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Abstract

Vehicle routing problems generally aim at designing routes that minimize transportation costs.
However, in practical settings, many companies also pay attention at how the workload is dis-
tributed among its drivers. Accordingly, two main approaches for balancing the workload have
been proposed in the literature. They are based on minimizing the duration of the longest route,
or the difference between the longest and the shortest routes, respectively. Recently, it has been
shown on several occasions that both approaches have some flaws. In order to model equity we
investigate the lexicographic minimax approach, which is rooted in social choice theory. We define
the leximax vehicle routing problem which considers the bi-objective optimization of transportation
costs and of workload balancing. This problem is solved by a heuristic based on the multi-directional
local search framework. It involves dedicated large neighborhood search operators. Several LNS
operators are proposed and compared in experimentations.

Keywords: vehicle routing problem, workload balancing, equity in route duration,
multi-directional local search, large neighborhood search

1. Introduction

Most vehicle routing problems (VRPs) studied in the operations research literature deal with
the design of a set of routes of minimal cost to serve a set of customers. In many practical cases,
companies seek cost minimization as well as the optimization of criteria related to vehicles and
drivers. In particular, preserving equity among drivers through a good balance of their workload
is often sought. The workload of a driver (or a vehicle) can be measured by the length, cost or
duration of the route assigned to this driver. The problem of designing a set of balanced routes
has been generally studied in a multi-objective setting and known under the name VRP with route
balancing (Borgulya, 2008; Jozefowiez et al., 2009; Lacomme et al., 2015) load balancing (Lee and
Ueng, 1999) or route balance (Mandal et al., 2015; Halvorsen-Weare and Savelsbergh, 2016).

Historically, two main equity measures have been proposed in the VRP literature. First, min-
max approaches, as in Golden et al. (1997), aim at minimizing the load of the most loaded driver. An
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unfortunate consequence of this approach is that all solutions with the same value for the longest
route have the same equity measure. Therefore, significantly different solutions are considered
equivalent. The min-max approach is further investigated in Bertazzi et al. (2015), which analyzes
min-max optimal solutions with respect to minimizing cost.

The second equity measure considers the difference between the longest route and the shortest
route. This approach was first introduced by Lee and Ueng (1999) with a motivation to integrate
employee’s welfare in optimization models. This work was followed by several other contributions in
the past twenty years (see e.g. Jozefowiez et al. (2002, 2009); Mandal et al. (2015); Lacomme et al.
(2015)). A drawback of this measure is its non-monotonicity: it can be improved by increasing,
even in an inconsistent way, the load of the shortest route of a solution without decreasing the load
of the others.

Example 1. Consider a VRP with three routes, and three solutions s1, s2 and s3 with route dura-
tions vectors (8, 7, 7), (8, 6, 7) and (10, 10, 10) respectively.

According to the min-max approach, solutions s1 and s2 are equivalent, whereas s2 should be
considered better because one driver is less loaded than in s1 and the two other routes require the
same amount of work.

According to the second equity measure, solution s1 with route durations (8, 7, 7) offer a better
workload balance than s2 with route durations (8, 6, 7). This is mathematically true, but not really
consistent with employee’s welfare considerations. Note also that solution s3, with route durations
(10, 10, 10), is perfectly balanced, and thus would have a better equity measure than s1 and s2.

The recent survey and analysis of Matl et al. (2017) provides a deep analysis of equity measures
for the VRP in a bi-objective context, where the first objective is the solution cost. In Matl et al.
(2017), the difference between the longest route and the shortest route is called range. The article
includes an axiomatic approach that involves various equity measures and lists the good properties
that should be verified by an equity measure. Hence, among others, range is compared to the
min-max and lexicographic minimax ordering approaches. The authors introduce the notion of
inconsistency, which characterizes solutions like s1 and s3 that could be improved in terms of load
and cost, at the price of deteriorating the workload balancing measure.

It can be argued that in a bi-objective (cost + equity measure) setting, the set of Pareto-
optimal solutions should only contain solutions that make sense in practice. This leads to the
notion of TSP-optimality : a route is called TSP-optimal if re-ordering its customers cannot result
in a decrease of its duration. Among many important observations, Matl et al. (2017) observe
that, even if TSP-optimality is enforced for each tour: (i) the Pareto set contains only 30% of
consistent solutions, and (ii) inconsistent solutions can dominate some consistent solutions. This
is observed for all equity measures that are not monotonic with respect to route duration. In
addition, the authors show that the lexicographic minimax approach finds all consistent solutions
and no inconsistent solution.

Using the range objective can also lead to poor assignment of customers to routes, in order to
produce solutions that are balanced by that measure. In a recent computational study where several
route balance models are compared, Halvorsen-Weare and Savelsbergh (2016) provide examples
of so-called artificially balanced solutions that are considered to be good when using the range
objective. To tackle this problem, procedures have been proposed (see e.g. Jozefowiez et al.
(2002)) to avoid creating routes that are not TSP-optimal, but bad assignment of customers to
routes remains a problem.
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In this paper, we use the lexicographic minimax approach as an equity measure. The lexico-
graphic minimax approach is used to model equity in many other fields (Ogryczak et al., 2014).
To our knowledge, it has been integrated in VRP algorithms in only one paper: Saliba (2006)
presents adaptations of sequential insertion and savings heuristics in parameterized versions, as
well as adaptations of the 2-Opt, string exchange and string relocation local search operators for a
CVRP where the lexicographic minimax approach is applied in a single-objective fashion. These
heuristics are compared on instances from the VRP-Lib. For an exhaustive recent review of all
contributions in VRP on workload balancing, we refer to the recent papers of Halvorsen-Weare
and Savelsbergh (2016) and Matl et al. (2017).

A driver working time being directly related to its vehicle route duration, we consider that the
workload of a route is its duration. This is also the most common metric used to evaluate a route.
From Matl et al. (2017), “most works consider tour length as the equity metric, based either on
distance or duration”. Among the 35 vehicle routing publications incorporating equity concerns in
this survey, all but 3 take a length measure of the route as a metric for its workload. However, our
approach is not tied to this definition and can be applied to other route load metrics.

Section 2 introduces the leximax -VRP, which integrates workload balancing following the lexi-
cographic minimax approach. To tackle this problem, we propose a multi-directional local search
approach in Section 3, including the Large Neighborhood Search (LNS) operators specifically de-
signed to guide the search towards balanced solutions. Finally, we present several experiments to
evaluate the proposed approaches as well as an extensive analysis of the solutions that result from
this optimization.

2. The lexicographic minimax approach to the capacitated vehicle routing problem

The lexicographic minimax refines the min-max approach (Dubois et al., 1996): informally
speaking, when a minimal value has been found for the longest route, the lexicographic mini-
max considers the second longest route, the third longest route, and so on, until all ties have been
broken. Hence, in this approach, solution s1 with route durations (8, 6, 7) strictly dominates s2

with route durations (8, 7, 7), which in turns dominates s3 with route durations (10, 10, 10).
As summarized by Ogryczak et al. (2014) in a survey on fair optimization and networks, the

lexicographic minimax approach has been used in operations research in applications such as band-
width allocation and network optimization (see e.g. Ogryczak et al. (2005); Nace and Orlin (2007);
Radunović and Boudec (2007); Luss (2010)), facility location (Ogryczak, 1997), supply chain op-
timization (Liu and Papageorgiou, 2013), air traffic flow management (Bertsimas et al., 2008) to
produce equitable (or indifferently called fair) solutions. This approach is related the leximax or-
dering (or rather leximin in a welfare maximization context) in social choice theory, introduced
by Sen (1970). It has also been widely used under this name in decision making (Dubois et al.,
1996) or constraint programming (see e.g. Dubois et al. (1995); Bouveret and Lemâıtre (2009)).
Other definitions of the same concept includes min-max fairness (see e.g. Radunović and Boudec
(2007); Ogryczak et al. (2014)), lexicographic min-max optimization (Ogryczak and Śliwiński,
2006), lexicographic max-ordering (Ehrgott, 1998; Saliba, 2006), lexmaxmin (Behringer, 1981).

We refer to Karsu and Morton (2015) for a review of fair optimization approaches and Moulin
(2004) for a discussion on fairness in various contexts. Bertsimas et al. (2011) present theoretical
results on the price of fairness.

In our lexicographic minimax approach to the vehicle routing problem with route balancing,
we use the following definition of the leximax ordering, adapted from the leximin definition of
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Bouveret and Lemâıtre (2009) and Sen (1970).

Definition 1. (Leximax ordering and leximax optimal solutions)
Let x and y denote two vectors in Rm. Let x↓ and y↓ denote these same vectors where each element
has been rearranged in a non-increasing order. According to the leximax ordering:

� the vector x leximax-dominates y (written x ≺leximax y) if and only if ∃i ∈ {1, ...,m} such

that: ∀j ∈ {1, ..., i− 1}, x↓j = y↓j and x↓i < y↓i ,

� x and y are indifferent (written x ∼leximax y) if and only if x↓ = y↓.

We write x �leximax y the case where x ≺leximax y or x ∼leximax y.
Let S be a set of vectors in Rm representing the feasible solutions of an optimization problem, then
x is leximax-optimal if ∀y ∈ S, x �leximax y.

In other terms, if we denote by ≤lex the lexicographic ordering, then:

x↓ ≤lex y
↓ ⇔ x �leximax y.

In this paper, we consider the capacitated vehicle routing problem (CVRP) Toth and Vigo
(2002) in which a set of customers should be delivered by a set of m vehicles from a depot, such
that the quantity delivered by each vehicle is not greater than its capacity Q. For the purpose
of notation in the remaining of the paper, we consider that the weight of each arc represents the
duration as well as the cost of traveling through this arc. The cost of a route is then the sum of
the weights of all arcs traversed by this route. The duration of a route is the sum of the weights
of all arcs traversed and the service durations at all customers visited by this route. The duration
of each route should be less than a given maximum value denoted by L.

We consider the problem of finding the set of solutions to the CVRP that offer the best trade-
off between routing costs and load balancing. The leximax ordering over route durations is taken
to compare solutions on workload balancing aspects. Although the leximax ordering cannot be
explicitly called an objective function because it does not define an objective value for a given
solution, we consider the problem as a bi-objective optimization problem.

We call this problem the leximax -VRP. Let s be a solution to the leximax -VRP. We denote by
cs the cost of a solution s and ls = (ls1, ..., l

s
m) the vector of route durations for this solution. Pareto

optimal solutions to the leximax -VRP can be defined as follows:

Definition 2. (Dominance and Pareto optimality in the leximax-VRP)
Let s and s′ represent two solutions of the leximax-VRP. A solution s dominates a solution s′ iff:
cs ≤ cs′ and ls �leximax l

s′ and either cs < cs′ or ls ≺leximax l
s′.

s is a Pareto optimal solution iff no other solution dominates s.

Definition 2 is illustrated in Example 2.

We consider a leximax-VRP with 4 vehicles and the 6 solutions described in Table 1. A graphical
visualization of these solutions is given in two dimensions (Solution cost and maximum route
duration) on Figure 1. The blue discs represent the Pareto optimal solutions. The minimum cost
solution is s1, and the most balanced is s5. Solution 6 is dominated by s3, s4, and s5. Note that
this solution has the minimum range. Solution s2 is not dominated by s1 although it has a greater
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Example 2.

Solution Cost Sorted route durations

s1 15 14, 11, 3, 2
s2 17 14, 9, 5, 4
s3 20 12, 11, 5, 5
s4 22 12, 11, 6, 6
s5 24 10, 10, 10, 9
s6 33 12, 12, 12, 12

Table 1: Solutions representation according to their cost and routes duration.

● ●

● ●

●

●

s1 s2

s3 s4

s5

s6

● ●

●

●10

11

12

13

14

15 20 25 30

Cost

M
ax

Figure 1: Two-dimension solutions visualization according to the duration of the longest route in each solution (Max)
and the solution cost.
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cost and the same maximum route duration as s2. Indeed, it offers a better balance than s1 between
the second, third and fourth routes of the solution. Conversely, s4 is dominated by s3 because it is
worse than s3 for cost and because the vector of route durations of s3 leximax-dominates the vector
of route durations of s4.

The goal of our approach is to compute the complete set of Pareto optimal solutions to the
leximax -VRP (called Pareto set). As the problem is NP-hard, we try to approximate this set with
a bi-objective metaheuristic.

In the context of optimization algorithms, one complicating factor is that the lexicographic
minimax approach does not measure a solution’s quality with a single scalar value. Instead, it is
based on the binary relation �leximax, which allows to compare two solutions and determine if one
is more balanced than the other. This comparison involves sorting and comparing two vectors,
rather than simply comparing two numbers. However, we believe that this binary relation defines
a dominance relation that can easily be integrated in a metaheuristic.

3. Solution method

To solve the leximax -VRP, we propose to integrate the lexicographic minimax approach in the
multi-directional local search (MDLS) framework introduced by Tricoire (2012). We first recall the
principles of the generic framework in Section 3.1. In Section 3.2, we describe the LNS operators
that have been used to produce solutions to the leximax -VRP in this framework.

3.1. Multi-directional local search

MDLS is a multi-objective optimization framework (Tricoire, 2012) which generalizes the con-
cept of local search to multiple objectives. It is an iterative method, where the number of iterations
(or CPU budget) is the only problem-independent parameter. MDLS considers an archive F of
solutions which is maintained and updated through the solution process. At each iteration, three
steps are performed:

1. A solution x is randomly selected from F , each solution having equal probability.

2. For each objective, single-objective local search is performed on x.

3. F is updated with solutions obtained by single-objective local search.

In the following, we call non-dominated set any set of solutions such that no solution from
this set dominates another solution from this set. MDLS maintains F as a non-dominated set by
performing non-dominated union operations. The non-dominated union of two sets performs the
union of these two sets while filtering out the elements that are dominated by at least one element
of these two sets. Non-dominated union is defined for any multi-objective setting and is not specific
to the leximax -VRP. We note it ∪� and define it as follows: A∪�B = {x ∈ A∪B | @y ∈ A∪B, y 6=
x∧y � x}, where y � x means that y dominates x for a given multi-objective optimization problem.

In order to apply MDLS to the leximax -VRP, we need to define local search for both the cost
and leximax objective functions. For that purpose we develop a parametric large neighborhood
search algorithm, called LNSk, where parameter k determines the evaluation function being used,
i.e. the objective being optimized: LNS1 aims at improving cost while LNS2 aims at minimizing
the leximax value. LNS is a iterative metaheuristic that iteratively destroys and repairs an in-
cumbent solution (Shaw, 1998); it has been successfully applied to a variety of routing problems,
see e.g. Pisinger and Ropke (2007). The LNS algorithm itself is detailed in section 3.2. LNS has
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become one of the most successful paradigms for solving various transportation and scheduling
problems (see Pisinger and Ropke (2019)).

Algorithm 1 outlines our LNS-based MDLS algorithm, taking as parameters a non-dominated
archive F and a CPU time budget timeLimit.

Algorithm 1 MDLS(F, timeLimit)

1: pre-condition: F is a non-dominated set
2: repeat
3: x← select a solution(F )
4: F ← ∅
5: for k ∈ {1, 2} do
6: F ← F ∪� LNSk(x)
7: end for
8: until timeLimit is reached
9: return F

The archive F is initialized with the solution of the cheapest insertion heuristic adapted from
Pisinger and Ropke (2007). In the first MDLS iterations, solutions may not be feasible: with a
limited number of vehicles, we may end up with a solution where some unvisited customers cannot
be inserted into any route, due to bin packing (capacity) constraints. Since feasibility cannot be
guaranteed, we accept infeasible solutions to begin with. The dominance rule needs to be adapted
to tackle infeasibility: if a solution x1 has less unvisited customers than another solution x2, then
x1 always dominates x2.

3.2. Local search components

In our implementation of MDLS, we consider that local search consists of one Large Neighbor-
hood Search (LNS) iteration Ropke and Pisinger (2006). Several ruin and recreate operators are
defined for each objective. Hence, at each iteration, for each objective (i) a ruin and a recreate
operator are randomly selected in the set of operators for that objective and (ii) a new solution
is produced using the selected operators. According to the LNS framework Pisinger and Ropke
(2019), the ruin quantity, used in the destroy operator, is randomly selected within some bounds
(at least one customer and at most 30% of the number of customers in our experimentations). All
customers removed from the current solution by the removal operator are placed in a request bank
denoted B. The goal of the repair operator is to re-insert all customers i ∈ B in the partial solution
resulting from the removal operator.

3.2.1. Cost oriented ruin and recreate operators

We first implement some classical LNS removal operators and repair operators defined for the
VRP with the single objective of cost minimization. The removal operators that we use are random
removal, worst removal, related removal and route removal. The recreate operators are the cheapest
insertion heuristic and the k-regret heuristic for k = 2, 3, 4. The operators are described in many
articles, e.g., Pisinger and Ropke (2007). We call them cost-oriented operators.

3.2.2. Leximax ruin operators

A major contribution of this work is to introduce leximax operators. They constitute rather
natural extensions of the relevant classical operators to the lexicographic minimax approach. The
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ruin operators include the random removal and the related removal as well as the following two
operators:

� worst max removal: this operator removes, from the longest route, the customer that de-
creases the most the duration of this route. This is repeated until the number of removed
customers is equal to the ruin quantity.

� longest route removal: this operator removes all customers from the longest route. This is
repeated until the number of removed customers is greater than or equal to the ruin quantity.
Several routes may be destroyed this way.

3.2.3. Leximax recreate operators

Two sets of recreate operators have been designed to guide the search towards leximax-optimal
solutions:

� The leximax cheapest insertion and leximax k-regret extend the classical cheapest insertion
heuristic and the k-regret heuristic according to the lexicographic minimax approach.

� The min-max cheapest insertion and min-max k-regret, which are straightforward simple
extensions of cheapest insertion and k-regret using the duration of the longest route to guide
the search.

The leximax cheapest insertion is a rather natural extension of the cheapest insertion heuristic.
At each iteration, a customer i ∈ B is selected and inserted at its best position in a route r. The
resulting solution must dominate (according to the leximax ordering) any other solution resulting
from the insertion of i in any other route. It must also dominate any other solution resulting from
the insertion of customer i′ ∈ B, i′ 6= i in the current solution.

The leximax k-regret operator works as follows: for a given vertex i ∈ B, we note di1, ..., d
i
m

the m vectors of route durations that result from the insertion of i at its best insertion in routes
1, ...,m.

Let σ be a permutation of route indices such that diσ(1) �leximax ... �leximax d
i
σ(m). We define

the leximax k-regret of customer i as the vector:

∆i
k =

k∑
j=2

(di↓σ(k) − d
i↓
σ(1)).

At each iteration, the vertex i with the greatest regret according to the lexicographic non-
decreasing ordering (i.e. such that ∀i′ ∈ B, ∆i

k ≥lex ∆i′
k ) is inserted in the solution at its best

position in the route that yields the best solution w.r.t. the leximax order (i.e., the solution with
route durations diσ(1)).

The leximax-based repair operators are computationally expensive: comparing two insertions
means sorting two vectors of size m and comparing them. Sorting a vector of size m can be done in
O(m(logm)), but in fact there is never a need to sort the vector entirely, since only one element is
modified for a given insertion. Therefore it is sufficient to remove the route duration being modified
and insert the modified value, both operations being in O(logm). Then both vectors still need to
be compared, which in the worst case is in O(m). Therefore we can approximate the worst-case
time complexity of any given comparison of two insertions to O(m).
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In contrast, comparing two insertions for the cost objective is in O(1). This means that we can
expect to spend a majority of the CPU budget on the leximax-based repair operators. In order to
determine whether it is worth it, we also develop operators that aim at minimizing the leximax,
but which operate in constant time: the min-max cheapest insertion and min-max k-regret are
simplified versions of the leximax operators, which use only the duration of the longest route to
guide the search, as well as the solution cost increase to break ties. The objective of introducing
these operators is to assess the efficiency of these faster operators to guide the search towards
lexicographic minimax solutions.

Example 3. Leximax 2-regret operator
We illustrate the proposed operator on the example represented on Figures 2 and 3. Let us consider
an incomplete current solution with four routes k1, ..., k4 with durations 10,8,4 and 2, respectively,
as represented on Figure 2a.

Let i and j be two un-routed customers. The four charts of Figure 2b show the route durations
that result from the insertion of vertex i at its best position in each of the four routes of the
solution. Hence, each chart represents a partial solution. On Figure 2c, these four solutions are
sorted according to the leximax operator: they are displayed with their routes sorted on a decreasing
order so that the leximax order corresponds to the lexicographic non-decreasing order. On Figure
2d, the regret value is calculated as the difference between the vector di↓σ(2) that represents the second

best insertion and the vector di↓σ(1) that represents the best insertion according to the leximax order.
The calculation of the regret of vertex j is illustrated on Figure 3. This regret is then compared to

the regret of vertex i (Figure 3c) using the lexicographic decreasing order. Since j has the greatest
regret, it is selected for insertion. According to the order of Figure 3b, j is inserted at its best
position in route k1.

Note that on this example, the leximax cheapest insertion operator would have compared di↓σ(1)

and dj↓σ(1) using a non increasing lexicographic order. Its conclusion would have been to insert
vertex i at its best position in route k4. The leximax 2-regret operator anticipates that the second
best insertion of j yields a longest route that is significantly higher than the one obtained for its
best insertion. This is not the case for vertex i, therefore, leximax 2-regret recommends to insert j
before i.
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(a) Route durations of the current solution (with vertices i and j to be inserted):

k4 2

k3 4

k2 8

k1 10

(b) Evaluation of the insertion of vertex i in each route:

di1

k4 2
k3 4
k2 8
k1 12

di2

k4 2
k3 4
k2 12
k1 10

di3

k4 2
k3 10
k2 8
k1 10

di4

k4 6
k3 4
k2 8
k1 10

(c) Order with respect to ≺leximax:

di↓σ(3)

k4 2
k3 4
k2 8
k1 12

di↓σ(4)

k4 2
k3 4
k1 10
k2 12

di↓σ(2)

k4 2
k2 8
k3 10
k1 10

di↓σ(1)

k3 4
k4 6
k2 8
k1 10

(d) Caculate 2-regret:

∆i
2 = di↓σ(2) − d

i↓
σ(1)

-2

2

2

0

Figure 2: Example lexi-2-regret: insertion of a vertex i
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(a) Evaluation of the insertion of vertex j in each route:

dj1

k4 2
k3 4
k2 8
k1 12

dj2

k4 2
k3 4
k2 15
k1 10

dj3

k4 2
k3 15
k2 8
k1 10

dj4

k4 15
k3 4
k2 8
k1 10

(b) Order with respect to ≺leximax:

dj↓σ(1)

k4 2
k3 4
k2 8
k1 12

dj↓σ(2)

k4 2
k3 4
k1 10
k2 15

dj↓σ(3)

k4 2
k2 8
k1 10
k3 15

dj↓σ(4)

k3 4
k2 8
k1 10
k4 15

(c) Caculate 2-regret for j and select the customer with the greatest regret:

∆j
2 = dj↓σ(2) − d

j↓
σ(1)

0
0
2
3

>lex

∆i
2 = di↓σ(2) − d

i↓
σ(1)

-2
2
2
0

⇒
insert node j

in route k1

Figure 3: Example lexi-2-regret: insertion of a vertex j and selection of the request with the highest regret

4. Computational experiments

The designed MDLS is evaluated on the Christofides CVRP instances (Eilon et al., 1971;
Christofides et al., 1979), which have been traditionally used to benchmark the VRP with route
balancing (Jozefowiez et al., 2009; Lacomme et al., 2015). We ignore the route duration limit that
is imposed on some instances since all solutions satisfying this limit can be easily identified in the
final set produced by MDLS. For each instance, the fleet size is set as the number of vehicles in
the best known solution reported by CVRPLIB (2018).

The main characteristics of the 14 instances are presented in Table 2.
For all instances and solution methods, 10 runs were performed on an Intel(R) Xeon(R) X5675

3.07GHz processor.

4.1. MDLS configurations comparison

We test three MDLS configurations, called leximax, max and all, respectively. The three
configurations include all removal operators as well as all cost oriented operators. The list of
operators used to optimize each objective in MDLS and for each configuration is detailed in Table
3.

The max configuration includes Min-max cheapest insertion and Min-max k-regret, which are
the simple and fast extensions of the traditional LNS recreate operators based on cost. The leximax
configuration includes the leximax cheapest and leximax k-regret operators. The all configuration
includes all recreate operators. Comparing the three configurations we aim at evaluating if very
simple search strategies may be applied to efficiently find solutions or if the more elaborate operators
are needed.
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Instance
# BKS BKS Maximum Service

customers # vehicles cost duration time

vrpnc1 50 5 524.61 +∞ 0
vrpnc2 75 10 835.26 +∞ 0
vrpnc3 100 8 826.14 +∞ 0
vrpnc4 150 12 1028.14 +∞ 0
vrpnc5 199 17 1291.45 +∞ 0
vrpnc6 50 6 555.43 200 10
vrpnc7 75 11 909.68 160 10
vrpnc8 100 9 865.94 230 10
vrpnc9 150 14 1162.55 200 10
vrpnc10 199 18 1395.85 200 10
vrpnc11 120 7 1042.11 +∞ 0
vrpnc12 100 10 819.56 +∞ 0
vrpnc13 120 11 1541.14 720 50
vrpnc14 100 11 866.37 1040 90

Table 2: Characteristics of the CVRP instances that have been adapted for our experiments. The columns specify
the number of customers in each instance, the number of vehicles in the best known solutions for these instances
(proven optimal for instances 1-5, 11, 12), the cost of best known solutions, the maximum allowed duration for each
route, and the duration of service at customer locations.
For the leximax-VRP: the number of vehicles in the best known CVRP solution is taken as number of available
vehicles; maximum duration constraints are not considered.

Operator Objective Configuration
max leximax all

Random removal Ê Ë 4 4 4
Worst removal Ê 4 4 4
Related removal Ê Ë 4 4 4
Route removal Ê 4 4 4
Worst max removal Ë 4 4 4
Longest route removal Ë 4 4 4

Cheapest insertion Ê 4 4 4
k-regret (k = 2, 3, 4) Ê 4 4 4
Leximax cheapest insertion Ë 7 4 4
Leximax k-regret (k = 2, 3, 4) Ë 7 4 4
Min-max cheapest insertion Ë 4 7 4
Min-max k-regret (k = 2, 3, 4) Ë 4 7 4

Table 3: Summary of operators and MDLS configurations
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4.1.1. Quality of the Pareto front approximation

As presented in Section 4.2, the configurations are tested with runtimes of 1, 10, 30 and 60
minutes. For each instance, a reference set is constructed by taking the non-dominated union of the
sets returned by each run for each configuration and each tested run time (10× 3× 4 sets in total).
We evaluate the quality of our approximation of the Pareto set, first by looking at the percentage
of solutions from the reference set found for each run in the 60-minutes benchmarks. These results
are represented on Figure 4. This figure shows four box-and-whisker diagrams (boxplots) which
represent the percentage of reference solutions found as well as those that are within a 1%, 2% or
3% distance of a solution from the reference set. A solution x1 is said to be within a α% distance of
another solution x2 if, when the cost and all route durations of x2 are multiplied by 1+ α

100 , then x1

dominates this transformed solution. For each instance and each run we look at the proportion of
the solutions in the reference front for which the algorithm returned a solution within the specified
distance. For each MDLS configuration and each instance, the boxplot represents the variability
of the results returned by the 10 runs.
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Figure 4: Proportion of solutions in the reference set found within a 0%, 1%, 2%, 3% distance (run time: 60 minutes)

On boxplot 4a, the three tested configurations of MDLS consistently find more than 50% of the
reference set for only three instances. However, for most instances and most methods, the returned
set is actually relatively close to the reference set, as shown in Figures 4b to 4d.

Comparing the different MDLS configurations, it can be observed that, although the max
configuration seems slightly better for some instances on boxplot 4a, it experiences some difficulties
on instance vrpnc14. Indeed, boxplot 4c shows that large proportions of the reference set are more
than 2% away from any solution returned by max on this instance on most runs of the algorithm.
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The synthesis proposed by Figure 4 is further analyzed in graphical representations of the
solution set obtained by the various configurations for several instances, as depicted on Figures 5
and 6. Here, we compare the union of the sets returned by the 10 runs for the three MDLS
configurations after 60 minutes of computation. The horizontal axis represents the solution cost,
whereas the vertical axis represents the duration of the longest route. Note that in theory, two
solutions may have similar cost and Max and different route durations – but we did not observe
such cases and believe they are quite exceptional.

Figure 5 represents the union of the MDLS-produced sets for four instances (vrpnc1, vrpnc6,
vrpnc7 and vrpnc12) for which the three MDLS configurations give the most satisfactory results
(from Figure 4). Figure 6 represents the union of the MDLS-produced sets for four instances
(vrpnc2, vrpnc8, vrpnc10 and vrpnc14), for which the three MDLS configurations seem further
from the reference front.

From these figures we can see that, for most cases, all configurations provide very similar
approximations of the Pareto set. In particular, the simple construction heuristics of the max
configuration are generally sufficient to reach a good enough set. Nevertheless, Figures 5b, 6b
and 6c suggest that leximax-based heuristics, integrated in the leximax and all configurations,
slightly help to find the most balanced solutions on some instances. Figure 6c shows that none
of the configurations really achieves a good convergence for instance vprnc10, which is the largest
instance.

4.1.2. Instances with larger fleet size

To further investigate the comparison between the three MDLS configurations, we now use
instances which yield more opportunities for balancing the workload. To that end, we consider
the same instances as previously but using m∗ + 1 vehicles, where m∗ is the number of vehicles
considered previously, i.e. the number of vehicles in the best known solution for the cost objective.
This setting captures the fact that certain workdays have a lower activity, thus making workload
balancing a greater challenge.
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Figure 5: Union of solution sets for the vrpnc1, vrpnc6, vrpnc7 and vrpnc12 instances.
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Figure 6: Union of solution sets for the vrpnc2, vrpnc8, vrpnc10 and vrpnc14 instances.
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Figure 7: Proportion of solutions in the reference set found within a 0%, 1%, 2%, 3% distance when m = m? + 1
(run time: 60 minutes)

First, the four boxplots of Figure 7 show that the instances become significantly harder with
an additional vehicle. For example, on Figure 4a, all methods are able to get the reference set on
all runs for instance vrpnc1 with m = m?. This is not the case anymore on Figure 7a. Second,
it becomes more obvious that the max configuration can be less efficient than the others on some
instances.

On Figures 8c and 8d, further insights are proposed by plotting the unions of the solution
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Figure 8: Union of solution sets for four instances with one additional vehicle.
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sets returned by all runs for several instances. It can be observed that the max configuration is
outperformed by the others mainly on the most balanced solutions. This indicates that in some
cases, the min-max cheapest insertion and min-max k-regret heuristics may not be able to spread
the load over drivers as efficiently as the leximax based heuristics.

4.1.3. Number of iterations

To evaluate the impact of the higher complexity of the leximax recreate operators, we compare
the number of iterations performed by MDLS with the various configurations in the same runtime.
These comparisons are performed, taking the minimum number of vehicles for each instance.

On Figure 9, the 14 instances are placed on the horizontal axis. The vertical axis represents
the number of iterations performed after 1 minute. Quite logically, integrating the leximax regret
and leximax best insertion has a significant impact on the average duration of each iteration, up
to almost twice as many iterations in the case of instance vrpnc2.
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Figure 9: Number of MDLS iterations after one minute, for each configuration on each instance.

Figure 9 completes the analysis of Section 4.1.1 by illustrating the following observation: The
max configuration implements heuristics that are less complex. As a result, more MDLS iterations
can be performed within its time limit. This partly explains why all configurations show the
same performance for several instances. However, for some instances such as vrpnc6 on Figure 5b,
using the leximax heuristics is important to obtain most trade-off solutions, even though the max
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configurations performs almost 50% more iterations than leximax.

4.1.4. Experiments on small instances

To complete the previous experiments, we evaluate the performance of the proposed MDLS on
small instances for which all solutions have been enumerated in order to extract the exact leximax -
VRP Pareto front. We created 14 small instances, each having ten customers and five vehicles.
These have been created by taking the ten first customers of instances vrpnc1 to vrpnc14 and are
called vrpnc1|10 to vrpnc14|10. Ten runs of each MDLS configurations have been performed for
each instance with a time limit of one second. For each instance and each configuration, we keep
the reference front, which is the union of the non-dominated solution sets of all runs. Instances and
results are presented in Table 4. The first column indicates the original instance. For each instance,
the vehicles capacities (column 2) have been manually adjusted such that feasible solutions can
be found with five vehicles and the number of non-dominated solutions is large enough. The
third column presents the number of non dominated solutions of the leximax -VRP that have been
calculated by enumerating all feasible solutions to the problem and filtering the dominated ones.
In columns 4 to 6 we indicate the number of solutions of the Pareto front that have not been found
by the three MDLS configurations. Over all instances, the max configurations misses five solutions,
the leximax configuration misses two solutions and configuration all misses only one solution.

This experiment confirms the previous conclusions on larger instances: the three MDLS con-
figurations provide results that are equivalent most of the time. Nevertheless, for some instances,
some trade-off solutions are harder to find for the max configuration. In this case, the leximax
based operators are better to guide the search towards good solutions.

Instance Vehicle # of sol. in # of sol. not found by configuration
capacity the Pareto front leximax all max

vrpnc1|10 40 5 0 0 0
vrpnc2|10 60 6 0 0 0
vrpnc3|10 36 5 0 0 0
vrpnc4|10 38 7 0 0 0
vrpnc5|10 40 9 0 0 0
vrpnc6|10 50 8 0 0 0
vrpnc7|10 55 9 0 0 0
vrpnc8|10 40 7 0 0 0
vrpnc9|10 39 7 0 0 0
vrpnc10|10 35 4 0 0 0
vrpnc11|10 40 9 0 0 3
vrpnc12|10 40 13 0 0 0
vrpnc13|10 45 15 1 0 1
vrpnc14|10 50 16 1 1 1

Table 4: MDLS results on small instances for which the exact set of non dominated solutions can be enumerated

4.1.5. Discussion

As a conclusion, from these experiments, the combination of leximax and min-max operators in
configuration all offer a good trade-off for solving the leximax -VRP. The leximax recreate operators
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are slower, but given the same CPU budget they increase the quality of the solution sets produced
by MDLS.

4.2. Computing time analysis

To further analyze the performance of the configuration all, we observe the results obtained
after 1 minute, 10 minutes, 30 minutes and 1 hour, respectively. For that purpose, we consider
the minimal number of vehicles (m = m?). The resulting solutions are represented on the four
boxplots of Figure 10.
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Figure 10: Impact of runtime on the quality of the solution found: configuration all, m = m?, runtime 1’, 10’, 30’
and 60’.

For the easiest instances, a runtime of 10 or 30 minutes is satisfying. Indeed, Figure 10c shows
that the reference set is within a 2% distance of the solutions found using these runtimes, except
for instances vrpnc2, and vrpnc5 in which the number of missing solutions remains very low for
all runs. Instance vrpnc14 which was hard for the max configuration is well solved even for low
computation times when leximax operators are used.

It can be noted that, because dominated solutions are deleted at each insertion in the archive,
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the number of archived solutions always remains low – always under 1000 in our experiments.
Memory is not an issue in the studied instances of the leximax -VRP.

4.3. Price of fairness analysis

Figure 11 provides some managerial insight based on the Bertsimas et al. (2011) approach to
valuate the price of fairness. To perform this analysis, we use the Pareto set approximation that
is given by the reference sets computed previously for m = m?. For each instance, let x∗ denote
the cheapest solution found. Let also z1(x) be the cost of solution x, and z′2(x) be the length
of the longest route in solution x (“max. duration”). The vertical axis on Figure 11 represents

the cost deterioration of a solution s, given by the value 100 × z1(s)−z1(x∗)
z1(x∗) . The horizontal axis

represents the workload balancing improvement calculated as the relative decrease of the longest

route: 100 × z′2(x∗)−z′2(s)
z′2(x∗) . Figure 11 represents cost deterioration as a discrete function of max.

duration improvement, as observed in the reference sets mentioned above.
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Figure 11: Normalized cost deterioration as a function of max. duration improvement for all instances.

It can be seen that the price of fairness clearly depends on the type of instance. On instances
vrpnc2 to vrpnc5, which have no service duration and no maximum route duration specified, a
good balancing improvement is obtained at the price of minor cost increase (for instance vrpnc2,
the maximum route length is decreased by more than 20% if a 2% increase in cost is allowed).

If we observe instances vrpnc6 to vrpnc10, the potential for improvement remains weak due to
the maximum route duration constraint. Still, we observe that a higher cost increase is necessary
for a similar maximum route length improvement, in proportion. Nevertheless, this may simply
come from the inclusion of service durations in route length which may bias the route balancing
metric.

Considering instances vrpnc11, vrpnc12 and vrpnc14, finding improvements of the maximum
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route duration seems considerably more costly than for other instances. These instances are clus-
tered, so decreasing the duration of the longest route is likely to require having more routes go
to multiple clusters, which in turns increases the cost of the solution more dramatically. Instance
vrpnc13 is also clustered but has a tighter time limit than the others.

The maximum route duration metric only captures one aspect of workload balancing. Leximax
cannot be represented graphically, but we perform a similar analysis using the range indicator
instead of max. duration. We still only consider consistent solutions. This analysis is presented
on Figure 12. The visualization offers a different perspective and seems less sensitive to service
durations. Here, on most instances, a cost increase of up to 5 % allows for significant improvements
in load balancing. Still, some sparsity is observed among instances and the results suggest that a
good load balancing (w.r.t. range) may come at a high price for some instances.
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Figure 12: Normalized cost deterioration as a function of range improvement for all instances.

4.4. Equivalent solutions for the min-max objective function

A motivation for studying the leximax -VRP is that that the min-max approach fails to distin-
guish between solutions with the same longest route duration. We call such solutions min-max-
equivalent. On Figure 13, we analyze the number of min-max-equivalent solutions in the reference
set, by showing histograms of the distribution of this value for instances vrpnc1, vrpnc3, vrpnc5 and
vrpnc11, ordered by increasing number of customers. Not surprisingly, the largest instances have
the greatest number of min-max-equivalent solutions. Instance vrpnc5 has more than 150 distinct
solutions with the same maximum route duration. It can also be observed that min-max-equivalent
solutions are found not only between the most balanced solutions; in particular, instance vrpnc11
has more than 25 min-max-equivalent solutions for diverse values of maximum route duration.
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Note that this analysis includes only non-dominated solutions in the solution sets found for the
leximax -VRP.

4.5. Solution analysis on an example

Let us illustrate the solutions of the leximax -VRP on the first instance of the Christofides
et al. (1979) benchmark. For this instance, extremely stable results over all methods and runtimes
suggest that the actual Pareto set may have been found.

Table 5 presents the cost and the route durations for the nine solutions of the reference set.
Route durations are sorted in a non–increasing order. These solutions are graphically represented
on the space of the cost and maximum route duration dimensions on Figure 14.

Solution Cost Route Durations

s1 524.614 118.52 109.06 99.33 99.25 98.45
s2 526.176 118.52 105.86 104.01 99.33 98.45
s3 526.930 118.52 104.01 103.16 101.91 99.33
s4 531.038 115.52 113.03 108.17 104.89 89.42
s5 531.285 115.52 113.03 108.17 104.76 89.81
s6 531.905 113.78 110.49 109.06 99.33 99.25
s7 532.086 113.03 108.46 108.17 104.89 97.54
s8 537.891 111.37 110.90 109.91 108.17 97.54
s9 541.775 111.37 110.90 109.76 108.17 101.61

Table 5: Reference solutions for instance vrpnc1 of the Christofides et al. (1979) benchmark.
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Figure 13: Distribution analysis for the maximum route duration of non dominated solutions in the leximax -VRP.
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In this example, solutions s1, s2 and s3 are equivalent with respect to the min-max objective
function. So are s4 and s5 and s8 and s9. Still, these solutions offer different trade-off between
cost and workload balance.
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sorted lengths [118.52, 109.057, 99.3336, 99.2517, 98.4522]
cost 524.614

sorted lengths [118.52, 105.856, 104.014, 99.3336, 98.4522]
cost 526.176

sorted lengths [118.52, 104.014, 103.154, 101.908, 99.3336]
cost 526.93

sorted lengths [115.519, 113.026, 108.172, 104.892, 89.4182]
cost 531.028

sorted lengths [113.026, 108.456, 108.172, 104.892, 97.5399]
cost 532.086

sorted lengths [111.37, 110.897, 109.911, 108.172, 97.5399]
cost 537.891

Figure 15: Six solutions of the vrpnc1 instance: s1, s2 (top row), , s3, s4 (middle row), s7, s8 (bottom row).
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Figure 15 presents a graphical representation of the solutions s1, s2, s3, s4, s7 and s8 presented
in Table 5. It can be seen that the slight variations between the three first solutions are obtained
through different assignments of a customer that is close to the depot. Solutions s4, s7 and s8 are
obtained after more significant customer re-assignment. Between s1 and s8, the cost increases by
3.27%, while the duration of the longest route decreases by 6.03%. We note that the value of the
range criterion changes non-monotonically, taking values 20.07, 20.07, 19.19, 26.10, 25.71, 14.53,
15.49, 13.83 and 9.76 when ordering the solutions by decreasing cost.

5. Conclusion

In this paper, we describe how the lexicographic minimax approach can be used to capture
workload balancing concerns in vehicle routing, by considering the leximax -VRP. We tackle the
leximax -VRP using multi-directional local search, thus approximating the Pareto set. In that
context, we develop classical neighborhood operators for the cost objective, as well as a variety
of operators for the workload balancing objective; in particular, we introduce new operators that
explicitly consider the lexicographic minimax nature of the balancing objective. These operators
are embedded in the multi-directional local search framework, and an experimental analysis shows
that they offer a good performance: using them increases the quality of the produced solution sets.
The practicality of operators explicitly considering the lexicographic minimax objective is thus
demonstrated. Experiments also show that the more elaborate operators make a bigger difference
when workload balancing is a predominant concern. For most instances, workload balancing can
be significantly improved with a modest increase in cost. However, an analysis of our solution sets
using previous criteria from the literature emphasizes that the criterion being used has an influence
on the perceived price of fairness.

Integrating a lexicographic minimax approach with vehicle routing opens perspectives in logis-
tics optimization. Above all, it shows that there exists an alternative to the min-max and range
models, capturing workload balancing and fairness in a better way. While we provide a first explicit
approach to tackle the leximax -VRP, we believe that there are rich perspectives in tackling this
problem in different ways, especially in the design of exact methods for the leximax -VRP.
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