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1. Introduction

The risk of dust explosion appears in many industrial situations. In nuclear safety analysis, one of
the scenarios is the risk of graphite dust explosion that may occur during decommissioning operations of
UNGG reactors [6]. In such a case, the problem is considered as a dispersed two-phase flow with particle
size typically ranging from 1 to 100µm and a particle volume fraction up to 10−3. The modeling of such
reactive dispersed two-phase flows is usually done through a macro-scale Euler-Lagrange approach for
which the continuous phase β is described in macro-scale Eulerian frame while the dispersed phase σ is
described in a Lagrangian frame by tracking each individual particle into the carrying filtered continuous
phase. The modeling of the macro-scale heat exchanges between the filtered continuous phase and
particles is usually based on the description of heat transfer from an isolated particle [3, 5]. In this paper,
we propose an alternate route to derive the macro-scale Eulerian-Lagrangian description, using the up-
scaling methodology based on spatial averaging. The proposed methodology allows us to determine the
macro-scale exchange between the continuous phase and the particles directly from the resolution of
closure problems on a representative element volume.

2. Methods and models

The up-scaling methodology is based here on volume averaging that consists in applying a local
volume filtering operator to the micro-scale continuous phase heat transfer equation [1, 4] which leads
to the following macro-scale heat transfer equation for the filtered temperature 〈Tβ〉β

∂t
(
εβ(ρcp)β〈Tβ〉β

)
+∇ ·

(
εβ(ρcp)β〈Tβ〉β〈uβ〉β

)
= ∇ ·

(
εβλ
∗
β∇〈Tβ〉β

)
− 1

V

NV∑
k=1

Qβk (1)

where εβ , (ρcp)β and uβ are respectively the volume fraction, the volumetric heat and velocity of the
β-phase. λ∗β refers to some effective thermal conductivity that remains to be specified, NV is the number
of particles contained within the averaging volume V. Qβk correspond to the macro-scale heat transfer
between the continuous phase and the k-particle defined by:

Qβk = −
∫
Ak

nβσ · λβ∇Tβ dS (2)

where Ak refers to the β-σ interface, λβ is the thermal conductivity of the β-phase and nβσ represents
the unit normal from the β-phase towards the σ-phase. On the other hand, the Lagrangian description
for the dispersed phase is usually obtained by integrating the micro-scale heat transfer equation for the
dispersed phase over the volume of each particle, this leads to the following equation for the averaged
particle temperature Tk:

(mcp)k
dTk
dt

= Qβk (3)
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By introducing the deviation T̃β from the averaged temperature defined as Tβ = 〈Tβ〉β+T̃β in the micro-
scale heat transfer problem and by using the macro-scale transport equations, one obtains a boundary
value problem for the deviations that suggests the following unsteady representation [4, 2]:

T̃β |(x,t) = −
NV∑
j=1

sj |(x,t) ∗ ∂t
(
〈Tβ〉β |(xj ,t) − Tj |(xj ,t)

)
(4)

where ∗ refers to time convolution, xj is the location of the k-particle and sj is the mapping variables that
realize an approximate solution of the coupled macro micro-scale heat transfer problem. By substituting
Eq. (4) into Eq. (2), the closed form of the macro-scale heat exchange reads

Qβk = −
∫
Ak

nβσ · λβ∇〈Tβ〉β dS +

NV∑
j=1

hkj ∗ ∂t
(
〈Tβ〉β |(xj ,t) − Tj |(xj ,t)

)
, hkj =

∫
Ak

nβσ · λβ∇sj dS (5)

The unsteady solution of the closure problems must converge towards quasi-stationary solution when the
macroscopic times are significantly greater than the characteristic times associated with the relaxation
of sj towards s∞j . This asymptotic behavior corresponds to the transition from sj to the limit u(t)s∞j
in the convolution product defined by Eq. (4), where u(t) is the Heaviside function. This decomposition
can be written as: sj |(x,t) − u(t)s∞j |(x) = s∗j |(x,t), where s∗j represents the contribution of some history
effects in the unsteady closure problem and verifies lim

t→+∞
s∗j |(x,t) = 0. By substituting the decomposition

of sj in a quasi-steady and memory contribution, the macro-scale heat exchange can be rewritten as :

Qβk = −
∫
Ak

nβσ · λβ∇〈Tβ〉β dS +

NV∑
j=1

h∞kj
(
〈Tβ〉β |(xj ,t) − Tj |(xj ,t)

)
+

NV∑
j=1

h∗kj ∗ ∂t
(
〈Tβ〉β |(xj ,t) − Tj |(xj ,t)

)
(6)

where h∞kj and h∗kj represent respectively the quasi-steady and the ”memory” effective heat exchange
coefficients that are calculated from the closure variables s∞j and s∗j . The first term in Eq. (6) corre-
sponds to the rate of heat that would have entered the volume occupied by the particle. The second
term corresponds to the quasi-steady thermal transfer to the particle and the last contribution that
takes the form of a history integral accounts for unsteady thermal diffusion.

3. Results

• Solving the closure problems for an isolated particle and taking the limit εβ = 1 leads to the
classical macro-scale exchange described in [3].

• The unsteady closure problems and the macro-scale Eulerian-lagrangian equations in a purely
diffusive case have been solved analytically in a 1-D case and results have been validated by
comparing with direct solution of the micro-scale heat transfer problem.

• Two diagonal approximations of the matrix describing heat exchanges have been proposed to
establish a link with the classical model. These approximations are still capable of predicting
correctly the continuous phase averaged temperature but they fail to estimate accurately some
particle temperature.
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