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1. Introduction 1.1. Motivations and content. Let X 1 , . . . , X n be n i.i.d. random variables with common density f with respect to the Lebesgue measure. The problem of estimating f in this simple model has been widely studied. In some contexts, it is also of interest to estimate the d-th order derivative f pdq of f , for different values of the integer d. Several examples are developed in [START_REF] Singh | Applications of estimators of a density and its derivatives to certain statistical problems[END_REF]: regression curves rpxq " EpY |X " xq for specific families of conditional distributions of Y given X, where rpxq " f p1q pxq{f pxq (see also [START_REF] Park | Sizer analysis for the comparison of regression curves[END_REF]); estimation and testing in one parameter scale of exponential families (see [START_REF] Genovese | Non-parametric inference for density modes[END_REF])... Derivative estimation can also be used as a mean of reaching information, such as mode seeking in mixture models and in data analysis, see e.g. [START_REF] Cheng | Mean shift, mode seeking, and clustering[END_REF], [START_REF] Chacón | Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting[END_REF]. Moreover, density derivatives also provide information about the slope of the curves, local extrema, saddle points... Most proposals for estimating the derivative of a density are built as derivatives of kernel density estimators, see [START_REF] Bhattacharya | Estimation of a probability density function and its derivatives[END_REF], [START_REF] Schuster | Estimation of a probability density function and its derivatives[END_REF], [START_REF] Silverman | Weak and strong uniform consistency of the kernel estimate of a density and its derivatives[END_REF], [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF], [START_REF] Chacón | Asymptotics for general multivariate kernel density derivative estimators[END_REF], [START_REF] Chacón | Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting[END_REF] or [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF], either in independent or in α-mixing settings, in univariate or multivariate contexts. A slightly different proposal still based on kernels can be found in [START_REF] Singh | Mean squared errors of estimates of a density and its derivatives[END_REF]. The question of bandwidth selection is not considered in the oldest of these papers, but is studied in more recent ones. For instance, [START_REF] Chacón | Data-driven density derivative estimation, with applications to nonparametric clustering and bump hunting[END_REF] propose a general cross-validation method in the multivariate case for a matrix bandwidth, see also the references therein. The case of estimation on R `with gamma kernel estimator (and mixing data) is studied in [START_REF] Markovich | Gamma kernel estimation of the density derivative on the positive semi-axis by dependent data[END_REF], and a risk bound is proved, but specifically for a first order derivative and a density with regularity of order 2. Projection estimators have also been considered for density and derivatives estimation. More precisely, using trigonometric basis, [START_REF] Efromovich | Simultaneous sharp estimation of functions and their derivatives[END_REF] proposes a complete study of optimality and sharpness of such estimators, on Sobolev periodic spaces. More recently, [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF] propose a projection estimator and provide an upper bound for its L p -risk, p P r1, 8s. In a dependent context, [START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] studies projection estimators in a compactly supported basis constrained on the borders or a non compact multi-resolution basis: she considers dependent β-mixing variables and a model selection method is proposed and proved to reach optimal rates on Besov spaces. In both contexts, the rate obtained for estimating f pdq the d-th order derivative belonging to a regularity space associated to a regularity α, is of order n ´2α{p2α`2d`1q . In this work, we also consider projection estimators, defined as in [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF], but on specific projection spaces generated by Hermite or Laguerre basis. The integrated L 2 -risk of such estimators is classically decomposed into a squared bias and a variance term. The specificity of our context lies in the following facts.

(1) The bias term is studied on specific regularity spaces, namely Sobolev Hermite and Sobolev Laguerre spaces, as defined in [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems?[END_REF], enabling to consider non compact estimation support R or R

`.

(2) The order of the variance term depends on moment assumptions. This explains why, to perform a data driven selection of the projection space, we propose a random empirical estimator of the variance term, which has automatically the right order. (3) In standard settings, the dimension of the projection space is the relevant parameter that needs to be selected to achieve the bias-variance compromise. In our context, this role is played by the square root of the dimension.

We also mention that our procedure provides very parsimonious estimators, as they require very few coefficients to reconstruct functions accurately. Moreover, our regularity assumptions are naturally set on f and not on its derivatives, contrary to what is done in several papers. We emphasize that we provide a complete panorama of the problem of estimating the derivatives of a density, providing a comparison of our estimators with those defined as derivatives of projection density estimators; a strategy usually applied with kernel methods. Finally, we also propose a numerical comparison between our projection procedure and a sophisticated kernel method inspired by [START_REF] Lacour | Estimator selection: a new method with applications to kernel density estimation[END_REF].

The paper is organized as follows. In the remaining of this section, we define the Hermite and Laguerre bases and associated projection spaces. In Section 2, we define the estimators and establish general risk bounds, from which rates of convergence are obtained, and lower bounds in the minimax sense are proved.

A model selection procedure is proposed, relying on a general variance estimate; it leads to a data-driven bias-variance compromise. Further questions are studied in Section 3: the comparison the derivatives of the density estimator leads in our setting to different developments depending on the considered basis: interestingly Hermite and Laguerre cases happen to behave differently from this point of view. Lastly, a simulation study is conducted in Section 4, in which kernel and projection strategies are compared.

1.2. Notations and definition of the basis. The following notations are used in the remaining of this paper. For a, b two real numbers, denote a _ b " maxpa, bq and a `" maxp0, aq. For u and v two functions in L 2 pRq, denote xu, vy " ş `8 ´8 upxqvpxqdx the scalar product on L 2 pRq and }u} "

`ş`8 ´8 upxq 2 dx ˘1{2 the norm on L 2 pRq. Note that these definitions remain consistent if u and v are in L 2 pR `q.

1.2.1. The Laguerre basis. Define the Laguerre basis by:

j pxq " ? 2L j p2xqe ´x, L j pxq " j ÿ k"0 ˆj k ˙p´1q k x k k! , x ě 0, j ě 0, (1)
where L j is the Laguerre polynomial of degree j. It satisfies: Abramowitz and Stegun (1964), 22.2.13), where δ k,j is the Kronecher symbol. The family p j q jě0 is an orthonormal basis on L 2 pR `q such that } j } 8 " sup xPR `| j pxq| ď ? 2. The derivative of j satisfies a recursive formula (see Lemma 8.1 in [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF]) that plays an important role in the sequel:

ş `8 0 L k pxqL j pxqe ´xdx " δ k,j (see
1 0 " ´ 0 , 1 j " ´ j ´2 j´1 ÿ k"0 k , @j ě 1. (2)
1.2.2. The Hermite basis. Define the Hermite basis ph j q jě0 from Hermite polynomials pH j q jě0 : h j pxq " c j H j pxqe ´x2 {2 , H j pxq " p´1q j e x 2 d j dx j pe ´x2 q, c j " p2 j j! ? πq ´1{2 , x P R, j ě 0.

(3)

The family pH j q jě0 is orthogonal with respect to the weight function e ´x2 : ş R H j pxqH k pxqe ´x2 dx " 2 j j! ? πδ j,k (see Abramowitz and Stegun (1964), 22.2.14). It follows that ph j q jě0 is an orthonormal basis on R. Moreover, h j is bounded by

}h j } 8 " sup xPR |h j pxq| ď φ 0 , with φ 0 " π ´1{4 , (4) 
(see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]Stegun (1964), chap.22.14.17 and[START_REF] Indritz | An inequality for Hermite polynomials[END_REF]). The derivatives of h j also satisfy a recursive formula (see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], Equation ( 52) in Section 8.2),

h 1 0 " ´h1 { ? 2, h 1 j " p a j h j´1 ´aj `1h j`1 q{ ? 2, @j ě 1. (5)
In the sequel, we denote by ϕ j either for h j in the Hermite case or for j in the Laguerre case. Let g P L 2 pRq or g P L 2 pR `q, g develops either in the Hermite basis or the Laguerre basis:

g " ÿ jě0 a j pgqϕ j , a j pgq " xg, ϕ j y.

Define, for an integer m ě 1, the space S m " Spantϕ 0 , . . . , ϕ m´1 u.

The orthogonal projection of g on S m is given by: g m " ř m´1 j"0 a j pgqϕ j .

2. Estimation of the first derivative without boundary issue 2.1. Assumptions and projection estimator of f pdq . Let X 1 , . . . , X n be n i.i.d. random variables with common density f with respect to the Lebesgue measure and consider the following assumptions. Let d be an integer, d ě 1.

pA1q The density f is d-times differentiable and f pdq belongs to L 2 pR `q in the Laguerre case or L 2 pRq in the Hermite case. pA2q For all integer r, 0 ď r ď d ´1, we have }f prq } 8 ă `8. pA3q For all integer r, 0 ď r ď d ´1, it holds lim xÑ0 f prq pxq " 0. Assumption pA3q is specific to the Laguerre case and avoids boundary issue. In particular, it permits to establish Lemma 2.1 below that is central to define our estimator. This assumption can be removed at the expense of additional technicalities, see Section 3. Under pA1q, we develop f pdq in the Laguerre or Hermite basis, its orthogonal projection on S m , m ě 1, is

f pdq m " m´1 ÿ j"0
a j pf pdq qϕ j , where, a j pf pdq q " xf pdq , ϕ j y. (6)

The estimator is built by using the following result, proved in Appendix A.

Lemma 2.1. Suppose that pA1q and pA2q hold in the Hermite case and that pA1q, pA2q and pA3q hold in the Laguerre case. Then a j pf pdq q " p´1q d Erϕ pdq j pX 1 qs, @j ě 0. Remark 1. If the support of the density f is a strict compact subset ra, bs of the estimation support (here R and a ă b or R `and 0 ă a ă b), then the regularity condition pA1q implies that f must be null in a, b, as well as its derivatives up to order d ´1. On the contrary, Assumption pA3q in the Laguerre case can be dropped out (see Section 3) and this shows that a specific problem occurs when the density support coincides with the estimation interval. This point presents a real difficulty and is either not discussed in the literature, or hidden by periodicity conditions.

We derive the following estimator of f pdq (see also [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF] 

p.402): let m ě 1, p f m,pdq " m´1 ÿ j"0 p a pdq j ϕ j , with p a pdq j " p´1q d n n ÿ i"1 ϕ pdq j pX i q. (7)
For d " 0, we recover an estimator of the density f . 2.2. Risk bound and rate of convergence. We consider the L 2 -risk of p f m,pdq , defined in ( 7),

E " } p f m,pdq ´f pdq } 2 ‰ " }f pdq m ´f pdq } 2 `E" } p f m,pdq ´f pdq m } 2 ‰ , ( 8 
)
where f pdq m :" ř m´1 k"0 a j pf pdq qϕ j . The study of the second right-hand-side term of the equality (variance term) leads to the following result.

Theorem 2.1. Suppose that pA1q and pA2q hold in the Hermite case and that pA1q, pA2q and pA3q hold in the Laguerre case. Assume that ErX ´d´1{2 1 s ă `8 in the Laguerre case and Er|X 1 | 2{3 s ă `8 in the Hermite case. (9)

Then, for sufficiently large m ě d, it holds that

E " } p f m,pdq ´f pdq } 2 ‰ ď }f pdq m ´f pdq } 2 `C m d`1 2 n ´}f pdq m } 2 n , ( 10 
)
for a positive constant C depending on the moments in condition (9) (but not on m nor n).

Remark 2. In the Laguerre case, condition (9) is a consequence of pA3q and f pdq p0q ă `8. Indeed, pA3q imposes that f pxq " xÑ0 x d f pdq pxq which, under f pdq p0q ă `8, ensures integrability of x ´d´1{2 f pxq at 0; integrability at 8 is a consequence of f P L 1 pr0, 8qq.

The bound obtained for p f m,pdq in Theorem 2.1 is sharp. Indeed, we can establish the following lower bound.

Proposition 2.1. Under the Assumptions of Theorem 2.1, it holds, for some constant c ą 0, that

E " } p f m,pdq ´f pdq } 2 ı ě }f pdq m ´f pdq } 2 `c m d`1 2 n ´}f pdq m } 2 n .
2.3. Definition of regularity classes and rate of convergence. The first two terms in the right hand side of (10) have an antagonistic behavior with respect to m. Thus, the optimal choice of m requires a bias-variance compromise which allows to derive the rate of convergence of p f m,pdq . To evaluate the order of the bias term, we introduce Sobolev-Hermite and Sobolev-Laguerre regularity classes for f (see [START_REF] Bongioanni | What is a Sobolev space for the Laguerre function systems?[END_REF] 

~θ~2 s " s ÿ j"0 }θ} 2 j , }θ} 2 j " }x j{2 j ÿ k"0 ˆj k ˙θpkq } 2 . ( 13 
)
This inspires the definition, for s P N and D ą 0, of the subset Ă W s L pDq as Injecting this in (10) yields

Ă W s L pDq " tθ P L 2 pR `q, θ pjq P Cpr0, 8qq, x Þ Ñ x k{2 θ pjq pxq P L 2 pR `q, 0 ď j ď k ď s,
E " } p f m,pdq ´f pdq } 2 ‰ ď D 1 m ´ps´dq `c m d`1 2 n .
Consequently, selecting m opt " rn 2{p2s`1q s gives the rate of convergence

E " } p f mopt,pdq ´f pdq } 2 ‰ ď Cps, d, Dqn ´2ps´dq 2s`1 , (15) 
where Cps, d, Dq depends only on s, d and D, not on m. This rate coincides with the one obtained by [START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] in the dependent case and by [START_REF] Giné | Mathematical foundations of infinite-dimensional statistical models[END_REF]. We can however mention that the squared-bias and variance terms do not have the same orders: the role of dimension in [START_REF] Schmisser | Nonparametric estimation of the derivatives of the stationary density for stationary processes[END_REF] is played in our setting by ? m. This rate is better than the one obtained by [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF] in the i.i.d. case, if we set a similar regularity condition. Note that, for d " 0 in (15), we recover the optimal rate for estimation of the density f . Remark 3. If f is a mixture of Gaussian densities in the Hermite case or a mixture of Gamma densities in the Laguerre case, it is known from Section 3.2 in [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] that the bias decreases with exponential rate. The computations therein can be extended to the present setting and imply in both Hermite and Laguerre cases that m opt is then proportional to logpnq. Therefore the risk has order rlogpnqs d`1 2 {n: for these collections of densities, the estimator converges much faster than in the general setting.

2.4. Lower bound. Contrary to the lower bound given in Proposition 2.1, which ensures that the upper bound derived in Theorem 2.1 for the specific estimator p f m,pdq is sharp, we provide a general lower bound that guarantees that the rate of the estimator p f m,pdq is minimax optimal. The following Theorem states that the rate obtained in ( 15) is the optimal rate. Theorem 2.2. Let s ě d be an integer and r f n,d be any estimator of f pdq . Then for n large enough, we have

inf r f n,d sup f PW s pDq Er} r f n,d ´f pdq } 2 s ě cn ´2ps´dq 2s`1 ,
where the infimum is taken over all estimator of f pdq , c a positive constant depending on s and d, and W s pDq stands either for W s L pDq or for W s H pDq.

2.5. Adaptive estimator of f pdq . The choice of m opt " rn 2{p2s`1q s leading to the optimal rate of convergence is not feasible in practice. In this section we provide an automatic choice of the dimension m, from the observations pX 1 , . . . , X n q, that realizes the bias-variance compromise in (10). Assume that m belongs to a finite model collection M n,d , we look for m that minimizes the bias-variance decomposition (8) rewritten as

E " } p f m,pdq ´f pdq } 2 ‰ " }f pdq m ´f pdq } 2 `1 n m´1 ÿ j"0 Var " ϕ pdq j pX 1 q ı .
Note that the bias is such that }f pdq m ´f pdq } 2 " }f pdq } 2 ´}f pdq m } 2 where }f pdq } 2 is independent of m and can be dropped out. 

p V m,d n , ( 17 
)
where κ is a positive numerical constant. If we set V m,d :" ř m´1 j"0 Erpϕ pdq j pX 1 q 2 s, it holds Ery pen d pmqs " κV m,d {n. In the sequel, we write pen d pmq :" κV m,d {n. To implement the procedure a value for κ has to be set. Theorem 2.3 below provides a theoretical lower bound for κ, which is however generally too large. In practice this constant is calibrated by intensive preliminary experiments, see Section 4. General calibration methods can be found in [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF] for theoretical explanations and heuristics, and in the associated package, for practical implementation.

Remark 4. Note that in the definition of the penalty, instead of (17), we can plug the deterministic upper bound on the variance and take c m d`1 2 {n as a penalty (see Theorem 2.1) as Proposition 2.1 ensures its sharpness. However, this upper bound relies on additional assumptions given in (9) and depends on non explicit constants (see Askey and Wainger (1965)). This is why we choose to estimate directly the variance by p V m,n and use p V m,n {n as the penalty term.

Theorem 2.3. Let M n,d :" td, . . . , m n pdqu, where m n pdq ě d. Assume that pA1q and pA2q hold, and that pA3q holds in the Laguerre case, and that }f } 8 ă `8.

AL. Set m n pdq " tpn{ log 3 pnqq 2 2d`1 u, assume that sup xPR `f pxq

x d ă `8 in the Laguerre case, AH. Set m n pdq " tn 2 2d`1 u in the Hermite case. Then, for any κ ě κ 0 :" 32 it holds that

E " } p f p mn,pdq ´f pdq } 2 ı ď C inf mPM n,d ´}f pdq m ´f pdq } 2 `pen d pmq ¯`C 1 n , ( 18 
)
where C is a universal constant (C " 3 suits) and C 1 is a constant depending on sup xPR `f pxq

x d ă `8 and ErX ´d´1{2 1 s ă `8 (Laguerre case) or }f } 8 (Hermite case).
The constraint on the the largest element m n pdq of the collection M n,d ensures that the variance term, which is upper bounded by m d`1 2 {n vanishes asymptotically. The additional log term does not influence the rate of the optimal estimator: the optimal (and unknown) dimension m opt -n 2 2s`1 , with s the regularity index of f , is such that m opt ! n 2 2d`1 as soon as s ą d. For s " d, a log-loss in the rate would occur in the Laguerre case, but not in the Hermite case. Note that, in the Laguerre case, condition sup xPR

`f pxq x d ă `8 implies EpX ´d´1{2 1 q ă `8 (see condition 9)
) and is clearly related to pA3q. Inequality ( 18) is a key result and expresses that p f p mn,pdq realizes automatically a bias-variance compromise and is performing as well as the best model in the collection, up to the multiplicative constant C, since clearly, the last term C 1 {n is negligible. Thus, for f in Ă W s L pDq or W s H pDq and under the assumptions of Theorem 2.3, we have E

" } p f p m,pdq
´f pdq } 2 ‰ " Opn ´2ps´dq{p2s`1q q, which implies that the estimator is adaptive.

Further questions

We investigate here additional questions, and set for simplicity d " 1. Mainly, we compare our estimator to the derivative of a density estimator, and discuss condition pA3q in the Laguerre case.

3.1. Derivatives of the density estimator. When using kernel strategies, it is classical to build an estimator of the derivative of f by differentiating the kernel density estimator, as already mentioned in the Introduction. For projection estimators, we find more relevant to proceed differently. Indeed, our aim is to obtain an estimator expressed in an orthonormal basis; unfortunately, the derivative of an orthonormal basis is a collection of functions but not an orthonormal basis. So, our proposal ( 7) is easier to handle. Moreover, our estimator can be seen as a contrast minimizer, which makes model selection possible to settle up. However, Laguerre and Hermite cases are somehow different and can be more precisely compared. Let us recall that the projetion estimator of f on S m is defined by (see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], or (7) for d " 0):

p f m :" m´1 ÿ k"0 p a p0q k ϕ k , where p a p0q k :" 1 n n ÿ j"0 ϕ k pX j q.
As the functions pϕ j q j are infinitely differentiable, both in Hermite and Laguerre settings, this leads to the natural estimator of f pdq , d ě 1,

p p f m q pdq " m´1 ÿ k"0 p a p0q k ϕ pdq k . ( 19 
)
For d " 1, we write p p f m q p1q " p p f m q 1 . We want to compare p p f m q 1 to p f m,p1q . In both Hermite and Laguerre cases, this estimator is consistent, under adequate regularity assumptions and for adequate choice of m as a function of n.

Comparison of p

f m,p1q with p p f m q 1 in the Hermite case. Using the recursive formula (5), in ( 19) and ( 7) respectively, straightforward computations give

p p f m q 1 " 1 ? 2 p a p0q 1 h 0 `m´1 ÿ j"1 ˜c j `1 2 p a p0q j`1 ´c j 2 p a p0q j´1 ¸hj ´c m 2 ´p a p0q m h m´1 `p a p0q m´1 h m ¯, whereas p f m,p1q " 1 ? 2 p a p0q 1 h 0 `m´1 ÿ j"1 ˜c j `1 2 p a p0q j`1 ´c j 2 p a p0q j´1 ¸hj . Therefore, it holds that Er}p p f m q 1 ´p f m,p1q } 2 s " m{2 E " pp a p0q m q 2 ‰ `E " pp a p0q m´1 q 2 ‰( and 
Er}p p f m q 1 ´p f m,p1q } 2 s ď m 2 pa 2 m´1 pf q `a2 m pf qq `m 2n ˆż h 2 m pxqf pxqdx `ż h 2 m´1 pxqf pxqdx ˙.
Using Lemma 8.5 in [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] under Er|X 1 | 2{3 s ă `8 and for f in W s H pDq, s ą 1, it follows for some positive constant C that,

Er}p p f m q 1 ´p f m,p1q } 2 s ď D 2 m ´s`1 `C ? m n .
Under the same assumptions, (10) for d " 1 implies

Er}p p f m q 1 ´f 1 } 2 s ď D 1 m ´s`1 `c m 3{2 n .
Therefore, by triangle inequality, this implies that p p f m q 1 reaches the same (optimal) rate as p f m,p1q , under the same assumptions.

Comparison of p

f m,p1q with p p f m q 1 in the Laguerre case. In the Laguerre case, assumption pA3q is required for the estimator p f m,p1q to be consistent, while it is not for the estimator p p f m q 1 . Proceeding as previously and taking advantage of the recursive formula (2) in ( 19) and ( 7) respectively, straightforward computations give, for m ě 1,

p p f m q 1 " m´1 ÿ j"0 ¨p a p0q j ´2 m´1 ÿ k"j p a p0q k ' j , whereas p f m,p1q " m´1 ÿ j"0 ˜p a p0q j `2 j´1 ÿ k"0 p a p0q k ¸ j . (20)
Therefore, in the Laguerre case, the coefficients of p f m,p1q in the basis p j q j do not depend on m while those of p p f m q 1 do. Moreover, computing the difference between the estimators leads to p f m,p1q ´p p

f m q 1 " 2 ř m´1 j"0 p ř m´1 k"0 p a p0q k q j and } p f m,p1q ´p p f m q 1 } 2 " 4m ˜m´1 ÿ k"0 p a p0q k ¸2 .
Heuristically, if f p0q " 0, as f p0q " ? 2 ř jě0 a j pf q " 0, it follows that ř m´1 j"0 a j pf q should be small for m large enough. Consequently, its consistent estimator ř m´1 k"0 p a p0q k should also be small. This would imply that, when f p0q " 0, the distance } p f m,p1q ´p p f m q 1 } 2 can be small; on the contrary, the distance should tend to infinity with m if f p0q ‰ 0. This is due to the fact that p f m,p1q is not consistent, while p p f m q 1 is. Indeed, in the general case (f p0q ‰ 0), the risk bound we obtain for p p f m q 1 is the following.

Proposition 3.1. Assume that pA1q and pA2q hold for d " 1 and that f belongs to W s L pDq. Then, it holds

(21) E}p p f m q 1 ´f 1 } 2 ď Cm ´s`2 `3 n }f } 8 m 2 .
Obviously, for suitably chosen m the estimator is consistent and by selecting m opt -n 1{s , it reaches the rate: Er}p p f mopt q 1 ´f 1 } 2 s ď Cps, Dqn ´ps´2q{s . This rate is worse than the one obtained for p f m,p1q but it is valid without pA3q, and thus p f m,p1q is consistent to estimate an exponential density, or any mixture involving exponential densities. Note that both the order of the bias and the variance in ( 21) are deteriorated compared to (10), and we believe these orders are sharp. In the following section, we investigate if the rate can be improved, if pA3q is not satisfied, by correcting our estimator (6).

3.4. Estimation of f 1 on R `with f p0q ą 0. Assumption pA3q excludes some classical distribution such as the exponential distribution or Beta distributions βpa, bq with a " 1. If f p0q ą 0, Lemma 2.1 no longer holds, and one has a j pf 1 q " ´f p0q j p0q ´Er 1 j pX 1 qs instead. Therefore, f p0q has to be estimated and we consider

(22) p a p1q j,K " ´ j p0q p f K p0q ´1 n n ÿ i"1 1 j pX i q, with p f K " K´1 ÿ j"0 p a p0q j j , p a p0q j " 1 n n ÿ i"1 j pX i q.
We estimate f 1 as follows

(23) r f 1 m,K " m´1 ÿ j"0 p a p1q j,K j , with p a p1q j,K " ´1 n n ÿ i"1 1 j pX i q ´p f K p0q j p0q.
Obviously, p a p1q j,K is a biased estimator of a j pf 1 q, implying that r f 1 m,K is a biased estimator of f 1 m . Now there are two dimensions m and K to be optimized. We can establish the following upper bound. Proposition 3.2. Suppose pA1q is satisfied for d " 1, then it holds that

(24) E " } r f 1 m,K ´f 1 } 2 ‰ ď }f 1 ´f 1 m } 2 `2 n m´1 ÿ j"0 E "` 1 j pX 1 q ˘2‰ `4mpVarp p f K p0qq `pf p0q ´fK p0qq 2 q,
where f K is the orthogonal projection of f on S K defined by: f K " ř K´1 j"0 a j pf q j . The first two terms of the upper bound seem similar to the ones obtained under pA3q, but as we no longer assume f p0q " 0, Assumption (9) for d " 1 cannot hold and the tools used to bound the variance term V m,1 by m 3{2 no longer apply and we only get an order m 2 for this term, under }f } 8 ă `8. The last two terms of (24) correspond to m times the pointwise risk of p f K p0q. Then, using } j } 8 ď ? 2, we obtain Varp p f K pxqq ď 4K 2 {n. If }f } 8 ă 8, this can be improved in Varp p f K pxqq ď }f } 8 K{n, using the orthonormality of p j q j . To sum up, if f P Ă W s L pDq, and }f } 8 ă 8, then

E " } r f 1 m,K ´f 1 } 2 ‰ ď Cps, D, }f } 8 q " m ´s`2 `m2 n `m ˆK´s`1 `K n ˙* .
Choosing K opt " cn 1{s and m opt " cn 1{s gives the rate E

" } r f 1 mopt,Kopt ´f 1 } 2 ‰ ď Cn ´ps´2q{s
, that is the same rate as the one obtained for p p f mopt q 1 . Then, renouncing to Assumption pA3q has a cost, it renders the procedure burdensome and leads to slower rates. We propose a model selection procedure adapted to this new estimator. Let

(25) p f 1 m,K " arg min tPSm γ n ptq
where γ n ptq " }t} 2 `2 n ř n i"1 t 1 pX i q `2tp0q p f K p0q. Here, we consider that K " K n is chosen so that p f Kn satisfies ( 26)

" Ep p f Kn p0qq ´f p0q ı 2 ď K n logpnq n .
This assumption is likely to be fulfilled for a K selected in order to provide a squared-bias/variance compromise, see the pointwise adaptive procedure for density estimation in [START_REF] Plancade | Estimation of the density of regression errors by pointwise model selection[END_REF]; however therein, the choice of K is random while we set K n as fixed, here. Then, we select m as follows:

(27) p m K " arg min mPMn ! γ n p p f 1 m,K q `pen K pmq ) , M n " t1, . . . , r ? nsu with (28) pen K pmq " c 1 }f } 8 m 2 logpnq n `c2 p}f } 8 _ 1q m K logpnq n :" pen 1 pmq `pen 2,K pmq.
It is easy to ckeck that γ n p p f 1 m,K q " ´} p f 1 m,K } 2 . We prove the following result Theorem 3.1. Let p f 1 m,Kn be defined by ( 25) with m " p m Kn selected by ( 27)-( 28) and K n such that (26) holds. Then for c 1 and c 2 larger than fixed constants c 0,1 , c 0,2 , we have

E ´}f 1 ´p f 1 p m,Kn } 2 ¯ď C ˆ}f 1 ´f 1 m } 2 `m2 logpnq n `m K n logpnq n ˙`C 1 n ,
where C is a numerical constant and C 1 depends on f .

Theorem 3.1 implies that the adaptive estimator p f 1 m,Kn provides the adequate compromise, up to log terms.

Numerical study

4.1. Simulation setting and implementation. We illustrate the performances of the adaptive estimator p f p mn,pdq defined in (7), with p m selected by ( 16)-( 17), for different distributions and values of d (d " 1, 2). In the Hermite case we consider the following distributions which are estimated on the interval I, which we fix to ensure reproducibility of our experiments:

(i) Gaussian standard N p0, 1q, I " r´4, 4s, (ii) Mixed Gaussian 0.4N p´1, 1{2q `0.6N p1, 1{2q, I " r´2.5, 2.5s, (iii) Cauchy standard, density: f pxq " pπp1 `x2 qq ´1, I " r´6, 6s, (iv) Gamma Γp5, 5q{10, I " r0, 7s, (v) Beta 5βp4, 5q, I " r0, 5s. In the Laguerre case we consider densities (iv), (v) and the two following additional distributions (vi) Weibull W p4, 1q, I " r0, 1.5s, (vii) Maxwell with density ? 2x 2 e ´x2 {p2σ 2 q {pσ 3 ? πq, with σ " 2 and I " r0, 8s.

All these distributions satisfy Assumptions pA1q, pA2q and densities (iv)-(vii) satisfy pA3q. The moment conditions given in (9) are fulfilled for d " 1, 2, even by the Cauchy distribution (iii) which has finite moments of order 2{3 ă 1. For the adaptive procedure, the model collection considered is M n,d " td, . . . , m n pdqu, where the maximal dimension is m n pdq " 50 in the Laguerre case and m n pdq " 40 in the Hermite case, for all values of n and d (smaller values may be sufficient and spare computation time). In practice, the adaptive procedure follows the steps:

• For m in M n,d , compute ´řm´1 j"0 pp a pdq j q 2 `y pen d pmq, with p a of g, where g stands either for the density f or for its derivative f 1 , we set

}g ´p g pjq p m } 2 « lengthpIq K K ÿ k"1 pp g pjq p m px k qq ´gpx k qq 2 , x k " minpIq `k lengthpIq K , k " 1, . . . , K,
for j " 1, . . . R. To get the MISE, we average over j of these R values of ISEs.

The constant κ in the penalty is calibrated by preliminary experiments. A comparison of the MISEs for different values of κ and different distributions (distinct from the previous ones to avoid overfitting) allows to choose a relevant value. We take κ " 3.5 in the Laguerre case or κ " 4 in the Hermite case.

Comparison with kernel estimators. We compare the performances of our method with those of kernel estimators, and start by density estimation (d " 0). The density kernel estimator is defined as follows

p f h pxq " 1 nh n ÿ i"1 K ˆXi ´x h ˙, x P R
where h ą 0 is the bandwidth and K a kernel such that ş Kpxqdx " 1. These two quantities (h and K) are user-chosen. For density estimation, we use the function implemented in the statistical software R called density, where the kernel is chosen Gaussian and the bandwidth selected by cross-validation (R-function bw.SJ), see Tables 2 and4 1 and2.

For the estimation of the derivative, the kernel estimator we compare with (see Tables 3 and5) is defined by: In that latter case there is no ready-to-use procedure implemented in R; therefore, we generalize the adaptive procedure of [START_REF] Lacour | Estimator selection: a new method with applications to kernel density estimation[END_REF] from density to derivative estimation. To that aim, we consider a kernel of order 7 (i.e. ş x j Kpxqdx " 0, for j " 1, . . . , 7) built as a Gaussian mixture defined by:

p f 1 h pxq " ´1 nh 2 n ÿ i"1 K 1 ˆXi ´x h ˙.
(29) Kpxq " 4n 1 pxq ´6n 2 pxq `4n 3 pxq ´n4 pxq,

where n j pxq is the density of a centered Gaussian with a variance equal to j: the higher the order, the better the results, in theory (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]) and in practice (see [START_REF] Comte | Bandwidth Selection for the Wolverton-Wagner Estimator[END_REF]). By analogy with the proposal of [START_REF] Lacour | Estimator selection: a new method with applications to kernel density estimation[END_REF] for density estimation, we select h by:

p h " argmin hPH t} p f 1 h ´p f 1 h min } 2 `penphqu, with penphq " 4 n xK 1 h , K h 1 min y,
where h min " min H, for H the collection of bandwidths chosen in rc{n, 1s and

K h pxq " 1 h Kp x h q. Note that penphq " 4 n xK 1 h , K h 1 min y " 4 nh 2 h 2 min ż K 1 p u h qK 1 p u h min qdu
and this term can be explicitely computed with the definition of K in (29).

4.2. Results and discussion. Figures 1 and2 show 20 estimated f , f 1 , f 2 in case (ii), for two values of n, 500 and 2000. These plots can be read as variability bands illustrating the performance and the stability of the estimator. We observe that increasing n improves the estimation and, on the contrary, that increasing the order of the derivative makes the problem more difficult. The means of the dimensions selected by the adaptive procedure are given in Table 1. Unsurprisingly, this dimension increases with the sample size n. In average, these dimensions are comparable for d P t0, 1, 2u, this is in accordance with the theory: the optimal value m opt does not depend on d.

Tables 2 and4 for d " 0 and Tables 3 and5 for d " 1 allow to compare the MISEs obtained with our method and the kernel method for different sample sizes and densities.The error decreases when the sample size increases for both methods. For density estimation (d " 0), the results obtained with our Hermite projection method in Table 2 are better in most cases than the kernel competitor, except for smallest sample size n " 100 and Gamma (iv) and Beta (v) distributions. Table 3 gives the risks obtained for derivative estimation in the Hermite basis: our method is better for densities (i), (ii), (iii) (except for n " 100 for Gaussian distribution (i)), but the kernel method is often better for densities (iv) and (v); they correspond to Gamma and beta densities which are in fact with support included in R `.

In Table 4, we compare the errors obtained for densities (iv)-(vii) with support in R `. Our method is always better than the R-kernel estimate. For the derivatives, in ´f 1 } 2 (right) for R " 100 in the Laguerre case.

Proofs

In the sequel C denotes a generic constant whose value may change from line to line and whose dependency is sometimes given in indexes. Using [START_REF] Koekoek | Generalizations of laguerre polynomials[END_REF], Equation 2.10, we derive L pkq j pxq " d k dx k L j pxq " p´1q k L j´k,pkq pxq, where L p,pδq pxq "

1 p! e x x ´δ d p dx p ´xδ`p e ´x¯1 δďp .
Moreover, introduce the orthonormal basis on L 2 pR `q p k,pδq q 0ďkă8 by k,pδq pxq "

2 δ`1 2 ˆk! Γpk `δ `1q ˙1{2 L k,pδq p2xqx δ 2 e ´x. ( 34 
)
Therefore, pL j p2xqq pkq " 2 k L j´k,pkq p2xq1 jěk , so that

pdq j pxq "p´1q d d ÿ k"0 ˆd k ˙2 k 2 x ´k{2 ˆj! pj ´kq! ˙1 2 j´k,pkq pxq, (35)
where j,pδq is defined in (34). Using the Cauchy Schwarz inequality in (35), we derive that

m´1 ÿ j"d ż 8 0 r pdq j pxqs 2 f pxqdx ď3 d m´1 ÿ j"d d ÿ k"0 ˆd k ˙j! pj ´kq! ż `8 0 x ´kr j´k,pkq pxqs 2 f pxqdx ďC d m´1 ÿ j"d d ÿ k"0 j d ż `8 0 x ´kp j´k,pkq px{2qq 2 f px{2qdx.
Now we rely on the following Lemma, proved in Appendix A.

Lemma 5.1. Let j ě k ě 0 and suppose that ErX ´k´1{2 s ă `8, it holds, for a positive constant C depending only on k, that

ż `8 0 x ´k " j´k,pkq px{2q ‰ 2 f px{2qdx ď C ? j .
From Lemma 5.1, we obtain

m´1 ÿ j"d ż p pdq j pxqq 2 f pxqdx ď C m´1 ÿ j"d d ÿ k"0 j d´1{2 ď Cm d`1{2 .
Plugging this and ( 33) in ( 32), gives the result (10) and Theorem 2.1 in the Laguerre case.

5.1.2. The Hermite case. We first introduce a useful technical result, its proof is given in Appendix A.

Lemma 5.2. Let h j given in (3), the d-th derivative of h j is such that

h pdq j " d ÿ k"´d b pdq k,j h j`k , where b pdq k,j " Opj d{2 q, j ě d ě |k|. ( 36 
)
Using successively Lemma 5.2, the Cauchy Schwarz inequality and Lemma 8.5 in Comte and Genon-Catalot (2018) (using that Er|X 1 | 2{3 s ă 8), we obtain, for k `j large enough,

m´1 ÿ j"d ż ph pdq j pxqq 2 f pxqdx ďp2d `1q m´1 ÿ j"d d ÿ k"´d pb pdq k,j q 2 ż h j`k pxq 2 f pxqdx ď dp2d `1q 2 d ÿ k"´d m´1 ÿ j"d cj d´1 2 ďc 1 pdqm d`1 2 . (37)
Plugging ( 37) and ( 33) in ( 32) leads to inequality (10) and Theorem 2.1 in the Hermite case. 5.2. Proof of Proposition 2.1. We build a lower bound for (8). Recalling ( 30) and notation V m,d " ř m´1 j"0 Erpϕ pdq j pX 1 qq 2 s, to establish Proposition 2.1, we have to build a minorant for V m,d . We consider separately the Laguerre and Hermite cases. It follows that ż `8 0 p pdq j q 2 pxqf pxqdx ě

ż `8 0 T 1 pxq 2 f pxqdx `2 ż `8 0 T 1 pxqT 2 pxqf pxqdx :" E 1 `E2 .
For the first term, as pA1q ensures that f is a continuous density, there exist 0 ď a ă b and c ą 0, such that inf aďxďb f pxq ě c ą 0. We derive

E 1 ě 2 d j! pj ´dq! ż `8 0 x ´d 2 j´d,pdq pxqf pxqdx ě c2 d pj ´dq d b ´d ż b a 2 j´d,pdq pxqdx.
By Theorem 8.22.5 in [START_REF] Szegö | Orthogonal polynomials[END_REF], for δ ą ´1 an integer, and for b{j ď x ď b, where b, b are arbitrary positive constants, it holds j,pδq pxq " dpjxq ´1 4 ˆcosp2

? 2 a jx ´δπ 2 ´π 4 q `pjxq ´1 2 Op1q ˙, ( 38 
)
where Op1q is uniform on rb{j, bs and d " 2 1{4 { ? π. It follows that, 2 j,pδq pxq "

d 2 2 pjxq ´1 2 " 1 `cosp4 ? 2 a jx ´δπ ´π 2 q ı `pjxq ´1Op1q.
We derive that ş b a 2 j´d,pdq pxqdx ě Cpj ´dq ´1{2 , after a change of variable y " ?

x, for some positive constant C depending on a, b and d. Consequently, it holds (39) where C 1 depends on a, b, c and d. For the second term, we have

E 1 ě Cpj ´dq d´1 2 ě C 1 j d´1 2 , @j ě 2d,
|E 2 | ď 2 ż `8 0 |T 1 pxqT 2 pxq|f pxqdx ď 2j d 2 j d´1 2 d´1 ÿ k"0 ˆd k ˙2 k`d 2 "ż `8 0 x ´d 2 j´d,pdq pxqf pxqdx `ż `8 0 x ´k 2 j´k,pkq pxqf pxqdx  .
By Lemma 5.1, it follows that

|E 2 | ď Cj d 2 j d´1 2 j ´1 2 d´1 ÿ k"0 ˆd k ˙2 k`d 2 ď Cj d´1 .
This together with (39), lead to ş `8 0 p pdq j q 2 pxqf pxqdx ě C 1 j d´1 2 , j ě 2d where C depends on a, b, c and d. We derive

V m,d ě Cm d`1 2 , ( 40 
)
which ends the proof in the Laguerre case. 5.2.2. The Hermite Case. The proof is similar to the Laguerre case. Consider the following expression of h j (see [START_REF] Szegö | Orthogonal polynomials[END_REF], p.248):

h j pxq " λ j cos ˆp2j `1q 1 2 x ´jπ 2 ˙`1 p2j `1q
1 2 ξ j pxq, @x P R, (41) where λ j " |h j p0q| for j even or λ j " |h 1 j p0q|{p2j `1q 1{2 for j odd and ξ j pxq "

ż x 0 sin ´p2j `1q 1 2 px ´tq ¯t2 h j ptqdt.
By Stirling Formula, it holds

λ 2j " p2jq! 1 2 2 j j!π 1{4 " π ´1{2 j ´1{4 and λ 2j`1 " λ 2j ? 2j `1 a 2j `3{2 " π ´1{2 j ´1{4 . (42)
Differentiating ( 41), we get

h pdq j pxq " λ j p2j `1q d 2 cos ´p2j `1q 1 2 x ´jπ 2 `dπ 2 ¯`1 ? 2j `1 ξ pdq j pxq. Note that if d " 2 it holds ξ p2q j pxq " a 2j `1x 2 h j pxq ´p2j `1qξ j pxq. (43)
From pA1q, there exists a ă b and c ą 0 such that inf aďxďb f pxq ě c ą 0. It follows

ż R h pdq j pxq 2 f pxqdx ěcp2j `1q d λ 2 j ż b a cos 2 ´p2j `1q 1 2 x ´pj `dq π 2 ¯dx `2cλ j p2j `1q d´1 2 ż b a cos ´p2j `1q 1 2 x ´pj `dq π 2 ¯ξpdq j pxqdx :" E 1 `E2 .
For the first term, using cos 2 pxq " p1 `cosp2xqq{2 and (42), we get

E 1 " cp2j `1q d λ 2 j ˆb ´a 2 `Op 1 ? j q ˙ě c 1 j d´1 2 ˆb ´a 2 `Op 1 ? j q ˙.
For the second term we first show that @x P ra, bs, @j ě 0, @d ě 0, ξ pdq j pxq " Opj d{2 q. (44)

To establish (44) we first note, using (43), that for d ě 2, @x P R, ξ pdq j pxq `p2j `1qξ pd´2q j pxq " pξ p2q j pxq `p2j `1qξ j pxqq pd´2q " a 2j `1px 2 h j pxqq pd´2q ": Ψ j,d pxq.

Together with Lemma 5.2, one easily obtains by induction that @x P ra, bs, @j ě 0, Ψ j,d pxq " Opj d´1 2 q. The latter result gives ξ 

2 lead to ż R h pdq j pxq 2 f pxqdx ě c 1 j d´1 2 ˆb ´a 2 `Op 1 ? j q ˙´Opj d´3 4 q ě C 1 d j d´1 2 ,
and

V m,d ě c d m d`1 2 , (45) 
which ends the proof of the Hermite case. 5.3. Proof of Theorem 2.2. We apply Theorem 2.7 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF]. We start by the construction of a family of hypotheses pf θ q θ . The construction is inspired by [START_REF] Belomestny | Correction to: Nonparametric laguerre estimation in the multiplicative censoring model[END_REF]. Define f 0 by f 0 pxq " P pxq1 s0,1r pxq `1 2 x1 r1,2s pxq `Qpxq1 s2,3s pxq,

where P and Q are positive polynomials, for 0 ď k ď s, P pkq p0q " Q pkq p3q " 0, P pkq p1q " lim xÓ1 px{2q pkq , Q pkq p2q " lim xÒ2 px{2q pkq and finally ş 1 0 P pxqdx "

ş 3 2 Qpxqdx " 1 8 . Consider f θ defined as a perturbation of f 0 f θ pxq " f 0 pxq `δK ´pγ`dq K´1 ÿ k"0 θ k`1 ψ `px ´1qpK `1q ´k˘, with K P N, (47) 
for some δ ą 0, θ " pθ 1 , . . . , θ K q P t0, 1u K , γ ą 0 and ψ which is supported on r1, 2s, admits bounded derivatives up to order s and is such that ş 2 1 ψpxqdx " 0. Theorem 2.2 is a consequence of the following Lemma.

Lemma 5.3. piq. Let s ě d, @ θ P t0, 1u K , there exist δ small enough and γ ą 0 such that f θ is density. There exists D ą 0 such that f θ belongs to W s H pDq. If in addition γ ě s ´d, f θ belongs to W s L pDq. piiq. Let M an integer, for all j ă l ď M , @θ pjq , θ plq in t0, 1u K , it holds }f pdq θ pjq ´f pdq θ plq } 2 ě Cδ 2 K ´2γ . piiiq. For δ small enough, K " n 1{p2γ`2d`1q and for all pθ pjq q 1ďjďM P pt0, 1u K q M , it holds

1 M M ÿ j"1 χ 2 `fθ pjq bn , f 0 bn ˘ď αM,
where 0 ă α ă 1{8 and χ 2 pg, hq denotes the χ 2 divergence between the distributions g and h.

Choosing γ " s ´d, K " n 1{p2γ`2d`1q and δ small enough, we derive from Lemma 5.3 that,

}f pdq θ pjq ´f pdq θ plq } 2 ě Cδ 2 n ´2 ps´dq 2s`1 , @θ pjq , θ plq P t0, 1u K .
The announced result is then a consequence of Theorem 2.7 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF].

5.4. Proof of Theorem 2.3. Consider the contrast function defined as follows:

γ n,d ptq " }t} 2 ´2 n n ÿ i"1 p´1q d t pdq pX i q, t P L 2 pRq,
for which p f m,pdq " argmin tPSm γ n,d ptq (see ( 7)) and γ n p p f m,pdq q " ´} p f m,pdq } 2 . For two functions t, s P L 2 pRq, consider the decomposition:

γ n,d ptq ´γn,d psq " }t ´f pdq } 2 ´}s ´f pdq } 2 ´2ν n,d pt ´sq, (48) 
where

ν n,d ptq " 1 n n ÿ i"1 ´p´1q d t pdq pX i q ´xt, f pdq y ¯.
By ( 17), it holds for all m P M n,d , that γ n,d p p f p mn,pdq q `y pen d p p m n q ď γ n,d pf pdq m q `y pen d pmq. Plugging this in (48) yields, for all m P M n,d , Introduce the function ppm, m 1 q " 4

} p f p mn,pdq ´f pdq } 2 ď }f pdq m ´f pdq } 2 `y pen d pmq `2ν n,d ´p f p mn,pdq
V m_m 1 ,d n
, we get, after taking the expectation,

1 2 E " } p f p mn,pdq ´f pdq } 2 ı ď 3 2 }f pdq m ´f pdq } 2 `pen d pmq `4E «˜s up tPSm`S x m ,||t||"1 |ν n,d ptq| 2 ´ppm, p m n q ¸`ff `Er4ppm, p m n q ´pen d p p m n qs `E " ppen d p p m n q ´y pen d p p m n qq `‰ .
The remaining of the proof is a consequence of the following Lemma.

Lemma 5.4. Under the assumptions of Theorem 2.3, the following hold. (i) There exists a constant Σ 1 such that:

E «˜s up tPSm`S x m ,||t||"1 |ν n,d ptq| 2 ´ppm, p m n q ¸`ff ď Σ 1 n .
(ii) There exists a constant Σ 2 such that:

E " ppen d p p m n q ´y pen d p p m n qq `‰ ď 1 2 Erpen d p p m n qs `Σ2 n . Lemma 5.4 yields 1 2 E " } p f p mn,pdq ´f pdq } 2 ı ď 3 2 }f pdq m ´f pdq } 2 `pen d pmq `4 Σ 1 n `Er4ppm, p m n q ´1 2 pen d p p m n qs `Σ2 n .
Next, for κ ě 32 ": κ 0 , we have, 4ppm, p m n q ď pen d p p m n q{2 `pen d pmq{2. Therefore, we derive

E " } p f p mn,pdq ´f pdq } 2 ı ď 3}f pdq m ´f pdq } 2 `3pen d pmq `2 4Σ 1 `Σ2 n , @m P M n,d .
Taking the infimum on M n,d , C " 3 and C 1 " 2p4Σ 1 `Σ2 q{n completes the proof.

5.5. Proof of Proposition 3.1. First, it holds that

E " }p p f m q 1 ´f 1 } 2 ı ď 2 " }pf m q 1 ´f 1 } 2 `Er}p p f m q 1 ´pf m q 1 } 2 s ı " 2 ż `8 0 p ÿ jěm a j pf q 1 j pxqq 2 dx `2E « } m´1 ÿ j"0 pp a p0q j ´aj pf qq 1 j } 2 ff .
For the first bias term, we derive from (2) that x 1 j , 1 k y " 2 `4j ^k for j ‰ k and x 1 j , 1 j y " 1 `4j, and we derive that ż `8 0 p ÿ jěm a j pf q 1 j pxqq 2 dx " ÿ jěm a j pf q 2 p1 `4jq `2 ÿ mďjăk a j pf qa k pf qp2 `4jq.

First, for f in W s L pDq, we have ÿ jěm a j pf q 2 p1 `4jq ďm ´s ÿ jěm j s a j pf q 2 `4m ´s`1 ÿ jěm j s a j pf q 2 ď 5Dm ´s`1 , and by the Cauchy-Schwarz inequality, it holds for a positive constant C, ÿ mďjăk a j pf qa k pf q ď ¨ÿ mďjăk j s a j pf q 2 k s a k pf q 2 Thus, it comes

(51) 2}pf m q 1 ´f 1 } 2 ď Cm ´ps´2q ,
where C ą 0 depends on D. Second, for the variance term, straightforward computations lead to

E " } m´1 ÿ j"0 pp a p0q j ´aj pf qq 1 j } 2 ı " 1 n ż `8 0 Varp m´1 ÿ j"0 j pX 1 q 1 j pxqqdx ď 1 n ż `8 0 E « p m´1 ÿ j"0 j pX 1 q 1 j pxqq 2 ff dx.
By the orthonormality of p j q j and pA2q, we obtain

`8 ż 0 E « p m´1 ÿ j"0 j pX 1 q 1 j pxqq 2 ff dx ď }f } 8 m´1 ÿ j,k"0 `8 ż 0 `8 ż 0 j puq 1 j pxq k puq 1 k pxqdudx " }f } 8 m´1 ÿ j"0 p1 `4jq ď 3}f } 8 m 2 .
From this and (51), the result follows.

5.6. Proof of Proposition 3.2. By the Pythagoras Theorem, we have the bias-variance decomposition

E " } r f 1 m,K ´f 1 } 2 ‰ " }f 1 ´f 1 m } 2 `E" } r f 1 m,K ´f 1 m } 2 ‰ . As j p0q " ? 2, it follows that r f 1 m,K ´f 1 m " m´1 ÿ j"0 « ´?2p p f K p0q ´f p0qq ´1 n n ÿ i"1 p 1 j pX i q ´Er 1 j pX i qsq ff j .
From the orthonormality of p j q j , it follows

E " } r f 1 m,K ´f 1 m } 2 ‰ " m´1 ÿ j"0 E « ´?2p p f K p0q ´f p0qq ´1 n n ÿ i"1 p 1 j pX i q ´Er 1 j pX i qsq ff 2 ď 4mE " p p f K p0q ´f p0qq 2 ı `2 m´1 ÿ j"0 E » - ˜1 n n ÿ i"1
p 1 j pX i q ´Er 1 j pX i qsq ¸2fi fl .

Finally, using that the pX i q i are i.i.d. lead to the result in the second variance term. 5.7. Proof of Theorem 3.1. We have the decomposition:

γ n ptq ´γn psq " }t ´f 1 } 2 ´}s ´f 1 } 2 ´2xs ´t, f 1 y ´2 n n ÿ i"1
ps 1 ´t1 qpX i q ´2psp0q ´tp0qq p f K p0q

and as xt, f 1 y " ´tp0qf p0q ´ş t 1 f, we get (52) γ n ptq ´γn psq " }t ´f 1 } 2 ´}s ´f 1 } 2 ´2ν n ps ´tq ´2psp0q ´tp0qqp p f K p0q ´f p0qq,

with ν n ptq " 1 n n ÿ i"1 pt 1 pX i q ´xt 1 , f y.
First note that for f 1 m,K " m´1 ÿ j"0 a p1q j,K j , a p1q j,K " Erp a p1q j,K s " xf 1 , j y ` j p0qpf p0q ´Er p f K p0qs, it holds that

}f 1 ´f 1 m,K } 2 " › › › › › 8 ÿ j"0 xf 1 , j y j ´m´1 ÿ j"0 xf 1 , j y j ´m´1 ÿ j"0 j p0q `f p0q ´Er p f K p0qs ˘ j › › › › › 2 " ÿ jěm xf 1 , j y 2 `2 m´1 ÿ j"0 `f p0q ´Er p f K p0qs ˘2 " }f 1 ´f 1 m } 2 `2m `f p0q ´Er p f K p0qs ˘2.
Let us start by writing that, by definition of p m K , it holds, @m P M n , γ n p p f 1 p m K ,K q `pen K p p m K q ď γ n pf 1 m,K q `pen K pmq, which yields, with (52) and notations introduced in (28),

} p f 1 p m K ,K ´f 1 } 2 ď }f 1 m,K ´f 1 } 2 `pen K pmq `2ν n pf 1 m,K ´p f 1 p m K ,K q ´pen 1 p p m K q `2pf 1 m,K p0q ´p f 1 p m K ,K p0qqp p f K p0q ´f p0qq ´pen 2,K p p m K q ď }f 1 m,K ´f 1 } 2 `pen K pmq `1 4 }f 1 m,K ´p f 1 p m K ,K } 2 `8 sup tPS m_x m K ν 2 n ptq ´pen 1 p p m K q `16pm _ p m K qr p f K p0q ´f p0qs 2 ´pen 2,K p p m K q.
To get the last line, we write that, for any t P S m , |tp0q| "

?

2 ˇˇˇˇm ´1 ÿ j"0 a j ptq ˇˇˇˇď g f f e 2m m ÿ j"0 a 2 j ptq ď ? 2m}t},
and we use that 2xy ď x 2 {8 `8y 2 for all real x, y. We obtain

1 2 } p f 1 p m K ,K ´f 1 } 2 ď 3 2 }f 1 m,K ´f 1 } 2 `pen K pmq `16mp p f K p0q ´f p0qq 2 `8 ˜sup tPS m_x m K ,}t}"1 ν 2 n ptq ´p1 pm _ p m K q ¸``8p 1 pm _ p m K q ´pen 1 p p m K q `16 p m K " p p f K p0q ´f p0qq 2 ´c2 p}f } 8 _ 1qK logpnq n  , (53) 
where

p 1 pmq " bp1 `2 logpnqq}f } 8 m 2 n , b ą 0.
The following Lemma can be proved using the Talagrand Inequality (see Section B.2).

Lemma 5.5. Under the assumptions of Theorem 3.1, and b ě 6,

ÿ mPMn E « sup tPSm,}t}"1 ν 2 n ptq ´p1 pmq ff `ď c n .
It follows that

E ˜sup tPS m_x m K ,}t}"1 ν 2 n ptq ´p1 pm _ p m K q ¸`ď ÿ m 1 PMn E ˜sup tPS m 1 _m ,}t}"1 ν 2 n ptq ´p1 pm _ m 1 q ¸ď c n . (54) 
This implies that 8p 1 pm _ p m K q ď pen 1 pmq `pen 1 p p m K q for c 1 -defined in (28)-large enough. Moreover, let a ą 0 and

Ω K :" #ˇˇˇˇˇ1 n n ÿ i"1 pZ K i ´EpZ K i qq ˇˇˇˇď c ap}f } 8 _ 1q K logpnq n + ,
where Z K i :" ř K´1 j"0 j pX i q. To apply the Bernstein Inequality (see Section B.3), we compute s 2 " }f } 8 K and b " ? 2K and note that K logpnq{n ď 1. Thus, we get that there exist constants c 0 , c such that (55) For a ą c 0 , PpΩ c K q ď c n 4 .

On Ω K , it holds that (56)

p p f K p0q ´fK p0qq 2 " ˜1 n n ÿ i"1 pZ K i ´EpZ K i qq ¸2 ď 2ap}f } 8 _ 1qK logpnq n .
For any K n ď rn{ logpnqs satisfying condition (26), we have

E " p m Kn " p p f Kn p0q ´f p0qq 2 ´c2 p}f } 8 _ 1qK n logpnq n * ď E " p m Kn " p p f Kn p0q ´fKn p0qq 2 ´pc 2 ´2qp}f } 8 _ 1qK n logpnq n *
Now we note that | p f K pxq| ď 2K for all x P R `and any integer K and by using the definition of ( 56), provided that c 2 ą 2a `2, we obtain

E " p m Kn " p p f Kn p0q ´fKn p0qq 2 ´pc 2 ´2qp}f } 8 _ 1qK n logpnq n * ď E " p m Kn " p p f Kn p0q ´fKn p0qq 2 ´pc 2 ´2qp}f } 8 _ 1qK n logpnq n  1 Ω Kn * `E " p m Kn " p p f Kn p0q ´fKn p0qq 2 ´pc 2 ´2qp}f } 8 _ 1qK n logpnq n  1 Ω c Kn * À Cn 5{2 PpΩ c Kn q À 1 n ,
the term on Ω Kn being less than or equal to 0. Plugging this and ( 54) into (53), we get

E ´} p f 1 p m K ,K
The first term is a constant which depending on d. For the second term using Lemma 5.2, we obtain

ÿ jěd j s´d xf pdq , h j y 2 " ÿ jěd j s´d ˜d ÿ k"´d b pdq k,j ż h j`k pxqf pxqdx ¸2 ďC d ÿ jěd j s d ÿ k"´d ˆż h j`k pxqf pxqdx ˙2 " C d d ÿ k"´d ÿ jěd j s xh j`k , f y 2 "C d d ÿ k"´d ¨ÿ jěd`k |j ´k| s xh j , f y 2 'ď C d d ÿ k"´d ˜ÿ jě0 2 s j s xh j , f y 2 ¸" p2d `1q2 s DC d .
Inserting this in (58), we obtain the announced result.

A.3. Proof of Lemma 2.3. We establish the result for d " 1, the general case is an immediate consequence. It follows from the definition of Ă W s L pDq that pθ 1 q pjq , 0 ď j ď s ´1 are in Cpr0, 8qq. Moreover, it holds that x Þ Ñ x k{2 pθ 1 q pjq pxq P L 2 pR `q for all 0 ď j ă k ď s ´1. The case k " j is obtained using that θ pjq is continuous on Cpr0, 8qq and that x Þ Ñ x pj`1q{2 pθ 1 q pjq pxq P L 2 pR `q. It follows that

~θ1 ~2 s " s´1 ÿ j"0 › › ›x j{2 j ÿ k"0 ˆj k ˙pθ 1 q pkq › › › 2 ď 2 s´1 ÿ j"0 › › ›x j{2 j´1 ÿ k"0 ˆj k ˙pθ 1 q pkq › › › 2 `2 s´1 ÿ j"0 › › ›x j{2 pθ 1 q pjq › › › 2 ď C `2 s´1 ÿ j"0 }x pj`1q{2 pθ 1 q pjq pxq} 2 ă 8,
where C depends on D. Finally, using the equivalence of the norms |.| s and ~.~s, the value of D 1 follows from the latter inequality.

A.4. Proof of Lemma 5.1. Consider the decomposition ż `8 0

x ´kp j´k,pkq px{2qq 2 f px{2qdx "

6 ÿ i"1 I i ,
where for ν " 4j ´2k `2, j ě k, we used the decomposition p0, 8q " p0, 1 ν s Y p 1 ν , ν 2 s Y p ν 2 , ν ´ν1{3 s Y pν ´ν1{3 , ν `ν{13 s Y pν `ν1{3 , 3ν{2s Y p3ν{2, 8q. Using Askey and Wainger (1965) (see Appendix B.1) and straightforward inequalities give

I 1 À ż 1 ν 0 x ´kpxνq k f px{2qdx ď ż 1 ν 0 x ´kpxνq ´1{2 f px{2qdx À ν ´1{2 ErX ´k´1{2 s, I 2 À ż ν 2 1{ν x ´kppxνq ´1{4 q 2 f px{2qdx " ν ´1{2 ż ν 2 1{ν x ´k´1{2 f px{2qdx ď ν ´1{2 ErX ´k´1{2 s, I 3 À ż ν´ν 1{3 ν 2 x ´kpν ´1{4 pν ´xq ´1{4 q 2 f px{2qdx " ν ´1{2 ż ν´ν 1{3 ν 2 x ´kpν ´xq ´1{2 f px{2qdx À ν ´1{2 , I 4 À ż ν`ν 1{3 ν´ν 1{3 x ´kpν ´1{3 q 2 f px{2qdx ď ν ´2{3 ż ν`ν 1{3 ν 2 x ´kf px{2qdx À ν ´1{2 ν ´k ď ν ´1{2 , I 5 À ż 3ν{2 ν`ν 1{3 x ´kν ´1{2 px ´νq ´1{2 e ´2γ 1 ν ´1{2 px´νq 3{2 f px{2qdx À ν ´1{2 ν ´1{6 ν ´k ż f px{2qdx À ν ´1{2 , I 6 À ż `8 3ν{2 
x ´ke ´2γ 2 x f px{2qdx À e ´3γ 2 ν{2 " Opν ´1{2 q.

Gathering these inequalities give the announced result.

A.5. Proof of Lemma 5.2. The result is obtained by induction on d. If d " 1, h 1 j is given by ( 5), with b p1q ´1,j´1 " j 1{2 { ?

2, b 0,j " 0 and b p1q 1,j " pj `1q 1{2 { ? 2, @j ě 1. Thus, it holds b p1q k,j " Opj 1{2 q and (36) is satisfied for d " 1. Let Ppdq the proposition given by Equation ( 36) and assume Ppdq holds and we establish Ppd `1q. It holds using successively Ppdq and (5) that

h pd`1q j pxq " d ÿ k"´d b pdq k,j " ? j `k ? 2 h j`k´1 ´?j `k `1 ? 2 h j`k`1  " d´1 ÿ k 1 "´d´1 b pdq k 1 `1,j ? j `k1 `1 ? 2 h j`k 1 ´d`1 ÿ k 1 "´d`1 b pdq k 1 ´1,j ? j `k1 ? 2 h j`k 1 :" d`1 ÿ k"´d´1 b pd`1q k,j h j`k 1 , where b pdq k,j " Opj d{2 q, @j ě d ě |k| and b pd`1q k,j " b pdq k`1,j ? j `k `1 ? 2 1 |k|ďd´1 ´bpdq k´1,j ? j `k ? 2 1 |k|ďd`1 . It follows that |b pd`1q k,j | ď 2 a pj `d `1q{2j d 2 ď C d j d`1
2 , |k| ď d ď j, which completes the proof.

A.6. Proof of Lemma 5.3.

A.6.1. Proof of part piq. By construction, f 0 is positive and @θ P t0, 1u K , ş f θ pxqdx " ş f 0 pxqdx " 1. It remains to show that f θ is nonnegative. The supports of `ψpp. ´1qpK `1q ´kq ˘0ďkďK´1 are disjoint and are in r1, 2s, then f θ pxq ě 0 for all x P Rzr1, 2s. Now, for all x in r1, 2s, there exists k 0 such that

f θ pxq " x 2 `δK ´γ´d θ k 0 `1ψ `px ´1qpK `1q ´k0 ˘ě 1 2 ´δ}ψ} 8 K ´γ´d ,
which is nonnegative if δ ď }ψ} ´1 8 {2. Now, let us show that f 0 and f θ belong to W s pDq. The Laguerre case. We use the equivalent norm ~.~s of |.| s (see ( 13)) and start with f 0 . As f 0 is s-th differentiable, we have

~f0 ~2 s " s ÿ j"0 ż 3 0 ˜xj{2 j ÿ k"0 ˆj k ˙f pkq 0 pxq ¸2 dx ď s ÿ j"0 2 j j ÿ k"0 ˆj k ˙ż 3 0 px j{2 f pkq 0 pxqq 2 dx. As ş 3 0 px j{2 f pkq 0 pxqq 2 dx ď cpsq ă `8, 0 ď k ď j ď s, it follows |f | 2 s ď 3D{4, D depends on s. For f θ , we have ~fθ ´f0 ~2 s "δ 2 K ´2γ´2d s ÿ j"0 ż 2 1 ˜j ÿ l"0 ˆj l ˙K´1 ÿ k"0 x j{2 θ k`1 pK `1q l ψ plq `px ´1qpK `1q ´k˘¸2 dx ďδ 2 K ´2γ´2d s ÿ j"0 j ÿ l"0 2 j ˆj l ˙ż 2 1 ˜xj{2 K´1 ÿ k"0 θ k`1 pK `1q l ψ plq `px ´1qpK `1q ´k˘¸2 dx.
Using that ψ plq `px ´1qpK `1q ´k˘, ψ plq `px ´1qpK `1q ´k1 ˘have disjoint supports for k ‰ k 1 and that ψ plq are bounded by c, we get after the change of variable y " px ´1qpK `1q ´k, ~fθ ´f0 ~2 s ďδ 2 2 3s c 2 K ´2γ´2d The Hermite case. The usual Sobolev space W s , if s is integer, is defined by W s " tf P L 2 pRq, f admits derivatives up to order s, such that ~f ~s,sob " s ÿ j"0 }f pjq } 2 ă `8u.

It is proved in [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] that: if f P W s has compact support, then f belongs to W s H . By construction f 0 and f θ have a compact support and as they admit derivatives up to order s, they belong to W s . It follows that f 0 and f θ belong W s H . This completes the proof of (i). A.6.2. Proof of part (ii). As for k ‰ k 1 , ψ `p.´1qpK `1q´k ˘, ψ `p.´1qpK `1q´k 1 ˘have disjoint supports, we have, @θ pjq , θ plq P t0, 1u K ,

}f pdq θ pjq ´f pdq θ plq } 2 "δ 2 K´1 ÿ k"0 pθ pjq k`1 ´θplq k`1 q 2 K ´2γ´2d pK `1q 2d
ż 2 1 ψ pdq `px ´1qpK `1q ´k˘2 dx ě δ 2 }ψ pdq } 2 K ´2γ´1 ρpθ pjq , θ plq q, where ρpθ pjq , θ plq q " ř K k"1 1 θ pjq k ‰θ plq k

is the Hamming distance. By Lemma 2.7 in [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF], for K ě 8, there exist tθ p0q , . . . , θ pM q u in t0, 1u K such that ρpθ pjq , θ plq q ě K 8 , @ 0 ď j ă l ď M and M ě 2 K 8 .

Thus, it holds, @θ pjq , θ plq P t0, 1u K , }f pdq θ pjq ´f pdq θ plq } 2 ě δ 2 {8}ψ pdq } 2 K ´2γ , which gives (ii) if we set C " }ψ pdq } 2 {8.

A.6.3. Proof of part (iii). For M integer and pθ pjq q 1ďjďM in pt0, 1u K q M , we have M ÿ j"1 χ 2 `fθ pjq bn , f 0 bn ˘" M ÿ j"1 ``1 `χ2 pf θ pjq , f 0 q ˘n ´1˘" M ÿ j"1 ´en logp1`χ 2 pf θ pjq ,f 0 qq ´1¯. (59) Since f 0 ě c ą 0 on r1, 2s, it holds for any θ P t0, 1u K ,

χ 2 pf θ , f 0 q " ż 2 1 pf θ pxq ´f0 pxqq 2 f 0 pxq dx ď δ 2 c K ´2γ´2d K´1 ÿ k"0 ż 2 1 ´ψ`p x ´1qpK `1q ´k˘¯2 dx ď δ 2 c K ´2γ´2d }ψ} 2 ď 8δ 2 c log 2 logpM qK ´2γ´2d´1 ,
where we used that M ě 2 K 8 . Consequently, using in (59) that logp1 `xq ď x, for any x ě 0, and the latter inequality, give 1 M M ÿ j"1 χ 2 `fθ pjq bn , f 0 bn ˘ď e n 8δ 2 c log 2 logpM qK ´2γ´2d´1 ´1.

For δ well chosen and K " n 1{p2γ`2d`1q , comes the result. One can check that the latter is an equality for a j " ν n,d pϕ j q. Therefore, taking expectation, it follows B.3. Bernstein Inequality [START_REF] Massart | Concentration inequalities and model selection[END_REF]). Let X 1 , . . . X n , n independent real random variables. Assume there exist two constants s 2 and b, such that VarpX i q ď s 2 and |X i | ď b. Then, for all x positive, we have 

P

  compute the empirical Mean Integrated Squared Errors (MISE) of p f p mn,pdq . For that, we first compute the ISE by Riemann discretization in 100 points: for the j-th path, and the j-th estimate p g pjq p m

Figure 1 .

 1 Figure 1. 20 estimates p f x mn,pdq in the Hermite basis of a Mixed Gaussian distribution (ii), with n " 500 (first line) and n " 2000 (second line). The true quantity is in bold red and the estimate in dotted lines (left d " 0, middle d " 1 and right d " 2).

Figure 2 .

 2 Figure 2. 20 estimates p f x mn,pdq in the Laguerre basis of a Gamma distribution (iv), with n " 500 (first line), and n " 2000 (second line). The true quantity is in bold red and the estimate in dotted lines (left d " 0, middle d " 1 and right d " 2).

5. 1 .

 1 Proof of Theorem 2.1. Following (8) we study the variance term, notice that E " 2 j pf pdq q " }f pdq m } 2 . In the sequel we denote by V m,d the quantity V m,d " the proof consists in showing that under (9) we have V m,d ď cm d`1{2 . For that, write V m,d " second term in (32), we consider separately Hermite and Laguerre cases. 5.1.1. The Laguerre case. We derive from (1

  5.2.1. The Laguerre case. Using (35), we have pdq j pxq "p´1q d 2 d{2 x ´d{2 ´j! 1 pxq `T2 pxq.

  d and an immediate induction on d leads to (44). Injecting this in E 2 gives, together with (42), |E 2 | ď Cj d´3 4 , for a positive constant C depending on a, b, c and d. Gathering the bound on E 1 and E

  ´f pdq m ¯´y pen d p p m n q. (49) Note that for t P L 2 pRq, ν n,d ptq " }t}ν n,d `t{}t} ˘ď }t} sup sPSm`S x m ,}s}"1 |ν n,d psq|. Consequently, using 2xy ď x 2 {4 `4y 2 , we obtain 2ν n,d ´p f pdq } 2 `y pen d pmq `4 sup tPSm`S x m ,||t||"1 |ν n,d ptq| 2 ´y pen d p p m n q.

  3 2 |a j pf q| ď DCm ´s`2 .

  2j´1 ď Cpsqδ 2 K ´2γ´2d`2s . For γ ě s ´d and δ small enough, it holds |f θ ´f0 | s ď D{4 and therefore |f θ | s ď |f θ ´f0 | s `|f 0 | s ď D.

"

  Computing v. It holds for t P S m `Sm 1 , }t} " 1, Var ´p´1q d t pdq pX 1 q ¯ď ż t pdq pxq 2 f pxqdx "The first term of the previous inequality is a constant depending only on d. For the second term, we consider separately the Laguerre and Hermite cases.The Laguerre Case (ϕ j " j ). Using (35) and the Cauchy Schwarz inequality, it holds that we used the orthonormality of p j,pkq q jě0 and where Cpdq is a constant depending only on d andsup xPR `f pxq x k .q ď s 2 and |Z pmq i | ď b. By the computation of M 1 (see Proof of part (i)), we set b :" C ˚mα , with α " 2d `1 (Laguerre case) or α " d `1 (Hermite case), where C depends on d. For s 2 , using that VarpZpmq i V m,d ": s 2 .Applying the Bernstein Inequality, we have for S n " np p V m,d ´Vm,d q ppen d p p m n q ´y pen d p p m n qq `‰ ď E " ppen d p p m n q ´y pen d p p m n qq `1Ω ‰ `E " ppen d p p m n q ´y pen d p p m n qq `1Ω c ‰ .

  ). 2.3.1. Sobolev-Hermite classes. Let s ą 0 and D ą 0, define the Sobolev-Hermite ball

	(11)	W s H pDq " tθ P L 2 pRq,	ÿ	k s a 2 k pθq ď Du,
				kě0
	where a 2 k pθq " xθ, h k y. The following Lemma relates the regularity of f pdq and the one of f .
	Lemma 2.2. Let s ě d and D ą 0, assume that f belongs to W s H pDq and pA1q, then there exist a constant D d ą D such that f pdq is in W s´d H pD d q.
	2.3.2. Sobolev-Laguerre classes. Similarly, consider the Sobolev-Laguerre ball
	(12)	W s L pDq " tθ P L 2 pR `q, |θ| 2 s "	ÿ	k s a 2 k pθq ď Du, D ą 0,
			kě0
	where a k pθq " xθ, k y. If s ě 1 an integer, there is an equivalent norm of |θ| 2 s (see Section 7.2 of Belomestny
	et al. (2016)) defined by		

  s´d pa j pf pdq qq 2 j ´ps´dq ď D d m ´ps´dq .

	(14)					|θ| 2 s ď Du.
	It is straightforward to see that Ă W s L pDq Ă W s L pDq. Moreover, we can relate the regularity of f pdq and the
	one of f .					
	Lemma 2.3. Let s P N, s ě d ě 1, D ą 0 and θ P Ă W s L pDq, then, θ pdq P Ă W s´d L pD d q where D ď D d ă 8.
	2.3.3. Rate of convergence of p f m,pdq . Assume that f P W s H pDq or f P Ă W s L pDq, then Lemmas 2.2 and 2.3
	enable a control of the bias term in (10)		
	}f pdq m	´f pdq } 2 "	ÿ	pa j pf pdq qq 2 "	ÿ	j
			jěm	jěm	

  The remaining quantity ´}f

				pdq m } 2 is estimated by ´} p f m,pdq } 2 . The variance term is
	replaced by an estimator of a sharp upper bound, given by
	(16)	p V m,d "	1 n	n i"1 ÿ	m´1 j"0 ÿ pϕ pdq j pX i qq 2 .
	Finally, we set				
		p m n :" argmin mPM n,d t´} p f m,pdq } 2 `y pen d pmqu, where y pen d pmq " κ

Table 1 .

 1 . Mean of selected dimensions p m n presented in Figures

	f	Hermite case Laguerre case
	Density		(ii)		(vi)
	n	500	2000	500	2000
		d " 0 7.95 9.45	5.95	7.65
	Mean of m opt	d " 1 8.50 9.50	6.30	7.05
		d " 2 8.70 9.80	5.80	6.80

Table 5

 5 

	, our method and the kernel

Table 4 .

 4 Empirical MISE (100 ˆE} p f

				Our method		Kernel method
	f	n	100	500 1000 2000	100	500 1000 2000
	Gamma (iv)	5.21	0.95 0.48 0.17	2.45	1.25 0.75 0.63
	Beta (v)	4.55	1.55 0.95 0.45	5.62	3.19 0.59 0.33
	Weibull (vi) 126.95 34.54 22.31 14.10 127.38 38.60 35.47 11.36
	Maxwell (vii) 1.46	0.60 0.24 0.13	0.87	0.21 0.18 0.10
	Table 5. Empirical MISE: 100 ˆE} p f p m,p1q	´f 1 } 2 (left) and 100 ˆE} p f 1 p h

p m,p0q ´f } 2 (left) and 100 ˆE} p f p h ´f } 2 (right) for R " 100 in the Laguerre case.

  A.7. Proof of Lemma 5.4.A.7.1. Proof of part (i). First, it holds that Talagrand Inequality (see Section B.2). Following notations of Section B.2, we have three terms H 2 , v and M 1 to compute. Let us denote by m ˚" m _ m 1 , for t P S m `Sm 1 , }t} " 1, it holds }t} 2 " } Computing H 2 . By the linearity of ν n,d and the Cauchy Schwarz inequality, we have ν n,d ptq 2 " j ν n,d pϕ j q ¸2 ď

	(60)								
		«˜s	¸`ff				«˜s		¸`ff
	E	up	|ν n,d ptq| 2 ´ppm, p m n q	ď	ÿ	E	up	|ν n,d ptq| 2 ´ppm, m 1 q	,
		tPSm`S m ,||t||"1 x			m 1 PM n,d	tPSm`S m 1 ,||t||"1
	which we bound applying a m ˚´1			m ˚´1		
			ÿ	a j ϕ j } 2 "	ÿ	a 2 j " 1.	
			j"0				j"0		
			˜m˚´1		m ˚´1		m ˚´1		m ˚´1
			ÿ		ÿ	a 2 j	ÿ	ν 2 n,d pϕ j q "	ÿ	ν 2 n,d pϕ j q.
			j"0		j"0		j"0		j"0

a

which gives the result of Theorem 3.1. l

Appendix A. Proofs of auxiliary results

A.1. Proof of Lemma 2.1. In the Hermite case ϕ j " h j and f : R Þ Ñ r0, 8q, allowing d successive integration by parts, it holds that a j pf pdq q " ż R f pdq pxqh j pxqdx "

By definition for all j ě 0, h j pxq " c j H j pxqe ´x2 2 where H j is a polynomial. Then, its k-th derivative, 0 ď k ď d ´1, is a polynomial multiplied by e ´x2 {2 and lim |x|Ñ`8 h pkq j pxq " 0. This together with pA2q, gives that the bracket in ( 57) is null and the result follows. Similarly in the Laguerre case, (57) holds integrating on r0, 8q instead of R and replacing h j by j . The term in the bracket is null at 0 from pA3q. It is also null at infinity using pA2q together with the fact that j are polynomials multiplied by e ´x leading similarly to lim xÑ8 f pd´1´kq pxq pkq j pxq " 0, 0 ď k ď d ´1, j ě 0. The result follows.

A.2. Proof of Lemma 2.2. We control the quantity ÿ jě0 j s´d xf pdq , h j y 2 " d´1 ÿ j"0 j s´d xf pdq , h j y 2 `ÿ jěd j s´d xf pdq , h j y 2 . (58)

The Hermite case (ϕ j " h j ). Similarly, using Lemma 5.2 and the orthonormality of h j , it follows

Plugging ( 62) or ( 63) in (61), we set in the two cases v :" c 1 pm ˚qd where c 1 depends on d and either on sup xPR `f pxq x k (Laguerre case) or }f } 8 (Hermite case).

Computing M 1 . The Cauchy Schwarz Inequality and }t} " 1 give

The Laguerre case. We use the following Lemma whose proof is a consequence of ( 2) and an induction on d.

Lemma A.1. For j given in (1), the d-th derivative of j is such that } pdq j } 8 ď C d pj `1q d , @j ě 0 and where C d is a positive constant depending on d.

The Hermite case. The d first terms in the sum in (64) can be bounded by a constant depending only on d. For the remaining terms, Lemma 5.2 and }h j } 8 ď φ 0 (see (4)) give

where C is a positive constant depending on d and φ 0 . Injecting either (65) or (66) in (64), we set M 1 " Opm d`1 2 q in the Laguerre case or M 1 " Opm d 2 `1 2 q in the Hermite case. Now, we apply the Talagrand Inequality see Appendix B.2 with ε " 1{2, it follows

The Laguerre Case. We have

From ( 40) and the value of m n pdq, we obtain

Using the value m n pdq, it holds pm ˚qd`1{2 ď n{log 3 pnq, which implies (recall m ˚" m _ m 1 )

where Σ d,2 is a constant depending only on d. Next, it follows

The function m Þ Ñ m d`1 expp´C 1 2 m 1 2 q is bounded and the sum is finite on m 1 , it holds

, where Σ d,1 depends only on d.

The Hermite case. Only the second term V d pm ˚q changes. Here, it is given by

where we used ( 45) and the value of m n pdq. We derive that

Gathering all terms, it follows

Plugging this in (60) gives the announced result.

A.7.2. Proof of part (ii). We use the Bernstein Inequality (see Appendix B.3) to prove the result. Define

We select s 2 and b such that VarpZ

The constraint on m n gives p m d`1{2 ď Cn{plogpnqq 2 together with (40) giving 

where γ 1 and γ 2 are positive and fixed constants.

B.2. A Talagrand Inequality. The Talagrand inequalities have been proven in [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF] and reworked by Ledoux (9597). This version is given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]. Let pX i q 1ďiďn be independent real random variables and 

˙˙,

where Cpεq " p ? 1 `ε ´1q ^1, K 1 " 1{6 and K 1 1 a universal constant.