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Introduction

The risk of dust explosion appears in many industrial situations. In nuclear safety analysis, one of the scenarios is the risk of graphite dust explosion that may occur during decommissioning operations of UNGG reactors [START_REF] Trélat | Dust explosion risk during graphite-moderated reactors decommissioning[END_REF]. In such a case, the problem is considered as a dispersed two-phase flow with particle size typically ranging from 1 to 100 µm and a particle volume fraction up to 10 -3 . The modeling of such reactive dispersed two-phase flows is usually done through a macro-scale Euler-Lagrange approach for which the continuous phase β is described in macro-scale Eulerian frame while the dispersed phase σ is described in a Lagrangian frame by tracking each individual particle into the carrying filtered continuous phase. The modeling of the macro-scale heat exchanges between the filtered continuous phase and particles is usually based on the description of heat transfer from an isolated particle [START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF][START_REF] Crowe | Multiphase flows with droplets and particles[END_REF]. In this paper, we propose an alternate route to derive the macro-scale Eulerian-Lagrangian description, using the upscaling methodology based on spatial averaging. The proposed methodology allows us to determine the macro-scale exchange between the continuous phase and the particles directly from the resolution of closure problems on a representative element volume.

Methods and models

The up-scaling methodology is based here on volume averaging that consists in applying a local volume filtering operator to the micro-scale continuous phase heat transfer equation [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF][START_REF] Davit | Handbook of Porous Media, Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms[END_REF] which leads to the following macro-scale heat transfer equation for the filtered temperature

T β β ∂ t ε β (ρc p ) β T β β + ∇ • ε β (ρc p ) β T β β u β β = ∇ • ε β λ * β ∇ T β β - 1 V N V k=1 Q βk (1) 
where ε β , (ρc p ) β and u β are respectively the volume fraction, the volumetric heat and velocity of the β-phase. λ * β refers to some effective thermal conductivity that remains to be specified, N V is the number of particles contained within the averaging volume V. Q βk correspond to the macro-scale heat transfer between the continuous phase and the k-particle defined by:

Q βk = - A k n βσ • λ β ∇T β dS (2)
where A k refers to the β-σ interface, λ β is the thermal conductivity of the β-phase and n βσ represents the unit normal from the β-phase towards the σ-phase. On the other hand, the Lagrangian description for the dispersed phase is usually obtained by integrating the micro-scale heat transfer equation for the dispersed phase over the volume of each particle, this leads to the following equation for the averaged particle temperature T k :

(mc p ) k dT k dt = Q βk (3) 
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By introducing the deviation T β from the averaged temperature defined as T β = T β β + T β in the microscale heat transfer problem and by using the macro-scale transport equations, one obtains a boundary value problem for the deviations that suggests the following unsteady representation [START_REF] Davit | Handbook of Porous Media, Theoretical analysis of transport in porous media: Multi-Equation and Hybrid Models for a Generic Transport Problem with Non-Linear Source Terms[END_REF][START_REF] Moyne | Two-Equation Model for a Diffusive Process in Porous Media using the Volume Averaging Method with an Unsteady-State Closure[END_REF]:

T β | (x,t) = - N V j=1 s j | (x,t) * ∂ t T β β | (xj ,t) -T j | (xj ,t) (4) 
where * refers to time convolution, x j is the location of the k-particle and s j is the mapping variables that realize an approximate solution of the coupled macro micro-scale heat transfer problem. By substituting Eq. ( 4) into Eq. ( 2), the closed form of the macro-scale heat exchange reads

Q βk = - A k n βσ • λ β ∇ T β β dS + N V j=1 h kj * ∂ t T β β | (xj ,t) -T j | (xj ,t) , h kj = A k n βσ • λ β ∇s j dS (5)
The unsteady solution of the closure problems must converge towards quasi-stationary solution when the macroscopic times are significantly greater than the characteristic times associated with the relaxation of s j towards s ∞ j . This asymptotic behavior corresponds to the transition from s j to the limit u(t)s ∞ j in the convolution product defined by Eq. ( 4), where u(t) is the Heaviside function. This decomposition can be written as:

s j | (x,t) -u(t)s ∞ j | (x) = s * j | (x,t)
, where s * j represents the contribution of some history effects in the unsteady closure problem and verifies lim t→+∞ s * j | (x,t) = 0. By substituting the decomposition of s j in a quasi-steady and memory contribution, the macro-scale heat exchange can be rewritten as :

Q βk = - A k n βσ • λ β ∇ T β β dS + N V j=1 h ∞ kj T β β | (xj ,t) -T j | (xj ,t) + N V j=1 h * kj * ∂ t T β β | (xj ,t) -T j | (xj ,t) (6) 
where h ∞ kj and h * kj represent respectively the quasi-steady and the "memory" effective heat exchange coefficients that are calculated from the closure variables s ∞ j and s * j . The first term in Eq. ( 6) corresponds to the rate of heat that would have entered the volume occupied by the particle. The second term corresponds to the quasi-steady thermal transfer to the particle and the last contribution that takes the form of a history integral accounts for unsteady thermal diffusion.

Results

• Solving the closure problems for an isolated particle and taking the limit ε β = 1 leads to the classical macro-scale exchange described in [START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF].

• The unsteady closure problems and the macro-scale Eulerian-lagrangian equations in a purely diffusive case have been solved analytically in a 1-D case and results have been validated by comparing with direct solution of the micro-scale heat transfer problem.

• Two diagonal approximations of the matrix describing heat exchanges have been proposed to establish a link with the classical model. These approximations are still capable of predicting correctly the continuous phase averaged temperature but they fail to estimate accurately some particle temperature.