OPTIMAL ADAPTIVE ESTIMATION ON R OR R*
OF THE DERIVATIVES OF A DENSITY
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ABSTRACT. In this paper, we consider the problem of estimating the d-order derivative f(¥ of a density f,
relying on a sample of n i.i.d. observations X1, ..., X, with density f supported on R or R*. We propose
projection estimators defined in the orthonormal Hermite or Laguerre bases and study their integrated
L2-risk. For the density f belonging to regularity spaces and for a projection space chosen with adequate
dimension, we obtain rates of convergence for our estimators, which are proved to be optimal in the
minimax sense. The optimal choice of the projection space depends on unknown parameters, so a general
data-driven procedure is proposed to reach the bias-variance compromise automatically. We discuss the
assumptions and the estimator is compared to the one obtained by simply differentiating the density
estimator. Simulations are finally performed and illustrate the good performances of the procedure and
provide numerical comparison of projection and kernel estimators. September 20, 2019
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1. INTRODUCTION

1.1. Motivations and content. Let X;,...,X,, be n i.i.d. random variables with common density
f with respect to the Lebesgue measure. The problem of estimating f in this simple model has been
widely studied. In some contexts, it is also of interest to estimate the d-th order derivative f(@ of f, for
different values of the integer d. Several examples are developed in Singh (1977): regression curves r(z) =
E(Y|X = x) for specific families of conditional distributions of ¥ given X, where r(z) = f1)(z)/f(z) (see
also Park and Kang (2008)); estimation and testing in one parameter scale of exponential families (see
Genovese et al. (2016))... Derivative estimation can also be used as a mean of reaching information, such
as mode seeking in mixture models and in data analysis, see e.g. Cheng (1995), Chacén and Duong (2013).
Moreover, density derivatives also provide information about the slope of the curves, local extrema, saddle
points...

Most proposals for estimating the derivative of a density are built as derivatives of kernel density esti-
mators, see Bhattacharya (1967), Schuster (1969), Silverman (1978), Rao (1996), Chacén et al. (2011),
Chacén and Duong (2013) or Giné and Nickl (2016), either in independent or in a-mixing settings, in
univariate or multivariate contexts. A slightly different proposal still based on kernels can be found in
Singh (1979). The question of bandwidth selection is not considered in the oldest of these papers, but is
studied in more recent ones. For instance, Chacén and Duong (2013) propose a general cross-validation
method in the multivariate case for a matrix bandwidth, see also the references therein. The case of
estimation on R* with gamma kernel estimator (and mixing data) is studied in Markovich (2016), and a
risk bound is proved, but specifically for a first order derivative and a density with regularity of order 2.
Projection estimators have also been considered for density and derivatives estimation. More precisely,
using trigonometric basis, Efromovich (1998) proposes a complete study of optimality and sharpness of
such estimators, on Sobolev periodic spaces. More recently, Giné and Nickl (2016) propose a projection
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estimator and provide an upper bound for its LP-risk, p € [1,00]. In a dependent context, Schmisser
(2013) studies projection estimators in a compactly supported basis constrained on the borders or a non
compact multi-resolution basis: she considers dependent -mixing variables and a model selection method
is proposed and proved to reach optimal rates on Besov spaces. In both contexts, the rate obtained for
estimating f(? the d-th order derivative belonging to a regularity space associated to a regularity a, is
of order n—2cx/(2a+2d+1).

In this work, we also consider projection estimators, defined as in Giné and Nickl (2016), but on specific
projection spaces generated by Hermite or Laguerre basis. The integrated L2-risk of such estimators is
classically decomposed into a squared bias and a variance term. The specificity of our context lies in the
following facts.

(1) The bias term is studied on specific regularity spaces, namely Sobolev Hermite and Sobolev
Laguerre spaces, as defined in Bongioanni and Torrea (2009), enabling to consider non compact
estimation support R or RY.

(2) The order of the variance term depends on moment assumptions. This explains why, to perform
a data driven selection of the projection space, we propose a random empirical estimator of the
variance term, which has automatically the right order.

(3) In standard settings, the dimension of the projection space is the relevant parameter that needs
to be selected to achieve the bias-variance compromise. In our context, this role is played by the
square root of the dimension.

We also mention that our procedure provides very parsimonious estimators, as they require very few
coefficients to reconstruct functions accurately. Moreover, our regularity assumptions are naturally set on
f and not on its derivatives, contrary to what is done in several papers. We emphasize that we provide
a complete panorama of the problem of estimating the derivatives of a density, providing a comparison
of our estimators with those defined as derivatives of projection density estimators; a strategy usually
applied with kernel methods. Finally, we also propose a numerical comparison between our projection
procedure and a sophisticated kernel method inspired by Lacour et al. (2017).

The paper is organized as follows. In the remaining of this section, we define the Hermite and Laguerre
bases and associated projection spaces. In Section 2, we define the estimators and establish general risk
bounds, from which rates of convergence are obtained, and lower bounds in the minimax sense are proved.
A model selection procedure is proposed, relying on a general variance estimate; it leads to a data-driven
bias-variance compromise. Further questions are studied in Section 3: the comparison the derivatives of
the density estimator leads in our setting to different developments depending on the considered basis:
interestingly Hermite and Laguerre cases happen to behave differently from this point of view. Lastly, a
simulation study is conducted in Section 4, in which kernel and projection strategies are compared.

1.2. Notations and definition of the basis. The following notations are used in the remaining of this
paper. For a, b two real numbers, denote a v b = max(a, b) and a; = max(0,a). For u and v two functions

in L?(R), denote {(u,v) = Sigg u(x)v(z)dz the scalar product on L?(R) and |ul| = (stoo u(z)?dz) Y2 the
norm on L2(R). Note that these definitions remain consistent if v and v are in L2(R").

1.2.1. The Laguerre basis. Define the Laguerre basis by:

rk

1 Kja:):\/iLjZace_x, Lj(z) = (4 D x>0 j=0,
) ( e, 1w = 3 (1) 0 j

where L; is the Laguerre polynomial of degree j. It satisfies: S(J)r * Le(z)Lj(z)e "dx = Ok j (see Abramowitz
and Stegun (1964), 22.2.13), where 0y, ; is the Kronecher symbol. The family (¢;);>0 is an orthonormal
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basis on L2(RT) such that [¢;] = supger+ [¢j(7)] < /2. The derivative of ¢; satisfies a recursive formula
(see Lemma 8.1 in Comte and Genon-Catalot (2018)) that plays an important role in the sequel:

7j—1
(2) 0=—l, lj=—;—=2> l;, Vji=1
k=0

1.2.2. The Hermite basis. Define the Hermite basis (h;);>0 from Hermite polynomials (H;);>0 :

J
Izd 2

() hile) = H@)e R Hiw) = (e e ), o = QDT weR,j >0,

The family (H;);j>o is orthogonal with respect to the weight function e " Sz Hj(ar)Hk(x)e*xzdac =
27 j1\/78; 1 (see Abramowitz and Stegun (1964), 22.2.14). It follows that (h;);>0 is an orthonormal basis
on R. Moreover, h; is bounded by

(4) 1Rl = suﬂg\hj(mﬂ < ¢o, with ¢g = 74,
e

(see Abramowitz and Stegun (1964), chap.22.14.17 and Indritz (1961)). The derivatives of h; also satisfy
a recursive formula (see Comte and Genon-Catalot (2018), Equation (52) in Section 8.2),

(5) 0= —h/V2, W= (i ki =G+ Thi)/V2, V=L

In the sequel, we denote by ¢; either for h; in the Hermite case or for /; in the Laguerre case. Let
g€ L2(R) or g € L?2(R™), g develops either in the Hermite basis or the Laguerre basis:

9=, ai(9)¢j aj(9) = 9,0

j=0
Define, for an integer m > 1, the space

Sm = Span{po, ..., Pm-1}

The orthogonal projection of g on S, is given by: g,, = 22.'201 a;j(g)e;.

2. ESTIMATION OF THE FIRST DERIVATIVE WITHOUT BOUNDARY ISSUE

2.1. Assumptions and projection estimator of f(¥. Let Xi,..., X, be n ii.d. random variables
with common density f with respect to the Lebesgue measure and consider the following assumptions.
Let d be an integer, d > 1.

(A1) The density f is d-times differentiable and f(?) belongs to L2(R*) in the Laguerre case or L2(R)
in the Hermite case.

(A2) For all integer 7, 0 <7 < d — 1, we have | ("], < +o0.

(A3) For all integer 7, 0 <7 < d — 1, it holds lim F () = o.

Assumption (A3) is specific to the Laguerre case and avoids boundary issue. In particular, it permits to
establish Lemma 2.1 below that is central to define our estimator. This assumption can be removed at
the expense of additional technicalities, see Section 3.

Under (A1), we develop f @ in the Laguerre or Hermite basis, its orthogonal projection on S,,, m > 1, is

m—1
(6) D =3 a;(f D)y, where, a;(f D) = (FD, )
j=0

The estimator is built by using the following result, proved in Appendix A.
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Lemma 2.1. Suppose that (A1) and (A2) hold in the Hermite case and that (A1), (A2) and (A3) hold
in the Laguerre case. Then aj(f(d)) = (—1)dE[<p§.d) (X1)], ¥j = 0.

Remark 1. If the support of the density f is a strict compact subset [a,b] of the estimation support (here
R and a < b or Rt and 0 < a < b), then the regularity condition (A1) implies that f must be null in
a,b, as well as its derivatives up to order d — 1. On the contrary, Assumption (A3) in the Laguerre case
can be dropped out (see Section 3) and this shows that a specific problem occurs when the density support
coincides with the estimation interval. This point presents a real difficulty and is either not discussed in
the literature, or hidden by periodicity conditions.

We derive the following estimator of f(4) (see also Giné and Nickl (2016) p.402): let m > 1,

m—1 d n
~ ~(d . ~(d -1 d
(7) fm,(d) = Z%) a§- )(pj, with CL§- ) = ( n) Z}lgog )(Xz)
Jj= i=

For d = 0, we recover an estimator of the density f.

2.2. Risk bound and rate of convergence. We consider the L?-risk of fm(d), defined in (7),
(8) Ell ) = FDP] = 15D = FDOI + B[ fon,a) — £01°],

where féf )= ZZ:OI a;(f)p;. The study of the second right-hand-side term of the equality (variance
term) leads to the following result.

Theorem 2.1. Suppose that (A1) and (A2) hold in the Hermite case and that (A1), (A2) and (A3) hold
in the Laguerre case. Assume that

9) E[X;dilﬁ] < +0 in the Laguerre case and E[|X1|*3] < +o0 in the Hermite case.

Then, for sufficiently large m > d, it holds that

~ d+1 (d) )2
(10) B fruioy — SO < 1190 — O + 72 Ml

n
for a positive constant C depending on the moments in condition (9) (but not on m nor n).

Remark 2. In the Laguerre case, condition (9) is a consequence of (A3) and f{9(0) < +co. Indeed,
(A3) imposes that f(x) ~, z? D (x) which, under f(D(0) < +o0, ensures integrability of x=4"1/2f(z) at

r—
0; integrability at oo is a consequence of f € L}([0,0)).

The bound obtained for fm(d) in Theorem 2.1 is sharp. Indeed, we can establish the following lower
bound.

Proposition 2.1. Under the Assumptions of Theorem 2.1, it holds, for some constant ¢ > 0, that

1
i

~ m
E1fma) = FDI| 2 155 = FOI +c

2.3. Definition of regularity classes and rate of convergence. The first two terms in the right hand
side of (10) have an antagonistic behavior with respect to m. Thus, the optimal choice of m requires

n

a bias-variance compromise which allows to derive the rate of convergence of f,, 4). To evaluate the
order of the bias term, we introduce Sobolev-Hermite and Sobolev-Laguerre regularity classes for f (see
Bongioanni and Torrea (2009)).
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2.3.1. Sobolev-Hermite classes. Let s > 0 and D > 0, define the Sobolev-Hermite ball
(11) Wi (D) = {0 e L*(R), ). ka3 (0) < D
k=0
where a?(6) = (0, hy). The following Lemma relates the regularity of f(¢) and the one of f.

Lemma 2.2. Let s > d and D > 0, assume that f belongs to W} (D) and (Al), then there exist a
constant Dg > D such that f9 is in Wi %(Dy).

2.3.2. Sobolev-Laguerre classes. Similarly, consider the Sobolev—Laguerre ball
(12) Wi(D) = {0 e L*(R"),[02 = )" k*aj D >0,
k>0

where a(6) = (0,4;). If s > 1 an integer, there is an equivalent norm of 9|2 (see Section 7.2 of Belomestny
et al. (2016)) defined by

s J .
i J
(13) 0Nz = > 1013, 1613 = |27/2 ] om2.
k
§=0 k=0

This inspires the definition, for s € N and D > 0, of the subset I/IN/E (D) as
(14)  Wi(D) = (0 € L2RY), 09 € O([0,00)), & — 2269 () e L2(RY), 0 < j < b < 5,02 < D},

It is straightforward to see that WN/E (D) = Wi (D). Moreover, we can relate the regularity of f(@ and the
one of f.

Lemma 2.3. Let seN, s>d>1,D>0andf e WE(D), then, 6@ e Wwfifd(Dd) where D < Dy < o0.

2.3.3. Rate of convergence of fm’(d). Assume that f e W (D) or f e VIN/E(D), then Lemmas 2.2 and 2.3
enable a control of the bias term in (10)
LA = PP = Y (e (FD)? = Y 57y (F )% ) < Dgm~ 9.
j=m j>m
Injecting this in (10) yields
d+3

d)—l-cm

E[ fonga) — F D] < D'm=6~

Consequently, selecting mp; = [n2/(25+1)] gives the rate of convergence

n

~ 2(s—d
(15) B[y — F 1] < Cls,d, Dy 557,

where C(s,d, D) depends only on s, d and D, not on m. This rate coincides with the one obtained by
Schmisser (2013) in the dependent case and by Giné and Nickl (2016). We can however mention that the
squared-bias and variance terms do not have the same orders: the role of dimension in Schmisser (2013)
is played in our setting by 4/m. This rate is better than the one obtained by Rao (1996) in the i.i.d.
case, if we set a similar regularity condition. Note that, for d = 0 in (15), we recover the optimal rate for
estimation of the density f.

Remark 3. If f is a mizture of Gaussian densities in the Hermite case or a mizture of Gamma densities
in the Laguerre case, it is known from Section 3.2 in Comte and Genon-Catalot (2018) that the bias
decreases with exponential rate. The computations therein can be extended to the present setting and
imply in both Hermite and Laguerre cases that mey is then proportional to log(n). Therefore the risk has
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order [log(n)]‘”é/n: for these collections of densities, the estimator converges much faster than in the
general setting.

2.4. Lower bound. Contrary to the lower bound given in Proposition 2.1, which ensures that the upper
bound derived in Theorem 2.1 for the specific estimator f,, 4) is sharp, we provide a general lower bound

that guarantees that the rate of the estimator f,, ) is minimax optimal. The following Theorem states
that the rate obtained in (15) is the optimal rate.

Theorem 2.2. Let s = d be an integer and fn’d be any estimator of f\. Then for n large enough, we
have

~ 2(s—d)
inf sup E[|fna— [P} =en 2T,
fn,a fEW$(D)

where the infimum is taken over all estimator of f9, ¢ a positive constant depending on s and d, and
W#(D) stands either for Wi (D) or for Wi (D).

2.5. Adaptive estimator of f(¥. The choice of Mopt = [n2/ (25+1)] leading to the optimal rate of con-
vergence is not feasible in practice. In this section we provide an automatic choice of the dimension m,
from the observations (X1, ..., X,), that realizes the bias-variance compromise in (10). Assume that m
belongs to a finite model collection M,, 4, we look for m that minimizes the bias-variance decomposition
(8) rewritten as

R 1 m—1
E[|fm ) = FDI] = 1650 = £D2 + — 3 Var [P (x0)]|.
7=0

Note that the bias is such that ||fr(,;i) — f@2 = | f@]2 - ||f¢(,f)\|2 where ||f(9|? is independent of m and

can be dropped out. The remaining quantity —| Fu )H2 is estimated by —| fm(d) |%. The variance term is
replaced by an estimator of a sharp upper bound, given by

m—1
(16) Vima = 10 25 25 (X0
i=1 j=0
Finally, we set
(17) i = argmin{—|fy, @)|? + Beig(m)}, where peng(m) = k-,
mEMn,d n

where k is a positive numerical constant. If we set V;, g := Z;”:_Ol E[(gog-d) (X1)?], it holds E[pen,(m)] =
kVim,a/n. In the sequel, we write peny(m) := &V, 4/n. To implement the procedure a value for s has
to be set. Theorem 2.3 below provides a theoretical lower bound for x, which is however generally too
large. In practice this constant is calibrated by intensive preliminary experiments, see Section 4. General
calibration methods can be found in Baudry et al. (2012) for theoretical explanations and heuristics, and

in the associated package, for practical implementation.

Remark 4. Note that in the definition of the penalty, instead of (17), we can plug the deterministic upper

bound on the variance and take cde’%/n as a penalty (see Theorem 2.1) as Proposition 2.1 ensures its
sharpness. However, this upper bound relies on additional assumptions given in (9) and depends on non
explicit constants (see Askey and Wainger (1965)). This is why we choose to estimate directly the variance

by ‘A/mn and use ‘A/mn/n as the penalty term.
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Theorem 2.3. Let M,, 4 := {d,...,my(d)}, where m,(d) = d. Assume that (A1) and (A2) hold, and
that (A3) holds in the Laguerre case, and that | f]e < +0.

AL. Set my(d) = |(n/ log3(n))%+1j, assume that SUp cp+ % < 4 in the Laguerre case,

AH. Set my(d) = [nﬁj in the Hermite case.
Then, for any k = kg := 32 it holds that

~ o4
(18) E|1fn @~ FOI| <€ inf (150 = D)2 + peng(m)) + =,

mGMn’d n

where C'is a universal constant (C = 3 suits) and C' is a constant depending on sup cp+ % < 400 and

]E[Xl_d_l/2] < 400 (Laguerre case) or | f|l (Hermite case).

The constraint on the the largest element my,(d) of the collection M,, 4 ensures that the variance term,
which is upper bounded by mats /n vanishes asymptotically. The additional log term does not influence

2
the rate of the optimal estimator: the optimal (and unknown) dimension mgy, = n2+T, with s the
2
regularity index of f, is such that m,; « n2d+1 as soon as s > d. For s = d, a log-loss in the rate would
occur in the Laguerre case, but not in the Hermite case.
Note that, in the Laguerre case, condition sup,cp+ % < 400 implies E(X, d=1/ 2) < 4+ (see condition

~

9)) and is clearly related to (A3). Inequality (18) is a key result and expresses that fg, (4) realizes
automatically a bias-variance compromise and is performing as well as the best model in the collection,
up to the multiplicative constant C, since clearly, the last term C’/n is negligible. Thus, for f in I/IN/E (D)
or W (D) and under the assumptions of Theorem 2.3, we have E[”fm,(d) - f(d)Hz] = O(n~2s=d)/(2s+1)y
which implies that the estimator is adaptive.

3. FURTHER QUESTIONS

We investigate here additional questions, and set for simplicity d = 1. Mainly, we compare our estimator
to the derivative of a density estimator, and discuss condition (A3) in the Laguerre case.

3.1. Derivatives of the density estimator. When using kernel strategies, it is classical to build an
estimator of the derivative of f by differentiating the kernel density estimator, as already mentioned in the
Introduction. For projection estimators, we find more relevant to proceed differently. Indeed, our aim is
to obtain an estimator expressed in an orthonormal basis; unfortunately, the derivative of an orthonormal
basis is a collection of functions but not an orthonormal basis. So, our proposal (7) is easier to handle.
Moreover, our estimator can be seen as a contrast minimizer, which makes model selection possible to
settle up.

However, Laguerre and Hermite cases are somehow different and can be more precisely compared. Let us
recall that the projetion estimator of f on S, is defined by (see Comte and Genon-Catalot (2018), or (7)
for d = 0):

m—1 n
" ~(0 ~(0 1
fm = Z a,(C )cpk, where a,(c) = — Z or(X;).
n -
k=0 7=0
As the functions (y;); are infinitely differentiable, both in Hermite and Laguerre settings, this leads to
the natural estimator of f @ d>1,
m—1

(19) (F)@ = 3 a0
k=0
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For d = 1, we write (]?m)(l) = (fm)’ We want to compare (fm)’ to fm,(l). In both Hermite and Laguerre
cases, this estimator is consistent, under adequate regularity assumptions and for adequate choice of m
as a function of n.

~

3.2. Comparison of fm(l) with (f,,)" in the Hermite case. Using the recursive formula (5), in (19)
and (7) respectively, straightforward computations give

(fm)’=\}§a1 ho+mE (WM \/;] )h—ﬁ(()h ) ) |
3 (V5 o o

Therefore, it holds that E[|(fn) — fm.1 2] = m/2{ E[(@%)?] + E[@") ,)?]} and

whereas fm (1) =

L) = 1 = 5 (@a ) + @200 + 5% ([ B (@o + [ 12, s (@)

Using Lemma 8.5 in Comte and Genon-Catalot (2018) under E[|X1|%?] < +o0 and for f in W§(D), s > 1,
it follows for some positive constant C that,

“ ~ D m
E[|(fm) — fm,(1)||2] < 5 m s+1 4 C\nr.
Under the same assumptions, (10) for d = 1 implies

" . m3/2
E[|(fn) — f'I?] < D'm ™5™ 4 c——

n

Therefore, by triangle inequality, this implies that ( fm)’ reaches the same (optimal) rate as fm,(l), under
the same assumptions.

3.3. Comparison of fm with ( fm) in the Laguerre case. In the Laguerre case, assumption (A3)

is required for the estlmator fm ,(1) to be consistent, while it is not for the estimator ( fm) .
Proceeding as previously and taking advantage of the recursive formula (2) in (19) and (7) respectively,
straightforward computations give, for m > 1,

(20) mZ 6 -2 Z ¢;, whereas fm = ’”Z (A(O) + 2 Z >

Therefore, in the Laguerre case, the coefficients of fm,(l) in the basis (¢;); do not depend on m while
those of ( fm)’ do. Moreover, computing the difference between the estimators leads to J?m,(1) — (fm)’ =

2375, ( al ))E and

~ . m—1 ©) 2
| fon1y = (fm)'IP = 4m (Z a, > .
k=0
HGHI‘iStiC&H}@ if f(O) = 07 as f(O) = \/523'20 a](f) lt follows that Z] 0o @5 (f) should be small for m

large enough. Consequently, its consistent estimator ZZZ 01 a;o) should also be small. This would imply

that, when f(0) = 0, the distance Hfm,(l) - (!)/"\m)’H2 can be small; on the contrary, the distance should



OPTIMAL ADAPTIVE ESTIMATION ON R OR R* OF DERIVATIVES 9

tend to infinity with m if f(0) # 0. This is due to the fact that fm(l) is not consistent, while (fm)’ is
Indeed, in the general case (f(0) # 0), the risk bound we obtain for (fm)’ is the following.

Proposition 3.1. Assume that (A1) and (A2) hold for d = 1 and that f belongs to W;(D). Then, it
holds

~ ., 3
(21) E|(fm) = f'I* < Cm=*2 4 —|| floom?,

Obviously, for suitably chosen m the estimator is consistent and by selecting mgp; = nl/%, it reaches
the rate: E[H(fmopt)’ — f'I?] < C(s,D)n=(=2/s. This rate is worse than the one obtained for fm,(l)
but it is valid without (A3), and thus fm,(l) is consistent to estimate an exponential density, or any
mixture involving exponential densities. Note that both the order of the bias and the variance in (21) are
deteriorated compared to (10), and we believe these orders are sharp.

In the following section, we investigate if the rate can be improved, if (A3) is not satisfied, by correcting
our estimator (6).

3.4. Estimation of f’ on R™ with f(0) > 0. Assumption (A3) excludes some classical distribution
such as the exponential distribution or Beta distributions $(a,b) with a = 1. If f(0) > 0, Lemma 2.1 no
longer holds, and one has a;(f") = —f(0)¢;(0) — E[¢}(X1)] instead. Therefore, f(0) has to be estimated

and we consider

22 20— 0 0Fc0) - LS e (), with fe= S a®;, 6@ = LS

@) k= —O50) - L 3600, with fi= 3 a0 &7 = LY 6
i=1 Jj=0 =1

We estimate f as follows

%

(23) fox Z a')e;, with al) = —— Z C(X;) — Fre(0)£5(0).

Obviously, 65.1})( is a biased estimator of a;(f’), implying that ﬁ’n i 1s a biased estimator of f;,. Now there

are two dimensions m and K to be optimized. We can establish the following upper bound.

Proposition 3.2. Suppose (A1) is satisfied for d = 1, then it holds that

m—

24) B\~ SRS  fl? 42 Z [(£5(X0)"] + 4m(Var(fic(0)) + ((0) = fx(0))°).

where fx is the orthogonal projection of f on Sk defined by: fx = Zjl-(zf)l a;(f);.

The first two terms of the upper bound seem similar to the ones obtained under (A3), but as we no longer
assume f(0) = 0, Assumption (9) for d = 1 cannot hold and the tools used to bound the variance term
Vin1 by m?®?2 no longer apply and we only get an order m? for this term, under [ flloo < 400.

The last two terms of (24) correspond to m times the pointwise risk of fK( 0). Then, using |[£;]« < V2,

we obtain Var(fK(x)) 4K?/n. If | f|o < o0, this can be improved in Var(fK( ) < |f]o K/n, using
the orthonormality of (¢;);.

To sum up, if f € Wf(D), and | flle < oo, then

~ s m? s K
{1 e — 1] < O, D 15e) {m>#2 4 2o (o5 4 2,
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1/s

Choosing Kopy = cn'/* and mep, = cn'/® gives the rate ]E[Hf;’n Kopt — F1?] < Cn=(=2/5_ that is the

same rate as the one obtained for ( fmopt)’ . Then, renouncing to Assumption (A3) has a cost, it renders
the procedure burdensome and leads to slower rates.
We propose a model selection procedure adapted to this new estimator. Let

opt,

(25) A,’n K = arg min v, (t)
’ t€Sm

where v,,(¢) = [t[2 + 237, ¢/ (X;) + 2¢(0) fx (0). Here, we consider that K = K,, is chosen so that fKn
satisfies

(26) |E(fre, (0)) - £(0)

This assumption is likely to be fulfilled for a K selected in order to provide a squared-bias/variance
compromise, see the pointwise adaptive procedure for density estimation in Plancade (2009); however
therein, the choice of K is random while we set K, as fixed, here. Then, we select m as follows:

2 < K, log(n).
n

(27) e = arg min {5 (Bl se) + penge(m) |, My = (1., [val}

with

28 penelm) = el B o v )™ e (m) 4 pen e (m).
It is easy to ckeck that Vn(f,’n K) = —Hf/n x|?. We prove the following result

Theorem 3.1. Let f,,’n,Kn be defined by (25) with m = m, selected by (27)-(28) and K,, such that (26)
holds. Then for c1 and co larger than fized constants co 1, co2, we have

/
mKn log(n)) N %
n n

)

7 1
EQf—%%ﬁ)<ch—mW+mﬂ§m+
where C is a numerical constant and C' depends on f.

Theorem 3.1 implies that the adaptive estimator ﬁ’n k, Provides the adequate compromise, up to log
terms.

4. NUMERICAL STUDY

4.1. Simulation setting and implementation. We illustrate the performances of the adaptive esti-
mator fﬁlm(d) defined in (7), with m selected by (16)-(17), for different distributions and values of d
(d =1,2). In the Hermite case we consider the following distributions which are estimated on the interval
I, which we fix to ensure reproducibility of our experiments:

(i) Gaussian standard N (0,1), I = [—4,4],

(i) Mixed Gaussian 0.4N(—1,1/2) + 0.6N(1,1/2), I = [—2.5,2.5],
(iii) Cauchy standard, density: f(z) = (7(1 +22))~%, I = [-6,6],
(iv) Gamma I'(5,5)/10, I = [0,7],

(v) Beta 58(4,5), I = [0, 5].
In the Laguerre case we consider densities (iv), (v) and the two following additional distributions
(vi) Weibull W (4,1), I =0, 1.5],
(vii) Maxwell with density v/2z2e~*"/(29%) /(¢3,/7), with 0 = 2 and I = [0, 8].
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All these distributions satisfy Assumptions (A1), (A2) and densities (iv)-(vii) satisfy (A3). The moment
conditions given in (9) are fulfilled for d = 1,2, even by the Cauchy distribution (iii) which has finite
moments of order 2/3 < 1. For the adaptive procedure, the model collection considered is M,, 4 =
{d,...,mp(d)}, where the maximal dimension is m,,(d) = 50 in the Laguerre case and m,(d) = 40 in the
Hermite case, for all values of n and d (smaller values may be sufficient and spare computation time). In
practice, the adaptive procedure follows the steps:

e For m in M,, 4, compute —Zg?fol (a§d))2 + peng(m), with a;d) given in (7) and peny(m) in (17),

e Choose m,, via m, = argmin {— Z}TZOI (@@)2 + peny(m)},
meMy, q
n -1 ~(d
e Compute [z, (@) = Z;-n:ol ag )cpj.
Then, we compute the empirical Mean Integrated Squared Errors (MISE) of fs, (). For that, we first
)

J
m

A

compute the ISE by Riemann discretization in 100 points: for the j-th path, and the j-th estimate g
of g, where g stands either for the density f or for its derivative f’, we set

K

(i length([1 (i .
lo - 522 ~ B S 600 0)) — g@))?, = min(D) + &
k=1

length(7)
K )

for j =1,...R. To get the MISE, we average over j of these R values of ISEs.

The constant « in the penalty is calibrated by preliminary experiments. A comparison of the MISEs for
different values of x and different distributions (distinct from the previous ones to avoid overfitting) allows
to choose a relevant value. We take xk = 3.5 in the Laguerre case or kK = 4 in the Hermite case.

Comparison with kernel estimators. We compare the performances of our method with those of kernel
estimators, and start by density estimation (d = 0). The density kernel estimator is defined as follows

~ 1 & X, —
fule) = = K( x) reR
nh = h

2

where h > 0 is the bandwidth and K a kernel such that { K(z)dz = 1. These two quantities (h and
K) are user-chosen. For density estimation, we use the function implemented in the statistical software
R called density, where the kernel is chosen Gaussian and the bandwidth selected by cross-validation
(R-function bw.SJ), see Tables 2 and 4.

f Hermite case Laguerre case
Density (i) (vi)
n 500 2000 | 500 2000

d=0|795 945 |595 7.6
Mean of mep,; d=1[850 9.50 |6.30 7.05
d=2 870 980 |580 6.80

TABLE 1. Mean of selected dimensions m, presented in Figures 1 and 2.

For the estimation of the derivative, the kernel estimator we compare with (see Tables 3 and 5) is defined

by:
~ 1 & X, —«x
fllz(‘r):_nhzi_ZIK,< ” )
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FICGURE 1. 20 estimates fmm(d) in the Hermite basis of a Mixed Gaussian distribution (ii), with
n = 500 (first line) and n = 2000 (second line). The true quantity is in bold red and the estimate
in dotted lines (left d = 0, middle d = 1 and right d = 2).

02 03 04

0.0 041

00 01 02 03 04

— 1 1 T T T T 1 — T T T T T T 1
0o 1 2 3 4 5 & 7 o 1 2 3 4 5 & 7

FICURE 2. 20 estimates fﬁm(d) in the Laguerre basis of a Gamma distribution (iv), with n = 500
(first line), and n = 2000 (second line). The true quantity is in bold red and the estimate in dotted
lines (left d = 0, middle d = 1 and right d = 2).

In that latter case there is no ready-to-use procedure implemented in R; therefore, we generalize the
adaptive procedure of Lacour et al. (2017) from density to derivative estimation. To that aim, we consider
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a kernel of order 7 (i.e. {2/ K (x)dx =0, for j =1,...,7) built as a Gaussian mixture defined by:
(29) K(z) = 4ny(z) — 6na(x) + 4dng(z) — na(x),

where n;(x) is the density of a centered Gaussian with a variance equal to j: the higher the order, the
better the results, in theory (see Tsybakov (2009)) and in practice (see Comte and Marie (2019)). By
analogy with the proposal of Lacour et al. (2017) for density estimation, we select h by:
~ PN 4
h = argmin{| f; — f}'me H2 + pen(h)}, with pen(h) = E<K]/“ Ky >,
heH L man
where min = minH, for # the collection of bandwidths chosen in [¢/n,1] and Kj(z) = +K(%). Note

that
4 4 U
pen(h) = (K3 Ky D = oy | KGR

min

u

)du

hmm

and this term can be explicitely computed with the definition of K in (29).

4.2. Results and discussion. Figures 1 and 2 show 20 estimated f, f’, f” in case (ii), for two values
of n, 500 and 2000. These plots can be read as variability bands illustrating the performance and the
stability of the estimator. We observe that increasing n improves the estimation and, on the contrary,
that increasing the order of the derivative makes the problem more difficult. The means of the dimensions
selected by the adaptive procedure are given in Table 1. Unsurprisingly, this dimension increases with
the sample size n. In average, these dimensions are comparable for d € {0, 1,2}, this is in accordance with
the theory: the optimal value m,; does not depend on d.

Tables 2 and 4 for d = 0 and Tables 3 and 5 for d = 1 allow to compare the MISEs obtained with
our method and the kernel method for different sample sizes and densities.The error decreases when the
sample size increases for both methods. For density estimation (d = 0), the results obtained with our
Hermite projection method in Table 2 are better in most cases than the kernel competitor, except for
smallest sample size n = 100 and Gamma (iv) and Beta (v) distributions. Table 3 gives the risks obtained
for derivative estimation in the Hermite basis: our method is better for densities (i), (ii), (iii) (except for
n = 100 for Gaussian distribution (i)), but the kernel method is often better for densities (iv) and (v);
they correspond to Gamma and beta densities which are in fact with support included in R*.

In Table 4, we compare the errors obtained for densities (iv)-(vii) with support in RT. Our method is
always better than the R-kernel estimate. For the derivatives, in Table 5, our method and the kernel
estimator seem equivalent.

Our method Kernel method
f & 100 500 1000 2000 | 100 500 1000 2000
Gaussian (i) 0.12 0.03 0.02 4.1073]0.74 0.23 0.13 0.07
Mixed Gaussian (ii) | 1.01 0.26 0.13 0.07 | 146 0.44 0.22 0.14
Cauchy (iii) 0.63 0.38 0.19 0.10 |4.26 3.42 1.75 0.89
Gamma (iv) 1.46 0.36 0.18 0.09 [0.99 0.26 0.14 0.08
Beta (v) 1.09 0.18 0.10 0.05 [0.96 0.26 0.151 0.09

TABLE 2. Empirical MISE 100 x E||fz — f[? (left) and 100 x E[ f; — f|? (right, Kernel
Estimator) for R = 100 in the Hermite case.
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Our method Kernel method
! K 100 500 1000 2000 | 100 500 1000 2000
Gaussian (1) 1.21 030 0.15 0.10| 1.16 0.81 0.53 0.25
Mixed Gaussian (ii) 10.08 2.39 1.89 1.07 | 14.13 356 2.00 1.2
Cauchy (iii) 291 1.28 0.87 056 | 4.14 1.58 1.19 0.88
Gamma (iv) 588 1.89 1.43 0.60 | 245 1.25 0.75 0.63
Beta (v) 584 1.76 091 0.87 | 5.62 3.19 0.59 0.33

TABLE 3. Empirical MISE 100 x E| f, 1) — f/|? (left) and 100 x E[[f2 — f'|* (vight) for
R = 100 in the Hermite case.

Our method Kernel method
f 100 500 1000 2000 | 100 500 1000 2000

Gamma (iv) [ 0.54 0.16 0.08 0.04 | 0.99 0.26 0.14 0.08

Beta (v) 0.86 0.20 0.10 0.06 [0.96 0.26 0.15 0.09
Weibull (vi) |2.61 0.60 0.33 0.17 | 3.55 0.80 0.46 0.29
Maxwell (vii) | 0.64 0.11 0.06 0.04 |0.59 0.16 0.10 0.06

TABLE 4. Empirical MISE (100 x E| fz, o) — f[? (left) and 100 x E|f; — f|? (vight) for
R =100 in the Laguerre case.

n

Our method Kernel method
f " 100 500 1000 2000 100 500 1000 2000

Gamma (iv) 521 095 048 0.17 | 245 125 075 0.63

Beta (v) 455 155 095 045 | 562 3.19 0.59 0.33
Weibull (vi) | 126.95 34.54 22.31 14.10 | 127.38 38.60 35.47 11.36
Maxwell (vii) | 146 0.60 0.24 0.13 | 087 0.21 0.18 0.10

TaBLE 5. Empirical MISE: 100 x E| fz,1) — f/|? (left) and 100 x E[| £ — f'[? (right) for
R =100 in the Laguerre case.

5. PROOFS

In the sequel C' denotes a generic constant whose value may change from line to line and whose dependency
is sometimes given in indexes.

5.1. Proof of Theorem 2.1. Following (8) we study the variance term, notice that E[Hfm,(d) —f,(,fl) I1?] =

Z;”:_Ol Var(ag.d)). By definition of &g-d) given in (7), we have
a3 (@)

(30)  Var(l”) = Vs (ﬁf)d ok <Xz->) = Dol () = B[ (x-S0
i=1
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Clearly, Z;”:_Ol a?( @y =| f},‘zj ) |2. In the sequel we denote by V;, 4 the quantity

31) Vi = 3 B[ (X0))2].

—1 d—1 m—1
(32)  Vpa= Y f(<p§d’(z))2f(x)dw= Zj@d)(w))?ﬂmdw 3 f (6D (@))? f(a)da |
5=0 j=0 j=d
where
d—1 d—1
(33) 3 j D@2 f@)dz < 3 6V = c(d).
j=0 j=0

To bound the second term in (32), we consider separately Hermite and Laguerre cases.

5.1.1. The Laguerre case. We derive from (1) that
(d) d 4\ k)
67 (x) =vV2 Y (1) h <k>Lj (2z)e .
k=0

Using Koekoek (1990), Equation 2.10, we derive

L{(x) = j;kw) = (~D*Lypp (@), where Ly, (x) = ;,5j (2777 154y,
Moreover, introduce the orthonormal basis on L2(R™) (¢ (s))o<k<co by
1/2
3 b =2% (r57) "L eaete.
Therefore, (L;(2z))*) = Qij—k,(k)(2$)1j>k, so that
d TR
(35) (@) =10 ) <Z>2§x—k/2 <(j i 'k>!> )

k=0
where /; (5) is defined in (34). Using the Cauchy Schwarz inequality in (35), we derive that

m=1 ~oo m—1 d . +o0
S [ rersee < 55 () 5T [ e o e

0

d
Z jdf x_k(gj—k,(k) (2/2))2f (z/2)dz.

Now we rely on the following Lemma, proved in Appendix A.

Lemma 5.1. Let j = k = 0 and suppose that E[X*kfl/z] < +o0, it holds, for a positive constant C
depending only on k, that

+00 C
| e ko)) ra/2de < N

0
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From Lemma 5.1, we obtain

1 d
zg: [A=1/2 < Oy dtl/2.

m—1 m
3 j (@) @z < Y S
i—d j=d k=0

Plugging this and (33) in (32), gives the result (10) and Theorem 2.1 in the Laguerre case.
5.1.2. The Hermite case. We first introduce a useful technical result, its proof is given in Appendix A.

Lemma 5.2. Let h; given in (3), the d-th derivative of h; is such that

d
(36) WO = N 0 Ohn,  where b = 0(?), j=d>|kl.
k=—d

Using successively Lemma 5.2, the Cauchy Schwarz inequality and Lemma 8.5 in Comte and Genon-
Catalot (2018) (using that E[|X;|*3] < oo) we obtain, for k + j large enough,
—1

m—1 d m
S [ e s 'S S 087 [ o et $ 8ot

k——d j—d
(37) <c (d)der%.
Plugging (37) and (33) in (32) leads to inequality (10) and Theorem 2.1 in the Hermite case.

5.2. Proof of Proposition 2.1. We build a lower bound for (8). Recalling (30) and notation V,, 4 =

Z;n:_ol E[(¢; @ (X1))?], to establish Proposition 2.1, we have to build a minorant for Vj, 4. We consider
separately the Laguerre and Hermite cases.

5.2.1. The Laguerre case. Using (35), we have

) =02 (2 ) Z (e () oo

=T (z) + Tr(x).
It follows that

Lm(egd))?(x) F@)da > J ) f @) + 2 f (@) Ta(@) f(2)da = Ey + B,

0 0

For the first term, as (A1) ensures that f is a continuous density, there exist 0 < a < b and ¢ > 0, such
that inf,<,<p f(z) = ¢ > 0. We derive

]' +0o0 B
El = 2d(]—d)'J; X d€?7d7(d)($)f( )d.’lﬁ‘ = 02d db J 632 d

By Theorem 8.22.5 in Szegd (1959), for § > —1 an integer, and for b/j < x < b, where b, b are arbitrary
positive constants, it holds

(38) b (@) = o)+ (contavay/io = 5 = )+ (i) Eo() )

where O(1) is uniform on [b/4,b] and d = 2V/4/\/7. Tt follows that,

2 1 ™
2 5)() = 2 (o) E [1+ cos(avayG = om — )] + () rO(1).
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We derive that SZ E?_d @(@dzr = C(j - d)~'/2, after a change of variable y = /z, for some positive
constant C' depending on a,b and d. Consequently, it holds

(39) B =CG—-d)%z2>C%2, V)=,
where €’ depends on a, b, ¢ and d. For the second term, we have
+0
Bl <2| M@
0
d—1 + +00
d d—1 d\  k+d _ _
< 2525 2 Z <k>2 2 {L x dfj a(a) (@) f(@)dx +f0 x k(? k7(k)(x)f(:c)d:p}

By Lemma 5.1, it follows that
d—1
|Bo| < Cj5j% 5 <d>2’“¥d <t

This together with (39), lead to goo(ég»d))Q(m)f(x)dx > C’jd_%, j = 2d where C depends on a, b, ¢ and
d. We derive

(40) Vm d= Cmd—i_%a
which ends the proof in the Laguerre case.

5.2.2. The Hermite Case. The proof is similar to the Laguerre case. Consider the following expression of
h; (see Szegd (1959), p.248):

(41) hj(xz) = Aj cos <(2j + 1)533 - M) + %fj(a:), VreR,
2 (25 +1)z
where \; = |h;(0)| for j even or A; = [h(0)[/(2j + 1)1/2 for j odd and
& () :f sin (27 + 1%z — 1)) hy(t)dt.

0
By Stirling Formula, it holds

1
(25)!2 ~1/2:—1/4 Vv2j+1 —1/2.-1/4
49 = ~ d Agir1 = Ay ~ .
(42) SARETT R 22+ 32 T

Differentiating (41), we get

O (x) = Aj(2) + 1)2

Note that if d = 2 it holds
(43) £ () = /25 + 1a®hy(x) — (25 + 1)&; ().

From (A1), there exists a < b and ¢ > 0 such that inf,<,<p f(z) = ¢ > 0. It follows

(@) .2 e [0
thj ()2 f(2)dz >c(2j + 1) Ajf

a

] d 1
cos ((2]' + 1)%36 - ‘%T + g) + fj(-d)(:v).

cos? <(2j + 1)%;16 -+ d)g) dx

b
+2eM(2) +1)T f cos ((zj + 1)z —(j + d)g) 9 (@)da := E| + By,

a
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For the first term, using cos?(x) = (1 + cos(2z))/2 and (42), we get
b—a 1 1 (b—a 1
E — 2 1 d 2 - 2 /) od—= L .
1 =c(2) + )/\]( 5 +0(\/5)) ¢ 2( 5 T O j)>
For the second term we first show that
(44) vz € [a,0], Vi = 0, Vd > 0, £ (2) = O(j7?).
To establish (44) we first note, using (43), that for d > 2, Vx € R,
6" (@) + (2 + g7 (@) = (67 @) + (27 + D&/@) P = V2] + 1wty (2) D = W(a).

d—1

Together with Lemma 5.2, one easily obtains by induction that Vz € [a,b], Vj > 0, V¥, 4(z) = O 2 ).
The latter result gives 5]@ = — j£§d_2) + ¥, ¢ and an immediate induction on d leads to (44). Injecting

this in Fy gives, together with (42), |Eq| < C’jdfg, for a positive constant C' depending on a, b, ¢ and d.
Gathering the bound on F; and E5 lead to

— 1
[ 0w = it (25 o) - 0uth = cth

and
(45) Vina = cam2,
which ends the proof of the Hermite case.

5.3. Proof of Theorem 2.2. We apply Theorem 2.7 in Tsybakov (2009). We start by the construction
of a family of hypotheses (fp)g. The construction is inspired by Belomestny et al. (2017). Define fy by

(46) fo(z) = P(z)1)0,11(z) + %961[1,2] (z) + Q(z)1y2,3 (),

where P and @ are positive polynomials, for 0 < k < s, P®)(0) = Q%) (3) = 0, P®)(1) = lim,; (2/2)®),
QM (2) = limypg(z/2)*) and finally Sé P(x)dz = Sg Q(z)dz = §. Consider fy defined as a perturbation of
Jo

K-1
(47) fo(z) = folx) + 6K~ 0% X" 0 (@ — 1)(K +1) — k), with K €N,

k=0
for some § > 0, § = (01,...,0x) € {0,1}X, v > 0 and 1 which is supported on [1,2], admits bounded
derivatives up to order s and is such that Sf Y(xz)dr = 0. Theorem 2.2 is a consequence of the following
Lemma.

Lemma 5.3. (i). Let s = d, ¥ 0 € {0,1}X, there exist § small enough and v > 0 such that fy is
density. There exists D > 0 such that fy belongs to Wi, (D). If in addition v > s —d, fp belongs
to Wi (D).
(i3). Let M an integer, for all j <1< M, Y09, 00 in {01}, it holds Hféi)) - fe(z)) |2 > Co2K—2.
(ii). For & small enough, K = n'/®7+2+0) and for all (09))1<j<nr € ({0, 1})M | it holds

M

1

i DX (for® o) < aM,
=1

where 0 < o < 1/8 and x%(g,h) denotes the x? divergence between the distributions g and h.
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Choosing v = s — d, K = n"/@7+2d+1) 4nd § small enough, we derive from Lemma 5.3 that,
d d (s=d) ;
er((j)> — féug H2 > 06%n~ 2s+1 , vg(y)’ W) ¢ {0, 1}K‘
The announced result is then a consequence of Theorem 2.7 in Tsybakov (2009).

5.4. Proof of Theorem 2.3. Consider the contrast function defined as follows:
n

Tnalt) = 12 = = S(-1%HD(X), te2(R),

i=1

for which fm,(d) = argminy, 4(t) (see (7)) and Vn(fm,(d)) = —Hfm,(d)HQ. For two functions ¢, s € L2(R),
€S

consider the decomposition:

(48) Ynd(t) = ma(s) = [t = DI = lls = FDOP = 2w, 4(t - s),

where

at) = 3 33 (20K = 6 59)).

By (17), it holds for all m € M,, 4, that ’yan(fﬁlm(d)) + peng(my,) < ’yn,d(fr(rfl)) + peny(m). Plugging this
in (48) yields, for all m € M,, 4,

(49) Hfmn,(d) — fDPR < D — f D2 4 Feny(m) + 2upq (fmn,(d) - ff(r'il)> — peng(my).

Note that for ¢ € L2(R), vnq(t) = [tlvna(t/|t]) < |I¢] SUPscs,, + -, |s|=1 [Vnd(s)]. Consequently, using
22y < 22/4 + 492, we obtain

~ 1,~ 1
(50)  2na (Fr) = £9) < Wiy = FOR+ I — SO 44 s ()
teSm+SaH,|[t]|=1
It follows from (49) and (50) that:
1,~ 3 — — A
§|\fmn,(d) - f(d)H2 < §Hfr(rfl) - f(d)HQ + peng(m) + 4 sup ’Vn,d(t)|2 — pengy(Mmy).
t€Sm+ S ||t =1

— 4vam’,d

Introduce the function p(m,m’) , we get, after taking the expectation,

1 ~ 3 ~
SE |1y = FOI2] < S1FD = FOI + peng(m) + 4E sup — |vna(t)]? = p(m, i)
2 " 2 teSm+Splltll=1 +

+E[4p(m, in) — peng(in)] + E [(peny (fin) — peng(im))., | -

The remaining of the proof is a consequence of the following Lemma.

Lemma 5.4. Under the assumptions of Theorem 2.3, the following hold.
(i) There exists a constant ¥y such that:

E sup |vna(t)]? = p(m, i) || < =
t€Sm -S| =1 N n

(ii) There ezists a constant ¥o such that:

A

E [(pend(fﬁ,n) - [Te\nd(ﬁ%n))Jr]
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Lemma 5.4 yields

1 ~ 3 by ~
SE (1T = FDIP| < SIFLD = £ + peng(m) + 4= + Efap(m, fin,) — Speny(iin)] + =

Next, for k = 32 =: kg, we have, 4p(m, m,) < peny(m,)/2 + peny(m)/2. Therefore, we derive
~ 4%+ X
E [ o) — DI <3170 = 7O + 3peng(m) + 222 Yme My

n
Taking the infimum on M,, 4, C = 3 and C’ = 2(4%; 4+ X3)/n completes the proof.

5.5. Proof of Proposition 3.1. First, it holds that
E|I(m) = £12] < 2[10m) = FI2 + ELFn) = () 12]]

+00 m—1
- 2f0 (Y a;(f)€;(x))?dz + 2E [| M@l - aj(f))€§|2] .
j=m Jj=0

For the first bias term, we derive from (2) that {¢},¢;) = 2+ 4j A k for j # k and (£}, £}) = 1 + 43, and
we derive that

+a0
[ (Cathg@pra = Yoo 2 ¥ aad)es ).
j=m jzm m<j<k
First, for f in W} (D), we have
D ai ()21 +45) <m™* ) jPai(f)? +4m T Y jPas(f)? < 5Dm Y
jzm j=m ji=m

and by the Cauchy-Schwarz inequality, it holds for a positive constant C,

2

o ai(Nae(H) < | D) Fai(f)*kar(f)? D1 ik < ) () ) i < DOm T
m<j<k m<j<k m<j<k j=m j=m
1

2

>y dla(Nan(Nl < Y dla(DI | X kan(£)? Y k7| <VDC Y, j37 3 a;(f)] < DOm~+2.

m<j<k jzm k=j k=j j=m

Thus, it comes

(51) 2(fm) = f/I? < Cm~ (72,

where C > 0 depends on D. Second, for the variance term, straightforward computations lead to

m—1 ©) 1 +00 m—1 1 [t® m—1
B[l Y @0 - angl] = | V(Y 606w [ B [( Y @(Xl)e;(x))?] d.
j=0 7=0 7=0

By the orthonormality of (¢;); and (A2), we obtain

+00

m—l m_q T+ _—
f [ Z (X))l (2 ]dw <|fle D, f f 0i(u) € (@) b ()l (x) dudz = || floo Y (14 45) < 3] floom?.
=0 Gk=0 3y 9 j=0

From this and (51), the result follows.
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5.6. Proof of Proposition 3.2. By the Pythagoras Theorem, we have the bias-variance decomposition
B[ fon i = FIP] = 1" = fal? + B[l f i = Fiul*]- As €;(0) = V2, it follows that

m—1

2 (05(Xa) = E[4(X)D) | &

j=0 =1
From the orthonormality of (¢;);, it follows

m—1

B[l fse = fl®] = 20 B | =V2(Jk(0) = £(0)) -

< 4mE | (fx(0) - f ]+22E[( M <Xi>—E[e;<Xi>]>> ]

=1

Finally, using that the (X;); are i.i.d. lead to the result in the second variance term.

5.7. Proof of Theorem 3.1. We have the decomposition:
n

n®) = 0(s) = It = FI? = s = I =25 — 1, 2 3/~ #)(X:) — 2(5(0) ~ H(0)fic(0)

i—1
and as (¢, ') = —t(0) f(0) — ¢ f, we get
(52) V() = nls) = [t = F[2 = |s = £ = 2vn(s — ) = 2(s(0) — (0))(fx (0) = £(0)),

. 1 /
with n; = .
First note that for
= 1 1 1 ~
g = > al%ty, ) =E[a{)] = (1. 65 + £;(0)(£(0) — E[fx (0)],
§=0

it holds that

I = fox P =

m—1 m—1
i= 2t = Y 45(0)(£(0) — E[fx (0)])4;
7=0 J=0

= Y2 +2 2 (f(0) —E[fx(0)])* = |/ — fo|? + 2m (f(0) — E[fx(0)])°.

j=m Jj=0

Let us start by writing that, by definition of Mg, it holds, Ym € M,

Yo (Fhe i) + Penpe (Mg ) < Yu(fr 1) + PEng (m),
which yields, with (52) and notations introduced in (28),

[P = F1P < Wi = FI7 + penge(m) + 20n(fn i = Fhuse.ic) — Peny (M)
+2(fr 5 (0) = Py i (0)(Fxc (0) = £(0)) = peny e ()

1 ~ ~
< Hf?ln,K — f'|? + peng (m) + ZHf;n,K - fr'?LK,KHQ +8 sup vi(t) — peny (k)

tEvaﬁK

~

+16(m v ) [Fic (0) — F(O)]* — peny g (irc).
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To get the last line, we write that, for any t € S,

m—1

> a;(t)

7=0

1t(0)] = V2 < V2m|t,

<

and we use that 22y < 22/8 + 8y for all real z,y. We obtain
1 ) P 3 112 r 2
§Hme,K - flIF < §Hfm,K — f'|7 + peng (m) + 16m(fx (0) — f(0))

+8 ( sup ufl(t) —pi(m v ﬁzK)> + 8p1(m v my) — peny (Mmy)
teS =1
+

(53) #1671 | (Fi(0) = FOF = ea(L oo v DEED

mvr/r\lK7

where
2

m
pi(m) =Db(1 + 2log(n))| floo——, b >0.
The following Lemma can be proved using the Talagrand Inequality (see Section B.2).

Lemma 5.5. Under the assumptions of Theorem 3.1, and b = 6,

Slo

> E[ sup Vﬁ(t)—m(m)] <
e, L teSmiltl=1 .

It follows that

E( sup Vﬁ,(t)—pl(mvﬁm)> < Z < Vﬁ(t)—pl(mvm’)>
teSy,ym st =1 vl s HtHzl

mvm m’vm>’
K +

(54) <

+

3.\Q§

This implies that 8p;(m v mg) < pen;(m) + pen; (M) for ¢; —defined in (28)- large enough.

Moreover, let a > 0 and
Klog(n)
<\ /a7 v IR } ,

|

where ZX := ZJK:_ol ;(X;). To apply the Bernstein Inequality (see Section B.3), we compute s? = || f| o K
and b = /2K and note that K log(n)/n < 1. Thus, we get that there exist constants cg, ¢ such that

izK E(ZI)| <

(55) For a > ¢y, P(Q%) <

On Q, it holds that

n 2
0 (Fic0) - (i PNCARS A >> < 2a(] o v K2,
i=1
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For any K, < [n/log(n)] satisfying condition (26), we have

E {ﬁm [(fKn (0) = £(0))* = e2(| flloe v UK”logén)} }

< E {ﬁ%m {(]?Kn (0) = fx,(0))* = (c2 = 2)(| floo v D En log;n)]}

Now we note that \]?K(:B)] < 2K for all z € RT and any integer K and by using the definition of (56),
provided that cg > 2a + 2, we obtain

B { e, | (i (0 = f, 00 = (c2 = D11 v D5 |

< B, | (a0~ i OF = 2= 2l v DEE 10, 4

R {mKn [< Fin(0) = £, (0)* = (e2 = 2)(| o v DK logn(”)] 1nK}

< OnPPPQ% ) <

)

S|

the term on Qg being less than or equal to 0. Plugging this and (54) into (53), we get

E (I 5 = FB) < 3lfmmsc = S + dpeng(m) + 32m(fic(0) - f(0)) +

which gives the result of Theorem 3.1. []

C
n

APPENDIX A. PROOFS OF AUXILIARY RESULTS

A.1. Proof of Lemma 2.1. In the Hermite case ¢; = h; and f : R — [0, 0), allowing d successive
integration by parts, it holds that

d—1 o
(57) aj<f<d>>=ij<d><w>hj<x>dx=[Z(1>kf<d—1—k><x>h§’“<x>] + (~1) th§d><m>f<x>dx.

k=0 —w

22
By definition for all j > 0, hj(z) = c¢jHj(x)e” 2 where H; is a polynomial. Then, its k-th derivative,
0 <k<d-1,is a polynomial multiplied by e~**/? and lim,|_, o h\")(z) = 0. This together with (A2),
gives that the bracket in (57) is null and the result follows.

Similarly in the Laguerre case, (57) holds integrating on [0, ) instead of R and replacing h; by ¢;. The
term in the bracket is null at 0 from (A3). It is also null at infinity using (A2) together with the fact that

¢; are polynomials multiplied by e~ leading similarly to lim,_,e f(4=17%) (m)€§k) () =0,0< k<d-1,
j = 0. The result follows.

A.2. Proof of Lemma 2.2. We control the quantity

d—1
(58) Z j87d<f(d)7hj>2 _ Z jsfd<f(d)7hj>2 + Z jS*d<f(d)7hj>2'
7=0

j=0 j=d
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The first term is a constant which depending on d. For the second term using Lemma 5.2, we obtain

2
35, 1y - zfd(xbmjhﬁk )

j=d j=d k=—d
2 d
<Ca ). j* Z (fhj+k(:c>f( ) = Z >3 s £
j=d  k=—d k=—dj>d
d d
=Ca 3, | 2 li—kPh 1 | <Ca ) (Z 23js<hj,f>2> = (2d +1)2°DC,.
k=—d \j=d+k k=—d \j=0

Inserting this in (58), we obtain the announced result.

A.3. Proof of Lemma 2.3. We establish the result for d = 1, the general case is an immediate conse-
quence. It follows from the definition of WE(D) that (6)), 0 < j <s— 1 are in C([0,0)). Moreover, it
holds that = — 2%/2(6)9) (z) € L2(R*) for all 0 < j < k < s — 1. The case k = j is obtained using that
6U) is continuous on C([0, oo)) and that z — x(j+1)/2(0’)(j) () e L2(R*). It follows that

111 - zuw <>0 0| QZHW ()9 J HZHW el

<C+2 Z |29 D2(01Y0) (2)]? < o0
§=0

where C' depends on D. Finally, using the equivalence of the norms |.|s and ||.||s, the value of D’ follows

from the latter inequality.

A.4. Proof of Lemma 5.1. Consider the decomposition

+00 6
f w0 (2/2))%F (2/2)da 2

0

where for v = 4j — 2k + 2, j > k, we used the decomposition (0,00) = (0,2] u (L,%] U (v —v/3] U

(v =3 v+ /13U (v + Y3, 3v/2] U (3v/2,0). Using Askey and Wainger (1965) (see Appendix B.1)
and straightforward inequalities give

= f” z M (av)" f(z/2)d < JOV ok () V2 f(2)2)dx < vTVPRE[X TRV

v

Iy < f V)TV f(2/2)de = v J a2 f(e/2)de < v PE[XRV?,
1/” 1/v
I3 < f 1/4( )_1/4)2f(:z:/2)d$ = V_l/Qj xR — x)_1/2f(:c/2)dx < v 12,
V+VU3 y+u”3 :
I, < f v 32 f(2/2)dx < 1/2/3J e F f(z)2)dx < v V2R <2
111/3 v

M
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3v/2 3
I < J xfkyfl/Q(x - V)71/2672fy1y 1/2(zfy)3/2f(x/2)dx < V1/2V1/6kaf(x/2)d$ < V71/27

v+ul/3
+a0

Is < f 1 Re 22T f(1/2)da < e73V2 = O,
3v/2

Gathering these inequalities give the announced result.

A.5. Proof of Lemma 5.2. The result is obtained by induction on d. If d = 1, h’ is given by (5), with
o) = 3Y2/V2, boy = 0 and b{!) = (j + 1)"/?/v/2, Vj > 1. Thus, it holds b)) ) — O(j"?) and (36)
is satisfied for d = 1. Let P(d) the proposition given by Equation (36) and assume P(d) holds and we
establish P(d + 1). It holds using successively P(d) and (5) that

d : :
(d+1) @ | vJ+k Vitk+1 ]
h x) = b, Ry g — YL DT T
j ( ) k_Z_d k,j |: \/5 Jj+k—1 \/5 Jj+k+1
d—1 . d+1 d+1
-3, VIR O e s W s = ST
/+ 7‘ ! 7’ )
K =—d—1 ’ V2 k'=—d+1 7 V2 k=—d—1
d . . d & Vjt+tk+1 d Vitk
where by} = O(j%?),¥j > d > |k| and b,(wH) b e e — 00 Y L can
) 2 \/5 2 \/5
It follows that |b d+1)| (j+d+1)/25 Cdj il |k| < d < j, which completes the proof.

A.6. Proof of Lemma 5.3.

A.6.1. Proof of part (i). By construction, fy is positive and V0 € {0,1}, { fo(z)dz = § fo(x)dz = 1. Tt
remains to show that fp is nonnegative. The supports of (¥((. —1)(K +1) —k)) .., are disjoint and
are in [1,2], then fy(z) = 0 for all z € R\[1,2]. Now, for all x in [1, 2], there exists ko such that

o) = &+ 6K 0y (e~ (K +1) — hg) > 5 — Sk T,

which is nonnegative if § < |1 ,!/2. Now, let us show that fo and fy belong to W#(D).

The Laguerre case. We use the equivalent norm ||.[|s of |.|s (see (13)) and start with fo. As fy is s-th
differentiable, we have

||rfo§=j§0f<xﬂ2§(i)é ) i 2() [ @i

As S (272 fy k)( ))2dz < c(s) < +00, 0 < k < j < s, it follows |f|2 < 3D/4, D depends on s. For fy, we
have

K-1 2
?) DT PO (K + 1) 90 (2 - 1)(K +1) — k)) dx

Il fo = foll 3 =62 K7~ MZJ (Z (
=0 k=0
RN ! i\ [? /K_1 L) i
2 7 —2v—2 j /2
<O?K~™ ;HZOQ](Z)L (ﬂ ;_OQM(KHW ((g;—1)(K+1)—k:)> dz.
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Using that ¢ ((z — 1)(K + 1) — k), ¢ ((z — 1)(K + 1) — k') have disjoint supports for k +# &’ and that
¢(® are bounded by ¢, we get after the change of variable y = (z — 1)(K + 1) — k,
s K—1
|||f9 _ f0|||§ <5223562K72'yf2d Z Z (K + 1)2]'71 < 0(8)52K72772d+2s‘
j=0 k=0
For 7 = s — d and § small enough, it holds |fy — fo|s < D/4 and therefore |fy|s < |fo — fols + |fols < D
The Hermite case. The usual Sobolev space W¥, if s is integer, is defined by

S
W* = {f e L(R), f admits derivatives up to order s,such that || f[|ssop = Z 1F9)? < +o0}.
j=0
It is proved in Bongioanni and Torrea (2006) that: if f € W* has compact support, then f belongs to

W3 By construction fo and fp have a compact support and as they admit derivatives up to order s,
they belong to W#. It follows that fy and fp belong W73,. This completes the proof of ().

A.6.2. Proof of part (ii). Asfork # k', ¢¥((.—1)(K+1)—k),¥((.—1)(K +1) — k') have disjoint supports,
we have, V0, §0) € {0, 1} X,

2
O~y 2
15D — 15012 =02 S (87), — 6\ )i (x4 1)2dJ1 DD (@ —1)(K + 1) — k) da
k=0

> D PE (6, 01),
where p(O(j),Q(l)) = Zszl 19(3-)#9(1) is the Hamming distance. By Lemma 2.7 in Tsybakov (2009), for
k k
K > 8, there exist {#(0), ... .00} in {0,1}¥ such that

(69,60 > % V 0<j<l<Mand M >2%

Thus, it holds, V81U, () e {0,1}X, Hféflj)) - fe(Z%HQ > 62/8|¢( @ 2K 27, which gives (i) if we set C' =
[ @12/s.
A.6.3. Proof of part (iii). For M integer and (09)1<j<pr in ({0, 1}K)M, we have

M
(59) Z X (fon®" fo® Z (1 +X*(founs fo)" = Z ( nlog(1-x* (£ o)) 1).

j=1 j=1
Since fp = ¢ > 0 on [1,2], it holds for any 6 € {0, 1}X,

2y o [P U@ = fo@)? 0 e NN [ oV
X (fe,fo)—L ) s K kz_of (w(( (K + 1) k)) d
52

852
< Y g2 2 < log( M) K —27—2d-1
. [4] clog2 og(M) ;

where we used that M > 2. Consequently, using in (59) that log(1 + z) < z, for any = > 0, and the
latter inequality, give

M
d—
Z f9 ®n ®n) <e clog2log(M)K 2y—2d—1 1L

For ¢ well chosen and K =n / (2v+2d+1) " comes the result.
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A.7. Proof of Lemma 5.4.

A.7.1. Proof of part (i). First, it holds that
(60)

E sup  |upa() —p(m,ig) | | < D) E sup |vn,a(t)]? = p(m,m') | |,
te€Sm+Sm,|[t||=1 I m'eM,, q teSm+S,,,,|[t]|=1 "

which we bound applying a Talagrand Inequality (see Section B.2). Following notations of Section B.2,
we have three terms H?, v and M to compute. Let us denote by m* = m v m’, for t € Sy, + Sy, ||t] = 1,
it holds

m¥*—1 m¥*—1
11 =1 D) ajesl> = D) af=1.
j=0 j=0

Computing H?. By the linearity of v, 4 and the Cauchy Schwarz inequality, we have

m¥*—1 2 m*—1 m¥*—1 m*—1
Vna(t)? = ( > ajVn,d(‘Pj)) < Dal Y vkl = D) vha(e).
j=0 =0 j=0

7=0

One can check that the latter is an equality for a; = v, 4(¢;). Therefore, taking expectation, it follows

m*—1 m* 1
E sup Vﬁ»d Z Var(vy, q(¢;)) Z Var(¢: ' (X1))
tES,,t,HtH:l ] 0
m*—1
l Z E[ ] = Vin.d —: H2.
n n

[e=]

j=
Computing v. It holds for t € Sy, + Sy, ||t]| = 1,

2
61 Var (D)%) < J 1) ()2 f () ds — f ( Z ale ) f(@)da

d—1 m*—1 2
QJ (2 ajgog-d) (w)) f(z)dz + 2J Z ajgpg.d) ()| f(z)dx.
§=0 Jj=d

The first term of the previous inequality is a constant depending only on d. For the second term, we
consider separately the Laguerre and Hermite cases.
The Laguerre Case (pj = £;). Using (35) and the Cauchy Schwarz inequality, it holds that

m*—1 2 d m¥_1 ' 1 )
a; 0D (z z)dz <34 d "y 37' Qx—g ‘ " 2\da
| L o7 ) soyis < ;)(k)f 5 (%) = @ | s
d m¥*—1 i
d d ﬂ azji' m*d
(62) <31y <k> SUp TR ]; G < C(d)(m*)?,

where we used the orthonormality of (£;));=0 and where C(d) is a constant depending only on d and

SuPers L
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The Hermite case (¢; = hj). Similarly, using Lemma 5.2 and the orthonormality of hj, it follows

m¥*—1 2 m* 1 2
f S ah @) | flayde <24+ 1) Z J | whkghisele) | S
i=d k=—d
(63) <C(d)| f]loo (m*)“.

Plugging (62) or (63) in (61), we set in the two cases v := c;(m*)? where ¢; depends on d and either on
f(@) (

SUpger+ i (Laguerre case) or || f|lo (Hermite case).
Computing M;. The Cauchy Schwarz Inequality and [t| = 1 give

m¥*—1

(64) [0 D) = | Y (~1) a6 < sup
i=0 ve

The Laguerre case. We use the following Lemma whose proof is a consequence of (2) and an induction
on d.

Lemma A.1. For {; gien in (1), the d-th derivative of {; is such that Hﬂg-d)Hoo <Cy(+1)% V5 =0 and
where Cy is a positive constant depending on d.

Using Lemma A.1, we obtain
(65) Z Egd)(x)Q < Cg(m*)QdJrl.

The Hermite case. The d first terms in the sum in (64) can be bounded by a constant depending only on
d. For the remaining terms, Lemma 5.2 and ||hj] < ¢o (see (4)) give

m¥*—1 d m*-1

(66) NP @ <c3ed Y DT < om*)H,

j=d k=—d j=d

where C' is a positive constant depending on d and ¢q.
Injecting either (65) or (66) in (64), we set M; = O(mc”%) in the Laguerre case or M = O(m%Jr%) in
the Hermite case.

Now, we apply the Talagrand Inequality see Appendix B.2 with ¢ = 1/2, it follows

C H? M? H
E sup |vp.a(t)]? — 4H? <= (v exp ( C2n> + C3—L exp ( C4n >>
teSm+S,,1,||t]|=1 N n n My

= D U + Valm®)).

The Laguerre Case. We have

Vm *)2d+1 m
Ug(m*) = e1(m*)exp ( Co *d > and Vy(m*) = CgCg(m:L exp < Civ/n \/72.6:)

c1(m*)4 ca(m*)

From (40) and the value of m,(d), we obtain

d

Ud(m*)<cl(m*)dexp(—C§m*%) and  Vy(m*) < Cyea(m*)? 2exp( Civn(m*)" 2~ i)
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Using the value my,(d), it holds (m*)4*1/2 < n/log3(n), which implies (recall m* = m v m/)

Y Vamt) <O Y (m*) T exp (~Calog?(n)) < Tqp,
m/EMnyd m/EMn’d
where Y9 is a constant depending only on d. Next, it follows

n m n n
Z Ug(m™*) = Z Ug(m™) + Z Ug(m*) = ¢;maHt exp(—C’ém%) + Z cl(m/)dexp(—C'ém/%).
m/=1 m/=1 m/'=m m/=m

d+

The function m ~— md+! exp(—Cém%) is bounded and the sum is finite on m’, it holds

o Z Ug(m™*) < 41, where Y41 depends only on d.

m/'=1

The Hermite case. Only the second term Vy(m™*) changes. Here, it is given by

(ﬂl*)d+1

Vin
Vy(m*) = C3CQT exp (—03\/ﬁm> < 0302(m*)1/2 eXp(—Cfl\/ﬁ(m*)*i)

cz(m*)%J’%
< CgCQ(m*)l/2 exp(—Cfl(m*)%),

where we used (45) and the value of my,(d). We derive that 3, .\ Va(m*) < Xg2.

)

Gathering all terms, it follows

D)
E sup |n.a(t)|? — 4H? < =, where ¥ = %41 + Yy
teSm+S,,,||t||=1 . n

Plugging this in (60) gives the announced result.

A.7.2. Proof of part (ii). We use the Bernstein Inequality (see Appendix B.3) to prove the result. Define

m—1 n
(m) @ (x))2 % LS 5 m)
z(m) _ . , = (
; 2 (9,7 (X)), then,  Vipa=— Z Z;
7=0 i=1
We select s? and b such that Var(Zi(m)) < 52 and |ZZ-(m)| < b. By the computation of M; (see Proof of

part (i)), we set b := C*m®, with a = 2d + 1 (Laguerre case) or o = d + 1 (Hermite case), where C*
depends on d. For s2, using that Var(ZZ-(m)) < E[(Zi(m))Q] < bZ;ﬁ:_OlIE [(cpg.d)(Xi))Q] = C*m Vg =: 82

Applying the Bernstein Inequality, we have for S,, = n(Vi.qa — Vina)

2:C*maV, o
(67) IP( > = ’d+0mx><zew, Va > 0.
n 3n

Choose x = 2log(n) and define the set

Sn

n

1
Q:= {m e My 4, E|Sn| < 2\/

Consider the decomposition,

C*m>log(n)Vm 4 N 2C*m“log(n)
n 3n '

E [ (peng(n) — 5oig(n)) 1 | < E[(peng(im) — 5eng(in)); 1o] + E [(peng(iin) — beng(iin))., Loe] -
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Using 2zy < 22 + 32, we have on

Vg = 2C*mo1 20* M1 Via  8C*me1
< Vina | 2C*m*log(n)  2C*mlog(n) _ Vaa 8 C*m®log(n)

Ve o — Vo —
Vi ' 2 n 3n 2 3 n

~d+1/2

The constraint on m,, gives m?+/2 < Cn/(log(n))? together with (40) giving Vi 4 = c*in give for

8C* m™ log(n) scc* Via V,,
)that 3 n < 3c* log(n) <

a = 2d + 1 (Laguerre case 14 for n large enough and

S B peny(in)]-

(68) E [(peng(in) — peng(in)) , 1o] <

M+l < 2+l

In the Hermite case (« = d + 1) computations are similar as m For the control on Q€ we

write, using (67),
(69) E [(peng(n) — peng(mn)), o] < 26P(Q°) Z 2e~21o8(n) . —
mEMn d

Gathering (68) and (69), we get the desired result.

APPENDIX B. SOME INEQUALITIES

B.1. Asymptotic Askey and Wainger formula. From Askey and Wainger (1965), we have for v =
4k + 26 + 2, and k large enough

(a) (a2v)%? ifo<z<1l/v
b)  (zv)" V4 ifl/v<z<v/2
¢) v Vv — )"V if v/2<z<v—uv'/3
[k () (2/2)] < €4 1 :
’ dy v/ ifv— v <ae<v+v!/3
e) v Y4z — V)_1/4€_71V71/2(I_V)3/2 if v+ 3 <x<3v/2
L f) e ® if z > 3v/2

where 71 and =9 are positive and fixed constants.

B.2. A Talagrand Inequality. The Talagrand inequalities have been proven in Talagrand (1996) and
reworked by Ledoux (9597). This version is given in Klein and Rio (2005). Let (X;)1<i<n be independent
real random variables and

i=1

for t in F a class of measurable functions. If there exist M7, H and v such that:

sup ||t)loo < M1, E[sup | vn(t)|] < H, sup— ZVar X;)) <,
teF teF teF i
then, for € > 0,
4 (v nH? 49M? nH
E M) —20+2)H?) | <— (- -K ! ~K{C —
| (el —202087) | < 3 (Lo (~mie™E ) + gzt e (KiCEE ) )

where C(e) = (v/1+e—1) A1, K; = 1/6 and K| a universal constant.
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B.3. Bernstein Inequality (Massart (2007)). Let X;,...X,, n independent real random variables.
Assume there exist two constants s? and b, such that Var(X;) < s? and | X;| < b. Then, for all z positive,
we have

b n
P <\Sn\ > V2ns?x + §> < 2e” %, with S, = Z(XZ — E[Xi]).

i=1
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