use a structured H∞ framework, which means that the controller order may be

chosen a priori, i.e. independently of the order of the ROM. In our case, we fix the order
of K ′

1 and all subsequent controller corrections to 10. This is another key difference with
the loop-shaping approach, where the order of the controller cannot be chosen freely and
is always larger than that of the ROM. However, computing fixed-order controllers for
the H∞-synthesis problem is known to be NP-hard (Blondel & Tsitsiklis 1997) and one
has to rely on local optimization techniques to compute simple and practical controllers.
In this work, we have used the control software hinfstruct from the MATLAB Control
Toolbox, which is based on a non-convex non-smooth bundle technique developed in
Apkarian & Noll (2006).
In the rest of this section, we will explain the specifications on the closed-loop transfer

functions and the choice of appropriate frequency templates. The final transfer functions
(black lines) and frequency templates (blue lines) are shown in figure 12, before (solid)
and after (dashed) optimization of the parameter ρ to a final value of 0.6.

4.2.1. Shaping G̃0
0S: attenuation of the main resonance peak

The goal of the controller is to suppress intrinsic resonances. To ‘desensitize’ the flow
to input perturbations n at the main resonance frequency ω = ωh of G0

0(iω), we must
ensure that

|S(iωh)| < 1, (4.14)

such that the closed-loop gain

|G̃1
0| = |G̃0

0S| (4.15)

be smaller than the open-loop gain |G̃0
0| at this frequency. This is achieved by designing

a ‘bell-shaped’ frequency template

1/WGS = 1/kGS

s2/α2 + 2ξωhs+ ω2
h/α

2

s2 + 2ξωhs+ ω2
h

(4.16)

with α2 > 1 (see figure 12(a)) applied to the closed-loop transfer function G̃0
0S. The

gain |1/WGS(iω)| varies between a minimum value of 1/(α2kGS), reached asymptotically
when ω → 0 and ω → ∞, and a maximum value of 1/kGS, reached at the resonance
frequency ω = ωh. The parameter ξ determines the width of the filter. By choosing

kGS = 1/|G̃0
0(iωh)| (4.17)
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Figure 12. Frequency response of the four closed-loop transfer functions of the ROM (black

lines): (a) G̃0
0S, (b) S, (c) T , (d) K

′

1S. The frequency templates ρ/|WGS |, ρ/|WS|, ρ/|WT | are
plotted in blue (ρ/|WK′S| is not shown in panel (d) as it is just a constant curve located well
above the maximum of |K′

1S|), with solid lines for ρ = 1 and dashed lines for the optimized-value
of the multiplicative constant ρ = 0.6. In panel (b), the shaded region is the forbidden area where
the modulus margin constraint (4.20) is violated.

and constraining G̃0
0S, we indirectly enforce a constraint on the sensitivity function

|S(iωh)| < ρ. (4.18)

Since the optimal value of ρ is 0.6 in our case, we enforce a reduction of 60% in the height
of the main resonance peak at ωh.
Shaping G̃0

0S in order to constrain S may seem counterintuitive at first sight: why not
directly shaping S? The aim of this ‘trick’ is to prevent pole cancellation by a zero of the
controller. Indeed, cancelling the pole α with a zero of K ′

1 is not a robust way to suppress
the resonance at ωh since the mean flow model is only an approximation of the true plant.
Worse still, the unstable pole α will remain present in the closed-loop through the transfer
G̃0

0S. A much better alternative is to strongly damp the growth rate associated with this

pole by shaping G̃0
0S instead of S. When targetting the sensitivity function, as in the

mixed-sensitivity approach, pole cancellation would typically occur since S is a function
of the product G̃0

0K
′
1, i.e. the loop gain, only. The same problem occurs in the loop-

shaping framework, which directly targets the loop gain. When targetting G̃0
0S instead,

pole cancellation does not occur since that transfer depends on both the loop gain and
G̃0

0. The four-block approach is therefore well-suited for the control of unstable plants.
In fact, with appropriate choices for α and ξ, we see in figure 12(a) that we manage to

suppress all three resonance peaks at ωh and ωh±ωl, associated with modes α, β and γ.
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As a result, we verify in panel (b) that the gain of the sensitivity function is less than 1
at these three frequencies. We also verify in this panel that ρ = |S(iωh)| = 0.6. We will
later verify in figure 17 from §5.3 that the corresponding poles α, β and γ are indeed
damped instead of being cancelled.

4.2.2. Shaping S: stability robustness (modulus margin)

The poles of all four closed-loop transfer functions are given by the zeros of 1 −
G̃0

0K
′
1. To ensure closed-loop stability, we must therefore ensure that all zeros lie in the

appropriate half-plane. To guarantee stability robustness, we also ask that these zeros
be sufficiently far from the imaginary axis, where the closed-loop becomes marginally
stable. Equivalently, for a stable closed-loop, we may ask that the modulus margin (not
to be confused with the gain margin)

∆M = min
ω∈R

|1− G̃0
0(iω)K

′
1(iω)| (4.19)

be sufficiently large. In practice, we ask that ∆M > −6dB, or ∆M > 0.5 in linear scale,
which amounts to bounding the sensitivity function

‖S‖∞ < 2. (4.20)

The constraint on S(iω) being independent of ω, we consider a constant frequency
template 1/WS and optimize ρ such that

|S(iω)| 6
ρ

|WS |
< 2 (4.21)

for any real ω. In figure 12(b), constraint (4.20) is represented by the shaded region. We
see that the value of ρ = 0.6 reached after optimization did not allow the constraint to
be satisfied in the vicinity of ω ≈ 13, with the chosen WS . However, the sensitivity gain
being almost equal to 2 there, the resulting controller is deemed satisfactory without
further changing WS .

4.2.3. Shaping T : enforcing zero controller static gain

To ensure that the base flow is the only fixed-point of the closed-loop, we need to ensure
the controller has zero static gain, as discussed in §2.3. Imposing (2.30), i.e. K ′

1(0) = 0,
is equivalent to a condition on the complementary sensitivity function

T (0) = 0, (4.22)

which can be approximately achieved using constraint (4.11) and a filter WT with a
sufficiently large static gain |WT (0)| ≫ 1, such that

|T (0)| <
ρ

|WT (0)|
≪ 1. (4.23)

The frequency template 1/WT is therefore defined as a high-pass filter, as can be verified
in figure 12(c).

4.2.4. Shaping K ′
1S: performance robustness to modelling errors at high frequency

Finally, the remaining transfer function K ′
1S may be shaped in order to ‘desensitize’

the controller at high frequency. This can be useful if modelling errors are large at high
frequencies and if the signal y is stochastic or contaminated with noise. This would
typically be the case in an amplifier flow or in the context of turbulence. To achieve
sufficient ‘roll-off’ of the controller gain at high frequency, a low-pass frequency template
1/WK′S may be used. In our case, we expect our model to become inaccurate at large
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frequencies since the resolvent operator about the mean flow only captures spatially
coherent structures typically developing at low to moderate frequencies. However, our
signal y being deterministic, non-chaotic, noise-free and therefore weakly energetic at
high frequencies (cf. spectrum in figure 7(a)), imposing steep roll-off at high-frequency
is unnecessary. We therefore choose 1/WK′S as a very large constant here, and simply
verify a posteriori in figure 12(d) that the obtained controller is strictly proper, i.e. that
|K ′

1(iω)| → 0 as ω → ∞.

5. Controlled flow

5.1. Timescales

A sequence of five robust controllers was found to lead the flow from state 0 to the
base flow. When a controller correction K ′

m is added to the loop, its internal state is
initialized to 0. The internal states of the other controllers K ′

j<m already in the loop
are not reset to 0, hence the control signal u evolves continuously over time. Figure 13
shows the full time-evolution of the system as the sequence of controllers is applied. In
this plot, we concentrate on the transient evolution from one state to the next. The
origin of time is reset to zero at each iteration m, by subtracting the start-up time tm
of a new controller K ′

m. The time-axis is in log scale, and different shades of grey are
used to highlight the different time scales involved in the journey of the system from one
state to the next. When a new controller is switched on, the flow rapidly evolves over a
short timescale of the order of O(1), which seems sufficient for the system to latch onto
a new state. This timescale is indicated with a white background. Subsequent evolution
of the local measurement y is insignificant, but the perturbation kinetic energy keeps
evolving considerably over the next O(100) time units. This slow relaxation is indicated
with a light grey background, and a dark grey background is used to denote convergence
to a new equilibrium. The separation of timescales in the transient evolution is once
again related to the two physical processes occuring in the flow: fast oscillations of the
shear layer and slow recirculation within the cavity. Indeed, due to its position, the local
measurement y is mostly sensitive to the former process and very little to the latter.
Conversely, the global measurement E is, by definition, sensitive to both. The control
signal is characterized by a third, ultra-fast, timescale O(0.1), highlighted in very dark
grey and visible at iteration 1 only. This timescale is intrinsic to the controller and the
large ‘overshoot’ observed at the first iteration is due to the transition from a two-torus
to a limit-cycle with a different fundamental frequency. Such qualitative transition does
not occur in subsequent iterations, as we shall see next.
In the last iteration, all three quantities vanish as the system is attracted towards

the base flow, which is a solution of the Navier–Stokes equation without forcing. At
this point, the power consumption of the controllers is infinitesimal (or proportional to
incoming noise in a realistic case) and the cavity drag is minimal, so the control strategy
is profitable in the long run, regardless of the initial cost. The exponential decay of all
quantities is governed by the least damped pole of the last transfer function G5

5.

5.2. Attractors

In figure 8 from §3, we plotted a spectrogram of the timeseries y(t), which shows the
evolution of the frequency content of the flow as it evolves. We comment here the part
for t > t1 concerning the controlled flow. We immediately notice in the spectrogram
that there is less and less energy at high frequencies as we iterate, which indicates
that the nonlinearity becomes weaker and weaker, before a linear regime is eventually
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Figure 13. Timeseries of (a) the perturbation kinetic energy E, the sensor perturbation y and
the control signal u =

∑
m
u′

m for the controlled flow. The time axis is in log scale to highlight
the different time-scales. For each iteration m, the time origin is reset to zero by subtracting tm,
the start-up time of the new controller K′

m, so that the first point is at dt = 4× 10−4 in each
panel.

reached at iteration 5. Initially, the dynamics is on a two-torus characterized by the two
fundamental frequencies ωl and ωh. But soon after t1, the flow transitions to a limit cycle
with a fundamental frequency close to the previous harmonic ωh+ωl. During subsequent
iterations, the flow stays on (nearly) that same attractor, but the fundamental frequency
slightly decreases. In fact, in the second iteration (between t2 and t3), the attractor
is not exactly a pure limit cycle but an almost degenerate two-torus, which is strongly
dominated by its fast fundamental frequency. The trace of interactions between the high-
frequency fundamental and a non-zero low-frequency mode at ω ≈ 2.5 is visible soon after
t2 in figure 8.
Focussing on the permanent states in figure 13, we notice that each controller leads

to a reduction of up to a decade in the perturbation kinetic energy (panel (a)). The
decrease of the oscillation amplitude at the sensor y is less dramatic (panel (b)). In figure
14, we project each attractor in the phase plane [∆u2(1/4, 0), ∆u2(3/4, 0)]. We observe a
qualitative change in the topology of the attractor from state 0 (two-dimensional) to state
1 (one-dimensional). After that, each additional controller further reduces the amplitude
of shear-layer oscillations, without further qualitative change in the dynamics.
In figure 15, we also plot vorticity snapshots for each state, at a time of maximal shear

stress y. The reduction of the mean recirculation and the suppression of the low-frequency
cavity mode are responsible for the strong weakening of the vorticity sheet within the
cavity between states 0 and 1. The snapshots also illustrate the weakening of the spatial
instability in the shear-layer: roll-up is delayed and the resulting vortices are therefore
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Figure 15. Vorticity snapshots at a time where the shear-stress measurement y is maximum
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weaker as they impact the downstream edge of the cavity. We also notice a reduction in
the size of the vortices between states 0 and 1, which is consistent with the increase in
the oscillation frequency observed in figure 8.

5.3. Evolution of the transfer function model G from n to y: gain and poles

In figure 16, we follow the evolution of the gain of the transfer function model G
characterizing the input-output relation from n to y, during the iteration. All mean flows
were computed by averaging over more than 200 time units, in the fully-developped
regime. The plant Gm

m (solid lines), computed using equation (2.32), characterizes the
fully-developped flow in feedback loop with the controller Km. At t = tm+1, a new
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Figure 16. Evolution of the gain |G| during the iterative procedure. Panel (a) shows the initial
value of |G| at the beginning of the iteration, at t−0 . In each subsequent panel, we show the
relaxation of G from Gm

m−1 (dashed lines) at t = t+m to Gm
m (solid lines) at t = t−

m+1 (with
t6 → ∞), under the effects of nonlinearity. Same labels as figure 15. Vertical lines indicate
Koopman frequencies of the permanent state obtained with the controller Km (no unsteady peak
for m = 5, because the system is steady). We also indicate which poles of Gm

m are responsible
for each receptivity peak. Mode labels are coloured when their receptivity peak matches with a
Koopman frequency of the flow.

controller correction K ′
m+1 is added to the loop, in order to desensitize the plant with

respect to incoming perturbations occurring at resonant frequencies. As previously said
in §4.2.1, each controller targets the receptivity peaks matching with Koopman modes
(indicated with solid lines), using a ‘bell-shaped’ filter (cf. equation (4.16)) centered about
the dominant Koopman mode. This procedure leads to the shaped plant Gm+1

m (dashed
lines). The flow being out of equilibrium, it transiently evolves until a new dynamical
state is reached. The new plant G is then characterized by the transfer function Gm+1

m+1

(solid lines) and the iteration proceeds. In the last step, the flow state 4 is very close to
the base flow already and the designed closed-loop G4

5 is therefore nearly equal to the
last effective plant G5

5.
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In figure 17, we plot the poles of each transfer function G during the iteration. The
poles of Gm

m are indicated with solid symbols and those of the shaped plant Gm+1
m are

indicated with open symbols. In fact, the poles are computed from a ROM G̃ obtained by
subspace identification of G, at each step. We only follow the evolution of the four poles
α, β, γ, δ captured by the ROM. We checked in §4.1 that the poles are well approximated
in the case of G0

0 (see figure 11(c)). The plant Gm
m always has unstable poles, until the

very last iteration. During the ‘shaping’ phase (dashed arrows) Gm
m → Gm+1

m , the plant
is stabilized. The growth rate of all four resonant poles is damped (except pole γ in
the last iteration; panel (f)). Pushing the poles far from the imaginary axis attenuates
the receptivity peaks in the transfer function, as observed in figure 16 and previously
explained in §4.2.1. The most strongly damped pole is associated to the frequency of
the dominant Koopman mode, specifically targeted by the ‘bell-shaped’ template. Then,
during the relaxation phase Gm+1

m → Gm+1
m+1, all the poles drift upwards again (solid

arrows) and settle closer to the imaginary axis, causing the resurgence of sharp peaks in
the next plant Gm+1

m+1. In the last step, the flow is weakly nonlinear and the drift of the
poles during the relaxation phase is sufficiently small for all of them to remain in the
stable half-plane, which leads to convergence to the base flow.
We finally highlight the fact that, at each stepm, the fundamental oscillation frequency

of the fully-developped flow matches with a specific pole of Gm
m. In the case G0

0 of the
unforced flow, there is even a correspondence between five Koopman frequencies and
five poles. This remarkable observation confirms that each linear model based on the
mean state captures the intrinsic dynamics of the corresponding nonlinear system {flow
+ controller Km}. Given the fact that each pole may be associated with a base flow
eigenmode, we can identify which instability modes are driving the observed nonlinear
branches. The association is made explicit in the spectrogram of figure 8, where mode
labels are indicated on top of each frequency peak. Initially, the flow is in a quasiperiodic
regime due to an interaction between all four modes α, β, γ and δ, which synchronize
with mode b. Then the controlled flow switches to a limit-cycle driven by mode β, while
the signature of the other modes is completely suppressed from the output signal y. In
the unforced case, the leading Koopman mode is associated with mode α, whereas it is
associated with mode β when K ′

1 is in the loop, which explains the sudden frequency
jump in the spectrogram. Interestingly, we note the complete disappearance of the low
frequency at ωl, despite the fact that controllerK

′
1 did not target the corresponding mode

b. The suppression of this oscillation probably occurred through a nonlinear mechanism:
by damping modes β, γ and δ corresponding to the oscillations at ωh − ωl, ωh + ωl and
ωh + 2ωl, the controller K ′

1 has indirectly targetted the low frequency ωl. In subsequent
iterations m > 1, the flow remains on a limit-cycle governed by mode β, which explains
the smooth evolution of the dominant frequency in the spectrogram (figure 8), and the
qualitatively similar phase portraits in figure 14.

6. Discussion

6.1. Alternative route to the base flow and robustness of the method

We checked the robustness of our method by using a different set of controllers for
the last 3 iterations. This choice led to a different route in phase space (not shown),
exciting modes γ and δ and suppressing the oscillation initially associated with mode β
altogether. It was however still possible to reach the base flow in five steps, which shows
that different sequences of controllers may be equally suitable.
Intuitively, the number of iterations increases with the nonlinearity and decreases with
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Figure 17. Evolution of the poles α, β, γ, δ of the ROM transfer function G̃ during the iterative

procedure. Solid (respectively open) symbols correspond to poles of G̃m
m (respectively G̃m+1

m ).
Dashed arrows show the downward motion of the poles into the stable half-plane during the
shaping of a new closed-loop. Conversely, solid arrows show the upward motion of these poles
following nonlinear relaxation of the mean state. Same labels as in figures 15 and 16.

the robustness of each controller. Indeed, a necessary condition for convergence in m
iterations is that the total controller Km stabilizes the closed-loop transfer function
Gb/(1−GbKm) based on the base flow. But our method relies solely on the mean flow,
with no prior knowledge of the base flow, and we only guarantee that Km stabilizes
the transfer function Gm

m−1 = G0
m−1/(1 − G0

m−1Km) at step m (cf. equation (2.32)).
To converge in m iterations, we therefore need G0

m−1 sufficiently close to Gb, i.e. a
weakly nonlinear state m − 1, and a sufficiently robust controller Km. This is exactly
what happens for us after m = 5 iterations. With stronger initial nonlinearity, a higher
number of iterations may be required, but provided each intermediate input-output model
is able to correctly capture the intrinsic dynamics of the system, one would still expect
convergence to the base flow, although there is no theoretical proof and the method
remains heuristic at this point.
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Figure 18. Comparison between the gain of the transfer functions G0
5 = Gb associated with the

base flow only and G5
5, the transfer function associated with the closed-loop between the base

flow and the final controller K5.

6.2. Key differences with a gain scheduling approach

By updating the controller at each iteration according to the evolution of the mean
flow, the method is reminiscent of the gain scheduling approach (Khalil 2002; Högberg
et al. 2003). There are however key differences listed below.

First, we do not know in advance what mean flows will be obtained, so rather than
being scheduled in advance, the controller gain is adapted during the iteration, depending
on the new mean flow emerging at each step. In Högberg et al. (2003), a sequence
of mean flows was determined a priori, by interpolating between the fully-developped
turbulent state and the laminar state. The mean flow models therefore characterized the
transient evolution of the globally stable (channel) flow during relaminarization. In our
case, the mean flows characterize different permanent states visited during the iteration.
The attractors may be driven by different instability modes, resulting in qualitatively
different mean flows which cannot be predicted by interpolation.

Second, instead of designing a new controller Km+1 from the sole knowledge of the
mean flow m, we design a controller correction K ′

m+1 = Km+1 − Km based on the
knowledge of both the mean flow m and the controller Km. Again, we are not following
the transient evolution of a globally stable flow, but a sequence of permanent states
visited by an unstable flow coupled with some controllers. The plant model G0

m based on
the mean flow m alone does not caracterize the response to a small change in actuation
of the coupled system, and the adequate transfer function is Gm

m. As can be seen in figure
18 for m = 5, the transfer functions G0

m and Gm
m may be quite different indeed.

Finally, in Högberg et al. (2003), the order of the controller remains fixed during the
iteration whereas that of the total controller Km =

∑m

j=1
K ′

j increases in our case. This
drawback of our approach may not be an issue for implementation, since each control
law u′

j may be computed independently, and then added to form um =
∑m

j=1
u′
j. Since

each K ′
j has the same order, the computational cost increases only linearly with the

number of iterationsm. The computational time may even be kept constant using parallel
computing. Alternatively, a low-order model may be obtained from the total controller
Km at each step. In our case, we successfully reduced the number of states of K5 from
50 to 12 with no loss in performance (using the modred command from Matlab, which
is based on balanced truncation).
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7. Conclusion

The present study proposes a novel approach for the control of strongly nonlinear
resonating flows using linear methods only. The approach is illustrated on the case of
open cavity flow at Re = 7500, i.e. far from the linear instability threshold which is at
Rec = 4140. Starting from a quasiperiodic unactuated regime, we manage to completely
suppress the oscillations with a sequence of five robust controllers. At the end of the
process, the base flow is reached, with stabilized linear dynamics. The method relies on
two key ideas:

(i) modelling of the system as an LTI plant using the resolvent operator about the
mean flow,
(ii) a Newton’s-type iterative procedure based on the successive mean flows.

The first point (i) builds on previous observations that linear analysis about the
mean state yields quantitative information about the underlying nonlinear dynamical
equilibrium. Modal analysis is indeed able to capture the structure and frequencies of
self-sustained oscillations, while resolvent analysis successfully captures receptivity to
forcing, even in turbulent flows. Using the resolvent operator in order to derive a sequence
of input-output models, we show that it takes no more than a series of time-averaged
flows to design a successful feedback loop. Not only is the method simple, general and
computationally inexpensive, it is also physically insightful. Furthermore, LTI models of
nonlinear flows derived from the mean state are also unambiguously defined, as opposed
to linear models identified from input-output data. This is particularly useful in the case
of unstable base flows, which inevitably lead to nonlinear dynamics even in the most
quiet environment. When the base flow is reached, the system is truly linear and the
proposed definition matches exactly with the actual definition of the transfer function.
In essence, the framework initially introduced by McKeon & Sharma (2010) naturally
lends itself to the modelling of an LTI input-output relation for nonlinear flows. Although
seemingly optimal in some sense, there is however no proof that the resolvent operator
about the mean flow is the best option, or work in every cases, and these questions will
be addressed in future work.

The second point (ii) also appears to be fairly novel, although it is in principle
independent of (i), which means that an iterative procedure could also be carried out
with a different modelling strategy for defining an LTI model at each step. The key idea
here is to resort to a sequence of linear approximations in order to solve a nonlinear
control problem. For sufficiently strong nonlinearity, designing a single low-dimensional
LTI controller able to destroy the initial attractor and drive the system directly to the
fixed point is a challenge. Instead of designing complex nonlinear models, or crafting
elaborate nonlinear control laws, we propose to use a simple sequence of linear controllers.
Each controller disrupts the current dynamical equilibrium and drives the system to a
new one, closer to the fixed point in phase space. After a few iterations, the coupled
system becomes attracted to the fixed point and flow oscillations are fully suppressed.
Note that although only linear controllers are used, the entire procedure is nonlinear
in essence, as the effect of each controller depends fundamentally on the choice of the
past controllers. And although the final controller stabilizes the base flow once reached,
it is not guaranteed to drive the system from an initial condition on the attractor to
the base flow. The method set forth in this paper is in some sense analog to Newton’s
iteration: a series of linear models and controllers are derived, until fluctuations arising
from nonlinearity are fully cancelled.

From a practical perspective, the proposed method has one clear advantage: it only
requires knowledge of the mean flow, at every iteration. There is no need for an adjoint
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simulation either, and, in the case of turbulent flows, the method might be applicable
from a time-averaged unsteady RANS simulation. Computing the transfer function
requires the formation of the Jacobian matrix, followed by the resolution of a linear
system for each frequency. For two-dimensional, or equivalently three-dimensional prob-
lems with one invariant direction, this is computationally inexpensive. For fully three-
dimensional mean flows, matrix-free methods may be considered instead. A disadvantage
of the method though, is that it requires knowledge of the full mean state. However,
data assimilation is an active field of research in fluid mechanics, and techniques have
recently been developped for two-dimensional mean-flow reconstruction from under-
resolved/incomplete/noisy measurements (Foures et al. 2014; Symon et al. 2017). For
the method to be applicable outside the lab though, methods should be developped to
infer the mean flow from localized sensors only.
Future work will be dedicated to understanding the rationale behind the success of

mean-flow based input-output models and their limitations. It would also be interesting to
analyze the convergence properties of the iterative method from a theoretical viewpoint.
Applicability of the method to noise amplifiers, chaotic flows and turbulent flows also
remains to be investigated.
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