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Introduction

Let T > 0 and Ω be a bounded domain in R N . The paper is concerned with the convergence of sequences of reaction-diffusion systems in L 2 0, T, L 2 (Ω) of the type 

(S n )                  du n dt ( 
ρ 1,n ≤ u n (0) ≤ ρ 1,n , ρ 2,n ≤ v n (0) ≤ ρ 2,n , u n (0) ∈ dom (∂Φ 1,n ), v n (0) ∈ dom (∂Φ 2,n ),
where, for i = 1, 2, ρ i,n and ρ i,n are suitable constants depending on the reaction functional F i,n . Each diffusion term is the subdifferential of a convex integral functional of the calculus of variations Φ i,n : L 2 (Ω) → R∪{+∞}, whose domain dom (∂Φ i,n ) contains the boundary conditions. In their domain, the diffusion terms are of divergence form -divD ξ W 1,n (x, ∇u) and -divD ξ W 2,n (x, ∇v). The explicit dependence on the spatial variable reflects the fact that the diffusion may take place in heterogeneous media. More specifically, when we write n for ε n intended to tend toward 0, the system models among other examples, ecosystems of two species in a spatial domain made up of small habitats with size ε n .

The well-posedness nature of reaction-diffusion systems in the sense of existence of a strong solution has been extensively studied. In this paper, the novelty is the special form of the reactions functionals: they are structured in such a way that for fixed v ∈ L 2 (Ω), (t, u) → F n,1 (t, u, v), and for fixed u ∈ L 2 (Ω), (t, v) → F n,2 (t, u, v) are SVR-structured reaction functionals as defined in [START_REF] Hafsa | Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization[END_REF]. As a consequence, (S n ) admits a pair of bounded solutions according to the constants ρ i,n and ρ i,n that govern the initial conditions. Problems (S n ) model various situations involving competition or symbiosis models, prey predator models in ecology, as well as heat mass transfert in chemical reactors and combustion theory, or gaz-liquid interactions problems, etc. They are illustrated through Examples 2.1, 2.2, 2.3, 2.4. It should be noted that our study includes systems (S n ) coupling a reaction-diffusion equation (r.d.e.) and a non diffusive reaction equation (n.d.r.e.), like the FitzHugh-Nagumo system in neurophysiology described in Example 2.5.

In Section 2, for any T > 0, we prove existence and uniqueness of bounded strong solutions in C [0, T ], L 2 (Ω) × C [0, T ], L 2 (Ω) for problems of the type (S n ), when initial functions are bounded according to the reaction functionals. The proof is based on [1, Theorem 3.1] combined with a suitable fixed point procedure.

In Section 3, under the Mosco-convergence of functionals Φ i,n , and a suitable convergence of F i,n to F i , i = 1, 2, we establish the first main result of the paper, Theorem 3.1, which states the convergence of (S n ) toward a reaction-diffusion system (S) of the same type. This can be seen as a compactness or a stability result for the class of systems considered.

The convergence of systems (S n ) coupling a reaction-diffusion equation with a non diffusive reaction equation or two non diffusive reaction equations is addressed in Section 4 and is discussed in Theorem 4.1 and Theorem 4.2. It requires additional regularity conditions on the reaction functional associated with the n.d.r.e.. As far as we know, the homogenization of reaction-diffusion systems was first addressed in [START_REF] Mielke | Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion[END_REF][START_REF] Reichelt | Two-Scale Homogenization of Systems of Nonlinear Parabolic Equations DISSERTATION, zur Erlangung des akademischen Grades doctor rerum naturalium[END_REF] by means of the two scale convergence; see also [START_REF] Peter | Coupled reaction-diffusion processes inducing an evolution of the microstructure: analysis and homogenization[END_REF] where the homogenization with evolving microstructure is performed using the method of transformation to a periodic reference domain. In Section 5 we hope to contribute to this research in the framework of stochastic homogenization described in [START_REF] Hafsa | Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization[END_REF]. The main results, which are direct consequences of Theorems 3.1, 4.1, are stated in Theorems 5.1, 5.2. They are illustrated through the homogenization of a prey-predator model with a saturation effect which is the randomization of Example 2.3. The model involves two species spreading in an heterogeneous environment whose small spatial heterogeneities are randomly distributed following a Poisson point process. The homogenized problem illustrates the interplay between the growth rate of the prey and the maximum carrying capacity of the environment when the size of the spatial heterogeneities is very small.

Two components reaction diffusion system associated with convex functionals of the calculus of variations and TCCP-structured reaction functionals

We denote by L N the Lebesgue measure in R N , by Ω a domain of R N of class C1 , and by Γ a subset of its boundary ∂Ω with positive H N -1 -Hausdorf measure. To shorten the notation, we sometimes write X to denote the Hilbert space L 2 (Ω) equipped with its standard scalar product and its associated norm, denoted by , and . X respectively. All along the paper we use the same notation | • | to denote the norms of the euclidean spaces R d , d ≥ 1, and by ξ • ξ the standard scalar product of two elements ξ, ξ in R d . We also denote by ξ ξ the Hadamard (or Schur) product of two elements ξ and ξ in R d . For any topological space T, we denote by B (T) its Borel field.

The paper is concerned with sequences of systems of reaction-diffusion Cauchy problems of the form (S) 

                 du dt (t) + ∂Φ 1 (u (t)) = F 1 (t, u (t) , v ( 
u (0) ∈ dom (∂Φ 1 ), v (0) ∈ dom ∂Φ 2 ,
where, for i = 1, 2, ∂Φ i denote the subdifferential of standard convex functionals Φ i of the calculus of variations. More precisely Φ i : L 2 (Ω) → R ∪ {+∞} is defined by

Φ i (u) =        ˆΩ W i (x, ∇u (x)) dx + 1 2 ˆ∂Ω a i u 2 dH N -1 - ˆ∂Ω φ i u dH N -1 if u ∈ H 1 (Ω) , +∞ otherwise (2.1) 
where

a i ∈ L ∞ H N -1 (∂Ω) with    a i ≥ 0 H N -1 -a.e. in ∂Ω ∃σ i > 0 a i ≥ σ H N -1 -a.e. in Γ i ⊂ ∂Ω with H N -1 (Γ i ) > 0,
and

φ i ∈ L 2 H N -1 ( 
∂Ω). The density W i : R N × R N → R is a Borel measurable function which satisfies the following conditions:

(D1) there exist α > 0 and β > 0 such that for a.e. x ∈ R N and every ξ ∈ R N α|ξ| 2 ≤ W i (x, ξ) ≤ β 1 + |ξ| 2 , (D2) for a.e. x ∈ R N , ξ → W i (x, ξ) is a Gâteaux differentiable 1 convex function (we denote by D ξ W i (x, •) its Gâteaux derivative), with D ξ W i (x, 0) = 0 for a.e. x ∈ R N . By using the subdifferential inequality together with the growth conditions fulfilled by the convex function ξ → W i (x, ξ), it is easy to show that there exist nonnegative constants L (β) and C (β) such that, for all (ξ, ξ

) ∈ R N × R N , |W i (x, ξ) -W i (x, ξ ) | ≤ L (β) |ξ -ξ | (1 + |ξ| + |ξ |) , |D ξ W (x, ξ) | ≤ C (β) (1 + |ξ|) .
From the second estimate, we infer that if u ∈ H 1 (Ω), then the function

D ξ W i (•, ∇u) belongs to L 2 (Ω) N .
We recall (see [1, Lemma 1]) that the subdifferential of the functional Φ i (actually its Gâteau derivative), whose domain captures the boundary condition, is given by:

dom (∂Φ i ) = {v ∈ H 1 (Ω) : div D ξ W i (•, ∇v) ∈ L 2 (Ω) , a i v + D ξ W i (•, ∇v) • n = φ i on ∂Ω} ∂Φ i (v) = -div D ξ W (•, ∇v) for v ∈ dom (∂Φ i )
where n denotes the outer unit normal to ∂Ω and a i v + D ξ W i (•, ∇v) • n must be taken in the trace sense. In what follows, since ∂Φ i are single valued, we denote them by DΦ i .

The pair (F 1 , F 2 ) of reaction functionals belongs to a suitable class for which a comparison principle holds with respect to the initial and boundary data for lower and upper solutions. This class is defined in the next section.

2.1.

The class of TCCP-structured reaction functionals. Reaction-diffusion systems which model a wide class of applications in the domain of ecosystems, and which gives rise to bounded or positive solutions, amenable to analytical calculation in homogenization (periodic or stochastic) involve a special class of pairs of reaction functionals that we define below.

Definition 2.1. A pair (F 1 , F 2 ) of functionals F i : [0, +∞) × L 2 (Ω) × L 2 (Ω) → R Ω , i = 1, 2, is called a TCCP-structured reaction functional, if there exists a pair of Borel measurable functions (f 1 , f 2 ), f i : [0, +∞) × R N × R × R → R, i = 1, 2, such that for all t ∈ [0, +∞) and all (u, v) ∈ L 2 (Ω) × L 2 (Ω), F 1 (t, u, v) (x) = f 1 (t, x, u (x) , v (x)) , F 2 (t, u, v) (x) = f 2 (t, x, u (x) , v (x)) ,
which fulfill the following structure conditions:

f 1 (t, x, ζ, ζ ) = r 1 (t, x) h 1 (ζ ) • g 1 (ζ) + q 1 (t, x) f 2 (t, x, ζ, ζ ) = r 2 (t, x) h 2 (ζ) • g 2 (ζ ) + q 2 (t, x) , 2 where 
• h i , g i : R → R l , i = 1, 2, are locally Lipschitz continuous functions; • for all T > 0, r i ∈ L ∞ [0, T ] × R N , R l ; • for all T > 0, q i ∈ L 2 0, T, L 2 loc R N . Furthermore (f 1 , f 2 ) must satisfy the Two Components Comparison Principle condition (T CCP ): for i = 1, 2, there exists a pair f i , f i of functions f i , f i : [0, +∞) × R → R with f i ≤ 0 ≤ f i , and a pair ρ i , ρ i in R 2 with ρ i ≤ ρ i , such that each of the two ordinary differential equations ODE i y i (t) = f i t, y i (t) for a.e.t ∈ (0, +∞) y i (o) = ρ i ODE i y i (t) = f i (t, y i (t)) for a.e.t ∈ (0, ∞) y i (o) = ρ i
possesses at least one solution, such that for all T > 0, for a.e. (t, x) ∈ (0, T ) × R N , we have:

f 1 t, x, y 1 (t) , ζ ≥ f 1 t, y 1 (t) f 1 (t, x, y 1 (t) , ζ ) ≤ f 1 (t, y 1 (t)) , for all ζ ∈ [y 2 (T ) , y 2 (T )],
and

f 2 t, x, ζ, y 2 (t) ≥ f 2 t, y 2 (t) f 2 (t, x, ζ, y 2 (t)) ≤ f 2 (t, y 2 (t)) for all ζ ∈ [y 1 (T ) , y 1 (T )].
The pair (F 1 , F 2 ) is called a TCCP-structured reaction functional associated with (r i , g i , h i , q i ) i=1,2 , and (f 1 , f 2 ) a TCCP-structured reaction function associated with (r i , g i , h i , q i ) i=1,2 .

If furthermore, for all T > 0, and i = 1, 2,

r i ∈ W 1,1 0, T, L 2 R N , R l and q i ∈ W 1,1 0, T, L 2 loc R N , the pair (F 1 , F 2 )
is referred to as a regular TCCP-structured reaction functional and (f 1 , f 2 ) as a regular TCCP-structured reaction function.

Remark 2.1. 1) Since y i is nonincreasing, and y i is nondecreasing, for any T > 0, and for i = 1, 2 we have

y i (T ) ≤ y i (0) = ρ i < ρ i = y i (0) ≤ y i (T ) .
2) It is worth noting that for each fixed

ζ in [y 2 (T ) y 2 (T )], the function ζ → f 1 (t, x, ζ, ζ ) is a SVR- structured reaction function associated with (r 1 h 1 (ζ ) , g 1 , q 1 ) in the sense of [1, Definition 3.1]. Similarly for each fixed ζ in [y 1 (T ) y 1 (T )], the function ζ → f 2 (t, x, ζ, ζ ) is a SVR-structured reaction function associated with (r 2 h 2 (ζ) , g 2 , q 2 ).

Examples.

In examples below, for any a : [0, +∞) × R N → R we use the notation

a := sup (t,x)∈[0,+∞)×R N a (t, x) , a := inf (t,x)∈[0,+∞)×R N a (t, x) .
The proofs of Propositions below are postponed to Appendix A.

Examples 2.1. Example derived from competition models in ecology.

f 1 (t, x, ζ, ζ ) = α 1 (t, x) ζ 1 - ζ K 1 (t, x) -a 1,2 ζ K 1 (t, x) f 2 (t, x, ζ, ζ ) = α 2 (t, x) ζ 1 - ζ K 2 (t, x) -a 2,1 ζ K 2 (t, x)
,

where α i > 0 satisfies α i < +∞, K i (t, x) > 0, a 1,2 > 0 and a 2,1 > 0.
Proposition 2.1. The pair (f 1 , f 2 ) is a TCCP-structured reaction function with for i = 1, 2,

ρ i = 0, y i = 0; ρ i is any positif real number, y i (t) = ρ i exp (α i t) .
The pair (f 1 , f 2 ) is associated with the diffusive competition model between two species (S)

                   du dt (t) + DΦ 1 (u (t)) = α 1 (t, •) u (t) 1 - u (t) K 1 (t, •) -a 1,2 v (t) K 1 (t, •) for a.e. t ∈ (0, T ) dv dt (t) + DΦ 2 (v (t)) = α 2 (t, •) v (t) 1 - v (t) K 2 (t, •) -a 2,1 u (t) K 2 (t, •) for a.e. t ∈ (0, T ) u (0) = u 0 ∈ dom (DΦ 1 ), v (0) = v 0 ∈ dom DΦ 2 ,
where u and v denote the densities of two competing species having a logistic growth in the absence of the other. The α i are the birth rates and the K i the carrying capacities. The dimensionless coefficients a 1,2 and a 2,1 measure the competing effect of v to u and u to v respectively. In Theorem 2.1 we prove that for all T > 0, (S) admits a unique solution (u, v) ∈ C [0, T ], L 2 (Ω) 2 . Under the initial conditions

0 ≤ u 0 ≤ ρ 1 , 0 ≤ v 0 ≤ ρ 2 , this solution fulfills for all t ∈ [0, T ] the bounds 0 ≤ u (t) ≤ ρ 1 exp (α 1 t), 0 ≤ v (t) ≤ ρ 2 exp (α 2 t).
Furthermore, if we assume that the functions α i , αi Ki , and a i,i+1 αi(t,x)

Ki(t,x) belong to W 1,1 0, T, L 2 loc R N ∩ L ∞ [0, T ] × R N ,
then u and v fulfill the boundary conditions for all t ∈]0, T ] and admit a right derivative at each t ∈]0, T [. Examples 2.2. Example derived from symbiosis models in ecology.

f 1 (t, x, ζ, ζ ) = α 1 (t, x) ζ 1 - ζ K 1 (t, x) + b 1,2 ζ K 1 (t, x) f 2 (t, x, ζ, ζ ) = α 2 (t, x) ζ 1 - ζ K 2 (t, x) + b 2,1 ζ K 2 (t, x)
,

where α i > 0, +∞ > K i ≥ K i (t, x) ≥ K i > 0. We assume that 0 ≤ b 1,2 < K 1 K 1 and 0 ≤ b 2,1 < K 2 K 2 . (2.2) Proposition 2.2. The pair (f 1 , f 2 ) is a TCCP-structured reaction function with for i = 1, 2,                ρ i = 0, y i = 0; ρ 1 = ρ 2 ≥ max K 1 K 1 K 1 -b 1,2 K 1 , K 2 K 2 K 2 -b 2,1 K 2 ; y i = ρ i .
The pair (f 1 , f 2 ) is associated with the diffusive symbiosis model between two species (S)

                   du dt (t) + DΦ 1 (u (t)) = α 1 (t) u (t) 1 - u (t) K 1 (t) + b 1,2 v (t) K 1 (t) for a.e. t ∈ (0, T ) dv dt (t) + DΦ 2 (v (t)) = α 2 (t) v (t) 1 - v (t) K 2 (t) + b 2,1 u (t) K 2 (t)
for a.e. t ∈ (0, T )

u (0) = u 0 ∈ dom (DΦ 1 ), v 0 = v 0 ∈ dom DΦ 2 ,
where u and v denote the densities of two species having a logistic growth in the absence of the other. Like in Example 2.1, the α i denote the birth rates and the K i the carrying capacities. The dimensionless coefficients b 1,2 and b 2,1 measure the symbiosis effect of v to u and u to v respectively. By contrast with the competition model of two species described in Example 2.1, the signs preceding the b's are positive and reflect the fact that the interaction between the two species is to the advantage of all. Conditions (2.2) reflect the fact that symbiosis between both species must not be too large so that both populations grow while being bounded. Indeed, from Proposition 2.2, one can choose 0 ≤ ρ 1 = ρ 2 < +∞. It should be noted that the stability analysis of the system, for the model without diffusion and with constant carrying capacities, provides the less restrictive condition b 1,2 b 2,1 < 1 (see [START_REF] Murray | Mathematical Biology: I. An Introduction, Third Edition[END_REF]Section 3.6]). In Theorem 2.1 we prove that under the initial conditions 0 ≤ u 0 ≤ ρ 1 , 0 ≤ v 0 ≤ ρ 2 , for all T > 0, (S) admits a unique solution (u, v) ∈ C [0, T ], L 2 (Ω) 2 which fulfills for all t ∈ [0, T ] the bounds 0 ≤ u (t) ≤ ρ 1 , and 0 ≤ v (t) ≤ ρ 2 . Furthermore, if we assume that the functions α i , αi Ki , and b i,i+1 αi(t,x)

Ki(t,x) belong to W 1,1 0, T, L 2 loc R N ∩ L ∞ [0, T ] × R N
, then u and v fulfill the boundary conditions for all t ∈]0, T ] and admit a right derivative at each t ∈]0, T [. Examples 2.3. Example derived from predator-prey models.

f 1 (t, x, ζ, ζ ) = α 1 (t, x) ζ 1 - ζ K car (t, x) -a (x, t) ζ (1 -exp (-bζ)) f 2 (t, x, ζ, ζ ) = α 2 (t, x) ζ 1 -c ζ ζ ,
where α 1 (t, x) ≥ α 1 > 0, +∞ > α 2 ≥ α 2 (t, x) ≥ α 2 > 0, K car (t, x) ≥ K > 0, +∞ > a ≥ a (t, x) > 0, and b, c are positive constants. Furthermore setting µ ext := c α 1 α 2 aα 2 , we assume that µ ext ≥ 4.

Proposition 2.3. The pair (f 1 , f 2 ) is a TCCP-structured reaction function with

                         ρ 1 ∈   K 1 -1 -4 µext 2 , K 1 + 1 -4 µext 2   , y 1 = ρ 1 ; ρ 1 = θρ 1 , θ ∈ K ρ 1 , µ ext 1 - ρ 1 K , y 1 (t) = ρ 1 exp (α 1 t) ; ρ 2 = 0, y 2 = 0; ρ 2 ∈ α 2 cα 2 ρ 1 , α 1 a ρ 1 1 - ρ 1 K , y 2 = ρ 2 .
(2.3)

As a consequence of Theorem 2.1, we obtain that under the initial conditions ρ 1 ≤ u 0 ≤ ρ 1 and 0 ≤ v 0 ≤ ρ 2 , where ρ 1 , ρ 1 and ρ 2 fulfill condition (2.3), the diffusive predator-prey system (S)

                   du dt (t) + DΦ 1 (u (t)) = α 1 (t, •) u (t) 1 - u (t) K car (t, •) -a (t, •) v (t) (1 -exp (-bu (t))) for a.e. t ∈ (0, T ) dv dt (t) + DΦ 2 (v (t)) α 2 (t, •) v (t) 1 -c v (t) u (t) for a.e. t ∈ (0, T ) u (0) = u 0 ∈ dom (DΦ 1 ), v (0) = v 0 ∈ dom DΦ 2 ,
admits for all T > 0 a unique solution (u, v) ∈ C [0, T ], L 2 (Ω) 2 which satisfies for all t ∈ [0, T ],

ρ 1 ≤ u (t) ≤ ρ 1 exp (α 1 ) and 0 ≤ v (t) ≤ ρ 2 .
Furthermore, if we assume that the functions α i , i = 1, 2, α1 Kcar and a belong to W 1,1 0, T, L 2 loc R N ∩ L ∞ [0, T ] × R N , then u and v fulfill the boundary conditions for all t ∈]0, T ] and admit a right derivative at each t ∈]0, T [. The system models the evolution of two species with density u and v of a prey and a predator, with birth growth rate α 1 and α 2 respectively. The prey population satisfies a logistic growth with some time-space depending maximum carrying capacity K car (the carrying capacity of the prey when the density of the predator is equal to zero), perturbed by a "predator term" -a (t, •) v (t) (1 -exp (-bu (t))) with a growth coefficient a. This term involves a saturation effect, i.e. -a (t, •) v (t) (1 -exp (-bu (t))) saturates to -av (t) for u (t) large, which reflects the limited capability of the predator when the prey is abundant. There exits many other choice of predator terms with saturation effects, and we refer the reader to [START_REF] Murray | Mathematical Biology: I. An Introduction, Third Edition[END_REF]Section 3.3] for various examples in the context of o.d.e's. The predator population satisfies a logistic growth with a carrying capacity proportional to the prey density. The condition µ ext ≥ 4 on the dimensionless coefficient µ ext , prevents the extinction of the prey species since its guarantees existence of ρ 1 > 0, so

that u (t) ≥ ρ 1 ≥ K 1-1-4 µ ext

2

. The coefficient µ ext is referred to as the extinction threshold.

Examples 2.4. Example derived from thermo-chimical models.

f 1 (t, x, ζ, ζ ) = -α 1 (t, x) ζ p f 0 (ζ ) f 2 (t, x, ζ, ζ ) = α 2 (t, x) ζ p f 0 (ζ )
where

f 0 (ζ ) =    exp γ - γ ζ if ζ > 0 0 otherwise, and α i > 0, α 2 < +∞, p ≥ 1,
and γ is a positive constant.

Proposition 2.4. The pair (f 1 , f 2 ) is a TCCP-structured reaction unction with

ρ i = 0, y i = 0; ρ i is any positif real number, y 1 = ρ 1 , y 2 (t) = α 2 ρ p 1 t exp (γ) + ρ 2 .
The pair (f 1 , f 2 ) is associated with the diffusive system (S)

                 du dt (t) + DΦ 1 (u (t)) = -α 1 (t, •) u (t) p f 0 (v (t)) for a.e. t ∈ (0, T ) dv dt (t) + DΦ 2 (v (t)) α 2 (t, •) u (t) p f 0 (v (t)) for a.e. t ∈ (0, T ) u (0) = u 0 ∈ dom (DΦ 1 ), v (0) = v 0 ∈ dom DΦ 2 ,
where u and v denote a chemical concentration and the temperature respectively, in a non isothermal chemical reaction process; α 1 and α2 α1 are called Thiele number and Prater number respectively (see [START_REF] Pao | Nonlinear parabolic and elliptic equations[END_REF] and references therein). In Theorem 2.1 we prove that (S) admits a unique solution

(u, v) ∈ C [0, T ], L 2 (Ω) 2 under the initial condition 0 ≤ u 0 ≤ ρ 1 , 0 ≤ v 0 ≤ ρ 2 , which satisfies the bounds 0 ≤ u (t) ≤ ρ 1 , and 0 ≤ v (t) ≤ α 2 ρ p 1 t exp (γ) + ρ 2 for all t ∈ [0, T ]. Furthermore, if we assume that the functions α i belong to W 1,1 0, T, L 2 loc R N ∩ L ∞ [0, T ] × R N
, then u and v fulfill the boundary conditions for all t ∈]0, T ] and admit a right derivative at each t ∈]0, T [. Examples 2.5. Example derived from FitzHugh-Nagumo models.

f 1 (t, x, ζ, ζ ) = α 1 (t, x) ζ (ζ -a (t, x)) (1 -ζ) -b (t, x) ζ f 2 (t, x, ζ, ζ ) = α 2 (t, x) ζ -c (t, x) ζ where α 1 (t, x) ≥ α 1 > 0, +∞ > α 2 ≥ α 2 (t, x) > 0; +∞ > b ≥ b (t, x) ≥ b > 0; c (t, x) ≥ c > 0; and 0 < a ≤ a (t, x) < 1. Proposition 2.5. Set γ = b α2 cα 1 . Then the pair (f 1 , f 2 ) is a TCCP-structured reaction function with                                ρ 1 ≥ max γ + 1, γ γ -a γ ; ρ 1 = -γρ 1 ; ρ 2 = α2 c ρ 1 ; ρ 2 = α2 c ρ 1 ; f i = f i = 0, i = 1, 2.
(2.4)

The pair (f 1 , f 2 ) is associated with the system (S)

                 du dt (t) + DΦ (u (t)) = α 1 (t, •) u (t) (u (t) -a (t, •)) (1 -u (t)) -b (t, •) v (t) for a.e. t ∈ (0, T ) dv dt (t) = α 2 (t, •) u (t) -c (t, •) v (t) for a.e. t ∈ (0, T ) u (0) = u 0 ∈ dom (DΦ), v (0) = v 0 ,
coupling a reaction diffusion equation with a non diffusive reaction equation. This coupling generalizes the FitzHugh-Nagumo model which describes the evolution of the electrical potential u across the axonal membrane. The variable v is a recovery variable obtained in the simplification of the Hodgkin-Huxley Theory of Nerve Membranes (see [START_REF] Murray | Mathematical Biology: I. An Introduction, Third Edition[END_REF]). For a complete analysis of boundary value problems relating to FitzHugh-Nagumo equations in one space dimension, we refer the reader to [START_REF] Collins | Length dependence of solutions of FitzHugh-Nagumo equations[END_REF][START_REF] Dikansky | FitzHugh-Nagumo equations in a nonhomogeneous medium[END_REF][START_REF] Shonbek | Boundary Value Problems for the FitzHugh-Nagumo equations[END_REF]. When the initial functions satisfy the bounds ρ 1 ≤ u 0 ≤ ρ 1 and ρ 2 ≤ u 0 ≤ ρ 2 where ρ i and ρ i are given by (2.4), existence and uniqueness of solutions fulfilling the same bounds are obtained according to Theorem 2.1 and Remark 2.3. If we assume that the functions α i , a, b, and c belong to W 1,1 0, T, L 2 loc R N ∩ L ∞ [0, T ] × R N then u fulfills the boundary condition for all t ∈]0, T ] and u and v possess a right derivative at each t ∈]0, T [. For bounds similar to those given by (2.4), in the case when the coefficients of the reaction functional are constants, we refer the reader to [12, Chapter 12, Section 12.7].

Existence and uniqueness of a bounded solution.

Combining [1, Theorem 3.1] with a suitable fixed point procedure, we establish the existence of a bounded unique solution to the Cauchy problem associated with TCCP-structured reaction functionals.

Theorem 2.1. Let Φ i , i = 1, 2, be standard functionals of the calculus of variations (2.1) and (F 1 , F 2 ) a TCCP-structured reaction functional with ρ i , ρ i , y i and y i given by condition (T CCP ). Assume that

a i ρ i ≤ φ i ≤ a i ρ i for i = 1, 2, then the two component reaction-diffusion system (S)                  du dt (t) + DΦ 1 (u (t)) = F 1 (t, u (t) , v (t)) for a.e. t ∈ (0, T ) dv dt (t) + DΦ 2 (v (t)) = F 2 (t, u (t) , v (t)) for a.e. t ∈ (0, T ) ρ 1 ≤ u 0 = u (0) ≤ ρ 1 , ρ 2 ≤ v 0 = v (0) ≤ ρ 2 , u 0 ∈ dom (DΦ 1 ), v 0 ∈ dom DΦ 2 , admits a unique solution (u, v) ∈ C [0, T ], L 2 (Ω) × C [0, T ], L 2 (Ω) satisfying:
(S 1 ) u (t) ∈ dom (DΦ 1 ) and v (t) ∈ dom (DΦ 2 ) for a.e. t ∈ (0, T ), (S 2 ) u and v are almost everywhere derivable in (0, T ),

(S 3 ) u (t) ∈ y 1 (t) , y 1 (t) and v (t) ∈ y 2 (t) , y 2 (t) for all t ∈ [0, T ].
If moreover (F 1 , F 2 ) is a regular TCCP-structured reaction functional, then u and v satisfy (S 4 ) u (t) ∈ dom (DΦ 1 ) and v (t) ∈ dom (DΦ 2 ) for all t ∈]0, T ], u and v possess a right derivative

d + u dt (t) and d + v dt (t) at every t ∈]0, T [, and          d + u dt (t) + DΦ 1 (u (t)) = F 1 (t, u (t) , v (t)) , d + v dt (t) + DΦ 1 (v (t)) = F 2 (t, u (t) , v (t)) .
Proof.

Step 1 (local existence). We prove that there exists a unique solution of (S) for T small enough. For T > 0 set

X T := (u, v) ∈ C ([0, T ], X) × C ([0, T ], X) : u and v fulfill condition (S 3 ) which is clearly a closed subset of the space C ([0, T ], X) × C ([0, T ], X) equipped with the norm product defined by (u, v) C×C := u C([0,T ],X) + v C([0,T ],X)
. Therefore X T is a complete metric space when equipped with the metric associated with the norm • C×C .

For each (u, v) ∈ X T , we consider the two reaction-diffusion problems with unknown Λ 1 v and Λ 2 u respectively defined by

(P 1 )      dΛ 1 v dt (t) + DΦ 1 (Λ 1 v (t)) = F 1 (t, Λ 1 v (t) , v (t)) for a.e. t ∈ (0, T ) ρ 1 ≤ Λ 1 v (0) = u 0 ≤ ρ 1 , (P 2 )      dΛ 2 u dt (t) + DΦ 2 (Λ 2 u (t)) = F 2 (t, u (t) , Λ 2 u (t)) for a.e. t ∈ (0, T ) ρ 2 ≤ Λ 2 u (0) = v 0 ≤ ρ 2 .
We first claim that (P 1 ) and (P 2 ) possess a unique solution Λ 1 v and Λ 2 u satisfying (S 1 ), (S 2 ) and (S 3 ) where Λ 1 v and Λ 2 u are substituted for u and v respectively. Indeed, for fixed (u, v) ∈ X T , set

r v (t, x) := r 1 (t, x) h 1 (v (t, x)) , f v (t, x, ζ) := r v (t, x) • g 1 (ζ) + q 1 (t, x) , r u (t, x) := r 2 (t, x) h 2 (u (t, x)) , f u (t, x, ζ ) := r u (t, x) • g 2 (ζ ) + q 2 (t, x) ,
and, for (U,

V ) ∈ L 2 (Ω)×L 2 (Ω), F v (t, U ) (x) = f v (t, x, U (x)), F u (t, V ) (x) = f u (t, x, V (x))
. Therefore, (P 1 ) and (P 2 ) may be written as

(P 1 )      dΛ 1 v dt (t) + DΦ 1 (Λ 1 v (t)) = F v (t, Λ 1 v (t)) for a.e. t ∈ (0, T ) ρ 1 ≤ Λ 1 v (0) = u 0 ≤ ρ 1 , (P 2 )      dΛ 2 u dt (t) + DΦ 2 (Λ 2 u (t)) = F u (t, Λ 2 u (t)) for a.e. t ∈ (0, T ) ρ 2 ≤ Λ 2 u (0) = v 0 ≤ ρ 2 .
The claim follows from [1, Theorem 3.1], provided that we establish that F v and F u are SVR-structured reaction functionals. For this, note that each function f v and f u satisfies the structure condition of SVRstructured reaction functions, and that condition (CP ) is fulfilled because (f 1 , f 2 ) satisfies (T CCP ), and v and u satisfy (S 3 ).

To show (S 4 ), it remains to prove that t → r v (t, •) and t → r u (t, •) from [0, T ] into L 2 (Ω) are absolutely continuous. For t → r v (t, •) the claim follows from the absolute continuity of r 1 and v, and the following estimate

r v (t, •) -r v (s, •) L 2 (Ω,R l ) ≤ r 1 (t, •) h 1 (v (t)) -r 1 (s, •) h 1 (v (t)) L 2 (Ω,R l ) + r 1 (s, •) h 1 (v (t)) -r 1 (s, •) h 1 (v (s)) L 2 (Ω,R l ) ≤ h 1 L ∞ ([y 2 (T ),y 2 (T )],R l ) r 1 (t, •) -r 1 (s, •) L 2 (Ω,R l ) + r 1 L ∞ ([0,T ]×R N ,R l ) L h1 v (t) -v (s) L 2 (Ω)
where L h1 denotes the Lipschitz constant of h 1 in [y 2 (T ) , y 2 (T )]. For t → r u (t, •) the proof is similar.

Let us consider the operator Λ :

X T → C ([0, T ], X) × C ([0, T ], X) defined by Λ (u, v) = (Λ 1 v, Λ 2 u
). We are going to establish existence of a fixed point of Λ for T > 0 small enough. Such a fixed point clearly furnishes a solution of (S) fulfilling (S 1 ) -(S 4 ). We claim that Λ (X T ) ⊂ X T . Let (u, v) ∈ X T , then Λ (u, v) = (Λ 1 v, Λ 2 u). According to the considerations above, as Λ 1 v and Λ 2 u solve (P 1 ) and (P 2 ) respectively, we have (Λ

1 v, Λ 2 u) ∈ C ([0, T ], X) × C ([0, T ], X), and y 1 (t) ≤ Λ 1 v (t) ≤ y 1 (t), y 2 (t) ≤ Λ 2 u (t) ≤ y 2 (t). Therefore (Λv, Λ 2 u) belongs to X T .
We claim that Λ is a contraction for T > 0 small enough. Let (u 1 , v 1 ) and (u

2 , v 2 ) in X T . We first estimate Λ (u 1 , v 1 ) -Λ (u 2 , v 2 ) C×C = (Λ 1 v 1 -Λ 1 v 2 ) X + (Λ 2 u 1 -Λ 2 u 2 ) X .
From (P 1 ), subtract the equation related to Λ 1 v 1 from the equation related to Λ 1 v 2 and take the scalar product in X with Λ

1 v 1 -Λ 1 v 2 .
Using the fact that DΦ 1 is a monotone operator, we obtain that for a.e. t ∈ (0, T )

1 2 d dt (Λ 1 v 1 -Λ 1 v 2 ) (t) 2 X ≤ F 1 (t, Λ 1 v 1 (t) , v 1 (t)) -F 1 (t, Λ 1 v 2 (t) , v 2 (t)) , Λ 1 v 1 (t) -Λ 1 v 2 (t) .
Thus, for a.e. t ∈ (0, T ),

d dt (Λ 1 v 1 -Λ 1 v 2 ) (t) 2 X ≤ 2 F 1 (t, Λ 1 v 1 (t) , v 1 (t)) -F 1 (t, Λ 1 v 2 (t) , v 2 (t)) X Λ 1 v 1 (t) -Λ 1 v 2 (t) X ≤ F 1 (t, Λ 1 v 1 (t) , v 1 (t)) -F 1 (t, Λ 1 v 2 (t) , v 2 (t)) 2 X + Λ 1 v 1 (t) -Λ 1 v 2 (t) 2 X . (2.5)
According to the structure of the functional F 1 , we have

F 1 (t, Λ 1 v 1 (t) , v 1 (t)) -F 1 (t, Λ 1 v 2 (t) , v 2 (t)) 2 X ≤ C (T, g 1 , h 1 ) v 1 (t) -v 2 (t) 2 X + C (T, g 1 , h 1 ) Λ 1 v 1 (t) -Λ 1 v 2 (t) 2 X (2.6) with C (T, g 1 , h 1 ) = 2 sup ζ∈[y 1 (T ),y 1 (T )] |g 1 (ζ) | 2 r 1 2 L ∞ (R N ,R l ) L h1,T , C (T, g 1 , h 1 ) = 2 sup ζ ∈[y 2 (T ),y 2 (T )] |h 1 (ζ ) | 2 r 1 2 L ∞ (R N ,R l ) L g1,T ,
where L g1,T , L h1,T denote the Lipschitz constants of the restrictions of g 1 and h 1 on [y 1 (T ) , y 1 (T )] and [y 2 (T ) , y 2 (T )] respectively. Combining (2.5) and (2.6) we infer that for a.e. t ∈ (0, T )

d dt (Λ 1 v 1 (t) -Λ 1 v 2 (t)) 2 X ≤ C (T, g 1 , h 1 ) v 1 (t) -v 2 (t) 2 X + (1 + C (T, g 1 , h 1 )) Λ 1 v 1 (t) -Λ 1 v 2 (t) 2 X . (2.7) 
By integrating this inequality over (0, s) for s ∈ [0, T ] and noticing that Λ

1 v 1 (0) = Λ 1 v 2 (0) = u 0 , we obtain Λ 1 v 1 (s) -Λ 1 v 2 (s) 2 X ≤ C (T, g 1 , h 1 ) ˆs 0 v 1 (t) -v 2 (t) 2 X dt + (1 + C (T, g 1 , h 1 )) ˆs 0 Λ 1 v 1 (t) -Λ 1 v 2 (t) 2 X dt (2.8)
from which, according to Grönwall's lemma, we deduce that for all s ∈ [0, T ],

(Λ 1 v 1 (s) -Λ 1 v 2 (s)) 2 X ≤ T C (T, g 1 , h 1 ) v 1 -v 2 2 C([0,T ],X) exp ((1 + C (T, g 1 , h 1 )) T ) .
Proceeding similarly, we obtain, with suitable adapted notation,

(Λ 2 u 1 (s) -Λ 2 u 2 (s)) 2 X ≤ T C (T, g 2 , h 2 ) u 1 -u 2 2 C([0,T ],X) exp ((1 + C (T, g 2 , h 2 )) T ) . Consequently Λ (u 1 , v 1 ) -Λ (u 2 , v 2 ) C×C ≤ C (T ) (u 1 , v 1 ) -(u 2 , v 2 ) C×C
where

C (T ) = T max C (T, g 1 , h 1 ) 1 2 exp (1 + C (T, g 1 , h 1 )) T 2 , C (T, g 2 , h 2 ) 1 2 exp (1 + C (T, g 2 , h 2 )) T 2 .
For i = 1, 2, the nonnegative constants C (T, g i , h i ) and C (T, g i , h i ) are clearly nondecreasing so that lim T →0 C (T ) = 0. Consequently Λ is a contraction for T small enough and admits a fixed point (u, v), i.e. (Λ 1 v, Λ 2 u) = (u, v) so that Λ 1 v = u and Λ 2 u = v. This proves that (u, v) solves (S).

Step 2 (uniqueness). Let (u 1 , v 1 ) and (u 2 , v 2 ) be two solutions of (S), then taking Λ 1 v 1 = u 1 and Λ 1 v 2 = u 2 in (2.8), we infer that for all s ∈ [0, T ]

u 1 (s) -u 2 (s) 2 X ≤ C (T, g 1 , h 1 ) ˆs 0 v 1 (t) -v 2 (t) 2 X dt + (1 + C (T, g 1 , h 1 )) ˆs 0 u 1 (t) -u 2 (t) 2 X dt, similarly v 1 (s) -v 2 (s) 2 X ≤ C (T, g 2 , h 2 ) ˆs 0 u 1 (t) -u 2 (t) 2 X dt + (1 + C (T, g 2 , h 2 )) ˆs 0 v 1 (t) -v 2 (t) 2 X dt.
By summing these two inequalities, we obtain for a.e. s ∈ [0, T ],

u 1 (s) -u 2 (s) 2 X + v 1 (s) -v 2 (s) 2 X ≤ C ˆs 0 u 1 (t) -u 2 (t) 2 X + v 1 (t) -v 2 (t) 2 X dt
for some nonnegative constant C. Hence, according to Grönwall's Lemma, for all s ∈ [0, T ],

u 1 (s) -u 2 (s) 2 X + v 1 (s) -v 2 (s) 2 X = 0, which proves uniqueness.
Step 3 (existence of a global solution). Denote by T * > 0 a small enough number obtained in Step 1 so that (S) admits a unique solution in 

C ([0, T * ], X) × C ([0, T * ], X) 3 . By [4, Theorem 17.2.5] or [5, Theorem 3.6]), we have √ t du dt ∈ L 2 (0, T * , X). Hence, for 0 < δ < T * , du dt belongs to L 2 (δ, T * , X). Set E := {T > δ : ∃ (u, v) ∈ C ([0, T ], X) × C ([0, T ], X) solution of (S)}. Since T * ∈ E, we have E = ∅. Set T M ax := sup E in R + and denote by (u, v) the maximal solution of (S) in C ([0, T M ax ), X) × C ([0, T M ax ), X).
2 X dt + Φ 1 (u (t)) -Φ 1 (u (δ)) ≤ ˆT 0 F 1 (t, u (t) , v (t)) 2 X dt 1 2 ˆT δ du dt (t) 2 X dt 1 2 . (2.11) For all T ∈ E, we have [y 1 (T ) , y 1 (T )] ⊂ [y 1 (T max ) , y 1 (T max )], and [y 2 (T ) , y 2 (T )] ⊂ [y 2 (T max ) , y 2 (T max )].
Thus, according to the structure of F 1 , there exists a constant

C = C r 1 L ∞ (R N ,R l ) , g 1 L ∞ ([y 1 (Tmax),y 1 (Tmax)],R l ) , h 1 L ∞ ([y 2 (Tmax),y 2 (Tmax)],R l ) such that F 1 (t, u (t) , v (t)) 2 X ≤ 2C 2 L N (Ω) + 2 q 1 (t, •) 2 X . Therefore, since inf v∈L 2 (Ω) Φ 1 (w) ≥ - C trace 2ν φ 1 2 L 2 H N -1
(∂Ω) 3 Recall that under the initial condition u 0 ∈ dom (DΦ 1 ) we are not assured that the derivative du dt of the solution belongs to L 2 (0, T * , X).

(for a proof refer to [START_REF] Hafsa | Groupe de recherche Mathématiques en Cévennes[END_REF]), and q 1 ∈ L 2 0, T max , L 2 (Ω) , inequality (2.11) yields

ˆT δ du dt (t) 2 X dt ≤ C   1 + ˆT δ du dt (t) 2 X dt 1 2  
where the new constant C does not depend on T . We infer that ˆTMax

δ du dt (t) 2 X dt = sup T ∈E ˆT δ du dt (t) 2 X dt < +∞,
from which we deduce that u : [δ, T M ax ) → X is uniformly continuous. Indeed, for s < t in [δ, T M ax ) we have

u (t) -u (s) X ≤ ˆt s du dτ (τ ) 2 X dτ ≤ (t -s) 1 2 ˆTMax δ du dτ (t) 2 X dt 1 2
and u is more precisely 1 2 -Holder continuous. Since X is a complete normed space, according to the continuous extension principle, u possesses a unique continuous extension u in [δ, T M ax ] i.e. lim t→T M ax u (t) = u (T M ax ). Similarly, from (2.10), we deduce that v possesses a unique continuous extension v in [δ, T M ax ] i.e. lim t→T M ax v (t) = v (T M ax ), which proves the claim. b) Contradiction: For T > 0, consider the two component reaction-diffusion system (S )

                         dU dt (t) + DΦ 1 (U (t)) = F 1 (t, U (t) , V (t)) for a.e. t ∈ (0, T ) dV dt (t) + DΦ 2 (V (t)) = F 2 (t, U (t) , V (t)) for a.e. t ∈ (0, T ) U (0) = u (T max ) , V (0) = v (T max ) ρ 1 ≤ U (0) ≤ ρ 1 , ρ 2 ≤ V (0) ≤ ρ 2
where ρ 1 = y 1 (T max ), ρ 1 = y 1 (T max ), and ρ 2 = y 2 (T max ), ρ 2 = y 2 (T max ). Note that U (0) ∈ dom (DΦ 1 ) and V (0) ∈ dom (DΦ 2 ). Then according to step 1, there exists T * * > 0 small enough such that (S ) possesses a solution (U,

V ) ∈ C ([0, T * * ], X) × C ([0, T * * ] , X). Set u (t) = u (t) if t ∈ [0, T M ax ] U (t -T M ax ) if t ∈ [T M ax , T M ax + T * * ] ,
and

v (t) = v (t) if t ∈ [0, T M ax ] V (t -T M ax ) if t ∈ [T M ax , T M ax + T * * ] . Then ( u, v) ∈ C ([0, T M ax + T * * ] , X) × C ([0, T M ax + T * * ] , X
) is a solution of (S), which leads to a contradiction with the maximality of T M ax .

Remark 2.2. By using [1, Corollary 3.2], and arguing as in the proof above, the conclusion of Theorem 2.1 still holds if for i = 1 or i = 2, the functional Φ i is of the form

Φ i (u) =    ˆΩ W i (x, ∇u (x)) dx if u ∈ H 1 Γi (Ω) , +∞ otherwise,
and

ρ i ≤ 0 ≤ ρ i (recall that H 1 Γi (Ω) = {v ∈ H 1 (Ω) : u = 0 on Γ i }. The domain of ∂Φ i contains the Dirichlet-Neumann boundary conditions as stated in [1, Lemma 3.2]: dom (∂Φ i ) = w ∈ H (Ω) : div D ξ W i (•, ∇w) ∈ L 2 (Ω) , w = 0 on Γ i , D ξ W i (•, ∇w) • η = 0 on ∂Ω \ Γ i .
Remark 2.3. A careful analysis of the proof of [START_REF] Hafsa | Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization[END_REF]Corollary 3.1] shows that its conclusion still holds when Φ i = 0 for i = 1 or i = 2 (in the sense W i = a i = φ i = 0). Indeed the lower condition α|ξ| 2 ≤ W i (x, ξ) with α > 0, only serves to ensure that inf v∈L 2 (Ω) Φ i (v) > -∞. Therefore Theorem 2.1 remains valid for systems (S) coupling a reaction-diffusion equation (r.d.e.) with a non diffusive reaction equation (n.d.r..e.) (see Example 2.5), or two non diffusive reaction equations (n.d.r.e..).

General convergence theorem for a class of two components reaction-diffusion systems

For each i = 1, 2, let (Φ i,n ) n∈N be a sequence of functional of the calculus of variations where Φ i,n :

L 2 (Ω) → R ∪ {+∞} is defined by Φ i,n (u) =    ˆΩ W n (x, ∇u (x)) dx + 1 2 ˆ∂Ω a i,n u 2 dH N -1 - ˆ∂Ω φ i,n u dH N -1 if u ∈ H 1 (Ω) , +∞ otherwise.
We assume that

φ i,n ∈ L 2 H N -1 (∂Ω), a i,n ∈ L ∞ H N -1 (∂Ω) with a i,n ≥ 0 H N -1
a.e. in ∂Ω, and a i,n ≥ σ i,n on Γ i ⊂ ∂Ω with H N -1 (Γ i ) > 0 for some σ i,n > 0 and that W i,n : R N × R N → R is a Borel measurable function which fulfills the following conditions:

(D 1,n ) there exist {α i,n } ⊂ R * + and {β i,n } ⊂ R * + , such that for a.e. x ∈ R N and all ξ ∈ R N and all n ∈ N, α i,n |ξ| 2 ≤ W i,n (x, ξ) ≤ β i,n 1 + |ξ| 2 , (D 2,n ) for a.e. x ∈ R N , ξ → W i,n (x, ξ
) is a differentiable and convex function, and

D ξ W i,n (x, 0) = 0, (D 3,n ) ∃γ i > 0, s. t. for all ξ ∈ R N , inf n∈N inf x∈R N D ζ W i,n (x, ξ) .ξ ≥ γ i |ξ| 2 .
In the following we fix T > 0 and consider a sequence ((F 1,n , F 2,n )) n∈N of TCSVR-functionals, each of them being associated with (r i,n , g i,n , h i,n , q i,n ), i.e. F i,n (t, u, v) (x) = f i,n (t, x, u (x) v (x)) for all t ∈ [0, T ], a.e. x ∈ Ω, and all (u, v) ∈ L 2 (Ω) 2 , where

f 1,n (t, x, ζ, ζ ) = r 1,n (t, x) h i,n (ζ ) • g 1,n (ζ) + q 1,n (t, x) for all (t, x, ζ) ∈ [0, +∞) × R N × R, f 2,n (t, x, ζ, ζ ) = r 2,n (t, x) h 2,n (ζ) • g 2,n (ζ ) + q 2,n (t, x) for all (t, x, ζ) ∈ [0, +∞) × R N × R. (3.1) 
We assume that for all n ∈ N, h i,n and g i,n are locally Lipschitz functions, uniformly with respect to n, i.e. for all interval I ⊂ R, there exists L I ≥ 0 and L I ≥ 0 such that

sup n∈N |g i,n (ζ) -g i,n (ζ ) | ≤ L I |ζ -ζ | , ∀ (ζ, ζ ) ∈ R 2 , sup n∈N |h i,n (ζ) -h i,n (ζ ) | ≤ L I |ζ -ζ | , ∀ (ζ, ζ ) ∈ R 2 .
(3.2)

The functions r i,n and q i,n are uniformly absolutely continuous, i.e.

sup n ˆT 0 dr i,n dt (t, •) L 2 (Ω,R l ) dt < +∞, sup n ˆT 0 dq i,n dt (t, •) L 2 (Ω) dt < +∞. (3.3) 
We finally assume that

ρ i := inf n y i,n (T ) > -∞ and ρ i := sup n y i,n (T ) < +∞, (3.4) 
and, for all n ∈ N,

a i,n ρ i,n ≤ φ i,n ≤ a i,n ρ i,n on ∂Ω (3.5)
where for i = 1, 2, y i,n , y i,n , ρ i,n and ρ i,n are given by condition (T CCP ) fulfilled by (F 1,n , F 2,n ). Recall that y i,n and y i,n are solution of ODE i and ODE i with f i,n , f i,n and initial condition ρ i,n and ρ i,n respectively.

Recall that a sequence (Φ n ) n∈N of lower semicontinuous convex proper functionals Φ n : L 2 (Ω) → R ∪ {+∞} Mosco-converges to a functional Φ if (Φ n ) n∈N Γ-converges to Φ when the Γ-convergence is associated both with the strong and the weak topology of L 2 (Ω). We write Φ i,n M → Φ i . For details consult Appendix C and references therein. Theorem 3.1 (General convergence theorem). Assume that for i = 1, 2, the sequence (W i,n ) n∈N satisfies conditions (D 1,n ), (D 2,n ), (D 3,n ), and that the sequence of TCCP-structured reaction functionals (F 1,n , F 2,n ) n∈N satisfies conditions (3.2) (3.3), (3.4), (3.5). Let (u n , v n ) be the unique solution of the system

(S n )                  du n dt (t) + DΦ 1,n (u n (t)) = F 1,n (t, u n (t) , v n (t)) for a.e. t ∈ (0, T ) dv n dt (t) + DΦ 2,n (v n (t)) = F 2,n (t, u n (t) , v n (t)) for a.e. t ∈ (0, T ) ρ 1,n ≤ u 0 n = u n (0) ≤ ρ 1,n , ρ 2,n ≤ v 0 n = v n (0) ≤ ρ 2,n , u 0 n ∈ dom (Φ 1,n ) , v 0 n ∈ dom (Φ 2,n ) . Assume that (Hs1) Φ i,n M → Φ i and sup n∈N φ i,n L 2 H N -1 (∂Ω) < +∞; (Hs2) sup n∈N Φ 1,n u 0 n < +∞ and sup n∈N Φ 2,n v 0 n < +∞; (Hs3) u 0 n → u 0 and v 0 n → v 0 strongly in L 2 (Ω);
(Hs4) g i,n and h i,n pointwise converge to g i and h i respectively; 

(Hs5) sup n r i,n L ∞ ([0,T ]×R N ,R l ) < +∞ and r i,n r i in L 2 0, T, L 2 Ω, R l where r i ∈ L ∞ [0, T ] × R N , R l ; (Hs6) For all t ∈ [0, T ], sup n q i,n (t, •) L 2 (Ω) < +∞ and q i,n q i in L 2 0, T, L 2 (Ω) . Then (u n , v n ) uniformly converges in C [0, T ], L 2 (Ω) × C [0, T ], L 2 (Ω) to the unique solution (u, v) of the system (S)                  du dt (t) + ∂Φ 1 (u (t)) F 1 (t, u (t) , v (t) 
ρ 1 ≤ u 0 = u (0) ≤ ρ 1 , ρ 2 ≤ v 0 = v (0) ≤ ρ 2 , u 0 ∈ dom (Φ 1 ) , v 0 ∈ dom (Φ 2 ) .
The reaction functionals

F i : [0, +∞) × L 2 (Ω) × L 2 (Ω) → R Ω , i = 1, 2,
are defined for all t ∈ [0, T ], all (U, V ) ∈ L 2 (Ω) × L 2 (Ω) and for a.e. x ∈ Ω, by 

F i (t, U, V ) (x) = f i (t, x, U (x) , V (x)) , f 1 (t, x, ζ, ζ ) = r 1 (t, x) h 1 (ζ ) • g 1 (ζ) + q 1 (t, x) , f 2 (t, x, ζ, ζ ) = r 2 (t, x) h 2 (ζ) • g 2 (ζ ) + q 2 (t, x) . Moreover ρ 1 ≤ u ≤ ρ 1 , ρ 2 ≤ v ≤ ρ 2 ,
weakly in L 2 0, T, L 2 (Ω) × L 2 0, T, L 2 (Ω) . Furthermore, if Φ 1,n u 0 n , Φ 1,n v 0 n → Φ u 0 , Φ v 0 , r i,n → r i strongly in L 2 0, T, L 2 Ω, R l , and q i,n → q i strongly in L 2 0, T, L 2 (Ω) , then dun dt , dun dt → du dt , dv dt strongly in L 2 0, T, L 2 (Ω) × L 2 0, T, L 2 (Ω) . Proof. Since dom (Φ i,n ) ⊂ dom (DΦ i,n ), we have u 0 n , v 0 n ∈ dom (DΦ 1,n ), dom (DΦ 2,n
) , so that, according to Theorem 2.1, (P n ) admits a unique solution (u n , v n ) which satisfies (S 2 ) -(S 4 ) of Theorem 2.1. We follow the strategy of the proof of [1, Theorem 4.1].

Step 1. We establish

ρ 1 ≤ u n ≤ ρ 1 and ρ 2 ≤ v n ≤ ρ 2 ;
(3.6) Let us establish (3.8). In what follows the letter C denotes various constants which can vary from line to line. By using the structure of the TCCP-structured reaction functional F n , and from (3.7) and hypothesis (Hs5), we easily infer that

g i := sup (ζ,n)∈[ρ i ,ρ i ]×N |g i,n (ζ) | < +∞, h i := sup (ζ,n)∈[ρ i ,ρ i ]×N |h i,n ( 
F i,n (t, u n (t) , v n (t)) 2 X ≤ 2L N (Ω) r i,n 2 ∞ g 2 i h 2 i + 2 q i,n (t, •) 2 X ≤ C 1 + q i,n (t, •) 2 X . (3.9) 
Thus, according to (Hs6), we deduce

sup n ˆT 0 F i,n (t, u n (t) , v n (t)) 2 X dt < +∞. (3.10)
On the other hand, from (S n ) we infer that for a.e. t ∈ (0, T ),

du n dt (t) 2 X + DΦ 1,n (u n (t)) , du n dt (t) = F 1,n (t, u n (t) , v n (t)) , du n dt (t) dv n dt (t) 2 X + DΦ 2,n (u n (t)) , dv n dt (t) = F 2,n (t, u n (t) , v n (t)) , dv n dt (t) .
By integrating over (0, T ), we obtain

ˆT 0 du n dt (t) 2 X dt + ˆT 0 DΦ 1,n (u n (t)) , du n dt (t) dt = ˆT 0 F 1,n (t, u n (t) , v n (t)) , du n dt (t) dt, ˆT 0 dv n dt (t) 2 X dt + ˆT 0 DΦ 2,n (v n (t)) , dv n dt (t) dt = ˆT 0 F 2,n (t, u n (t) , v n (t)) , dv n dt (t) dt. (3.11) Since u 0 n , v 0 n ∈ (dom (Φ 1,n ) , dom (Φ 2,n
)), we deduce that dun dt , dvn dt belongs to L 2 (0, T, X)×L 2 (0, T, X) and t → Φ 1,n (u n (t)), t → Φ 2,n (v (t)) are absolutely continuous (see [ 

2 X dt = -Φ 1,n (u n (T )) + Φ 1,n u 0 n + ˆT 0 F 1,n (t, u n (t) , v n (t)) , du n dt (t) dt (3.12) ≤ -inf w∈L 2 (Ω) Φ 1,n (w) + sup n Φ 1,n u 0 n + ˆT 0 F 1,n (t, u n (t) , v n (t)) 2 X 1 2 ˆT 0 du n dt (t) 2 X 1 2
where inf

v∈L 2 (Ω) Φ 1,n (w) ≥ - C trace 2ν φ 1,n 2 L 2 H N -1 (∂Ω) .
From (Hs1), (Hs2), and (3.10), (3.12) yields that there exists a constant C ≥ 0 such that

ˆT 0 du n dt (t) 2 X dt ≤ C   1 + ˆT 0 du n dt (t) 2 X dt 1 2   .
Reasoning similarly with the second equality in (3.11), we obtain

ˆT 0 dv n dt (t) 2 X dt ≤ C   1 + ˆT 0 dv n dt (t) 2 X dt 1 2   ,
from which we deduce (3.8).

Step 2. We prove that there exist (u, v) ∈ C ([0, T ], X) × C ([0, T ], X), and a subsequence of

((u n , v n )) n∈N not relabeled, satisfying (u n , v n ) → (u, v) in C ([0, T ], X) × C ([0, T ], X) equipped with the norm • C×C .
Basically we apply the Ascoli-Arzela compactness theorem for (u n ) n∈N and (v n ) n∈N . We reason for (u n ) n∈N , the same reasoning holds for (v n ) n∈N . From (3.6), (u n ) n∈N is bounded in C ([0, T ], X). Moreover for (s, t) ∈ [0, T ] 2 with s < t, we have

u n (t) -u n (s) X ≤ ˆt s du n dt (τ ) X dτ ≤ (t -s) 1 2
du n dt L 2 (0,T,X) ≤ (t -s) ), then possesses a right derivative at t (at t = T , this is due to the fact that u n exists in C ([0, +∞), X) so that the right derivative of u n at t = T is nothing but the right derivative of the restriction of u n to [0, T ]). Moreover

du + n dt (t) + DΦ 1,n (u n (t)) = F 1,n (t, u n (t) , v n (t)) .
Taking u n (t) as a test function, we infer that

du + n dt (t) , u n (t) + DΦ 1,n (u n (t)) , u n (t) = F 1,n (t, u n (t) , v n (t)) , u n (t) ,
hence, from the Green formula and the fact that

u n (t) ∈ dom DΦ 1,n , ˆΩ D ξ W 1,n (x, ∇u n (t)) • ∇u n (t) dx = ˆ∂Ω D ξ W 1,n (x, ∇ u n (t)) • nu n (t) dH N -1 - ˆΩ du + n dt (t) u n (t) dx + ˆΩ F 1,n (t, u n (t) , v n (t)) dx = ˆ∂Ω (φ i,n -a 1,n u n (t)) u n (t) dH N -1 - ˆΩ du + n dt (t) u n (t) dx + ˆΩ F 1,n (t, u n (t) , v n (t)) dx ≤ ˆ∂Ω φ i,n u n (t) dH N -1 - ˆΩ du + n dt (t) u n (t) dx + ˆΩ F 1,n (t, u n (t) , v n (t)) dx. Take 0 < ν < 2γ
Ctrace where γ is the positive constant of the uniform strong convexity condition (D 3,n ), and C trace is the constant of continuity of the trace operator. Set b := max |ρ 1 |, |ρ 1 | . From (D 3,n ), (3.6) and (3.9), we deduce that 

γ ˆΩ |∇u n (t) | 2 dx ≤ φ 1,n L 2 H N -1 (∂Ω) u n (t) L 2 H N -1 (∂Ω) + bL N (Ω) 1 2 du + n dt (t) X + F 1,n (t, u n (t) , v n (t)) X ≤ C trace 2ν φ 1,n 2 L 2 H N -1 (∂Ω) + C trace ν 2 u n (t) 2 H 1 (Ω) + bL N (Ω) 1 2 du + n dt (t) X + F 1,n (t, u n (t) , v n (t)) X ≤ C trace 2ν φ 1,n 2 L 2 H N -1 (∂Ω) + C trace ν 2 ˆΩ |∇u n (t) | 2 dx + b 2 L N (Ω) + b L N (Ω) 1 2 du + n dt (t) X + F 1,n (t, u n (t) , v n (t)) X . Hence γ - C trace ν 2 ˆΩ |∇u n (t) | 2 dx ≤ C trace 2ν sup n φ 1,n 2 L 2 H N -1 (∂Ω) + b 2 C trace ν 2 L N (Ω) +bL N (Ω)
(G n , [0, T ]) of G n in [0, T ]: Var (G n , [0, T ]) = ˆT 0 G n dt (t) X dt ≤ C 1 + ˆT 0 dv n dt (t) X dt + ˆT 0 du n dt (t) X dt (3.15)
where C is a nonnegative constant which does not depend on n. To shorten the notation, we omit the index i = 1. According to the structure of F 1,n , to (3.7), (3.3), and hypothesis (Hs6), we have

G n (t) -G n (s) X ≤ gh r n (t) -r n (s) L 2 (Ω,R l ) + q n (t) -q n (s) X + sup n∈N r n ∞ g n (u n (t)) • h n (v n (t)) -g n (u n (s)) • h n (v n (s)) X ≤ gh ˆt s dr n dt (t, •) L 2 (Ω,R l ) dt + ˆt s dq n dt (t, •) X + sup n∈N r n ∞ g n (u n (t)) • h n (v n (t)) -g n (u n (s)) • h n (v n (s)) X . (3.16)
On the other hand, from (3.2) and (3.7), we infer that Step 3. We assert that dun dt , dvn dt du dt , dv dt weakly in L 2 (0, T, X) × L 2 (0, T, X) for a non relabeled subsequence, and that

g n (u n (t)) • h n (v n (t)) -g n (u n (s)) • h n (v n (s)) X ≤ gL [ρ 2 ,ρ 2 ] v n (t) -v n (s) X + hL [ρ 1 ,ρ 1 ] u n (t) -u n (s) X ≤ gL [ρ 2 ,ρ 2 ] ˆt s dv n dσ (σ) X dσ + hL [ρ 1 ,ρ 1 ] ˆt s du n dσ (σ) X dσ. ( 3 
ρ 1 ≤ u ≤ ρ 1 , ρ 2 ≤ u ≤ ρ 2 .
The first claim is a straightforward consequence of (3.8) and Step 2. The second follows from inequality

ρ 1,n ≤ u n ≤ ρ 1,n , ρ 2,n ≤ v n ≤ ρ 2,n , (3.4), and (u n , v n ) → (u, v) in C ([0, T ], X).
Step 4. We prove that (u, v) is the unique solution of (S). The proof mimics that of [START_REF] Hafsa | Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization[END_REF]Theorem 4.1]. We give a sketch of the proof. According to the Fenchel extremality condition (see [START_REF] Attouch | Variational analysis in Sobolev and BV space: application to PDEs and Optimization, Second Edition[END_REF]Proposition 9.5.1]), the fact that (u n , v n ) solves (S n ), is equivalent to

ˆT 0 Φ 1,n (u n (t)) + Φ * 1,n G 1,n (t) - du n dt (t) dt + 1 2 u n (T ) 2 -u 0 n 2 - ˆT 0 G 1,n (t) , u n (t) dt = 0, ˆT 0 Φ 2,n (u n (t)) + Φ * 2,n G 2,n (t) - dv n dt (t) dt + 1 2 v n (T ) 2 -v 0 n 2 - ˆT 0 G 2,n (t) , u n (t) dt = 0,
where G i,n (t) = F i,n (t, u n (t) , v n (t)). Observe that the functionals defined in L 2 0, T, L 2 (Ω) by

w → ˆT 0 Φ i,n (w (t)) dt, w → ˆT 0 Φ * i,n (w (t)) dt Mosco-converge to w → ˆT 0 Φ i (w (t)) dt, w → ˆT 0 Φ * i (w (t)) dt
respectively (refer to [START_REF] Hafsa | Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization[END_REF]Lemma 4.1]). Thus going to the limit in two previous equalities, from Step 2,

Step 3, and Lemma 3.1 below, we obtain

ˆT 0 Φ 1 (u (t)) + Φ * 1 G 1 (t) - du dt (t) dt + 1 2 u (T ) 2 -u 0 2 - ˆT 0 G 1 (t) , u (t) dt = 0, ˆT 0 Φ 2 (u (t)) + Φ * 2 G 2 (t) - dv dt (t) dt + 1 2 v (T ) 2 -v 0 2 - ˆT 0 G 2 (t) , u (t) dt = 0,
where

G i (t) = F i (t, u (t) , v (t)
). Observe that we applied the Legendre-Fenchel inequality in order to obtain equality above. This proves that (u, v) solves (S).

Lemma 3.1.

For i = 1, 2, the functional G i,n = F i,n (•, u n , v n ) weakly converges in L 2 (0, T, X) to the functional G i defined by G i (t) = F i (t, u (t) , v (t)) where F 1 (t, u (t) , v (t)) = r 1 (t) h 1 (v (t)) • g 1 (u (t)) + q 1 (t), and F 2 (t, u (t) , v (t)) = r 2 (t) h 2 (v (t)) • g 2 (u (t)) + q 2 (t).
Proof of Lemma 3.1. We only prove the weak convergence of G 1 and omit index 1. The weak convergence of G 2 is similar. Recall that G n (t) = H n (t) + q n (t) where

H n (t) (x) = r n (t, x) h n (v n (t, x)) • g n (u n (t, x)) = r n (t, x) • h n (v n (t, x)) g n (u n (t, x)) .
Since q n q in L 2 (0, T, X), we are reduced to prove that H n H in L 2 (0, T, X) where

H (t) (x) = r (t, x) h (v (t, x)) • g (u (t, x)) = r (t, x) • h (v (t, x)) g (u (t, x)) .
Hence, since r n r in L 2 (0, T, X), it suffices to establish that

h n (v n ) g n (u n ) → h (v) g (u) (3.18)
strongly in L 2 Ω, X l , where X l denotes the space L 2 Ω, R l . We have 4

h n (v n (t)) g n (u n (t)) -h (v (t)) g (u (t)) X l ≤ h n (v n (t)) g n (u n (t)) -h n (v n (t)) g (u (t)) X l + h n (v n (t)) g (u (t)) -h (v (t)) g (u (t)) X l ≤ h g n (u n (t)) -g (u (t)) X l + g h n (v n (t)) -h (v (t)) X l ≤ hL [ρ 1 ,ρ 1 ] u n (t) -u (t) X + h g n (u (t)) -g (u (t)) X l + gL [ρ 2 ,ρ 2 ] v n (t) -v (t) X + g h n (v (t)) -h (v (t)) X l .
Hence, to prove (3.18), it remains to establish that

ˆT 0 g n (u (t)) -g (u (t)) 2 X l dt → 0, ˆT 0 h n (v (t)) -h (v (t)) 2 X l dt → 0 (3.19) ˆT 0 u n (t) -u (t) 2 X dt → 0 (3.20) ˆT 0 v n (t) -v (t) 2 X dt → 0. (3.21)
The two convergences in (3.19) are a straightforward consequence of hypothesis (Hs4) and the Lebesgue dominated convergence theorem. Convergences (3.20) and (3.21) follow from Step 2., this completes the proof of Lemma 3.1.

Step 4 completes the proof of Theorem 3.1.

4.

Convergence theorem for problems coupling r.d.e. and n.d.r.e.

We keep the notation of the previous section and assume that Φ 2,n ≡ 0. For obtaining the compactness of (

v n ) n∈N in C [0, T ], L 2 (Ω) (
Step 2 in the proof of Theorem 3.1), we can no longer invoke the strict convexity of W 2,n ensured by (D 3,n ). To overcome the difficulty, we assume additional regularity conditions on the reaction functional and the initial condition for the non diffusive equation. To shorten the notation we denote by Φ n the functional Φ 1,n and by W n the density W 1,n . The theorem below provides a convergence result for FitzHugh-Nagumo like models (see Example 2.5).

In the following, we equip the spaces C 1 [ρ i , ρ i ], R l , i = 1, 2, with their uniform norms defined by

|ϕ| [ρ i ,ρ i ] := sup ζ∈[ρ i ,ρ i ] |ϕ (ζ) | + sup ζ∈[ρ i ,ρ i ] dϕ dζ (ζ) . The spaces C 1 [ρ 1 , ρ 1 ], R l × C 1 [ρ 2 , ρ 2 ], R l and C 1 [ρ 2 , ρ 2 ], R l × C 1 [ρ 1 , ρ 1 ], R l are endowed with their product norm. Theorem 4.1. Assume that the sequence of densities (W n ) n∈N satisfies conditions (D 1,n ), (D 2,n ), (D 3,n ),
and that the sequence of TCCP-structured reaction functionals (F 1,n , F 2,n ) n∈N satisfies conditions (3.2), (3.3), (3.4), and (3.5). Assume furthermore that g 2,n and h 2,n belong to C 1 loc R, R l , and that r 2,n and q 2,n do not depend on the spatial variable. Let (u n , v n ) be the unique solution of the system

(S n )                  du n dt (t) + DΦ n (u n (t)) = F 1,n (t, u n (t) , v n (t)) for a.e. t ∈ (0, T ) dv n dt (t) = F 2,n (t, u n (t) , v n (t)) for a.e. t ∈ (0, T ) ρ 1,n ≤ u 0 n = u n (0) ≤ ρ 1,n , ρ 2,n ≤ v 0 n = v n (0) ≤ ρ 2,n , u 0 n ∈ dom (Φ n ) , v 0 n ∈ H 1 (Ω) .
Assume (Hs1), (Hs2), (Hs5), (Hs6) for i = 1 and

(Hs 3 ) u 0 n → u 0 strongly in L 2 (Ω) and v 0 n v 0 weakly in H 1 (Ω); (Hs 4 ) (g 1,n , h 1,n ) pointwise converges to (g 1 , h 1 ), and (g 2,n , h 2,n ) converges to (g 2 , h 2 ) in C 1 [ρ 2 , ρ 2 ], R l × C 1 [ρ 1 , ρ 1 ], R l .
Then the solution

(u n , v n ) uniformly converges in C [0, T ], L 2 (Ω) × C [0, T ], L 2 (Ω) to the unique solution (u, v) of the system (S)                  du dt (t) + ∂Φ (u (t)) F 1 (t, u (t) , v (t)) for a.e. t ∈ (0, T ) dv dt (t) = F 2 (t, u (t) , v (t)) for a.e. t ∈ (0, T ) ρ 1 ≤ u 0 = u (0) ≤ ρ 1 , ρ 2 ≤ v 0 = v (0) ≤ ρ 2 , u 0 ∈ dom (Φ) , v 0 ∈ H 1 (Ω) .
The reaction functionals

F i : [0, +∞) × L 2 (Ω) × L 2 (Ω) → R Ω , i = 1, 2, are defined for all t ∈ [0, T ], all (U, V ) ∈ L 2 (Ω) × L 2
(Ω) and for a.e. x ∈ Ω, by 

F i (t, U, V ) (x) = f i (t, x, U (x) , V (x)) , f 1 (t, x, ζ, ζ ) = r 1 (t, x) h 1 (ζ ) • g 1 (ζ) + q 1 (t, x) , f 2 (t, ζ, ζ ) = r 2 (t) h 2 (ζ) • g 2 (ζ ) + q 2 (t) . Moreover ρ 1 ≤ u ≤ ρ 1 , ρ 2 ≤ v ≤ ρ 2 ,
weakly in L 2 0, T, L 2 (Ω) × L 2 0, T, L 2 (Ω) . Furthermore, if Φ n u 0 n → Φ u 0 , r i,n → r i strongly in L 2 0, T, L 2 Ω, R l
, and q i,n → q i strongly in L 2 0, T, L 2 (Ω) , then dun dt , dun dt → du dt , dv dt strongly in L 2 0, T, L 2 (Ω) × L 2 0, T, L 2 (Ω) . Proof. The arguments of the proof of Theorem 3.1 remain valid, except those of Step 2. Therefore, we only have to modify the proof of Step 2. Because of the non strict convexity of Φ 2,n ≡ 0, the proof of the relative compactness of F t = {v n (t) : n ∈ N} in L 2 (Ω) for t ∈]0, T ] cannot be obtained by following the same arguments. The proof of the relative compactness of E t = {u n (t) : n ∈ N} in L 2 (Ω) for t ∈ (0, T ] remains the same. We are going to estimate sup n∈N ∇v n (t) L 2 (Ω) by using Grönwall's lemma, and will conclude to the compactness of F t , according to the compact embedding H 1 (Ω) → L 2 (Ω). Take the distributional derivative of F 2 with respect to the space variable. We obtain

∇F 2 (t, u n (t) , v n (t)) = r 2,n (t) dh 2,n dζ (u n (t)) • g 2,n (v n (t)) ∇u n (t) + r 2,n (t) h 2,n (u n (t)) • dg 2,n dζ (v n (t)) ∇v n (t) .
In the following, we set for all t ∈ [0, T ] and for a.e. x ∈ Ω:

r 2,n (t) dh 2,n dζ (u n (t, x)) • g 2,n (v n (t, x)) := A n (t, x) , r 2,n (t) h 2,n (u n (t, x)) • dg 2,n dζ (v n (t, x)) := B n (t, x) .
From (3.6),(Hs 4 ) and (Hs5), we deduce that sup

(t,x,n)∈[0,T ]×Ω×N |A n (t, x) | := A < +∞ and sup (t,x,n)∈[0,T ]×Ω×N |B n (t, x) | := B < +∞.
Set V n (t) := ∇v n (t). Take the distributional derivative with respect to the space variable of each term of the second equation of (S n ). From the previous calculation, we infer that V n solves the Cauchy problem

     dV n dt (t) = A n (t) ∇u n (t) + B n (t) V n (t) for a.e. t ∈ (0, T ) , V n (0) = ∇v 0 n , and belongs to C [0, T ], X N where X N := L 2 Ω, R N (see for instance [1, Theorem 2.3] with F (t, V ) = A n (t) ∇u n (t) + B n (t) V ,
and X N substitute for X). Hence, for all t ∈ (0, T ],

V n (t) = V n (0) + ˆt 0 (A n (s) ∇u n (s) + B n (t) V n (s)) ds, from which we deduce V n (t) X N ≤ ∇v 0 n X N + A ˆt 0 ∇u n (s) X N ds + B ˆt 0 V n (s) X N ds.
According to Grönwall's lemma, we infer that for all t ∈ (0, T ] (note that s → V n (s

) X N is continuous in [0, T ]) V n (t) X N ≤ ∇v 0 n X N + A ˆT 0 ∇u n (s) X N ds exp BT .
From (Hs 3 ) and the fact that (u n (t)) n∈N is bounded in H 1 (Ω) for all t ∈ (0, T ] (see Step 2 in the proof of Theorem 3.1), we infer from the estimate above, that (∇v n (t)) n∈N is bounded in X N . Therefore u n (t) is bounded in H 1 (Ω) for all t ∈ [0, T ], which completes the proof. Hence, for all t ∈ (0, T ],

           U n (t) = U n (0) + ˆt 0 (C n (s) V n (s) + D n (t) U n (s)) ds, V n (t) = V n (0) + ˆt 0 (A n (s) U n (s) + B n (t) V n (s)) ds, from which we deduce            U n (t) X N ≤ ∇u 0 n X N + C ˆt 0 V n (s) X N ds + D ˆt 0 U n (s) X N ds, V n (t) X N ≤ ∇v 0 n X N + A ˆt 0 U n (s) X N ds + B ˆt 0 V n (s) X N ds.
From Grönwall's lemma and the first equation, we infer that for all t ∈ (0, T ]

U n (t) X N ≤ ∇u 0 n X N + C ˆt 0 V n (s) X N ds exp DT ,
so that the second equation gives

V n (t) X N ≤ ∇v 0 n X N + A ˆt 0 ∇u 0 n X N + C ˆs 0 V n (σ) X N dσ exp DT ds + B ˆt 0 V n (s) X N ds ≤ ∇v 0 n X N + AT exp DT ∇u 0 n X N + T exp DT AC + B ˆt 0 V n (s) X N ds.
By applying again Grönwall's lemma, we finally obtain that for all t ∈ [0, T ],

V n (t) X N ≤ ∇v 0 n X N + AT exp DT ∇u 0 n X N exp T T exp DT AC + B . From (Hs" 1 ) we infer that sup n∈N V n (t) X N < +∞. Switching the role of V n and U n , we obtain that sup n∈N U n (t) X N < +∞.

Stochastic homogenization of two components reaction diffusion systems

We place this section within the framework of stochastic homogenization introduced in [START_REF] Hafsa | Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization[END_REF]. In all what follows, Σ, A, P, (T z ) z∈Z N is a discrete dynamical system, F denotes the σ-algebra of invariant sets of A by the group (T z ) z∈Z N and, for every h in the space L P (Σ) of P-integrable functions, E F h denotes the conditional expectation of h with respect to F (for the relevant definitions, we refer to [START_REF] Maso | Nonlinear stochastic homogenization and ergodic theory[END_REF] or [START_REF] Attouch | Variational analysis in Sobolev and BV space: application to PDEs and Optimization, Second Edition[END_REF]Section 12.4] and references therein). We first specify the random diffusion part by recalling some results obtained in [1, Section 5].

5.1. The random diffusion part. Given α > 0 and β > 0, denote by Conv α,β the class of functions g : R N × R N → R, (x, ξ) → g (x, ξ), satisfying conditions (D 1 ), (D 2 ), (D 3 ), and (D 4 ). We equip Conv α,β with the σ-algebra denoted by T Conv α,β , trace of the product σ-algebra of R R N ×R N , i.e. the smallest σ-algebra on Conv α,β such that all the evaluation maps e (x,ξ) : g → g (x, ξ) , (x, ξ) ∈ R N × R N are measurable when R is endowed with its Borel σ-algebra.

For i = 1, 2, we are given a random convex integrand

W i : Σ × R N × R N → R, that is to say, a A ⊗ B R N ⊗ B R N , B ( 
R) measurable function such that for every ω ∈ Σ, the function W i (ω, ., •), belongs to the class Conv α,β . Since for all (x, ξ) ∈ R N × R N , ω → W i (ω, x, ξ) is (A, B (R)) measurable, the map W i : Σ → Conv α,β , ω → W i (ω, ., •), is A, T Conv α,β measurable, and we denote by P its law, that is P = W #P.

We assume that W i fulfills the following covariance property with respect to the dynamical system Σ, A, P, (T z ) z∈Z N : for all z ∈ Z N W i (T z ω, x., ξ) = W i (ω, x + z, ξ) for a.e. x ∈ R N , for all ξ ∈ R N , and for P a.e. ω ∈ Σ. For all g in Conv α,β and all z ∈ Z N , let us set T z g (x, •) = g (x + z, •). This defines a group T z z∈Z N acting on the class Conv α,β , and clearly, for all z ∈ Z N , T z : Conv α,β → Conv α,β is T Conv α,β -measurable. Then it is easy to show that the covariance property implies that the law P i of W i is invariant under the group T z z∈Z N , that is T z # P i = P i for all z ∈ Z N . Each random function W i is said to be periodic in law.

We write ε to denote a sequence (ε n ) n∈N of positive numbers ε n going to zero when n → +∞, and we briefly write ε → 0 instead of lim n→+∞ ε n = 0. For i = 1, 2, we consider Φ i,ε : Σ×L 2 (Ω) -→ R + ∪{+∞} defined by

Φ i,ε (ω, u) =    ˆΩ W i ω, x ε , ∇u dx + 1 2 ˆ∂Ω a i u 2 dH N -1 - ˆ∂Ω φ i u dH N -1 if u ∈ H 1 (Ω) ,

+∞ otherwise

where

φ i ∈ L 2 H N -1 (∂Ω), a i ∈ L ∞ H N -1 (∂Ω) with a i ≥ 0 H N -1
a.e. in ∂Ω, and a i ≥ σ i on Γ i ⊂ ∂Ω with H N -1 (Γ i ) > 0 for some σ i > 0. These functionals model random energies concerning various steadystates situations, where the small parameter ε accounts for the size of small and randomly distributed heterogeneities in the context of a statistically homogeneous media. Under above hypotheses on W i with respect to the discrete dynamical system Σ, A, P, (T z ) z∈Z N , using the subadditive ergodic theorem ([4, Theorem 12.4.3]), together with [1, Proposition 4.2] we establish that P-almost surely, the sequence of functional Φ i,ε (ω, •) ε>0 Mosco-converges to the integral functional

Φ hom i (ω, •), Φ hom i : Σ × L 2 (Ω) -→ R + ∪ {+∞} where Φ hom i (ω, u) =    ˆΩ W hom i (ω, ∇u) dx + 1 2 ˆ∂Ω a i u 2 dH N -1 - ˆ∂Ω φ i u dH N -1 if u ∈ H 1 (Ω) , +∞ otherwise.
The density W hom i is given, for P a.s. ω ∈ Σ, and for every ζ ∈ R N , by

W hom i (ω, ξ) = lim n→+∞ inf 1 n N ˆnY W i (ω, y, ξ + ∇u (y)) dy : u ∈ H 1 0 (Y ) = inf n∈N * E F inf 1 n N ˆnY W i (ω, y, ξ + ∇u (y)) dy : u ∈ H 1 0 (Y ) ,
where Y denotes the unit cell (0, 1) N . If Σ, A, P, (T z ) z∈Z N is ergodic, then W hom i is deterministic and given for P a.s. ω ∈ Σ by

W hom i (ξ) = lim n→+∞ inf 1 n N ˆnY W i (ω, y, ξ + ∇u (y)) dy : u ∈ H 1 0 (Y ) = inf n∈N * E inf 1 n N ˆnY W i (ω, y, ξ + ∇u (y)) dy : u ∈ H 1 0 (Y ) .
For a proof we refer the reader to [START_REF] Attouch | Variational analysis in Sobolev and BV space: application to PDEs and Optimization, Second Edition[END_REF]Proposition 12.4.3,Theorem 12.4.7].

For P a.s. ω ∈ Σ, the subdifferential of Φ i,ε (ω, •) (actually its Gâteaux-derivative) is the operator

A i,ε (ω) : L 2 (Ω) → 2 L 2 (Ω) defined for every ω ∈ Σ by dom A i,ε (ω) = v ∈ H 1 (Ω) : divD ξ W i ω, . ε , ∇v ∈ L 2 (Ω) , a i v + D ξ W i ω, . ε , ∇v • n = φ i on ∂Ω
and, for all v ∈ dom A i,ε (ω),

A i,ε (ω) v = -divD ξ W i ω, . ε , ∇v . Similarly the subdifferential of Φ hom i (ω, •) is the multivalued operator A hom i (ω) : L 2 (Ω) → 2 L 2 (Ω) defined for every ω ∈ Σ by dom A hom i (ω) = v ∈ H 1 (Ω) : divD ξ W hom i (ω, ∇v) ∈ L 2 (Ω) , a i v + D ξ W hom i (ω, ∇v) • n = φ i on ∂Ω and, for all v ∈ dom A hom i (ω), A hom i (ω) v = -div∂W hom i (ω, ∇v) .
To shorten the notation, we write indifferently ∂ ξ W hom (ω, •) to denote the subdifferential of W hom (ω, •) or any of its elements. When W i is ergodic, then A hom i is deterministic and

A hom i v = -divD ξ W hom i (∇v) .
Recall that from [4, Proposition 17.4.6], A hom i (ω) is the P-almost sure graph limit of the operator A i,ε (ω). Furthermore, under the following condition on the Fenchel conjugate of ξ → W i (ω, x, ξ):

(D*3) there exists γ * > 0 such that ξ * 1 -ξ * 2 , ξ 1 -ξ 2 ≥ γ * |ξ 1 -ξ 2 | 2 for P a.s. ω ∈ Σ, for a.e. x ∈ R N , for all (ξ 1 , ξ 2 ) ∈ R N × R N and all (ξ * 1 , ξ * 2 ) ∈ ∂ ξ W * i (ω, x, ξ 1 ) × ∂ ξ W * i (ω, x, ξ 2 ), the density W hom i (ω, •) is Gâteaux-differentiable for P a.s. ω ∈ Σ, and is the pointwise limit of D ξ W i,n (ω, •) where W i,n (ω, ξ) = inf 1 n N ´nY W i (ω, y, ξ + ∇u (y)) dy : u ∈ H 1 0 (Y ) .
5.2. The random reaction parts. We are given a random TCCP-structured reaction functional, i.e. a pair (F 1 , F 2 ) with

F i : Σ × [0, +∞) × L 2 (Ω) × L 2 (Ω) → R Ω , i = 1, 2 defined by F i (ω, t, u, v) (x) = f i (ω, t, x, u (x) , v (x))
where

f i : Σ × [0, +∞) × R N × R × R → R is a A ⊗ B (R) ⊗ B R N ⊗ B (R) ⊗ B (R) , B (R) measurable function such that for P a.s. ω ∈ Σ, (f 1 (ω, •, •, •, •) , f 2 (ω, •, •, •, •)
) is a TCSVR-function associated with (r i (ω, •) , g i , h i , q i (ω, •)). We assume that r i ∈ W 1,2 0, T, L 2 loc R N , R l , q i ∈ W 1,2 0, T, L 2 loc R N , and for all bounded Borel sets B of R N , the real valued functions

ω → r i (ω, t, •) 2 L 2 (B,R l ) for all t ∈ [0, T ], ω → q i (ω, t, •) 2 L 2 (B) for all t ∈ [0, T ], ω → ˆT 0 dr i dt (ω, τ, •) 2 L 2 (B,R l ) dτ, ω → ˆT 0 dq i dt (ω, τ, •) 2 L 2 (B)
dτ belong to L 1 P (Σ). We also assume that r i and q i , satisfy the covariance property with respect to the dynamical system Σ, A, P, (T z ) z∈Z N , i.e. for all z ∈ Z N , all t ∈ [0, +∞), a.e. x ∈ R N and P a.s. ω ∈ Σ,

r i (ω, t, x + z) = r i (T z ω, t, x) , q i (ω, t, x + z) = q i (T z ω, t, x) . We set f i,ε (ω, t, x, ζ, ζ ) := f i ω, t, x ε , ζ, ζ
, and define the reaction functional F i,ε by setting

F i,ε (ω, t, u, v) (x) = f i ω, t, x ε , u (x) , v (x) .
Observe that in the expression of condition (T CCP ) for (f

1 (ω, •, •, •, •) , f 2 (ω, •, •, •, •))
, the functions f i , y i , ρ i , and f i , y i , ρ i may depend on ω (we sometimes omit it to shorten the notation), and that (F 

1,ε (ω, •, •, •) , F 2,ε (ω, •, •, •)) is a TCSVR-functional whose condition (T CCP ) is exactly that of (F 1 (ω, •, •, •) , F 2 (ω, •, •, •)), i
i dt ω, t, • ε L 2 (Ω,R l ) dt ≤ T L N (Ω) E I ˆT 0 dr i dτ (ω, τ, •) 2 L 2 (Y,R l ) dτ 1 2 , lim sup ε→0 ˆT 0 dq i dt ω, t, • ε L 2 (Ω) dt ≤ T L N (Ω) E I ˆT 0 dq i dt (ω, τ, •) 2 L 2 (Y ) dτ 1 2 
.

Finally we assume that (3.5) holds for P-a.e. ω ∈ Σ, i.e.

a i ρ i (ω) ≤ φ i ≤ a i ρ i (ω) .

5.3.

Almost sure convergence to the homogenized system. Under above conditions, by combining Theorem 3.1 together with the variational convergence of the sequence of random energies Φ i,ε specified above, we intend to analyze the asymptotic behavior in C 0, T, L 2 (Ω) × C 0, T, L 2 (Ω) of the solution (u ε (ω) , v ε (ω)) of the random reaction-diffusion system when ε → 0:

(S ε (ω))                                  du ε (ω) dt (t) + A 1,e (ω) (u ε (ω, t)) = F 1,ε (ω, t, u ε (ω, t) , v ε (ω, t)) for a.e. t ∈ (0, T ) , dv ε (ω) dt (t) + A 2,e (ω) (u ε (ω, t)) = F 2,ε (ω, t, u ε (ω, t) , v ε (ω, t)) for a.e. t ∈ (0, T ) , u ε (ω, 0) = u 0 ε (ω) , v ε (ω, 0) = v 0 ε (ω) , ρ 1 (ω) ≤ u ε (ω) ≤ ρ 1 (ω) , ρ 2 (ω) ≤ v ε (ω) ≤ ρ 2 (ω) , a 1 u ε (ω, t) + divD ξ W 1 ω, . ε , ∇u ε (ω, t) • n = φ 1 on ∂Ω for all t ∈ [0, T ], a 2 v ε (ω, t) + divD ξ W 2 ω, . ε , ∇v ε (ω, t) • n = φ 2 on ∂Ω for all t ∈ [0, T ],
where we have expressed the domain of the subdifferential of each functional Φ i (ω). Theorem 5.1. For each ω ∈ Σ, let denote by (u ε (ω) , v ε (ω)) the unique solution in C [0, T ], L 2 (Ω) × C [0, T ], L 2 (Ω) of the reaction-diffusion system (S ε (ω)). Assume that for P-a.s. ω ∈ Σ, u 0 ε (ω) , v 0 ε (ω) strongly converges to u 0 (ω) , v 0 (ω) in L 2 (Ω) and that sup ε Φ i,ε (η ε (ω, 0)) < +∞. Then, for P-a.s. ω ∈ Σ, (u ε (ω) , v ε (ω)) uniformly converges in C [0, T ], L 2 (Ω) ×C [0, T ], L 2 (Ω) to the unique solution of the reaction-diffusion system

S hom (ω)                                  du (ω) dt (t) + A hom 1 (ω) (u (ω, t)) F hom 1 (ω, t, u (ω, t) , v (ω, t)) for a.e. t ∈ (0, T ) dv (ω) dt (t) + A hom 2 (ω) (v (ω, t)) F hom 2 (ω, t, u (ω, t) , v (ω, t)) for a.e. t ∈ (0, T ) u (ω, 0) = u 0 (ω) , v (ω, 0) = v 0 (ω) , ρ 1 (ω) ≤ u (ω) ≤ ρ 1 (ω) , ρ 2 (ω) ≤ v (ω) ≤ ρ 2 (ω) , a 1 u (ω, t) + divD ξ W hom 1 (ω, ∇u (ω, t)) • n φ 1 on ∂Ω for all t ∈ [0, T ], a 2 v (ω, t) + divD ξ W hom 2 (ω, ∇v (ω, t)) • n φ 2 on ∂Ω for all t ∈ [0, T ],
where

F hom i is given by F hom i (ω, t, u, v) (x) = f hom i (ω, t, x, u (x) , v (x)) with f hom 1 (ω, t, ζ, ζ ) = r hom 1 (ω, t) h 1 (ζ ) • g 1 (ζ) + q hom 1 (ω, t) , f hom 2 (ω, t, ζ, ζ ) = r hom 2 (ω, t) h 2 (ζ) • g 2 (ζ ) + q hom 2 (ω, t)
r hom i (ω, t) = E F ˆ(0,1) N r i (ω, t, y) dy , q hom i (ω, t) = E F ˆ(0,1) N q i (ω, t, y) dy .

When the the dynamical system Σ, A, P, (T z ) z∈Z N is ergodic, the initial conditions are deterministic, i.e. u 0 ε (ω) , v 0 ε (ω) = u 0 ε , v 0 ε for P-a.e. ω ∈ Σ, F 2 is deterministic together with ρ i , ρ i , f i , and f i , then S hom is deterministic and the expectation operator must be replaced by the mathematical expectation operator in formulas expressing r hom 1 and q hom 1 . If in addition W satisfies (D*3), then ∂ ξ W hom (ω, ∇u (t)) or ∂ ξ W hom (∇u (t)) are univalent equal to D ξ W hom (ω, ∇u (t)) or D ξ W hom (∇u (t)), and the differential inclusions are equalities. Remark 5.1. By applying Theorem 4.2 and [1, Lemma 5.1, Lemma 5.2], one can easily express the homogenized problem of a random system of two non diffusive reaction equations with obvious adaptations. 5.5. Application to stochastic homogenization of a prey-predator random model with saturation effect. For the notation refer to Example 2.3. For each i = 1, 2, we are given two functions W ± i in Conv α,β,γ , where W - i , W + i do not depend on x, and satisfy (D*3), and two functions α ± i : [0, T ] → (0, +∞) in W 1,2 (0, T ) for which there exist positive real numbers α ± 1 , α ± 2 , and

α ± 2 such that    α ± 1 (t) ≥ α ± 1 > 0; α ± 2 ≥ α ± 2 (t) ≥ α ± 2 > 0.
We also consider two functions K ± : [0, T ] → (0, +∞) in W 1,2 (0, T ) satisfying K (t)

± ≥ K ± > 0 for some positive real numbers K ± , and two functions a ± : [0, T ] → (0, +∞) in W 1,2 (0, T ) for which there exist a constant a ± > 0 such that a ± ≥ a ± (t) > 0.

We now consider the random environment described in [1, Appendix B 2 ] with N = 2. Recall that the spherical heterogeneities of size of order ε have centers independently randomly distributed with a given frequency λ, following a Poisson point process with intensity λ. This random environment is modeled by an ergodic dynamical system Σ, A, P λ , (T x ) x∈R 2 where T x ω = ω -x, and, for every bounded Borel set B, and every k ∈ N,

P λ (# (Σ ∩ B) = k) = λ k L 2 (B)
k exp (-λL N (B)) k! so that E λ [#Σ ∩ B] = λL N (B). Given R > 0, define the random density W i associated with the random diffusion part, by which can be written, according to the structure of the reaction function of the system (S ε ), With this choice, from (A.1) and (A.2), we infer that for all ζ ∈ [0, ρ 2 ] f 1 (t, x, y 1 (t) , ζ ) ≤ 0 = f 1 (t, y 1 (t)) .

W i (ω, x, ξ) =    W - i (ξ) if x ∈ i∈N B R (ω i ) , W + i (ξ)
Similarly, with ρ 1 and ρ 2 positive, satisfying

1 - ρ 2 K 2 + b 2,1 ρ 1 K 2 ≤ 0, (A.3)
for all ζ ∈ [0, ρ 1 ], we have f 2 (t, x, ζ, ρ 2 ) ≤ 0 = f 2 (t, y 2 (t)) . Therefore, ρ i > 0, i = 1, 2, satisfying the system of two inequalities (A.2) and (A.3), i.e.

ρ 1 ≥ K 1 K 1 K 1 -b 1,2 K 1 , ρ 2 ≥ K 2 K 2 K 2 -b 2,1 K 2 ,
are suitable for (T CCP ) to be fulfilled. It is easy to see that ρ 1 = ρ 2 ≥ max

K 1 K1 K 1 -b1,2K1 , K 2 K2 K 2 -b2,1K2
is a solution provided that

K 1 K1 K 1 -b1,2K1 > 0 and K 2 K2
K 2 -b2,1K2 > 0. These two conditions are ensured by (2.2).

A.3. Proof of Proposition 2.3. Fix δ := ρ 1 > 0 satisfying 0 < ρ 1 < K, and chosen later. Set

f 2,δ (t, x, ζ, ζ ) = f 2 (t, x, ζ, ζ ) if ζ ≥ δ f 2 (t, x, δ, ζ ) if ζ < δ.
At the end of the proof, we show that f 2,δ = f 2 for ζ and ζ in suitable intervals. We claim that the pair (f 1 , f 2,δ ) satisfies the structure condition of TCCP-structured reaction functions with l = 3: indeed take r 1 (t, x) = α 1 (t, x) , α 1 (t, x) K car (t, x) , -a (t, x) , 

           ρ 2 > 0, f 2,δ = 0, y 2 = ρ 2 ; ρ 1 , f 1 = 0, y 1 = ρ 1 ; ρ 1 > ρ 1 , f 1 (t, ξ) = α 1 ξ, y 1 (t) = ρ 1 exp (α 1 t) .
We first look for ρ 2 satisfying

f 2,δ (t, x, ζ, ρ 2 ) ≤ ρ 2 α 2 -cα 2 ρ 2 ρ 1 ≤ 0 = f 2 (t, ρ 2 ) ,
for all ζ ≥ ρ 1 , which furnishes the first condition: .4) 

α 2 cα 2 ρ 1 ≤ ρ 2 . (A

  in C [0, T ], X N × C [0, T ], X N , where C n and D n are defined as A n and B n in the proof of Theorem 4.1, with an obvious adaptation. From (3.6), (Hs4) and (Hs5), we deduce that sup(t,x,n)∈[0,T ]×Ω×N |C n (t, x) | := C < +∞ and sup (t,x,n)∈[0,T ]×Ω×N|D n (t, x) | := D < +∞.

f hom 1 (-have f hom 2 ( 2 (t) ζ -cα hom 2 (t) ζ 2 ζ = α hom 2 (

 12222 a hom (t) ζ (1 -exp (-bζ)) . Similarly we t, ζ, ζ ) = α hom t) ζ 1 -c ζ ζ .

h 1 (

 1 ζ ) = (1, 1, ζ ) , g 1 (ζ) = ζ, -ζ 2 , 1 -exp (-bζ) ; and r 2 (t, x) = (α 2 (t, x) , -cα 2 (t, x) , 0) , h 2,δ (ζ) = ζ < δ, g 2 (ζ ) = ζ , ζ 2 , 0 . It remains to show that (f 1 , f 2,δ ) fulfills condition (T CCP ). First take ρ 2 = 0, f 2,δ = 0, then y 2 = ρ 2 and f 2,δ t, x, ζ, y 2 (t) = 0 ≥ f 2,δ t, y 2 (t) for all ζ ∈ R.To complete condition (T CCP ), we look for

  t) + ∂Φ 1,n (u n (t)) F 1,n (t, u n (t) , v n (t)) for a.e. t ∈ (0, T )

	dv n dt	(t) + ∂Φ 2,n (v

n (t)) F 2,n (t, u n (t) , v n (t)) for a.e. t ∈ (0, T )

  t)) for a.e. t ∈ (0, T ) ∂Φ 2 (v (t)) = F 2 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

	dv dt	(t) +

  From Theorem 2.1 the solution (u n , v n ) of (S n ) satisfies y 1,n (T ) ≤ u n ≤ y 1,n (T ) and y 2,n (T ) ≤ v n ≤ y 2,n (T ), so that inequalities (3.6) follow directly from(3.4). We deduce (3.7) from (3.2), hypothesis (Hs4) and estimate |g i,n (ζ) | ≤ |g i,n (0) | + L [ρ

					ζ) | < +∞;	(3.7)
	sup n∈N	du n dt L 2 (0,T,X)	< +∞ and sup n∈N	dv n dt L 2 (0,T,X)	< +∞.	(3.8)

i

,ρ i ] |ζ|; idem for h i,n .

  , yields the equicontinuity of the sequence (u n ) n∈N . It remains to establish for each t ∈ [0, T ], the relative compactness in X of the set E t := {u n (t) : n ∈ N}. For t = 0 there is nothing to prove because of hypothesis (Hs3) on the initial condition. It remains to establish the relative compactness of E t for t ∈]0, T ]. In what follows t is fixed in ]0, T ].According to Theorem 2.1, u n satisfies (S 4

	1 2 sup n	du n dt L 2 (0,T,X)
	which, from (3.8)	

  Then from the compact embedding H 1 (Ω) → L 2 (Ω) we will conclude to the compactness of the set E t . Therefore, to end Step 2, it remains to establish(3.14). This estimate requires the sharp result of Lemma B.1.Set G n (t) := F 1,n (t, u n (t) , v n (t)). In order to apply Lemma B.1, we start by establishing the following estimate on the total variation Var

			1 2 sup n∈N		du + n dt	(t)	X	+ F 1,n (t, u n (t) , v n (t)) X . (3.13)
	From (3.10), estimates (3.13) and (3.6) yield that (u n (t)) n∈N is bounded in H 1 (Ω) provided that we
	establish	sup n	du + n dt	(t)	X	< +∞.	(3.14)

  Lemma 5.1] we obtained the following estimates for P-a.s. ω ∈ Σ, and for i = 1, 2:

	lim sup ε→0 ˆT 0	dr

.e. with f i , y i , ρ i , and f i , y i , ρ i . Since y i and y i do not depend on ε, condition (3.4) is automatically satisfied. Condition (3.3) holds for P-a.s. ω ∈ Σ. More precisely, in Lemma

[1, 

  -(t) + a + (t) -a -(t) exp -λπR 2 ;

	where	α hom i	(t) = E		ˆ(0,1) 2	α i (•, t, y) dy
			= α -i (t) + α + i (t) -α -i (t) exp -λπR 2 i = 1, 2;
		a hom (t) = E	ˆ(0,1) 2	a (•, t, y) dy
		= a K hom car (t) =	E E	ˆ(0,1) 2 ˆ(0,1) 2 K car (•, t, y) α 1 (•, t, y) dy α 1 (•, t, y) dy
	α -1 (t) + α + 1 (t) -α -1 (t) exp -λπR 2 α -1 (t) K -(t) + α + 1 (t) α -1 (t) K + (t) -K Then =
	Similarly we set f hom 1	(t, ζ, ζ ) = E		ˆ(0,1) 2	otherwise. α 1 (•, t, y) dy ζ -E	ˆ(0,1) 2	α 1 (•, t, y) K car (•, t, y)	dy ζ 2
			α i (ω, t, x) =	  	α -i (t) if x ∈ α + i (t) otherwise. -E ˆ(0,1) 2
			K car (ω, t, x) =	 	K -(t) if x ∈
								
			a (ω, t, x) =	 	a -(t) if x ∈	j∈N	B R (ω j ) ,
								a + (t) otherwise.
	We define the following constants				
			α i = inf t∈[0,+∞)	min α -i (t) , α + i (t) , i = 1, 2;
			α 2 = sup	max α -2 (t) , α + 2 (t) ;
					t∈[0,+∞)
			a = sup	

j∈N B R (ω j ) , j∈N B R (ω j ) , K + (t) otherwise. t∈[0,+∞) max a -(t) , a + (t) ; K = inf t∈[0,+∞) min K -(t) , K + (t) . -(t) exp (-λπR 2 ) . Furthermore ρ 1 ≤ u ≤ ρ 1 exp (α 1 T ) and 0 ≤ v ≤ ρ 2 .

Proof. Apply Theorem 5.1 with

f 1 (ω, t, x, ζ, ζ ) = α 1 (ω, t, x) ζ 1 -ζ K car (ω, t, x) -a (ω, t, x) ζ (1 -exp (-bζ)) = α 1 (ω, t, x) ζ -α 1 (ω, t, x) K car (ω, t, x) ζ 2 -a (ω, x, t) ζ (1 -exp (-bζ)) , f 2 (ω, t, x, ζ, ζ ) = α 2 (ω, t, x) ζ -cα 2 (ω,

t, x) ζ 2 ζ . a (•, t, y) dy ζ (1 -exp (-bζ))

Under this hypothesis the subdifferential of Φ i is single valued. We make this hypothesis to simplify the notation.

Using the coordinates of r i , g i and h i we havef 1 (t, x, ζ, ζ ) = l k=1 r 1,k (t, x) h 1,k (ζ ) g 1,k (ζ) + q 1 (t, x) and f 2 (t, x, ζ, ζ ) = l k=1 r 2,k (t, x) h 2,k (ζ) g 2,k (ζ ) + q 2 (t, x)

In the specific case of a coupling between two non diffusive reaction equations, we have the following convergence of (S n ) to (S). The proof is an easy adaptation of the proof above. Theorem 4.2 (Convergence theorem for problems coupling two n.d.r.e.). Assume that for i = 1, 2, the sequence of TCCP-structured reaction functionals (F i,n ) n∈N satisfies conditions (3.2), (3.3), (3.4), that g i and h i belong to C 1 loc R, R l , and that r i,n and q i,n do not depend on the spatial variable. Let (u n , v n ) be the unique solution of the system of n.d.r.e. 

. Assume (Hs5), (Hs6), and (Hs" 3 ) u 0 n u 0 and v 0 n v 0 weakly in H 1 (Ω);

(Hs" 4 ) for i = 1, 2, (g i,n , h i,n ) converges to

, R l (i = 1), and

Then the solution (u n , v n ) uniformly converges in C [0, T ], L 2 (Ω) × C [0, T ], L 2 (Ω) to the unique solution (u, v) of the system (S)

) for a.e. t ∈ (0, T ) dv dt (t) = F 2 (t, u (t) , v (t)) for a.e. t ∈ (0, T )

The reaction functionals F i : [0, +∞) × L 2 (Ω) × L 2 (Ω) → R Ω , i = 1, 2, are defined for all t ∈ [0, T ], all (U, V ) ∈ L 2 (Ω) × L 2 (Ω) and for a.e. x ∈ Ω, by 

Furthermore, if r i,n → r i strongly in L 2 0, T, R l , and q i,n → q i strongly in L 2 (0, T ), then dun dt , dun dt

. Sketch of the proof. We follow again the proof of Theorem 4.1 and we only have to modify the proof of Step 2. The proof of the relative compactness of E t = {u n (t) : n ∈ N} and F t = {v n (t) : n ∈ N} in L 2 (Ω) for t ∈ (0, T ], is established following the strategy of the proof of Theorem 4.1. Set U n (t) := ∇u n (t) and V n (t) := ∇v n (t). We are reduced to prove that

Take the distributional derivative with respect to the space variable of each term of two equations of (S n ). We infer that (U n , V n ) solves the Cauchy system

and

When the the dynamical system Σ, A, P, (T z ) z∈Z N is ergodic, the initial conditions are deterministic, i.e. u 0 ε (ω) = u 0 ε and v 0 ε (ω) = v 0 ε for P-a.s. ω ∈ Σ, together with ρ i , ρ i , f i , and f i , then S hom is deterministic and the expectation operator must be replaced by the mathematical expectation operator in formulas expressing r i and q i . If in addition W i satisfies (D*3), then div∂ ξ W hom i (ω, ∇u (t)) or div∂ ξ W hom i (∇u (t)) are univalent equal to divD ξ W hom i (ω, ∇u (t)) or divD ξ W hom i (∇u (t)), and the differential inclusions are equalities.

Proof. The proof is a straightforward consequence of Theorem 3.1, and [1, Lemma 5.1, Lemma 5.2]. 5.4. The case of a coupling between a random r.d.e. and a random n.d.r.e. We place ourselves within the framework of Section 4. We assume that the random reaction functional F 1 fulfills the conditions of Section 5.2 and that f 2 does not depend on the space variable. Note that under these conditions, F 2,ε (ω, •, •, •) = F 2 (ω, •, •, •). Theorem 5.2 below whose proof is a direct consequence of Theorem 4.1 and [1, Lemma 5.1, Lemma 5.2], expresses the homogenized problem of the following random system:

Theorem 5.2. For each ω ∈ Σ, let denote by (u ε (ω) , v ε (ω)) the unique solution in C [0, T ], L 2 (Ω) × C [0, T ], L 2 (Ω) of the system (S ε (ω)). Assume that for P-a.s.

to the unique solution of the system

where

and

Let b and c be two positive constants and assume that the the extinction threshold satisfies µ ext := c

3), we consider the following system stemming from Example 2.3:

According to Proposition 2.3 and Theorem 2.1, (S ε (ω)) admits a unique solution

•) admit a right derivative at each t ∈ (0, T ). The system models the evolution of two species with density u ε (ω, •) and v ε (ω, •) of a prey and a predator respectively, whose birth growth rate, maximum carrying capacity, and saturation effect, take two values at random depending on whether the species reside in the environment made up of the union of small balls of size ε or not (refer to the comments of Example 2.3). The homogenized system is expressed in the Proposition below. It is interesting to note that the effective growth rate α hom i of each two species is the mean value of α i with respect to the product probability measure L 2 (0, 1)

2 ⊗ P λ , while the effective maximum carrying capacity K hom car is now a function of the growth rate α 1 and K car , illustrating the interplay between the growth rate of the prey and the maximum carrying capacity of the environment when the size of the spatial heterogeneities, with a constant frequency λ, is very small compared with the size of the domain 5 . Proposition 5.1. Assume that the initial conditions are deterministic, that u 0 ε , v 0 ε strongly converges to u 0 , v 0 in L 2 (Ω) and that

To shorten the notation, for i = 1, 2, we assume that W ± i satisfy (D*3) so that W hom i is Gâteaux differentiable.

It remains to compute α hom i , a hom and K hom car . Observe the equivalence ∃ω

Then using Fubini's theorem, we infer that

We express a hom and K hom car by a similar calculation.

Appendix A. Proofs of Propositions 2.1-2.5

A.1. Proof of Proposition 2.1. Clearly the functions f i satisfy the structure condition of TCCPstructured reaction functions with l = 3 and

Let us show that condition (T CCP ) is fulfilled. Take f i = 0, and ρ i = 0. Then y i = 0 and

On the other hand take f 1 (t, ζ) = α 1 ζ, where ρ 1 > 0 is any real number. Similarly f 2 (t, ζ ) = α 2 ζ , where ρ 2 > 0 is any real number. Then y i (t) = ρ i exp (α i t) and f 1 (t, x, y 1 (t) , ζ ) ≤ α 1 y 1 (t) = f 1 (t, y 1 (t)) for all ζ ≥ 0. Similarly f 2 (t, x, ζ, y 2 (t)) ≤ α 2 y 2 (t) = f 2 (t, y 2 (t)) for all ζ ≥ 0. This proves the claim since [y i (T ) , y i (T )] = [0, ρ i exp (α i T )].

A.2. Proof of Proposition 2.2. As in the previous example, the functions f i satisfy the structure condition of TCCP-structured reaction functions with l = 3 and

Let us show that condition (T CCP ) is fulfilled. Take f i = 0, and ρ i = 0. Then y i = 0 and

Because of the signs positive preceding the b's, we cannot proceed as in the previous example for completing the condition (T CCP ). We take f i = 0 and look for y i in the form of constants ρ i > 0. For all ζ ∈ [0, ρ 2 ] we have

Take ρ 1 and ρ 2 positive, satisfying

Secondly, we look for ρ 1 , 0 < ρ 1 < K, satisfying

, which requires the following second condition

Combining (A.4) and (A.5), we infer that the choice of ρ 2 , ρ 1 and ρ 1 is conditioned by the following inequality

or equivalently

Hence, we can choose ρ 2 with

which is the last condition in (2.3).

Set

. Then (A.6) and the previous condition on θ are

so that the possible choice of θ and 0 < ρ 1 ≤ K is governed by

Since µ ext ≥ 4, condition (A.7) is fulfilled by any

which is the first condition in (2.3). The choice of θ is then given by

which is the second condition in (2.3).

It is easily checked that

. This ends the proof.

A.4. Proof of Proposition 2.4. Clearly the pair (f 1 , f 2 ) satisfies the structure condition of TCCPstructured reaction functions with l = 1. Let us show that (f 1 , f 2 ) fulfills condition (T CCP ). From the fact that f 1 (t, x, 0, ζ ) = f 2 (t, x, ζ, 0) = 0 we see that f 1 = f 2 = 0 and ρ 1 = ρ 2 = 0, y 1 = y 2 = 0 are suitable. Take ρ 1 > 0 arbitrary and f 1 = 0, y 1 = ρ 1 . We have

for all ζ ≥ 0. Finally, from inequality

fulfilled for all ζ > 0 and all ζ ∈ [0, y 1 (T ) = ρ 1 ], the constant function f 2 (t, ζ ) = α 2 ρ p 1 exp (γ), and the affine function y 2 (t) = α 2 ρ p 1 t exp (γ) + ρ 2 , with ρ 2 > 0 arbitrary, are suitable to complete condition (T CCP ).

A.5. Proof of Proposition 2.5. The pair (f 1 , f 2 ) satisfies the structure condition of TCCP-structured reaction functions with l = 3: indeed, take

Let us show that (f 1 , f 2 ) fulfills condition (T CCP ) with ρ i ρ i , and f i , f i given by (2.4). We take y i = ρ i , y i = ρ i and ρ i and ρ i must satisfy

We look for ρ i ≤ 0 for i = 1, 2, ρ 1 ≥ 1, and ρ 2 > 0. For all ζ ∈ [ρ 1 , ρ 1 ] we have

then, for obtaining (A.11), it suffices to set

Similarly, for all ζ ∈ [ρ 1 , ρ 1 ] we have

so that, for obtaining (A.12), it suffices to set

On the other hand, for all

so that, for obtaining (A.10), it suffices to take ρ 1 and ρ 1 satisfying

By a similar calculation, for obtaining (A.9), it suffices to take ρ 1 and ρ 1 satisfying

Set ρ 1 = -γρ 1 . Then (A.13) and (A.14) yield

CONVERGENCE OF TWO COMPONENTS NONLINEAR REACTION-DIFFUSION SYSTEMS

The first inequality is fulfilled for ρ 1 ≥ γ + 1, the second for ρ 1 ≤ a -γ γ , i.e. for ρ 1 ≥ Then the right derivative of u satisfies for all t ∈]0, T ] the following estimate

X ds.

Appendix C. Basic notions on variational convergences Let (T, τ ) be a topological space, (F n , F ) n∈N a sequence of functionals mapping T into R ∪ {+∞}. The following notion of convergence, equivalent to the convergence of the epigraph of F n to the epigraph of F in the Kuratowski-Painlevé sense, is of central importance in Calculus of Variations and Homogenization theory.

Definition C.1. The sequence (F n ) n∈N (sequentially) Γ-converges to F at x in T iff both assertions hold:

(i) there exists a sequence (x n ) n∈N of T, converging to x, such that

(ii) for every sequence (y n ) n∈N , converging to x in T,

When (i) and (ii) hold for every x in T, we say that (F n ) n Γ-converges to F in (T, τ ) and we write

The main interest of this concept is its variational nature made precise in the first item of the following proposition.

For a proof and more about Γ-convergence, we refer the reader to Attouch [START_REF] Attouch | Variational convergence for functions and operators[END_REF] and Dal Maso [START_REF] Dal | An introduction to Γ-convergence[END_REF]. We now consider the case where (T, τ ) is a Banach space (V, . ). Being endowed with strong and weak topology, we have two notions of Γ-convergence. Given a sequence (Φ n ) n∈N of functionals Φ n : V → R ∪ {+∞}, according to Definition C.1, we denote by Γ w -lim Φ n and Γ s -lim Φ n the Γ-limits associated with the weak and the strong convergence in V respectively, when they exist. For a proof, we refer the reader to [START_REF] Attouch | Variational analysis in Sobolev and BV space: application to PDEs and Optimization, Second Edition[END_REF]Theorem 17.4.3].

The following Proposition whose proof is straightforward, states an equivalent formulation interesting from practical point of view.

Proposition C.2. Let (V, . ) be a reflexive Banach space, and (Φ n ) n∈N , Φ a sequence of convex proper lower semicontinuous functions from V into R ∪ {+∞}. The following statements are equivalent: