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Subdiffusion in one-dimensional Hamiltonian chains with sparse interactions

We establish rigorously that transport is slower than diffusive for a class of disordered one-dimensional Hamiltonian chains. This is done by deriving quantitative bounds on the variance in equilibrium of the energy or particle current, as a function of time. The slow transport stems from the presence of rare insulating regions (Griffiths regions). In manybody disordered quantum chains, they correspond to regions of anomalously high disorder, where the system is in a localized phase. In contrast, we deal with quantum and classical disordered chains where the interactions, usually referred to as anharmonic couplings in classical systems, are sparse. The system hosts thus rare regions with no interactions and, since the chain is Anderson localized in the absence of interactions, the non-interacting rare regions are insulating. Part of the mathematical interest of our model is that it is one of the few non-integrable models where the diffusion constant can be rigorously proven not to be infinite.
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Introduction

One-dimensional Hamiltonian systems, also known as chains, sometimes exhibit anomalous transport properties, i.e. non-diffusive transport of locally conserved quantities like energy, particle number, momentum, etc. Whereas the possibility of superdiffusion is well-documented [START_REF] Lepri | Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer[END_REF], subdiffusion has not been studied as intensively.

In disordered systems, Anderson localization can actually suppress transport entirely [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF][START_REF] Ya | A pure point spectrum of the stochastic one-dimensional Schrödinger operator[END_REF][START_REF] Kunz | Sur le spectre des opérateurs aux différences finies aléatoires[END_REF][START_REF] Fröhlich | Absence of diffusion in the Anderson tight binding model for large disorder or low energy[END_REF]. It can be realized e.g. in disordered chains of free fermions or, equivalently, in some quantum spin chains. Perhaps surprisingly, it can also be realized in classical disordered harmonic chains: The dynamics is linear and all the modes of the chain become exponentially localized in the presence of disorder. 1 For Anderson insulators, the current of conserved quantities is exponentially suppressed as a function of the length of the chain and, in equilibrium, the variance of the current of a conserved quantity, C(t), does not grow with time, i.e. C(t) = O(1) as t → ∞ [START_REF] Bernardin | Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential[END_REF]. See [START_REF] Basko | Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion[END_REF] below for a precise definition of C(t). For the quantum systems quoted above, there is strong evidence that, upon turning on interactions, localization persists at strong disorder and weak interactions, resulting in the so called many-body localized (MBL) phase [START_REF] Fleishman | Interactions and the Anderson transition[END_REF][START_REF] Gornyi | Interacting electrons in disordered wires: Anderson localization and low-T transport[END_REF][START_REF] Basko | Metalinsulator transition in a weakly interacting many-electron system with localized single-particle states[END_REF][START_REF] Oganesyan | Localization of interacting fermions at high temperature[END_REF][START_REF] Serbyn | Local conservation laws and the structure of the many-body localized states[END_REF][START_REF] Imbrie | On many-body localization for quantum spin chains[END_REF], see also [START_REF]Special Issue: Many-Body Localization[END_REF] for reviews and more recent progress. There as well we expect C(t) = O(1) as t → ∞. In contrast, for classical systems, arbitrarily small anharmonic interactions are expected to destroy localization [START_REF] Dhar | Effect of Phonon-Phonon Interactions on Localization[END_REF][START_REF] Oganesyan | Energy transport in disordered classical spin chains[END_REF][START_REF] Mulansky | Dynamical thermalization of disordered nonlinear lattices[END_REF][START_REF] Basko | Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion[END_REF].

Subdiffusion refers to the case where conserved quantities do evolve at the macroscopic scale, i.e. C(t) → ∞, but slow enough so that C(t)/t → 0 as t → ∞. Contrary to localization, subdiffusion does not challenge the basic principles of thermodynamics, and we may expect the phenomenon to be more widespread. Interestingly, the existence of a subdiffusive ergodic phase has been predicted theoretically [START_REF] Agarwal | Anomalous diffusion and Griffiths effects near the many-body localization transition[END_REF][START_REF] Gopalakrishnan | Griffiths effects and slow dynamics in nearly many-body localized systems[END_REF][START_REF] Agarwal | Rareregion effects and dynamics near the many-body localization transition[END_REF][START_REF] Potter | Universal properties of many-body delocalization transitions[END_REF][START_REF] Altman | Universal dynamics and renormalization in many-body-localized systems[END_REF][START_REF] Bar | Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice[END_REF] to occur in quantum chains with moderate disorder, close below the MBL transition point, see Figure 1. This prediction has been verified numerically, although, to our best knowledge, it is not conclusively known whether the observed subdiffusion can unambiguously be ascribed to the theoretical predictions [START_REF] Luitz | Extended slow dynamical regime close to the many-body localization transition[END_REF][START_REF] Luitz | Anomalous Thermalization in Ergodic Systems[END_REF][START_REF] Luitz | The ergodic side of the many-body localization transition[END_REF][START_REF] Žnidarič | Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system[END_REF][START_REF] Kozarzewski | Spin subdiffusion in the disordered Hubbard chain[END_REF][START_REF] Roy | Anomalous thermalization and transport in disordered interacting floquet systems[END_REF][START_REF] Jose Mendoza-Arenas | Asymmetry in energy versus spin transport in certain interacting disordered systems[END_REF][START_REF] Schulz | Energy transport in a disordered spin chain with broken U(1) symmetry: Diffusion, subdiffusion, and many-body localization[END_REF]. This phenomenon is purely one-dimensional and rests on the presence of bottlenecks in the chain 2 . For generic classical systems, one does not expect the existence of an analogous subdiffusive phase, see [START_REF] Basko | Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion[END_REF] for a detailed analysis.

In this paper, we present a mathematically rigorous derivation of slower-than-diffusive transport in a class of quantum and classical models, suggested to us by D. A. Huse. In contrast to most models studied in the literature, the interactions considered here are sparse (but not weak), turning them on at each site independently with probability p < 1. A similar set-up was recently studied in [START_REF] Nachtergaele | Slow propagation in some disordered quantum spin chains[END_REF] and mathematical results on long transmission times were derived. As it turns out, the existence of a subdiffusive phase can then be shown to hold both for classical and quantum Hamiltonians (even though the corresponding classical systems are still not expected to have a MBL phase).

The rest of this paper is organized as follows. Below, we provide a more detailed heuristic explanation of the phenomenology. In Section 2, we define properly the classcial and quantum Hamiltonians studied in this paper, and we state precise conditions for the existence of a subdiffusive phase in Theorem 1 for the classical chain, and in Theorem 2 for the quantum chain. The proof of Theorem 1 is presented in Section 3 and the proof of Theorem 2 in Section 4.

Griffiths regions in disordered chains

Following [START_REF] Agarwal | Anomalous diffusion and Griffiths effects near the many-body localization transition[END_REF], let us explain heuristically the origin of subdiffusion in disordered quantum systems. For the sake of concreteness, let us consider the celebrated "disordered XXZ spin chain":

H = L-1 x=1
J(S (1) x S

(1)

x+1 + S (2) x S

(2)

x+1 ) + gS (3) x S

(3)

x+1 + L x=1 ω x S (3) x (1)
which has become the standard model for MBL. Here, S 1,2,3

x are the spin-1 2 spin operators (Pauli matrices) acting on site x of a chain (see e.g. [START_REF] Alicki | Quantum dynamical systems[END_REF] for more background and a full definition) and J, g are parameters of the model. The on-site energies ω x are assumed to be independent, identically distributed (iid) random variables, e.g. distributed according to a normal distribution with zero mean and standard deviation W , so that the parameter W plays the role of the "disorder strength". The specific choice of the distribution plays no crucial role, and in particular the fact that ω x is unbounded turns out to be eventually irrelevant. For g = 0, the system is an Anderson insulator, since it can be mapped to free fermions by a Jordan-Wigner transformation, see e.g. [START_REF] Abdul-Rahman | Localization properties of the disordered XY spin chain: A review of mathematical results with an eye toward many-body localization[END_REF]. Hence, it is localized at all values of W > 0. Instead g > 0 brings in interactions among the spins and the system is expected to stay localized only at large disorder W > W c , while it becomes delocalized for smaller values of W , see Figure 1.

For W > W c , i.e. in the localized phase, the resistance of of a stretch of length is given by

r ∼ e 2 /ξ (2) 
where ξ = ξ(W ) is the localization length characterizing the localized system. Strictly speaking, the resistance r depends on the disorder realization, but for large , we can neglect the fluctuations around the average value in [START_REF] Agarwal | Rareregion effects and dynamics near the many-body localization transition[END_REF]. Here, we focus on a system where the disorder strength is actually too small to bring about localization, i.e. W < W c , but local anomalously large disorder values can be strong enough to put small stretches of the systems in the localized phase, i.e. these regions would be in the localized phase if they would be disconnected from the rest of the chain. For example, it can be that on a stretch of size , the value of the empirical standard deviation W is larger than W c . Such a region is called a Griffiths region. As can be inferred from the previous example, a Griffiths region of length occurs in a given place with probability e -c(W ) , where the large deviation rate c(W ) is expected to vanish as W approaches the critical value W c . If we assume for simplicity that all such Griffiths regions have the same localization length ξ * , then the probability distribution of the resistance r of a single Griffiths region is given roughly by p(r)dr ∝ e -c(W ) e -2 /ξ * dr ∝ r -(1+ξ * c(W )/2) dr .

For ξ * c(W ) < 2, we notice that E(r) = ∞.

To understand how Griffiths regions can lead to a subdiffusive behavior when ξ * c(W ) < 2, we represent the chain as a Ohmic circuit of resistances (r i ) 1≤i≤L in series, where the resistances are the Griffiths regions (sites outside of any Griffiths region may simply be assumed to have a resistance of order 1). The resistances (r i ) 1≤i≤L are i.i.d. in very good approximation. The total resistance is R = L i=1 r i and the conductance, which is more suited for our discussion, is given by K = L/R, where L stands for the length of the chain. If the resistances r i have very heavy tails, in particular if E(r i ) = ∞, then the conductance vanishes almost surely:

K → 0, as L → ∞. Instead, if E(r i ) < ∞, then K > 0. The system is thus subdiffusive if ξ * c(W ) < 2, i.e.
if one is not too far from the localized phase, see Figure 1. 

Systems without genuine localized phase

As said, for classical systems with generic anharmonic interactions, one does not expect a genuinely localized phase. This is related to the fact that, at positive temperature in the thermodynamic limit, all typical configurations are expected to contain some chaotic spots that will eventually break the quasi-periodic behavior of the dynamics. Yet, the dynamics in certain classical systems can certainly be extremely slow and glassy, see [START_REF] De Roeck | Glassy dynamics in strongly anharmonic chains of oscillators[END_REF] for a recent review. The biggest difference with quantum chains is that the presence of an insulating Griffiths region is mainly singled out by an atypical configuration of the oscillators. Indeed, large disorder fluctuations will only ensure that a larger proportion of the configurations is insulating, never all of them in generic cases. Therefore, if the dynamics is eventually ergodic as one expects, a specific Griffiths region exists only for a finite time. A detailed quantitative analysis done in [START_REF] Basko | Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion[END_REF] shows that the lifetime of Griffiths regions, compared to their resistance, is too short to bring about subdiffusion. While this conclusion pertains to generic anharmonic disorder chains of oscillators, we will see that it does not apply to the more specific class of classical Hamiltonians considered in this paper.

Sparse interactions

The models treated in this paper have the following specific property: Interactions or anharmonic couplings are present at each site with probability p and absent with probability 1 -p. In a typical realization, there are hence arbitrarily long stretches of sites with no interaction and these stretches play the role of Griffiths regions. These Griffiths regions are thus simply Anderson insulators. In particular, the issue raised above for classical chains is avoided: All the modes of the chain are exponentially localized and the region behaves as a perfect insulator (i.e. with a conductivity vanishing exponentially with the length) independently of the region in phase space that the system occupies.

Finally, one may wonder whether our quantum model is actually localized in the regime where we predict subdiffusion. The rigorous treatment of this question goes way beyond the present paper, but we can speculate on the phase diagram of our model. Let us restrict to p 1, i.e. very sparse interactions. In the regions where the interactions is switched off, our model is simply an Anderson insulator and hence localized regardless of the disorder strength. Then, the question is whether the sparse regions with interaction can delocalize such a system. This question has been investigated and answered in previous work, [START_REF] De Roeck | Stability and instability towards delocalization in manybody localization systems[END_REF][START_REF] Luitz | How a Small Quantum Bath Can Thermalize Long Localized Chains[END_REF], and the upshot is that we should expect the system to be localized whenever the localization length of the non-interacting system is small enough, and delocalized otherwise. Therefore, our model is indeed expected to have a localization-delocalization transition and the region where we prove subdiffusion overlaps with presumed delocalized phase. 

Models and Results

We study in details two different Hamiltonian chains. Each of them is representative of a larger class of systems. Let N L = {1, . . . , L} be the set of sites, and we will eventually take the length L → ∞.

Anharmonic disordered chain

Let us first consider the disordered classical anharmonic chain, described by the following Hamiltonian on R 2L :

H(q, p) = L x=1 h(q x , q x+1 , p x , ω x , τ x ) = L x=1 p 2 x 2 + ω 2 x q 2 x 2 + gτ x q 4 x 4 + g 0 (q x+1 -q x ) 2 2 ( 3 
)
with Neumann boundary conditions at both ends, i.e. q L+1 = q L . We take the anharmonic coupling g and the harmonic coupling g 0 to be non-negative. The frequencies of the uncoupled oscillators, (ω x ) x∈N L , are independent and identically distributed (iid) random variables with a bounded density with compact support not containing 0, i.e. there exists ω -> 0 such that

ω 2 x ≥ ω 2 -> 0 almost surely.
The latter condition is most likely not essential but guarantees that the Hamiltonian H is strictly convex, a feature that turns out to be convenient to establish the decay of correlations in the Gibbs ensemble. The variables τ x are iid random variables, independent of (ω x ), and with value in {0, 1}. We define p = P (τ x = 1).

The dynamics is given by Hamilton's equations:

q = p, ṗ = -∇ q H(q, p) (4) 
and the generator of the dynamics is given by the usual Liouville operator:

L = p • ∇ q -∇ q H • ∇ p .
The energy is the only obvious locally conserved quantity. For simplicity let us write h x = h(q x , q x+1 , p x , ω x , τ x ). For x ∈ N L , we define the energy current j x between the site x and x + 1 as

j x = {h x+1 , h x } = -g 0 p x+1 (q x+1 -q x )
with the conventions q 0 = q 1 and q L+1 = q L , so that j 0 = j L = 0 as imposed by the Neumann boundary conditions in [START_REF] Agarwal | Anomalous diffusion and Griffiths effects near the many-body localization transition[END_REF]. This definition ensures that the currents satisfy the continuity equation

Lh x = -∇j x = j x-1 -j x .
2.1.1 The harmonic chain: g = 0 At g = 0, the oscillator chain is an Anderson insulator due to disorder. Indeed, the equations of motion (4) are linear and the equation for p takes the form

ṗx = - y H x,y q y with H = V -g 0 ∆ (5) 
where V x,y = ω 2 x δ x,y and where ∆ is the discrete laplacian on N L := {1, . . . , L} with Neumann boundary conditions:

∆f (x) = f (x -1) -2f (x) + f (x + 1) for x ∈ N L with the convention f (0) = f (1) and f (L + 1) = f (L).
The random operator H on l 2 (N L , R) is known as the Anderson Hamiltonian for a single quantum particle [START_REF] Anderson | Absence of diffusion in certain random lattices[END_REF]. It is a celebrated result [START_REF] Ya | A pure point spectrum of the stochastic one-dimensional Schrödinger operator[END_REF][START_REF] Kunz | Sur le spectre des opérateurs aux différences finies aléatoires[END_REF] that its eigenvectors are localized, see [START_REF] Cycon | Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry[END_REF][START_REF] Damanik | A Short Course on One-Dimensional Random Schrödinger Operators[END_REF][START_REF] Ducatez | A forward-backward random process for the spectrum of 1D Anderson operators[END_REF] for pedagogical expositions.

Lemma 1 (Anderson localization, Theorem IX.1 in [START_REF] Kunz | Sur le spectre des opérateurs aux différences finies aléatoires[END_REF]). Let (ψ k ) 1≤k≤L be an orthonormal basis of eigenvectors of H (depending hence on the realization of (ω x )). There are C < +∞ and ξ > 0, such that, for any L and 1 ≤ x, y ≤ L,

E L k=1 |ψ k (x)ψ k (y)| ≤ Ce -|x-y|/ξ (6) 
(since we assume that the distribution of ω x is compactly supported, we may take A = R in Theorem IX.1 in [START_REF] Kunz | Sur le spectre des opérateurs aux différences finies aléatoires[END_REF]). We refer to ξ as the localization length of the system, though it is more precisely an upper bound for the localization length uniform in the energy. We note that the localization length ξ depends thus only on g 0 and on the distribution of (ω x ).

2.1.2

The anharmonic chain: g ≥ 0

We finally denote by • β the expectation with respect with the Gibbs measure at inverse temperature β > 0, i.e. the probability measure on R 2L with density

ρ β (q, p) = e -βH(q,p) Z(β) (7) 
where Z(β) ensures the normalization (the partition function). Note that j x β = 0 for any x, because the currents j x are odd in the p-variables. The thermal conductivity κ at inverse temperature β is defined by

κ = β 2 lim t→∞ C(t) t with C(t) = lim sup L→∞ t 0 ds 1 √ L L-1 x=1 j x (s) 2 β . (8) 
The expression for C(t) is well-defined because we view (ω x , τ x ) x∈N L as restrictions of a single infinite array (ω x , τ x ) x∈N of i.i.d. random variables, so that C(t) is a limit superior of random variables defined on a single probability space. Furthermore, in the definition of C(t), we expect that the limit superior is actually a limit, almost surely, but we are not able to prove this. This is however irrelevant for establishing that transport is slower than diffusive, which is equivalent to the fact that C(t)/t → 0 almost surely, as t → ∞. In Theorem 1 below, we provide an upper bound on C(t) implying slower than diffusive behavior of the transport for sufficiently small p.

We recall that

C(t) = O(f (t)), t → ∞ means that C(t) f (t) is bounded as t → ∞. Theorem 1. Fix any β > 0, g ≥ 0, g 0 > 0. If the inequality γ := 4 1 + (3ξ log( 1 1-p )) -1 < 1, holds (i.e. if p < 1 -e -1/9ξ
), with ξ the localization length given in (6), then

C(t) = O((log t) 5 t γ ), t → ∞, almost surely.
Remark 1. For p = 0 (equivalently g = 0) our bound gives γ = 0. However, in that case the dynamics is localized and it is known that C(t) = O(1) as t → ∞, see the remarks below Theorem 1 in [START_REF] Bernardin | Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential[END_REF].

Remark 2. By direct adaptation of the proof, the on-site potential q → gq 4

x may be replaced by a more general potential q → V (θ x q), where V is a smooth, convex, local function, growing at most polynomially at infinity as well as all its derivatives, and where θ x q denotes the shifted configuration by x.

Disordered Fermion chain

This model differs from the one discussed above because it is quantum and, more importantly, it is believed to have a genuinely localized interacting phase (MBL) for some range of parameters.

To define the fermion chain, we need the fermionic creation and annihilation operators c † x , c x that satisfy the canonical anticommutation relations

[c x , c † x ] + = δ x,x , [c x , c x ] + = [c † x , c †
x ] + = 0 where [a, b] + = ab + ba is the anticommutator and x, x ∈ N L . We refer again to standard texts, e.g. [START_REF] Alicki | Quantum dynamical systems[END_REF], for an explicit representation of c x , c †

x as operators on the appropriate finite-dimensional Hilbert space F L . We also introduce the fermionic number operators n x = c † x c x counting the number of fermions (0 or 1) at site x. The Hamiltonian models interacting spinless fermions:

H = L-1 x=1 J(c † x c x+1 + c † x+1 c x ) + gτ x n x n x+1 + L x=1 ω x n x (9) 
where the random variables ω x , τ x have the same law as those in Section 2.1. This model can be mapped by the Jordan-Wigner transformation to a disordered variant of the XXZ-model:

H = L-1 x=1
J(S (1) x S

(1)

x+1 + S (2) x S

(2)

x+1 ) + gτ x S (3)
x S

(3)

x+1 + L x=1 ω x S (3) x . (10) 
In particular, setting τ x = 1 yields back the disordered XXZ chain introduced in (1). For reasons of convenience, we work however with the fermionic chain.

Dynamics

In general, by observables, we mean any Hermitian operator a acting on F L . The dynamics of observables is given by the Heisenberg evolution equation d dt

a t = La t := i[H, a], a 0 = a
The model, has two conserved quantities, the energy, i.e. the Hamiltonian itself and particle number N = x n x . Indeed, one checks easily that [H, N ] = 0. For simplicity, we discuss only transport of the particle number. The natural particle current operator j x is defined by

j x = i[J(c † x c x+1 + c † x+1 c x ), n x ] = iJ(c † x+1 c x -c † x c x+1
) and it satisfies the continuity equation

Ln x = -∇j x = j x-1 -j x .
As for the equilibrium state of the system, we choose the density matrix ρ µ ∝ e -µN . The expectation value of observables in this state is then given by

a µ = Tr(ρ µ a) Tr(ρ µ ) (11) 
where Tr(•) is the trace over the Hilbert space F L . Just as in Section 2.1, there are no subtle mathematical issues here because our setup is at finite volume. Note finally that j x µ = 0. This follows for example by considering the gauge transformation c x → e iθx c x , c † x → e -iθx c † x , under which the state • µ is invariant.

The non-interacting chain

When g = 0, the Hamiltonian reduces to

H = L-1 x=1 J(c † x+1cx + c † x c x+1 ) + L x=1 ω x n x = x,x ∈N L c † x H x,x c x (12) 
where Just like in the classical anharmonic chain, we consider the current-current correlation

H = J∆ + 2J + V, with V x,y = ω x δ x,
C(t) = lim sup L→∞ t 0 ds 1 √ L L-1 x=1 j x (s) 2 µ . (13) 
The slower than diffusive behavior of the dynamics is equivalent to the fact that C(t)/t → 0 as t → ∞. In Theorem 2 below, we provide an upper bound on C(t) guaranteeing slower than diffusive dynamics for sufficiently small p.

Theorem 2. Fix any µ > 0, g ≥ 0, J > 0. If the inequality

γ := 4 1 + (3ξ log( 1 1-p )) -1 < 1,
holds (i.e. if p < 1 -e -1/9ξ ), with ξ the localization length given in (6), then the dynamics is slower than diffusive:

C(t) = O((log t) 5 t γ ), t → ∞, almost surely.

Proof of Theorem 1

For p = 0, the chain is harmonic and it is known that C(t) = O(1) as t → ∞ (see the remarks below Theorem 1 in [START_REF] Bernardin | Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential[END_REF]). From now on, we assume p > 0, hence the model is non-integrable. Throughout the proof, constants C can always depend on β, g, g 0 and the distribution of ω x (unless stated otherwise), but not on the length L.

Decay of static correlations

We need decay of spatial correlations in the Gibbs state • β . Given a function u on R 2L , we denote by supp(u) ⊂ N L the smallest set of points such that u is constant as a function of q x , p x if x / ∈ supp(u) (it is thus not the usual support of a function in R 2L ). Given two functions u, v, we denote by d(u, v) ≥ 0 the distance between supp(u) and supp(v). We need that for polynomials u, v

| uv β -u β v β | ≤ C(u, v)e -d(u,v)/ζ (14) 
with C(u, v) invariant under translation of u or v along the chain. Since the Gibbs measure factorizes over p and q variables, and it is product for the p-variables, it evidently suffices to prove the above property for polynomials in q, as we do now. The statement below, Lemma 2, is a special case of more general results stated in [START_REF] Helffer | Remarks on Decay of Correlations and Witten Laplacians Brascamp-Lieb Inequalities and Semiclassical Limit[END_REF][START_REF] Helffer | Remarks on decay of correlations and Witten Laplacians III. Application to logarithmic Sobolev inequalities[END_REF], see also [START_REF] Bodineau | Correlations, Spectral Gap, and Log-Sobolev Inequalities for Unbounded Spin Systems[END_REF] for a review.

Lemma 2 (decay of correlations). 1. Given r ∈ N, there exists C r < +∞ such that, for any

1 ≤ x ≤ L, | q r x β | ≤ C r . 2.
There exist C, ζ < +∞ such that, given two polynomials u, v on R L (depending only on the q-variables) with

u β = v β = 0, | uv β | ≤ Ce -d(u,v)/ζ ∇ q u • ∇ q u 1/2 β ∇ q v • ∇ q v 1/2 β
These bounds hold almost surely and the constants C, C r , ζ are independent of g.

Proof.

Polynomials are obviously integrable with respect to the measure µ β at fixed length L. Let us start with Part 2, following Section 4 in [START_REF] Helffer | Remarks on Decay of Correlations and Witten Laplacians Brascamp-Lieb Inequalities and Semiclassical Limit[END_REF]. We first notice that there is no need for the restriction u = q i and v = q j in [START_REF] Helffer | Remarks on Decay of Correlations and Witten Laplacians Brascamp-Lieb Inequalities and Semiclassical Limit[END_REF] (see also the statement of Theorem 3.1 in [START_REF] Bodineau | Correlations, Spectral Gap, and Log-Sobolev Inequalities for Unbounded Spin Systems[END_REF]). Next, the function

q → β L x=1 ω 2 x q 2 x 2 + gτ x q 4 x 4 + g 0 (q x+1 -q x ) 2 2
is strictly convex with a Hessian bounded below by βω 2 -. From there, the result follows as in [START_REF] Helffer | Remarks on Decay of Correlations and Witten Laplacians Brascamp-Lieb Inequalities and Semiclassical Limit[END_REF], if ζ is taken large enough compared to g 0 /ω 2 -. Let us next consider Part 1. It is enough to consider r even since q r x β = 0 otherwise. For r = 2, the result follows from part 2 of the Lemma taking u = v = q x . For r > 2, we obtain similarly q r x β ≤ C q r-2

x β , and the result is obtained recursively.

Splitting of the harmonic Hamiltonian

We now exploit the fact that the system is an Anderson insulator in the regions where the anharmonic potential is absent, i.e. where τ = 0. The upshot is Lemma 3, whose significance is explained below. The material below is largely taken from [START_REF] Bernardin | Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential[END_REF], but we have tried to streamline the presentation to make the reasoning more transparant.

Throughout this section, we fix a realization of (τ x ) x≥1 . Given ∈ N, let

G 0 ( ) = {x ∈ N : τ y = 0 for all y ∈ N s.t. |y -x| ≤ } . ( 15 
)
We also fix an element x ∈ G 0 ( ) and we denote B = {x -, . . . , x + }, such that τ y = 0 for y ∈ B. Until the end of this section 3.2, the expectation E is assumed to be conditioned on τ y = 0, y ∈ B and we do not repeat this.

In general, let H X be the Hamiltonian restricted to a finite set X ⊂ N, i.e. retaining only terms in (3) whose support is in X. Similarly, we define the restriction of the Anderson operator H X = x,y∈X H x,y and of the Liouville operator L X = {H X , •}.

A priori left-right splitting

We first consider an obvious splitting of H B into a left (L) and right (R) part with respect to the midpoint x:

H B = H L + H R , H L := H {y∈B:y<x} Note that hence H R = H {y∈B:y≥x} + g 0 1 2 (q x+1 -q x ) 2
The functions H L , H R do not commute with H B in general , reflecting the fact that energy can be transported.

Our aim in this section is to find a modified left-right splitting H B = H L + H R which does satisfy the invariance property {H B , H L,R } = 0, reflecting the spatial localization of energy.

An invariant splitting

Let (ψ k ) k∈I be an orthonormal basis of real eigenfunctions of H B , with I an index set, |I| = |B|, and let (ν 2 k ) be the corresponding eigenvalues, positive due to the positive-definitiveness of H. For any k ∈ I, the function

e k = 1 2 p, ψ k 2 + ν 2 k q, ψ k 2 ( 16 
)
represents the energy of eigenmode k. The functions e k have two remarkable properties, following from standard considerations, 1. L B e k = 0 for all k ∈ I.

H

B = k e k .
The splitting H B = H L + H R that we propose is defined by

H L = y χ(y < x) k |ψ k (y)| 2 e k , H R = y χ(y ≥ x) k |ψ k (y)| 2 e k (17) 
From the above properties, it is clear that this is indeed a splitting and that {H B , H L,R } = 0, but it is not clear a-priori in which sense this splitting is similar to H B = H L + H R and we exhibit this now. Note first that both H L,R , H L,R are linear combinations of p z p w , q z q w with z, w ∈ B.

Let us call

H L -H L = z,w∈B γ (L) z,w p z p w + α (L) z,w q z q w , H R -H R = z,w∈B γ (R) z,w p z p w + α (R) z,w q z q w (18) 
The functions [START_REF] Dhar | Effect of Phonon-Phonon Interactions on Localization[END_REF] are small in the sense that the coefficients γ z,w typically decay exponentially in |z -x| + |w -x|. We will not state this in full generality because the following lemma suffices for our purposes.

Lemma 3.

1. For any z, w, |γ

(L,R) z,w | < C and |α (L,R) z,w | < C
2. If one of z, w is at the boundary of B, (i.e. at distance 1 of B c ), then

E(|γ (L,R z,w | + |α (L,R z,w |) ≤ Ce -/ξ
Proof. We start with [START_REF] Abdul-Rahman | Localization properties of the disordered XY spin chain: A review of mathematical results with an eye toward many-body localization[END_REF]. By combining ( 16) and ( 17), we get the explicit expression

γ R w,z = 1 2 y≥x k |ψ k (y)| 2 ψ k (w)ψ k (z) -δ y,z δ z,w (19) 
(for L → R, we replace y ≥ x by by y < x). Using y |ψ k (y| 2 = 1 and

k |ψ k (z)| 2 = 1, we then estimate |γ R w,z | ≤ 1 2 k |ψ k (w)||ψ k (z)| + 1 2 ≤ 1
and similarly for R → L. For α instead of γ, we bound first ν 2 k ≤ C using that H B is bounded by C as an operator on l 2 (B), because the distribution of (ω x ) has bounded support. Thereafter, the argument is identical to that for γ. Now to [START_REF] Agarwal | Rareregion effects and dynamics near the many-body localization transition[END_REF]. For the sake of concreteness, let us take γ (R) zw with z at the left boundary, i.e. z = xand w = z. We start from [START_REF] Ducatez | A forward-backward random process for the spectrum of 1D Anderson operators[END_REF] and we use

|ψ k (y)|, |ψ k (w)| ≤ 1 to obtain E(|γ R w,z |) ≤ E( k |ψ k (x + 1)||ψ k (x -)|) ≤ Ce -/ξ , z = x -
where the crucial last inequality follows from Lemma 1 applied within B.

We need to get this estimate also with L instead of R. From

( H L -H L ) = -( H R -H R ) we get γ (L) zw = -γ (R)
zw which settles the desired estimate also for γ

(L)
zw . The argument for z = w and for α instead of γ proceeds analogously.

Approximate solution of the Poisson equation Lu

x = j x
Next, we put the new left-right splitting to use to cast the local current j x a time-derivative Lu x , up to a small correction. Lemma 4 (localization). For x ∈ G 0 ( ), there exist functions u x and f x so that

Lu x = j x + f x , u x β = 0, f x β = 0 (20) 
with the following properties:

1. The function u x has support in B, depends only on ω x , x ∈ B, and satisfies

u 2 x β ≤ C 2 .
2. There is a random variable r x > 0 depending only on ω y with |x -y| ≤ + 1 so that,

E(r x ) ≤ C e -/ξ (21) 
and, for any

x, x ∈ G 0 ( ), such that |x -x | > 2 + 2 f 2 x β ≤ Cr 2 x , | f x f x β | ≤ Cr x r x e - 1 ζ (|x-x |-(2 +2))
Proof. We take

u x = H L -H L -H L -H L β
which satisfies all the requirements of (1), because of the bounds in Lemma 3. By the definition of j x , we have that L B (H L ) + L B c (H L ) = L B (H L ) = j x and by construction L B ( H L ) = 0. Hence ( 20) is satisfied by

f x := (L -L B -L B c )u x = {H ∂B , u x },
with H ∂B = 1 2 g 0 ((q x+ +1 -q x+ ) 2 + (q x--q x--1 ) 2 ). The zero-mean property f x β = 0 follows because j x and Lw (for any function w) have zero mean. Using the explicit form of u x , we get

f x = z∈{-, } w∈B γ z,w q z p w
The bound on f x follows now by Lemma 3 2), with r x := z∈{-, } w∈B |γ z,w |, by using q 2 z p 2 w β ≤ C and the decay of correlations in Lemma 2.

Griffiths regions

We now define a subset G( ) of G 0 ( ) where the random variable r x defined in Lemma 4 to bound the function f x , is exponentially small in :

G( ) = x ∈ G 0 ( ) : r x ≤ 2 e -/ξ (22) 
Given a realization of (ω x ) x≥1 and (τ x ) x≥1 , we define the strictly increasing sequence (g i ) i≥1 as well as a sequence (d i ) i≥1 such that

{g i : i ≥ 1} = G( ) , d i = g i+1 -g i , i ≥ 1 . (23) 
Finally, let n L = max{i : g i ≤ L} .

The next lemma expresses the fact that d i are not too large:

Lemma 5. 1. The variables d i , d j are independent whenever |i -j| ≥ 2 + 2.

2. There exists l 0 < +∞ such that for any ≥ l 0 , any i ≥ 1 and any d ≥ 1,

P (d i ≥ d) ≤ e -d/d 0 with d 0 = e 3 log 1 1-p .
Proof. The first part follows from the fact that (ω x ) x≥1 and (τ x ) x≥1 are independent sequences of i.i.d. random variables, that the event x ∈ G( ) depends only on the variables ω y , τ y with |x -y| ≤ , and that d i ≥ 1 for all i ≥ 1.

For the second part, note that P (x ∈ G 0 ( )) ≥ (1 -p) 2 +1 and that

P (r x > 2 e -/ξ ) ≤ C/ ,
by the bound [START_REF] Fröhlich | Absence of diffusion in the Anderson tight binding model for large disorder or low energy[END_REF] in Lemma 4 and the Markov inequality. Hence, for large enough,

P (x ∈ G( )) ≤ 1 2 (1 -p) 2 +1 .
Since the events x ∈ G( ) and y ∈ G( ) are independent for |x -y| ≥ 2 + 2, we obtain

P (d i ≥ d) ≤ 1 - 1 2 (1 -p) 2 +1 d/(2 +2) ≤ e -d(1-p) 2 +1 /2( +1)
which yields the claim for 0 large enough.

Proof of Theorem 1. Let us fix a realization of (ω x ) x≥1 and (τ x ) x≥1 . Let us fix some t > 0 and some length = (t) ∈ N with a dependence on time that will be specified later on. For simplicity, let us write G for G( ). We seek an upper bound on C(t) defined in [START_REF] Basko | Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion[END_REF]. Given 1 ≤ x < L, let x G ∈ G be the closest point to x. For x / ∈ G, energy conservation implies that

j x = j x G ± L   y∈{x,x G } h y   (24) 
where

{x, x G } = {x + 1, . . . , x G } if x < x G , {x, x G } = {x G+1 , . . . , x} if x > x G
and ± = + if x < x G , and ± = -if x > x G . By Lemma 4, we write j x G = Lu x G -f x G , and we obtain

L-1 x=1 j x = - L-1 x=1 f x G + L L-1 x=1 u x G ± y∈{x,x G } h y . (25) 
By Cauchy-Schwarz, we estimate

1 2L t 0 ds L-1 x=1 j x (s) 2 β ≤ 1 L t 0 ds L-1 x=1 f x G (s) 2 β + 1 L L-1 x=1 t 0 ds L-1 x=1 Lv x (s) 2 β =: I 1 (L, t) + I 2 (L, t) (26) 
where we abbreviated

v x = u x G ± y∈{x,x G } h y . (27) 
To prove Theorem 1, we establish almost sure bounds on lim L I j (L, t), for j = 1, 2.

We start with I 1 (t). By Cauchy-Schwarz and stationarity, we have for any w, t 0 ds w(s)

2 β ≤ t 2 w 2 β .
Taking w = L-1 x=1 f x G , this yields here

I 1 (L, t) ≤ t 2 L L x=1 f x G 2 β = t 2 L x,y∈N L f x G f y G β
Using the variables g i , d i defined in [START_REF] Gopalakrishnan | Griffiths effects and slow dynamics in nearly many-body localized systems[END_REF], we get then

x,y∈N L f x G f y G β ≤ 1≤i,j≤n L (d i + d i+1 )(d j + d j+1 )| f g i f g j β |
By the definition [START_REF] Ya | A pure point spectrum of the stochastic one-dimensional Schrödinger operator[END_REF] of the set G, the bounds of Lemma 4 and independence of the variables r x , r y for |x -y| ≥ 2 + 2, we get

x,y∈N L f x G f y G β ≤ C 5 e -2 /ξ 1≤i,j≤n L e - 1 ζ |i-j| d i d j Estimating d i d j ≤ 1 2 (d 2 i + d 2 j
), we hence get

I 1 (L, t) ≤ Ct 2 5 e -2 /ξ 1 L n L i=1 d 2 i
By Lemma 5, the variables d 2 i have finite moments and they have finite-range correlations. This suffices to establish a strong law of large numbers for the sequence

d 2 i . Moreover, E(d 2 i ) ≤ Cd 2 0
and hence we obtain the almost sure bound:

I 1 (t) := lim L→∞ I 1 (L, t) ≤ Ct 2 5 e b 1 , b 1 = - 2 ξ + 6 log 1 1 -p .
Next, we consider the limit t → ∞. We set, for some a > 0 to be determined later, (t) = a log t.

and we obtain

I 1 (t) = O((log t) 5 t 2+ab 1 ), t → ∞
We now move to I 2 (L, t), as defined in [START_REF] Helffer | Remarks on decay of correlations and Witten Laplacians III. Application to logarithmic Sobolev inequalities[END_REF]. For any v in the domain of L, t 0 ds Lv(s)

2 β = (ṽ(t) -ṽ(0)) 2 β ≤ 2 ṽ2 β (29) 
with ṽ = v -v β . We use this with v = x v x and v x as defined in [START_REF] Imbrie | On many-body localization for quantum spin chains[END_REF]. This yields

I 2 (L, t) ≤ 2 L   L-1 x=1 u x G ± y∈{x,x G } hy   2 β ≤ 4 L x,y∈N L | u x G u y G β | + 4 L x,y∈N L x ∈{x,x G }, y ∈{y,y G } | hx hy β | .
Thanks to the decay of correlations in Lemma 2 and the properties of u x G stated in Lemma 4, we have

| u x G u y G β | ≤ C 4 e -|x G -y G |/ζ , | hx hy β | ≤ Ce -|x -y |/ζ .
Just as for I 1 (L, t), we estimate the number of x such that x G = g i by d i + d i+1 and we obtain

I 2 (L, t) ≤ C 4 L 1≤i,j≤n L d i d j e -|i-j|/ζ + C L 1≤i,j≤n L d 2 i d 2 j e -|i-j|/ζ ≤ C 4 L n L i=1 d 4 i where we used d m i d m j ≤ d m i + d m j and d i ≤ d 2 i since d i ≥ 1.
In the limit L → ∞, we can again invoke the strong law of large numbers and we obain the almost sure bound

I 2 (t) := lim L→∞ I 2 (L, t) ≤ C 4 e b 2 , b 2 = 12 log 1 1 -p
We see hence that, for = (t) given by ( 28), I 2 (t) = O((log t) 4 t ab 2 ). Adding the contributions of I 1 , I 2 , we conclude that

C(t) ≤ C(log t) 5 t 2+ab 1 + t ab 2
The optimal a is found by equating the two powers: 2 + ab 1 = ab 2 , yielding

a = 1 v + 1/ξ , v = 3 log( 1 1 -p ).
This yields the claims of the theorem.

Proof of Theorem 2

This proof is entirely analogous to that of Theorem 1 but we still repeat the initial steps, because there are some superficial differences.

We let constants C depend on J, g, µ and the distribution of ω x .

Observables and Gibbs state

Any observable a can be expanded in a unique way as a linear combination of normally ordered monomials

c † Y = c † y 1 . . . c † yp , c Y = c y p . . . c y 1 , p, p ≥ 0.
Here Y, Y are shorthand for finite tuples of y-coordinates. p = 0 means that there are no annihilation operators, and analogously for p , and hence p = p = 0 is the identity. Hence we can write

a = Y,Y a(Y, Y )c † Y c Y
and we define the support of a as supp(a) = Y ∪ Y . In general, let H X be the Hamiltonian restricted to a finite set X ⊂ N, i.e. retaining only terms in (9) whose support is in X. Similarly, we define the restriction N X = x∈X n x and we note that [H X , N X ] = 0. Finally, we also define the restriction H X = x,y∈X H x,y of H. As an application of these definition, we check that, if, as will be assumed in the next section, the variables τ y = 0 for y ∈ B with B a stretch of sites, then the restriction H B is the second quantization of H;

H B = {x,x+1}∈B J(c † x+1cx + c † x c x+1 ) + x∈B ω x n x = x,x c † x ( H B ) x,x c x (30) 
Let us comment on the state • µ defined in [START_REF] Bodineau | Correlations, Spectral Gap, and Log-Sobolev Inequalities for Unbounded Spin Systems[END_REF]. This state is very easy to work with as it is the analogue of a product state on the lattice. Since the density matrix factorizes, e -µN = x e -µnx , one easily establishes 

Splitting of the quadratic Hamiltonian

We now exploit the fact that the system is an Anderson insulator in the regions where the anharmonic potential is absent, i.e. where τ x = 0. The upshot is Lemma 7. Throughout this section, we fix a realization of (τ x ) x≥1 . Given ∈ N, let 

We also fix an element x ∈ G 0 ( ) and we denote B = {x -, . . . , x + }, such that τ y = 0 for y ∈ B. Until the end of this section, the expectation is assumed to be conditioned on τ y = 0, y ∈ B and we do not repeat this.

We first consider an obvious splitting of N B into a left (L) and right (R) part with respect to the midpoint x:

N B = N L + N R , N L := N {y∈B:y<x} , N R := N {y∈B:y≥x}
The observables N L , N R do not commute with H B in general, corresponding to the fact that particles can be transported. Our aim in this section is to find a modified left-right splitting N B = N L + N R which does satisfy [H B , N L,R ] = 0, reflecting the spatial localization of energy. We now recall the H B is quadratic in the c y , c † y -operators, which allows for an explicit analysis. As before, we let (ψ k ) k∈I be an orthonormal basis of eigenvectors of H B , with I an index set, |I| = |B|. We define the eigenmode operators

c k = k ψ k (x)c x , c † k = k ψ k (x)c † x , n k = c † k c k
Their two useful properties are

1. [H B , n k ] = 0 2. N = x n x = k n k
The second property follows immediately from the Plancherel equality, and the first is an expression of the fact that H B is the second quantization of H B , as exhibited in [START_REF] Lepri | Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer[END_REF]. The splitting N B = N L + N R that we propose is defined by

N L = y<x k |ψ k (y)| 2 n k , N R = y≥x k |ψ k (y)| 2 n k (32) 

Figure 1 :

 1 Figure 1: Transport in a generic quantum chain as a function of disorder strength W .

Figure 2 :

 2 Figure 2: Our proof of slower than subdiffusive transport applies in the red area of the p -ξ plane. For our quantum model, the blue area indicates where we expect a delocalized (non-MBL) phase, and we see that these regions have a non-zero intersection
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 612 Let a be an observable of the form a = a(Y, Y )c † Y c Y , then a µ ≤ ||a|| ≤ |a(Y, Y )| Whenever supp(a) ∩ supp(b) = ∅, then ab µ = 0 Here, the || • || stands for the usual operator norm.

G

  0 ( ) = {x ∈ N : τ y = 0 for all y ∈ N s.t. |y -x| ≤ } .

  y , is again the Anderson Hamiltonian. It only differs from H of Section 2.1 by irrelevant constants and a different distribution of on-site disorder. Obviously, Lemma 1, formulated for H, applies to H just as well and it yields an upper bound ξ for the localization length that depends only on J and on the distribution of ω x . The equality in[START_REF] Casher | Heat Flow in Regular and Disordered Harmonic Chains[END_REF] means that the Hamiltonian H is the second quantization of H, or, in more intuitive terms, that H describes no-interacting fermions.

The first instances of disordered harmonic chains have been introduced in[START_REF] Rubin | Abnormal Lattice Thermal Conductivity of a One-Dimensional, Harmonic, Isotopically Disordered Crystal[END_REF][START_REF] Casher | Heat Flow in Regular and Disordered Harmonic Chains[END_REF]. Because of momentum conservation, the localization length diverges in the bottom of the spectrum for these models, yielding a more complicated phenomenology. We will not deal with such cases here.

More precisely, it rests on the sparsity of loops and the presence of bottlenecks, see[START_REF] De Tomasi | Subdiffusion in the anderson model on random regular graph[END_REF].
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From the above properties, it is clear that this is indeed a splitting and that {H B , N L,R } = 0, but it is not clear a-priori in which sense this splitting is similar to N B = N L + N R and we exhibit this now. Note first that both N L,R , N L,R are linear combinations of c

The functions [START_REF] Luitz | The ergodic side of the many-body localization transition[END_REF] are small in the sense that the coefficients γ z,w typically decay exponentially in |z -x| + |w -x|. We will not state this in full generality because the following lemma suffices for our purposes.

Lemma 7.

1. For any z, w, |γ

2. If one of z, w is at the boundary of B, (i.e. at distance 1 of B c ), then

Proof. From the above we derive an explicit expression for γ R,R w,z and this expression is identical to the one for the classical anharmonic case, i.e. equation ( 19) holds without any change. We can therefore copy line per line the proof of Lemma 3.

Next, we put the new left-right splitting to use to cast the local current j x a time-derivative j x = Lu x , up to a small correction.

Lemma 8 (localization). For x ∈ G 0 ( ), there exist observables u x and f x so that

with the following properties:

1. The observable u x has support in B, depends only on ω x , x ∈ B, and satisfies

2. There is a random variable r x > 0 depending only on ω y with |x -y| ≤ + 1 so that,

and, for any

Proof. We take

which satisfies all the requirements of (1), because of the bounds in Lemma 7. By the definition of j x , we have that

with

leading also to the correct support properties. To check that f x µ = 0, we use that Lw µ = 0 for any observable w and that j x µ = 0, see comment in Section 2.2.1. Using the explicit form of u x , we get

Putting r x := z∈{-, } w∈B |γ z,w |, the claims follow by Lemma 3 2), the fact that ||H ∂B || ≤ C, and the product state property in Lemma 6.

Griffiths regions

The rest of the argument proceeds just as in the classical case, in Section 3.3. In particular, the definition of the set G( ) and its main properties, i.e. Lemma 5, is taken over without any change. Then, the reasoning in the rest of the proof for the classical anharmonic chain relies entirely on the representation (24) for x / ∈ G( )

(with the set {x, x G } defined below ( 24)). For the fermionic chain, we simply change this to

The role of Lemma 2 is played here by Lemma 6, and hence we can replace the correlation length ζ by 0.