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Abstract. In this paper, we consider the problem of estimating the d-order derivative f pdq of a density f ,
relying on a sample of n i.i.d. observations X1, . . . , Xn with density f supported on R or R`. We propose
projection estimators defined in the orthonormal Hermite or Laguerre bases and study their integrated
L2-risk. For the density f belonging to regularity spaces and for a projection space chosen with adequate
dimension, we obtain rates of convergence for our estimators, which are proved to be optimal in the
minimax sense. The optimal choice of the projection space depends on unknown parameters, so a general
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assumptions and the estimator is compared to the one obtained by simply differentiating the density
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1. Introduction

1.1. Motivations and content. Let X1, . . . , Xn be n i.i.d. random variables with common density
f with respect to the Lebesgue measure. The problem of estimating f in this simple model has been
widely studied. In some contexts, it is also of interest to estimate the d-th order derivative f pdq of f , for
different values of the integer d. Several examples are developed in Singh (1977): regression curves rpxq “

EpY |X “ xq for specific families of conditional distributions of Y given X, where rpxq “ f p1qpxq{fpxq (see
also Park and Kang (2008)); estimation and testing in one parameter scale of exponential families (see
Genovese et al. (2016))... Derivative estimation can also be used as a mean of reaching information, such
as mode seeking in mixture models and in data analysis, see e.g. Cheng (1995), Chacón and Duong (2013).
Moreover, density derivatives also provide information about the slope of the curves, local extrema, saddle
points...
Most proposals for estimating the derivative of a density are built as derivatives of kernel density esti-
mators, see Bhattacharya (1967), Schuster (1969), Silverman (1978), Rao (1996), Chacón et al. (2011),
Chacón and Duong (2013) or Giné and Nickl (2016), either in independent or in α-mixing settings, in
univariate or multivariate contexts. A slightly different proposal still based on kernels can be found in
Singh (1979). The question of bandwidth selection is not considered in the oldest of these papers, but is
studied in more recent ones. For instance, Chacón and Duong (2013) propose a general cross-validation
method in the multivariate case for a matrix bandwidth, see also the references therein. The case of
estimation on R` with gamma kernel estimator (and mixing data) is studied in Markovich (2016), and a
risk bound is proved, but specifically for a first order derivative and a density with regularity of order 2.
Projection estimators have also been considered for density and derivatives estimation. More precisely,
using trigonometric basis, Efromovich (1998) proposes a complete study of optimality and sharpness of
such estimators, on Sobolev periodic spaces. More recently, Giné and Nickl (2016) propose a projection
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estimator and provide an upper bound for its Lp-risk, p P r1,8s. In a dependent context, Schmisser
(2013) studies projection estimators in a compactly supported basis constrained on the borders or a non
compact multi-resolution basis: she considers dependent β-mixing variables and a model selection method
is proposed and proved to reach optimal rates on Besov spaces. In both contexts, the rate obtained for
estimating f pdq the d-th order derivative belonging to a regularity space associated to a regularity α, is
of order n´2α{p2α`2d`1q.
In this work, we also consider projection estimators, defined as in Giné and Nickl (2016), but on specific
projection spaces generated by Hermite or Laguerre basis. The integrated L2-risk of such estimators is
classically decomposed into a squared bias and a variance term. The specificity of our context lies in the
following facts.

(1) The bias term is studied on specific regularity spaces, namely Sobolev Hermite and Sobolev
Laguerre spaces, as defined in Bongioanni and Torrea (2009), enabling to consider non compact
estimation support R or R`.

(2) The order of the variance term depends on moment assumptions. This explains why, to perform
a data driven selection of the projection space, we propose a random empirical estimator of the
variance term, which has automatically the right order.

(3) In standard settings, the dimension of the projection space is the relevant parameter that needs
to be selected to achieve the bias-variance compromise. In our context, this role is played by the
square root of the dimension.

We also mention that our procedure provides very parsimonious estimators, as they require very few
coefficients to reconstruct functions accurately. Moreover, our regularity assumptions are naturally set on
f and not on its derivatives, contrary to what is done in several papers. We emphasize that we provide
a complete panorama of the problem of estimating the derivatives of a density, providing a comparison
of our estimators with those defined as derivatives of projection density estimators; a strategy usually
applied with kernel methods. Finally, we also propose a numerical comparison between our projection
procedure and a sophisticated kernel method inspired by Lacour et al. (2017).
The paper is organized as follows. In the remaining of this section, we define the Hermite and Laguerre
bases and associated projection spaces. In Section 2, we define the estimators and establish general risk
bounds, from which rates of convergence are obtained, and lower bounds in the minimax sense are proved.
A model selection procedure is proposed, relying on a general variance estimate; it leads to a data-driven
bias-variance compromise. Further questions are studied in Section 3: the comparison the derivatives of
the density estimator leads in our setting to different developments depending on the considered basis:
interestingly Hermite and Laguerre cases happen to behave differently from this point of view. Lastly, a
simulation study is conducted in Section 4, in which kernel and projection strategies are compared.

1.2. Notations and definition of the basis. The following notations are used in the remaining of this
paper. For a, b two real numbers, denote a_b “ maxpa, bq and a` “ maxp0, aq. For u and v two functions

in L2pRq, denote xu, vy “
ş`8

´8
upxqvpxqdx the scalar product on L2pRq and }u} “

` ş`8

´8
upxq2dx

˘1{2
the

norm on L2pRq. Note that these definitions remain consistent if u and v are in L2pR`q.

1.2.1. The Laguerre basis. Define the Laguerre basis by:

`jpxq “
?

2Ljp2xqe
´x, Ljpxq “

j
ÿ

k“0

ˆ

j

k

˙

p´1qk
xk

k!
, x ě 0, j ě 0,(1)

where Lj is the Laguerre polynomial of degree j. It satisfies:
ş`8

0 LkpxqLjpxqe
´xdx “ δk,j (see Abramowitz

and Stegun (1964), 22.2.13), where δk,j is the Kronecher symbol. The family p`jqjě0 is an orthonormal
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basis on L2pR`q such that }`j}8 “ supxPR` |`jpxq| ď
?

2. The derivative of `j satisfies a recursive formula
(see Lemma 8.1 in Comte and Genon-Catalot (2018)) that plays an important role in the sequel:

`10 “ ´`0, `1j “ ´`j ´ 2

j´1
ÿ

k“0

`k, @j ě 1.(2)

1.2.2. The Hermite basis. Define the Hermite basis phjqjě0 from Hermite polynomials pHjqjě0 :

hjpxq “ cjHjpxqe
´x2{2, Hjpxq “ p´1qjex

2 dj

dxj
pe´x

2
q, cj “ p2

jj!
?
πq´1{2, x P R, j ě 0.(3)

The family pHjqjě0 is orthogonal with respect to the weight function e´x
2
:
ş

RHjpxqHkpxqe
´x2dx “

2jj!
?
πδj,k (see Abramowitz and Stegun (1964), 22.2.14). It follows that phjqjě0 is an orthonormal basis

on R. Moreover, hj is bounded by

}hj}8 “ sup
xPR
|hjpxq| ď φ0, with φ0 “ π´1{4,(4)

(see Abramowitz and Stegun (1964), chap.22.14.17 and Indritz (1961)). The derivatives of hj also satisfy
a recursive formula (see Comte and Genon-Catalot (2018), Equation (52) in Section 8.2),

h10 “ ´h1{
?

2, h1j “ p
a

j hj´1 ´
a

j ` 1hj`1q{
?

2, @j ě 1.(5)

In the sequel, we denote by ϕj either for hj in the Hermite case or for `j in the Laguerre case. Let
g P L2pRq or g P L2pR`q, g develops either in the Hermite basis or the Laguerre basis:

g “
ÿ

jě0

ajpgqϕj , ajpgq “ xg, ϕjy.

Define, for an integer m ě 1, the space

Sm “ Spantϕ0, . . . , ϕm´1u.

The orthogonal projection of g on Sm is given by: gm “
řm´1
j“0 ajpgqϕj .

2. Estimation of the first derivative without boundary issue

2.1. Assumptions and projection estimator of f pdq. Let X1, . . . , Xn be n i.i.d. random variables
with common density f with respect to the Lebesgue measure and consider the following assumptions.
Let d be an integer, d ě 1.

pA1q The density f is d-times differentiable and f pdq belongs to L2pR`q in the Laguerre case or L2pRq
in the Hermite case.

pA2q For all integer r, 0 ď r ď d´ 1, we have }f prq}8 ă `8.

pA3q For all integer r, 0 ď r ď d´ 1, it holds lim
xÑ0

f prqpxq “ 0.

Assumption pA3q is specific to the Laguerre case and avoids boundary issue. In particular, it permits to
establish Lemma 2.1 below that is central to define our estimator. This assumption can be removed at
the expense of additional technicalities, see Section 3.
Under pA1q, we develop f pdq in the Laguerre or Hermite basis, its orthogonal projection on Sm, m ě 1, is

f pdqm “

m´1
ÿ

j“0

ajpf
pdqqϕj , where, ajpf

pdqq “ xf pdq, ϕjy.(6)

The estimator is built by using the following result, proved in Appendix A.
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Lemma 2.1. Suppose that pA1q and pA2q hold in the Hermite case and that pA1q, pA2q and pA3q hold

in the Laguerre case. Then ajpf
pdqq “ p´1qdErϕpdqj pX1qs, @j ě 0.

Remark 1. If the support of the density f is a strict compact subset ra, bs of the estimation support (here
R and a ă b or R` and 0 ă a ă b), then the regularity condition pA1q implies that f must be null in
a, b, as well as its derivatives up to order d´ 1. On the contrary, Assumption pA3q in the Laguerre case
can be dropped out (see Section 3) and this shows that a specific problem occurs when the density support
coincides with the estimation interval. This point presents a real difficulty and is either not discussed in
the literature, or hidden by periodicity conditions.

We derive the following estimator of f pdq (see also Giné and Nickl (2016) p.402): let m ě 1,

pfm,pdq “
m´1
ÿ

j“0

pa
pdq
j ϕj , with pa

pdq
j “

p´1qd

n

n
ÿ

i“1

ϕ
pdq
j pXiq.(7)

For d “ 0, we recover an estimator of the density f .

2.2. Risk bound and rate of convergence. We consider the L2-risk of pfm,pdq, defined in (7),

E
“

} pfm,pdq ´ f
pdq}2

‰

“ }f pdqm ´ f pdq}2 ` E
“

} pfm,pdq ´ f
pdq
m }2

‰

,(8)

where f
pdq
m :“

řm´1
k“0 ajpf

pdqqϕj . The study of the second right-hand-side term of the equality (variance
term) leads to the following result.

Theorem 2.1. Suppose that pA1q and pA2q hold in the Hermite case and that pA1q, pA2q and pA3q hold
in the Laguerre case. Assume that

ErX´d´1{2
1 s ă `8 in the Laguerre case and Er|X1|

2{3s ă `8 in the Hermite case.(9)

Then, for sufficiently large m ě d, it holds that

E
“

} pfm,pdq ´ f
pdq}2

‰

ď }f pdqm ´ f pdq}2 ` C
md` 1

2

n
´
}f
pdq
m }2

n
,(10)

for a positive constant C depending on the moments in condition (9) (but not on m nor n).

Remark 2. In the Laguerre case, condition (9) is a consequence of pA3q and f pdqp0q ă `8. Indeed,

pA3q imposes that fpxq „
xÑ0

xdf pdqpxq which, under f pdqp0q ă `8, ensures integrability of x´d´1{2fpxq at

0; integrability at 8 is a consequence of f P L1pr0,8qq.

The bound obtained for pfm,pdq in Theorem 2.1 is sharp. Indeed, we can establish the following lower
bound.

Proposition 2.1. Under the Assumptions of Theorem 2.1, it holds, for some constant c ą 0, that

E
”

} pfm,pdq ´ f
pdq}2

ı

ě }f pdqm ´ f pdq}2 ` c
md` 1

2

n
´
}f
pdq
m }2

n
.

2.3. Definition of regularity classes and rate of convergence. The first two terms in the right hand
side of (10) have an antagonistic behavior with respect to m. Thus, the optimal choice of m requires

a bias-variance compromise which allows to derive the rate of convergence of pfm,pdq. To evaluate the
order of the bias term, we introduce Sobolev-Hermite and Sobolev-Laguerre regularity classes for f (see
Bongioanni and Torrea (2009)).
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2.3.1. Sobolev-Hermite classes. Let s ą 0 and D ą 0, define the Sobolev-Hermite ball

W s
HpDq “ tθ P L2pRq,

ÿ

kě0

ksa2
kpθq ď Du,(11)

where a2
kpθq “ xθ, hky. The following Lemma relates the regularity of f pdq and the one of f .

Lemma 2.2. Let s ě d and D ą 0, assume that f belongs to W s
HpDq and pA1q, then there exist a

constant Dd ą D such that f pdq is in W s´d
H pDdq.

2.3.2. Sobolev-Laguerre classes. Similarly, consider the Sobolev-Laguerre ball

W s
LpDq “ tθ P L2pR`q, |θ|2s “

ÿ

kě0

ksa2
kpθq ď Du, D ą 0,(12)

where akpθq “ xθ, `ky. If s ě 1 an integer, there is an equivalent norm of |θ|2s (see Section 7.2 of Belomestny
et al. (2016)) defined by

~θ~2
s “

s
ÿ

j“0

}θ}2j , }θ}2j “ }x
j{2

j
ÿ

k“0

ˆ

j

k

˙

θpkq}2.(13)

This inspires the definition, for s P N and D ą 0, of the subset ĂW s
LpDq as

ĂW s
LpDq “ tθ P L2pR`q, θpjq P Cpr0,8qq, x ÞÑ xk{2θpjqpxq P L2pR`q, 0 ď j ď k ď s, |θ|2s ď Du.(14)

It is straightforward to see that ĂW s
LpDq ĂW s

LpDq. Moreover, we can relate the regularity of f pdq and the
one of f .

Lemma 2.3. Let s P N, s ě d ě 1, D ą 0 and θ P ĂW s
LpDq, then, θpdq P ĂW s´d

L pDdq where D ď Dd ă 8.

2.3.3. Rate of convergence of pfm,pdq. Assume that f P W s
HpDq or f P ĂW s

LpDq, then Lemmas 2.2 and 2.3
enable a control of the bias term in (10)

}f pdqm ´ f pdq}2 “
ÿ

jěm

pajpf
pdqqq2 “

ÿ

jěm

js´dpajpf
pdqqq2j´ps´dq ď Ddm

´ps´dq.

Injecting this in (10) yields

E
“

} pfm,pdq ´ f
pdq}2

‰

ď D1m´ps´dq ` c
md` 1

2

n
.

Consequently, selecting mopt “ rn
2{p2s`1qs gives the rate of convergence

E
“

} pfmopt,pdq ´ f
pdq}2

‰

ď Cps, d,Dqn´
2ps´dq
2s`1 ,(15)

where Cps, d,Dq depends only on s, d and D, not on m. This rate coincides with the one obtained by
Schmisser (2013) in the dependent case and by Giné and Nickl (2016). We can however mention that the
squared-bias and variance terms do not have the same orders: the role of dimension in Schmisser (2013)
is played in our setting by

?
m. This rate is better than the one obtained by Rao (1996) in the i.i.d.

case, if we set a similar regularity condition. Note that, for d “ 0 in (15), we recover the optimal rate for
estimation of the density f .

Remark 3. If f is a mixture of Gaussian densities in the Hermite case or a mixture of Gamma densities
in the Laguerre case, it is known from Section 3.2 in Comte and Genon-Catalot (2018) that the bias
decreases with exponential rate. The computations therein can be extended to the present setting and
imply in both Hermite and Laguerre cases that mopt is then proportional to logpnq. Therefore the risk has
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order rlogpnqsd`
1
2 {n: for these collections of densities, the estimator converges much faster than in the

general setting.

2.4. Lower bound. Contrary to the lower bound given in Proposition 2.1, which ensures that the upper

bound derived in Theorem 2.1 for the specific estimator pfm,pdq is sharp, we provide a general lower bound

that guarantees that the rate of the estimator pfm,pdq is minimax optimal. The following Theorem states
that the rate obtained in (15) is the optimal rate.

Theorem 2.2. Let s ě d be an integer and rfn,d be any estimator of f pdq. Then for n large enough, we
have

inf
rfn,d

sup
fPW spDq

Er} rfn,d ´ f pdq}2s ě cn´
2ps´dq
2s`1 ,

where the infimum is taken over all estimator of f pdq, c a positive constant depending on s and d, and
W spDq stands either for W s

LpDq or for W s
HpDq.

2.5. Adaptive estimator of f pdq. The choice of mopt “ rn
2{p2s`1qs leading to the optimal rate of con-

vergence is not feasible in practice. In this section we provide an automatic choice of the dimension m,
from the observations pX1, . . . , Xnq, that realizes the bias-variance compromise in (10). Assume that m
belongs to a finite model collection Mn,d, we look for m that minimizes the bias-variance decomposition
(8) rewritten as

E
“

} pfm,pdq ´ f
pdq}2

‰

“ }f pdqm ´ f pdq}2 `
1

n

m´1
ÿ

j“0

Var
”

ϕ
pdq
j pX1q

ı

.

Note that the bias is such that }f
pdq
m ´ f pdq}2 “ }f pdq}2 ´ }f

pdq
m }2 where }f pdq}2 is independent of m and

can be dropped out. The remaining quantity ´}f
pdq
m }2 is estimated by ´} pfm,pdq}

2. The variance term is
replaced by an estimator of a sharp upper bound, given by

(16) pVm,d “
1

n

n
ÿ

i“1

m´1
ÿ

j“0

pϕ
pdq
j pXiqq

2.

Finally, we set

pmn :“ argmin
mPMn,d

t´} pfm,pdq}
2 `ypendpmqu, where ypendpmq “ κ

pVm,d
n

,(17)

where κ is a positive numerical constant. If we set Vm,d :“
řm´1
j“0 Erpϕpdqj pX1q

2s, it holds Erypendpmqs “

κVm,d{n. In the sequel, we write pendpmq :“ κVm,d{n. To implement the procedure a value for κ has
to be set. Theorem 2.3 below provides a theoretical lower bound for κ, which is however generally too
large. In practice this constant is calibrated by intensive preliminary experiments, see Section 4. General
calibration methods can be found in Baudry et al. (2012) for theoretical explanations and heuristics, and
in the associated package, for practical implementation.

Remark 4. Note that in the definition of the penalty, instead of (17), we can plug the deterministic upper

bound on the variance and take cmd` 1
2 {n as a penalty (see Theorem 2.1) as Proposition 2.1 ensures its

sharpness. However, this upper bound relies on additional assumptions given in (9) and depends on non
explicit constants (see Askey and Wainger (1965)). This is why we choose to estimate directly the variance

by pVm,n and use pVm,n{n as the penalty term.
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Theorem 2.3. Let Mn,d :“ td, . . . ,mnpdqu, where mnpdq ě d. Assume that pA1q and pA2q hold, and
that pA3q holds in the Laguerre case, and that }f}8 ă `8.

AL. Set mnpdq “ tpn{ log3pnqq
2

2d`1 u, assume that supxPR`
fpxq
xd
ă `8 in the Laguerre case,

AH. Set mnpdq “ tn
2

2d`1 u in the Hermite case.

Then, for any κ ě κ0 :“ 32 it holds that

E
”

} pf
pmn,pdq ´ f

pdq}2
ı

ď C inf
mPMn,d

´

}f pdqm ´ f pdq}2 ` pendpmq
¯

`
C 1

n
,(18)

where C is a universal constant (C “ 3 suits) and C 1 is a constant depending on supxPR`
fpxq
xd
ă `8 and

ErX´d´1{2
1 s ă `8 (Laguerre case) or }f}8 (Hermite case).

The constraint on the the largest element mnpdq of the collection Mn,d ensures that the variance term,

which is upper bounded by md` 1
2 {n vanishes asymptotically. The additional log term does not influence

the rate of the optimal estimator: the optimal (and unknown) dimension mopt — n
2

2s`1 , with s the

regularity index of f , is such that mopt ! n
2

2d`1 as soon as s ą d. For s “ d, a log-loss in the rate would
occur in the Laguerre case, but not in the Hermite case.

Note that, in the Laguerre case, condition supxPR`
fpxq
xd

ă `8 implies EpX´d´1{2
1 q ă `8 (see condition

9)) and is clearly related to pA3q. Inequality (18) is a key result and expresses that pf
pmn,pdq realizes

automatically a bias-variance compromise and is performing as well as the best model in the collection,

up to the multiplicative constant C, since clearly, the last term C 1{n is negligible. Thus, for f in ĂW s
LpDq

or W s
HpDq and under the assumptions of Theorem 2.3, we have E

“

} pf
pm,pdq ´ f

pdq}2
‰

“ Opn´2ps´dq{p2s`1qq,
which implies that the estimator is adaptive.

3. Further questions

We investigate here additional questions, and set for simplicity d “ 1. Mainly, we compare our estimator
to the derivative of a density estimator, and discuss condition pA3q in the Laguerre case.

3.1. Derivatives of the density estimator. When using kernel strategies, it is classical to build an
estimator of the derivative of f by differentiating the kernel density estimator, as already mentioned in the
Introduction. For projection estimators, we find more relevant to proceed differently. Indeed, our aim is
to obtain an estimator expressed in an orthonormal basis; unfortunately, the derivative of an orthonormal
basis is a collection of functions but not an orthonormal basis. So, our proposal (7) is easier to handle.
Moreover, our estimator can be seen as a contrast minimizer, which makes model selection possible to
settle up.
However, Laguerre and Hermite cases are somehow different and can be more precisely compared. Let us
recall that the projetion estimator of f on Sm is defined by (see Comte and Genon-Catalot (2018), or (7)
for d “ 0):

pfm :“
m´1
ÿ

k“0

pa
p0q
k ϕk, where pa

p0q
k :“

1

n

n
ÿ

j“0

ϕkpXjq.

As the functions pϕjqj are infinitely differentiable, both in Hermite and Laguerre settings, this leads to

the natural estimator of f pdq, d ě 1,

p pfmq
pdq “

m´1
ÿ

k“0

pa
p0q
k ϕ

pdq
k .(19)
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For d “ 1, we write p pfmq
p1q “ p pfmq

1. We want to compare p pfmq
1 to pfm,p1q. In both Hermite and Laguerre

cases, this estimator is consistent, under adequate regularity assumptions and for adequate choice of m
as a function of n.

3.2. Comparison of pfm,p1q with p pfmq
1 in the Hermite case. Using the recursive formula (5), in (19)

and (7) respectively, straightforward computations give

p pfmq
1 “

1
?

2
pa
p0q
1 h0 `

m´1
ÿ

j“1

˜

c

j ` 1

2
pa
p0q
j`1 ´

c

j

2
pa
p0q
j´1

¸

hj ´

c

m

2

´

pap0qm hm´1 ` pa
p0q
m´1hm

¯

,

whereas pfm,p1q “
1
?

2
pa
p0q
1 h0 `

m´1
ÿ

j“1

˜

c

j ` 1

2
pa
p0q
j`1 ´

c

j

2
pa
p0q
j´1

¸

hj .

Therefore, it holds that Er}p pfmq1 ´ pfm,p1q}
2s “ m{2

 

E
“

ppa
p0q
m q

2
‰

` E
“

ppa
p0q
m´1q

2
‰(

and

Er}p pfmq1 ´ pfm,p1q}
2s ď

m

2
pa2
m´1pfq ` a

2
mpfqq `

m

2n

ˆ
ż

h2
mpxqfpxqdx`

ż

h2
m´1pxqfpxqdx

˙

.

Using Lemma 8.5 in Comte and Genon-Catalot (2018) under Er|X1|
2{3s ă `8 and for f in W s

HpDq, s ą 1,
it follows for some positive constant C that,

Er}p pfmq1 ´ pfm,p1q}
2s ď

D

2
m´s`1 ` C

?
m

n
.

Under the same assumptions, (10) for d “ 1 implies

Er}p pfmq1 ´ f 1}2s ď D1m´s`1 ` c
m3{2

n
.

Therefore, by triangle inequality, this implies that p pfmq
1 reaches the same (optimal) rate as pfm,p1q, under

the same assumptions.

3.3. Comparison of pfm,p1q with p pfmq
1 in the Laguerre case. In the Laguerre case, assumption pA3q

is required for the estimator pfm,p1q to be consistent, while it is not for the estimator p pfmq
1.

Proceeding as previously and taking advantage of the recursive formula (2) in (19) and (7) respectively,
straightforward computations give, for m ě 1,

p pfmq
1 “

m´1
ÿ

j“0

¨

˝

pa
p0q
j ´ 2

m´1
ÿ

k“j

pa
p0q
k

˛

‚`j , whereas pfm,p1q “
m´1
ÿ

j“0

˜

pa
p0q
j ` 2

j´1
ÿ

k“0

pa
p0q
k

¸

`j .(20)

Therefore, in the Laguerre case, the coefficients of pfm,p1q in the basis p`jqj do not depend on m while

those of p pfmq
1 do. Moreover, computing the difference between the estimators leads to pfm,p1q ´ p pfmq

1 “

2
řm´1
j“0 p

řm´1
k“0 pa

p0q
k q`j and

} pfm,p1q ´ p pfmq
1}2 “ 4m

˜

m´1
ÿ

k“0

pa
p0q
k

¸2

.

Heuristically, if fp0q “ 0, as fp0q “
?

2
ř

jě0 ajpfq “ 0, it follows that
řm´1
j“0 ajpfq should be small for m

large enough. Consequently, its consistent estimator
řm´1
k“0 pa

p0q
k should also be small. This would imply

that, when fp0q “ 0, the distance } pfm,p1q ´ p pfmq
1}2 can be small; on the contrary, the distance should
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tend to infinity with m if fp0q ‰ 0. This is due to the fact that pfm,p1q is not consistent, while p pfmq
1 is.

Indeed, in the general case (fp0q ‰ 0), the risk bound we obtain for p pfmq
1 is the following.

Proposition 3.1. Assume that pA1q and pA2q hold for d “ 1 and that f belongs to W s
LpDq. Then, it

holds

(21) E}p pfmq1 ´ f 1}2 ď Cm´s`2 `
3

n
}f}8m

2.

Obviously, for suitably chosen m the estimator is consistent and by selecting mopt — n1{s, it reaches

the rate: Er}p pfmoptq
1 ´ f 1}2s ď Cps,Dqn´ps´2q{s. This rate is worse than the one obtained for pfm,p1q

but it is valid without pA3q, and thus pfm,p1q is consistent to estimate an exponential density, or any
mixture involving exponential densities. Note that both the order of the bias and the variance in (21) are
deteriorated compared to (10), and we believe these orders are sharp.
In the following section, we investigate if the rate can be improved, if pA3q is not satisfied, by correcting
our estimator (6).

3.4. Estimation of f 1 on R` with fp0q ą 0. Assumption pA3q excludes some classical distribution
such as the exponential distribution or Beta distributions βpa, bq with a “ 1. If fp0q ą 0, Lemma 2.1 no
longer holds, and one has ajpf

1q “ ´fp0q`jp0q ´ Er`1jpX1qs instead. Therefore, fp0q has to be estimated
and we consider

(22) pa
p1q
j,K “ ´`jp0q

pfKp0q ´
1

n

n
ÿ

i“1

`1jpXiq, with pfK “
K´1
ÿ

j“0

pa
p0q
j `j , pa

p0q
j “

1

n

n
ÿ

i“1

`jpXiq.

We estimate f 1 as follows

(23) rf 1m,K “
m´1
ÿ

j“0

pa
p1q
j,K`j , with pa

p1q
j,K “ ´

1

n

n
ÿ

i“1

`1jpXiq ´ pfKp0q`jp0q.

Obviously, pa
p1q
j,K is a biased estimator of ajpf

1q, implying that rf 1m,K is a biased estimator of f 1m. Now there
are two dimensions m and K to be optimized. We can establish the following upper bound.

Proposition 3.2. Suppose pA1q is satisfied for d “ 1, then it holds that

(24) E
“

} rf 1m,K ´ f
1}2

‰

ď }f 1 ´ f 1m}
2 `

2

n

m´1
ÿ

j“0

E
“`

`1jpX1q
˘2‰
` 4mpVarp pfKp0qq ` pfp0q ´ fKp0qq

2q,

where fK is the orthogonal projection of f on SK defined by: fK “
řK´1
j“0 ajpfq`j.

The first two terms of the upper bound seem similar to the ones obtained under pA3q, but as we no longer
assume fp0q “ 0, Assumption (9) for d “ 1 cannot hold and the tools used to bound the variance term

Vm,1 by m3{2 no longer apply and we only get an order m2 for this term, under }f}8 ă `8.

The last two terms of (24) correspond to m times the pointwise risk of pfKp0q. Then, using }`j}8 ď
?

2,

we obtain Varp pfKpxqq ď 4K2{n. If }f}8 ă 8, this can be improved in Varp pfKpxqq ď }f}8K{n, using
the orthonormality of p`jqj .

To sum up, if f P ĂW s
LpDq, and }f}8 ă 8, then

E
“

} rf 1m,K ´ f
1}2

‰

ď Cps,D, }f}8q

"

m´s`2 `
m2

n
`m

ˆ

K´s`1 `
K

n

˙*

.
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Choosing Kopt “ cn1{s and mopt “ cn1{s gives the rate E
“

} rf 1mopt,Kopt
´ f 1}2

‰

ď Cn´ps´2q{s, that is the

same rate as the one obtained for p pfmoptq
1. Then, renouncing to Assumption pA3q has a cost, it renders

the procedure burdensome and leads to slower rates.
We propose a model selection procedure adapted to this new estimator. Let

(25) pf 1m,K “ arg min
tPSm

γnptq

where γnptq “ }t}
2 ` 2

n

řn
i“1 t

1pXiq ` 2tp0q pfKp0q. Here, we consider that K “ Kn is chosen so that pfKn
satisfies

(26)
”

Ep pfKnp0qq ´ fp0q
ı2
ď
Kn logpnq

n
.

This assumption is likely to be fulfilled for a K selected in order to provide a squared-bias/variance
compromise, see the pointwise adaptive procedure for density estimation in Plancade (2009); however
therein, the choice of K is random while we set Kn as fixed, here. Then, we select m as follows:

(27) pmK “ arg min
mPMn

!

γnppf 1m,Kq ` penKpmq
)

, Mn “ t1, . . . , r
?
nsu

with

(28) penKpmq “ c1}f}8
m2 logpnq

n
` c2p}f}8 _ 1q

mK logpnq

n
:“ pen1pmq ` pen2,Kpmq.

It is easy to ckeck that γnppf 1m,Kq “ ´}
pf 1m,K}

2. We prove the following result

Theorem 3.1. Let pf 1m,Kn be defined by (25) with m “ pmKn selected by (27)-(28) and Kn such that (26)
holds. Then for c1 and c2 larger than fixed constants c0,1, c0,2, we have

E
´

}f 1 ´ pf 1
pm,Kn}

2
¯

ď C

ˆ

}f 1 ´ f 1m}
2 `m2 logpnq

n
`m

Kn logpnq

n

˙

`
C 1

n
,

where C is a numerical constant and C 1 depends on f .

Theorem 3.1 implies that the adaptive estimator pf 1m,Kn provides the adequate compromise, up to log
terms.

4. Numerical study

4.1. Simulation setting and implementation. We illustrate the performances of the adaptive esti-

mator pf
pmn,pdq defined in (7), with pm selected by (16)-(17), for different distributions and values of d

(d “ 1, 2). In the Hermite case we consider the following distributions which are estimated on the interval
I, which we fix to ensure reproducibility of our experiments:

(i) Gaussian standard N p0, 1q, I “ r´4, 4s,
(ii) Mixed Gaussian 0.4N p´1, 1{2q ` 0.6N p1, 1{2q, I “ r´2.5, 2.5s,

(iii) Cauchy standard, density: fpxq “ pπp1` x2qq´1, I “ r´6, 6s,
(iv) Gamma Γp5, 5q{10, I “ r0, 7s,
(v) Beta 5βp4, 5q, I “ r0, 5s.

In the Laguerre case we consider densities (iv), (v) and the two following additional distributions

(vi) Weibull W p4, 1q, I “ r0, 1.5s,

(vii) Maxwell with density
?

2x2e´x
2{p2σ2q{pσ3?πq, with σ “ 2 and I “ r0, 8s.
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All these distributions satisfy Assumptions pA1q, pA2q and densities (iv)-(vii) satisfy pA3q. The moment
conditions given in (9) are fulfilled for d “ 1, 2, even by the Cauchy distribution (iii) which has finite
moments of order 2{3 ă 1. For the adaptive procedure, the model collection considered is Mn,d “

td, . . . ,mnpdqu, where the maximal dimension is mnpdq “ 50 in the Laguerre case and mnpdq “ 40 in the
Hermite case, for all values of n and d (smaller values may be sufficient and spare computation time). In
practice, the adaptive procedure follows the steps:

• For m in Mn,d, compute ´
řm´1
j“0 ppa

pdq
j q

2 `ypendpmq, with pa
pdq
j given in (7) and ypendpmq in (17),

• Choose pmn via pmn “ argmin
mPMn,d

t´
řm´1
j“0 ppa

pdq
j q

2 `ypendpmqu,

• Compute pf
pmn,pdq “

ř

pm´1
j“0 pa

pdq
j ϕj .

Then, we compute the empirical Mean Integrated Squared Errors (MISE) of pf
pmn,pdq. For that, we first

compute the ISE by Riemann discretization in 100 points: for the j-th path, and the j-th estimate pg
pjq
pm

of g, where g stands either for the density f or for its derivative f 1, we set

}g ´ pg
pjq
pm }

2 «
lengthpIq

K

K
ÿ

k“1

ppg
pjq
pm pxkqq ´ gpxkqq

2, xk “ minpIq ` k
lengthpIq

K
, k “ 1, . . . ,K,

for j “ 1, . . . R. To get the MISE, we average over j of these R values of ISEs.
The constant κ in the penalty is calibrated by preliminary experiments. A comparison of the MISEs for
different values of κ and different distributions (distinct from the previous ones to avoid overfitting) allows
to choose a relevant value. We take κ “ 3.5 in the Laguerre case or κ “ 4 in the Hermite case.

Comparison with kernel estimators. We compare the performances of our method with those of kernel
estimators, and start by density estimation (d “ 0). The density kernel estimator is defined as follows

pfhpxq “
1

nh

n
ÿ

i“1

K

ˆ

Xi ´ x

h

˙

, x P R

where h ą 0 is the bandwidth and K a kernel such that
ş

Kpxqdx “ 1. These two quantities (h and
K) are user-chosen. For density estimation, we use the function implemented in the statistical software
R called density, where the kernel is chosen Gaussian and the bandwidth selected by cross-validation
(R-function bw.SJ), see Tables 2 and 4.

f Hermite case Laguerre case
Density (ii) (vi)

n 500 2000 500 2000

Mean of mopt

d “ 0 7.95 9.45 5.95 7.65
d “ 1 8.50 9.50 6.30 7.05
d “ 2 8.70 9.80 5.80 6.80

Table 1. Mean of selected dimensions pmn presented in Figures 1 and 2.

For the estimation of the derivative, the kernel estimator we compare with (see Tables 3 and 5) is defined
by:

pf 1hpxq “ ´
1

nh2

n
ÿ

i“1

K 1

ˆ

Xi ´ x

h

˙

.
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Figure 1. 20 estimates pf
xmn,pdq in the Hermite basis of a Mixed Gaussian distribution (ii), with

n “ 500 (first line) and n “ 2000 (second line). The true quantity is in bold red and the estimate

in dotted lines (left d “ 0, middle d “ 1 and right d “ 2).

Figure 2. 20 estimates pf
xmn,pdq in the Laguerre basis of a Gamma distribution (iv), with n “ 500

(first line), and n “ 2000 (second line). The true quantity is in bold red and the estimate in dotted

lines (left d “ 0, middle d “ 1 and right d “ 2).

In that latter case there is no ready-to-use procedure implemented in R; therefore, we generalize the
adaptive procedure of Lacour et al. (2017) from density to derivative estimation. To that aim, we consider
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a kernel of order 7 (i.e.
ş

xjKpxqdx “ 0, for j “ 1, . . . , 7) built as a Gaussian mixture defined by:

(29) Kpxq “ 4n1pxq ´ 6n2pxq ` 4n3pxq ´ n4pxq,

where njpxq is the density of a centered Gaussian with a variance equal to j: the higher the order, the
better the results, in theory (see Tsybakov (2009)) and in practice (see Comte and Marie (2019)). By
analogy with the proposal of Lacour et al. (2017) for density estimation, we select h by:

ph “ argmin
hPH

t} pf 1h ´
pf 1hmin}

2 ` penphqu, with penphq “
4

n
xK 1

h,Kh1min
y,

where hmin “ minH, for H the collection of bandwidths chosen in rc{n, 1s and Khpxq “
1
hKp

x
hq. Note

that

penphq “
4

n
xK 1

h,Kh1min
y “

4

nh2h2
min

ż

K 1p
u

h
qK 1p

u

hmin
qdu

and this term can be explicitely computed with the definition of K in (29).

4.2. Results and discussion. Figures 1 and 2 show 20 estimated f , f 1, f2 in case (ii), for two values
of n, 500 and 2000. These plots can be read as variability bands illustrating the performance and the
stability of the estimator. We observe that increasing n improves the estimation and, on the contrary,
that increasing the order of the derivative makes the problem more difficult. The means of the dimensions
selected by the adaptive procedure are given in Table 1. Unsurprisingly, this dimension increases with
the sample size n. In average, these dimensions are comparable for d P t0, 1, 2u, this is in accordance with
the theory: the optimal value mopt does not depend on d.
Tables 2 and 4 for d “ 0 and Tables 3 and 5 for d “ 1 allow to compare the MISEs obtained with
our method and the kernel method for different sample sizes and densities.The error decreases when the
sample size increases for both methods. For density estimation (d “ 0), the results obtained with our
Hermite projection method in Table 2 are better in most cases than the kernel competitor, except for
smallest sample size n “ 100 and Gamma (iv) and Beta (v) distributions. Table 3 gives the risks obtained
for derivative estimation in the Hermite basis: our method is better for densities (i), (ii), (iii) (except for
n “ 100 for Gaussian distribution (i)), but the kernel method is often better for densities (iv) and (v);
they correspond to Gamma and beta densities which are in fact with support included in R`.
In Table 4, we compare the errors obtained for densities (iv)-(vii) with support in R`. Our method is
always better than the R-kernel estimate. For the derivatives, in Table 5, our method and the kernel
estimator seem equivalent.

Our method Kernel method

f
n

100 500 1000 2000 100 500 1000 2000

Gaussian (i) 0.12 0.03 0.02 4.10´3 0.74 0.23 0.13 0.07
Mixed Gaussian (ii) 1.01 0.26 0.13 0.07 1.46 0.44 0.22 0.14

Cauchy (iii) 0.63 0.38 0.19 0.10 4.26 3.42 1.75 0.89
Gamma (iv) 1.46 0.36 0.18 0.09 0.99 0.26 0.14 0.08

Beta (v) 1.09 0.18 0.10 0.05 0.96 0.26 0.151 0.09

Table 2. Empirical MISE 100 ˆ E} pf
pm ´ f}2 (left) and 100ˆ E} pf

ph
´ f}2 (right, Kernel

Estimator) for R “ 100 in the Hermite case.
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Our method Kernel method

f
n

100 500 1000 2000 100 500 1000 2000

Gaussian (i) 1.21 0.30 0.15 0.10 1.16 0.81 0.53 0.25
Mixed Gaussian (ii) 10.08 2.39 1.89 1.07 14.13 3.56 2.00 1.2

Cauchy (iii) 2.91 1.28 0.87 0.56 4.14 1.58 1.19 0.88
Gamma (iv) 5.88 1.89 1.43 0.60 2.45 1.25 0.75 0.63

Beta (v) 5.84 1.76 0.91 0.87 5.62 3.19 0.59 0.33

Table 3. Empirical MISE 100 ˆ E} pf
pm,p1q ´ f 1}2 (left) and 100 ˆ E} pf 1

ph
´ f 1}2 (right) for

R “ 100 in the Hermite case.

Our method Kernel method

f
n

100 500 1000 2000 100 500 1000 2000

Gamma (iv) 0.54 0.16 0.08 0.04 0.99 0.26 0.14 0.08
Beta (v) 0.86 0.20 0.10 0.06 0.96 0.26 0.15 0.09

Weibull (vi) 2.61 0.60 0.33 0.17 3.55 0.80 0.46 0.29
Maxwell (vii) 0.64 0.11 0.06 0.04 0.59 0.16 0.10 0.06

Table 4. Empirical MISE (100 ˆ E} pf
pm,p0q ´ f}2 (left) and 100 ˆ E} pf

ph
´ f}2 (right) for

R “ 100 in the Laguerre case.

Our method Kernel method

f
n

100 500 1000 2000 100 500 1000 2000

Gamma (iv) 5.21 0.95 0.48 0.17 2.45 1.25 0.75 0.63
Beta (v) 4.55 1.55 0.95 0.45 5.62 3.19 0.59 0.33

Weibull (vi) 126.95 34.54 22.31 14.10 127.38 38.60 35.47 11.36
Maxwell (vii) 1.46 0.60 0.24 0.13 0.87 0.21 0.18 0.10

Table 5. Empirical MISE: 100 ˆ E} pf
pm,p1q ´ f 1}2 (left) and 100 ˆ E} pf 1

ph
´ f 1}2 (right) for

R “ 100 in the Laguerre case.

5. Proofs

In the sequel C denotes a generic constant whose value may change from line to line and whose dependency
is sometimes given in indexes.

5.1. Proof of Theorem 2.1. Following (8) we study the variance term, notice that E
“

} pfm,pdq´f
pdq
m }2

‰

“
řm´1
j“0 Varppa

pdq
j q. By definition of pa

pdq
j given in (7), we have

Varppa
pdq
j q “ Var

˜

p´1qd

n

n
ÿ

i“1

ϕ
pdq
j pXiq

¸

“
1

n
Varpϕ

pdq
j pX1qq “

1

n
Erpϕpdqj pX1qq

2s ´
a2
j pf

pdqq

n
.(30)
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Clearly,
řm´1
j“0 a2

j pf
pdqq “ }f

pdq
m }2. In the sequel we denote by Vm,d the quantity

Vm,d “
m´1
ÿ

j“0

Erpϕpdqj pX1qq
2s.(31)

The remaining of the proof consists in showing that under (9) we have Vm,d ď cmd`1{2. For that, write

Vm,d “
m´1
ÿ

j“0

ż

pϕ
pdq
j pxqq

2fpxqdx “

¨

˝

d´1
ÿ

j“0

ż

pϕ
pdq
j pxqq

2fpxqdx`
m´1
ÿ

j“d

ż

pϕ
pdq
j pxqq

2fpxqdx

˛

‚,(32)

where
d´1
ÿ

j“0

ż

pϕ
pdq
j pxqq

2fpxqdx ď
d´1
ÿ

j“0

}ϕ
pdq
j }

2
8 :“ cpdq.(33)

To bound the second term in (32), we consider separately Hermite and Laguerre cases.

5.1.1. The Laguerre case. We derive from (1) that

`
pdq
j pxq “

?
2

d
ÿ

k“0

p´1qd´k
ˆ

d

k

˙

L
pkq
j p2xqe

´x.

Using Koekoek (1990), Equation 2.10, we derive

L
pkq
j pxq “

dk

dxk
Ljpxq “ p´1qkLj´k,pkqpxq, where Lp,pδqpxq “

1

p!
exx´δ

dp

dxp

´

xδ`pe´x
¯

1δďp.

Moreover, introduce the orthonormal basis on L2pR`q p`k,pδqq0ďkă8 by

`k,pδqpxq “ 2
δ`1
2

ˆ

k!

Γpk ` δ ` 1q

˙1{2

Lk,pδqp2xqx
δ
2 e´x.(34)

Therefore, pLjp2xqq
pkq “ 2kLj´k,pkqp2xq1jěk, so that

`
pdq
j pxq “p´1qd

d
ÿ

k“0

ˆ

d

k

˙

2
k
2 x´k{2

ˆ

j!

pj ´ kq!

˙
1
2

`j´k,pkqpxq,(35)

where `j,pδq is defined in (34). Using the Cauchy Schwarz inequality in (35), we derive that

m´1
ÿ

j“d

ż 8

0
r`
pdq
j pxqs

2fpxqdx ď3d
m´1
ÿ

j“d

d
ÿ

k“0

ˆ

d

k

˙

j!

pj ´ kq!

ż `8

0
x´kr`j´k,pkqpxqs

2fpxqdx

ďCd

m´1
ÿ

j“d

d
ÿ

k“0

jd
ż `8

0
x´kp`j´k,pkqpx{2qq

2fpx{2qdx.

Now we rely on the following Lemma, proved in Appendix A.

Lemma 5.1. Let j ě k ě 0 and suppose that ErX´k´1{2s ă `8, it holds, for a positive constant C
depending only on k, that

ż `8

0
x´k

“

`j´k,pkqpx{2q
‰2
fpx{2qdx ď

C
?
j
.
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From Lemma 5.1, we obtain

m´1
ÿ

j“d

ż

p`
pdq
j pxqq

2fpxqdx ď C
m´1
ÿ

j“d

d
ÿ

k“0

jd´1{2 ď Cmd`1{2.

Plugging this and (33) in (32), gives the result (10) and Theorem 2.1 in the Laguerre case.

5.1.2. The Hermite case. We first introduce a useful technical result, its proof is given in Appendix A.

Lemma 5.2. Let hj given in (3), the d-th derivative of hj is such that

h
pdq
j “

d
ÿ

k“´d

b
pdq
k,jhj`k, where b

pdq
k,j “ Opj

d{2q, j ě d ě |k|.(36)

Using successively Lemma 5.2, the Cauchy Schwarz inequality and Lemma 8.5 in Comte and Genon-
Catalot (2018) (using that Er|X1|

2{3s ă 8), we obtain, for k ` j large enough,

m´1
ÿ

j“d

ż

ph
pdq
j pxqq

2fpxqdx ďp2d` 1q
m´1
ÿ

j“d

d
ÿ

k“´d

pb
pdq
k,jq

2

ż

hj`kpxq
2fpxqdx ď dp2d` 1q2

d
ÿ

k“´d

m´1
ÿ

j“d

cjd´
1
2

ďc1pdqmd` 1
2 .(37)

Plugging (37) and (33) in (32) leads to inequality (10) and Theorem 2.1 in the Hermite case.

5.2. Proof of Proposition 2.1. We build a lower bound for (8). Recalling (30) and notation Vm,d “
řm´1
j“0 Erpϕpdqj pX1qq

2s, to establish Proposition 2.1, we have to build a minorant for Vm,d. We consider
separately the Laguerre and Hermite cases.

5.2.1. The Laguerre case. Using (35), we have

`
pdq
j pxq “p´1qd2d{2x´d{2

´ j!

pj ´ dq!

¯1{2
`j´d,pdqpxq ` p´1qd

d´1
ÿ

k“0

ˆ

d

k

˙

2
k
2 x´k{2

ˆ

j!

pj ´ kq!

˙
1
2

`j´k,pkqpxq

:“T1pxq ` T2pxq.

It follows that
ż `8

0
p`
pdq
j q

2pxqfpxqdx ě

ż `8

0
T1pxq

2fpxqdx` 2

ż `8

0
T1pxqT2pxqfpxqdx :“ E1 ` E2.

For the first term, as pA1q ensures that f is a continuous density, there exist 0 ď a ă b and c ą 0, such
that infaďxďb fpxq ě c ą 0. We derive

E1 ě 2d
j!

pj ´ dq!

ż `8

0
x´d`2j´d,pdqpxqfpxqdx ě c2dpj ´ dqdb´d

ż b

a
`2j´d,pdqpxqdx.

By Theorem 8.22.5 in Szegö (1959), for δ ą ´1 an integer, and for b{j ď x ď b̄, where b, b̄ are arbitrary
positive constants, it holds

`j,pδqpxq “ dpjxq´
1
4

ˆ

cosp2
?

2
a

jx´
δπ

2
´
π

4
q ` pjxq´

1
2Op1q

˙

,(38)

where Op1q is uniform on rb{j, b̄s and d “ 21{4{
?
π. It follows that,

`2j,pδqpxq “
d2

2
pjxq´

1
2

”

1` cosp4
?

2
a

jx´ δπ ´
π

2
q

ı

` pjxq´1Op1q.
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We derive that
şb
a `

2
j´d,pdqpxqdx ě Cpj ´ dq´1{2, after a change of variable y “

?
x, for some positive

constant C depending on a, b and d. Consequently, it holds

E1 ě Cpj ´ dqd´
1
2 ě C 1jd´

1
2 , @j ě 2d,(39)

where C 1 depends on a, b, c and d. For the second term, we have

|E2| ď 2

ż `8

0
|T1pxqT2pxq|fpxqdx

ď 2j
d
2 j

d´1
2

d´1
ÿ

k“0

ˆ

d

k

˙

2
k`d
2

„
ż `8

0
x´d`2j´d,pdqpxqfpxqdx`

ż `8

0
x´k`2j´k,pkqpxqfpxqdx



.

By Lemma 5.1, it follows that

|E2| ď Cj
d
2 j

d´1
2 j´

1
2

d´1
ÿ

k“0

ˆ

d

k

˙

2
k`d
2 ď Cjd´1.

This together with (39), lead to
ş`8

0 p`
pdq
j q

2pxqfpxqdx ě C 1jd´
1
2 , j ě 2d where C depends on a, b, c and

d. We derive

Vm,d ě Cmd` 1
2 ,(40)

which ends the proof in the Laguerre case.

5.2.2. The Hermite Case. The proof is similar to the Laguerre case. Consider the following expression of
hj (see Szegö (1959), p.248):

hjpxq “ λj cos

ˆ

p2j ` 1q
1
2x´

jπ

2

˙

`
1

p2j ` 1q
1
2

ξjpxq, @x P R,(41)

where λj “ |hjp0q| for j even or λj “ |h
1
jp0q|{p2j ` 1q1{2 for j odd and

ξjpxq “

ż x

0
sin

´

p2j ` 1q
1
2 px´ tq

¯

t2hjptqdt.

By Stirling Formula, it holds

λ2j “
p2jq!

1
2

2jj!π1{4
„ π´1{2j´1{4 and λ2j`1 “ λ2j

?
2j ` 1

a

2j ` 3{2
„ π´1{2j´1{4.(42)

Differentiating (41), we get

h
pdq
j pxq “ λjp2j ` 1q

d
2 cos

´

p2j ` 1q
1
2x´

jπ

2
`
dπ

2

¯

`
1

?
2j ` 1

ξ
pdq
j pxq.

Note that if d “ 2 it holds

ξ
p2q
j pxq “

a

2j ` 1x2hjpxq ´ p2j ` 1qξjpxq.(43)

From pA1q, there exists a ă b and c ą 0 such that infaďxďb fpxq ě c ą 0. It follows
ż

R
h
pdq
j pxq

2fpxqdx ěcp2j ` 1qdλ2
j

ż b

a
cos2

´

p2j ` 1q
1
2x´ pj ` dq

π

2

¯

dx

` 2cλjp2j ` 1q
d´1
2

ż b

a
cos

´

p2j ` 1q
1
2x´ pj ` dq

π

2

¯

ξ
pdq
j pxqdx :“ E1 ` E2.
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For the first term, using cos2pxq “ p1` cosp2xqq{2 and (42), we get

E1 “ cp2j ` 1qdλ2
j

ˆ

b´ a

2
`Op 1

?
j
q

˙

ě c1jd´
1
2

ˆ

b´ a

2
`Op 1

?
j
q

˙

.

For the second term we first show that

@x P ra, bs, @j ě 0, @d ě 0, ξ
pdq
j pxq “ Opj

d{2q.(44)

To establish (44) we first note, using (43), that for d ě 2, @x P R,

ξ
pdq
j pxq ` p2j ` 1qξ

pd´2q
j pxq “ pξ

p2q
j pxq ` p2j ` 1qξjpxqq

pd´2q “
a

2j ` 1px2hjpxqq
pd´2q “: Ψj,dpxq.

Together with Lemma 5.2, one easily obtains by induction that @x P ra, bs, @j ě 0, Ψj,dpxq “ Opj
d´1
2 q.

The latter result gives ξ
pdq
j “ ´jξ

pd´2q
j ` Ψj,d and an immediate induction on d leads to (44). Injecting

this in E2 gives, together with (42), |E2| ď Cjd´
3
4 , for a positive constant C depending on a, b, c and d.

Gathering the bound on E1 and E2 lead to
ż

R
h
pdq
j pxq

2fpxqdx ě c1jd´
1
2

ˆ

b´ a

2
`Op 1

?
j
q

˙

´Opjd´
3
4 q ě C 1dj

d´ 1
2 ,

and

Vm,d ě cdm
d` 1

2 ,(45)

which ends the proof of the Hermite case.

5.3. Proof of Theorem 2.2. We apply Theorem 2.7 in Tsybakov (2009). We start by the construction
of a family of hypotheses pfθqθ. The construction is inspired by Belomestny et al. (2017). Define f0 by

f0pxq “ P pxq1s0,1rpxq `
1

2
x1r1,2spxq `Qpxq1s2,3spxq,(46)

where P and Q are positive polynomials, for 0 ď k ď s, P pkqp0q “ Qpkqp3q “ 0, P pkqp1q “ limxÓ1px{2q
pkq,

Qpkqp2q “ limxÒ2px{2q
pkq and finally

ş1
0 P pxqdx “

ş3
2 Qpxqdx “

1
8 . Consider fθ defined as a perturbation of

f0

fθpxq “ f0pxq ` δK
´pγ`dq

K´1
ÿ

k“0

θk`1ψ
`

px´ 1qpK ` 1q ´ k
˘

, with K P N,(47)

for some δ ą 0, θ “ pθ1, . . . , θKq P t0, 1u
K , γ ą 0 and ψ which is supported on r1, 2s, admits bounded

derivatives up to order s and is such that
ş2
1 ψpxqdx “ 0. Theorem 2.2 is a consequence of the following

Lemma.

Lemma 5.3. piq. Let s ě d, @ θ P t0, 1uK , there exist δ small enough and γ ą 0 such that fθ is
density. There exists D ą 0 such that fθ belongs to W s

HpDq. If in addition γ ě s´ d, fθ belongs
to W s

LpDq.

piiq. Let M an integer, for all j ă l ďM , @θpjq, θplq in t0, 1uK , it holds }f
pdq

θpjq
´ f

pdq

θplq
}2 ě Cδ2K´2γ.

piiiq. For δ small enough, K “ n1{p2γ`2d`1q and for all pθpjqq1ďjďM P pt0, 1uKqM , it holds

1

M

M
ÿ

j“1

χ2
`

fθpjq
bn, f0

bn
˘

ď αM,

where 0 ă α ă 1{8 and χ2pg, hq denotes the χ2 divergence between the distributions g and h.
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Choosing γ “ s´ d, K “ n1{p2γ`2d`1q and δ small enough, we derive from Lemma 5.3 that,

}f
pdq

θpjq
´ f

pdq

θplq
}2 ě Cδ2n´2 ps´dq

2s`1 , @θpjq, θplq P t0, 1uK .

The announced result is then a consequence of Theorem 2.7 in Tsybakov (2009).

5.4. Proof of Theorem 2.3. Consider the contrast function defined as follows:

γn,dptq “ }t}
2 ´

2

n

n
ÿ

i“1

p´1qdtpdqpXiq, t P L2pRq,

for which pfm,pdq “ argmin
tPSm

γn,dptq (see (7)) and γnp pfm,pdqq “ ´} pfm,pdq}
2. For two functions t, s P L2pRq,

consider the decomposition:

γn,dptq ´ γn,dpsq “ }t´ f
pdq}2 ´ }s´ f pdq}2 ´ 2νn,dpt´ sq,(48)

where

νn,dptq “
1

n

n
ÿ

i“1

´

p´1qdtpdqpXiq ´ xt, f
pdqy

¯

.

By (17), it holds for all m PMn,d, that γn,dp pf
pmn,pdqq `ypendppmnq ď γn,dpf

pdq
m q `ypendpmq. Plugging this

in (48) yields, for all m PMn,d,

} pf
pmn,pdq ´ f

pdq}2 ď }f pdqm ´ f pdq}2 `ypendpmq ` 2νn,d

´

pf
pmn,pdq ´ f

pdq
m

¯

´ypendppmnq.(49)

Note that for t P L2pRq, νn,dptq “ }t}νn,d
`

t{}t}
˘

ď }t} supsPSm`S
xm,}s}“1 |νn,dpsq|. Consequently, using

2xy ď x2{4` 4y2, we obtain

2νn,d

´

pf
pmn,pdq ´ f

pdq
m

¯

ď
1

2
} pf

pmn,pdq ´ f
pdq}2 `

1

2
}f pdqm ´ f pdq}2 ` 4 sup

tPSm`S
xm,||t||“1

|νn,dptq|
2.(50)

It follows from (49) and (50) that:

1

2
} pf

pmn,pdq ´ f
pdq}2 ď

3

2
}f pdqm ´ f pdq}2 `ypendpmq ` 4 sup

tPSm`S
xm,||t||“1

|νn,dptq|
2 ´ypendppmnq.

Introduce the function ppm,m1q “ 4
Vm_m1,d

n , we get, after taking the expectation,

1

2
E
”

} pf
pmn,pdq ´ f

pdq}2
ı

ď
3

2
}f pdqm ´ f pdq}2 ` pendpmq ` 4E

«˜

sup
tPSm`S

xm,||t||“1
|νn,dptq|

2 ´ ppm, pmnq

¸

`

ff

` Er4ppm, pmnq ´ pendppmnqs ` E
“

ppendppmnq ´ypendppmnqq`

‰

.

The remaining of the proof is a consequence of the following Lemma.

Lemma 5.4. Under the assumptions of Theorem 2.3, the following hold.

(i) There exists a constant Σ1 such that:

E

«˜

sup
tPSm`S

xm,||t||“1
|νn,dptq|

2 ´ ppm, pmnq

¸

`

ff

ď
Σ1

n
.

(ii) There exists a constant Σ2 such that:

E
“

ppendppmnq ´ypendppmnqq`

‰

ď
1

2
Erpendppmnqs `

Σ2

n
.



20 F. COMTE, C. DUVAL, AND O. SACKO

Lemma 5.4 yields

1

2
E
”

} pf
pmn,pdq ´ f

pdq}2
ı

ď
3

2
}f pdqm ´ f pdq}2 ` pendpmq ` 4

Σ1

n
` Er4ppm, pmnq ´

1

2
pendppmnqs `

Σ2

n
.

Next, for κ ě 32 “: κ0, we have, 4ppm, pmnq ď pendppmnq{2` pendpmq{2. Therefore, we derive

E
”

} pf
pmn,pdq ´ f

pdq}2
ı

ď 3}f pdqm ´ f pdq}2 ` 3pendpmq ` 2
4Σ1 ` Σ2

n
, @m PMn,d.

Taking the infimum on Mn,d, C “ 3 and C 1 “ 2p4Σ1 ` Σ2q{n completes the proof.

5.5. Proof of Proposition 3.1. First, it holds that

E
”

}p pfmq
1 ´ f 1}2

ı

ď 2
”

}pfmq
1 ´ f 1}2 ` Er}p pfmq1 ´ pfmq1}2s

ı

“ 2

ż `8

0
p
ÿ

jěm

ajpfq`
1
jpxqq

2dx` 2E

«

}

m´1
ÿ

j“0

ppa
p0q
j ´ ajpfqq`

1
j}

2

ff

.

For the first bias term, we derive from (2) that x`1j , `
1
ky “ 2` 4j ^ k for j ‰ k and x`1j , `

1
jy “ 1` 4j, and

we derive that
ż `8

0
p
ÿ

jěm

ajpfq`
1
jpxqq

2dx “
ÿ

jěm

ajpfq
2p1` 4jq ` 2

ÿ

mďjăk

ajpfqakpfqp2` 4jq.

First, for f in W s
LpDq, we have
ÿ

jěm

ajpfq
2p1` 4jq ďm´s

ÿ

jěm

jsajpfq
2 ` 4m´s`1

ÿ

jěm

jsajpfq
2 ď 5Dm´s`1,

and by the Cauchy-Schwarz inequality, it holds for a positive constant C,

ÿ

mďjăk

ajpfqakpfq ď

¨

˝

ÿ

mďjăk

jsajpfq
2ksakpfq

2

˛

‚

1
2
¨

˝

ÿ

mďjăk

j´sk´s

˛

‚

1
2

ď
ÿ

jěm

jsajpfq
2
ÿ

jěm

j´s ď DCm´s`1

ÿ

mďjăk

j|ajpfqakpfq| ď
ÿ

jěm

j|ajpfq|

¨

˝

ÿ

kěj

ksakpfq
2
ÿ

kěj

k´s

˛

‚

1
2

ď
?
DC

ÿ

jěm

j
s
2
´s` 3

2 |ajpfq| ď DCm´s`2.

Thus, it comes

(51) 2}pfmq
1 ´ f 1}2 ď Cm´ps´2q,

where C ą 0 depends on D. Second, for the variance term, straightforward computations lead to

E
”

}

m´1
ÿ

j“0

ppa
p0q
j ´ ajpfqq`

1
j}

2
ı

“
1

n

ż `8

0
Varp

m´1
ÿ

j“0

`jpX1q`
1
jpxqqdx ď

1

n

ż `8

0
E

«

p

m´1
ÿ

j“0

`jpX1q`
1
jpxqq

2

ff

dx.

By the orthonormality of p`jqj and pA2q, we obtain

`8
ż

0

E

«

p

m´1
ÿ

j“0

`jpX1q`
1
jpxqq

2

ff

dx ď }f}8

m´1
ÿ

j,k“0

`8
ż

0

`8
ż

0

`jpuq`
1
jpxq`kpuq`

1
kpxqdudx “ }f}8

m´1
ÿ

j“0

p1` 4jq ď 3}f}8m
2.

From this and (51), the result follows.
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5.6. Proof of Proposition 3.2. By the Pythagoras Theorem, we have the bias-variance decomposition

E
“

} rf 1m,K ´ f
1}2

‰

“ }f 1 ´ f 1m}
2 ` E

“

} rf 1m,K ´ f
1
m}

2
‰

. As `jp0q “
?

2, it follows that

rf 1m,K ´ f
1
m “

m´1
ÿ

j“0

«

´
?

2p pfKp0q ´ fp0qq ´
1

n

n
ÿ

i“1

p`1jpXiq ´ Er`1jpXiqsq

ff

`j .

From the orthonormality of p`jqj , it follows

E
“

} rf 1m,K ´ f
1
m}

2
‰

“

m´1
ÿ

j“0

E

«

´
?

2p pfKp0q ´ fp0qq ´
1

n

n
ÿ

i“1

p`1jpXiq ´ Er`1jpXiqsq

ff2

ď 4mE
”

p pfKp0q ´ fp0qq
2
ı

` 2
m´1
ÿ

j“0

E

»

–

˜

1

n

n
ÿ

i“1

p`1jpXiq ´ Er`1jpXiqsq

¸2
fi

fl .

Finally, using that the pXiqi are i.i.d. lead to the result in the second variance term.

5.7. Proof of Theorem 3.1. We have the decomposition:

γnptq ´ γnpsq “ }t´ f
1}2 ´ }s´ f 1}2 ´ 2xs´ t, f 1y ´

2

n

n
ÿ

i“1

ps1 ´ t1qpXiq ´ 2psp0q ´ tp0qq pfKp0q

and as xt, f 1y “ ´tp0qfp0q ´
ş

t1f, we get

(52) γnptq ´ γnpsq “ }t´ f
1}2 ´ }s´ f 1}2 ´ 2νnps´ tq ´ 2psp0q ´ tp0qqp pfKp0q ´ fp0qq,

with νnptq “
1

n

n
ÿ

i“1

pt1pXiq ´ xt
1, fy.

First note that for

f 1m,K “
m´1
ÿ

j“0

a
p1q
j,K`j , a

p1q
j,K “ Erpap1qj,Ks “ xf

1, `jy ` `jp0qpfp0q ´ Er pfKp0qs,

it holds that

}f 1 ´ f 1m,K}
2 “

›

›

›

›

›

8
ÿ

j“0

xf 1, `jy`j ´
m´1
ÿ

j“0

xf 1, `jy`j ´
m´1
ÿ

j“0

`jp0q
`

fp0q ´ Er pfKp0qs
˘

`j

›

›

›

›

›

2

“
ÿ

jěm

xf 1, `jy
2 ` 2

m´1
ÿ

j“0

`

fp0q ´ Er pfKp0qs
˘2
“ }f 1 ´ f 1m}

2 ` 2m
`

fp0q ´ Er pfKp0qs
˘2
.

Let us start by writing that, by definition of pmK , it holds, @m PMn,

γnppf 1
pmK ,Kq ` penKppmKq ď γnpf

1
m,Kq ` penKpmq,

which yields, with (52) and notations introduced in (28),

}pf 1
pmK ,K ´ f

1}2 ď }f 1m,K ´ f
1}2 ` penKpmq ` 2νnpf

1
m,K ´

pf 1
pmK ,Kq ´ pen1ppmKq

`2pf 1m,Kp0q ´
pf 1
pmK ,Kp0qqp

pfKp0q ´ fp0qq ´ pen2,KppmKq

ď }f 1m,K ´ f
1}2 ` penKpmq `

1

4
}f 1m,K ´

pf 1
pmK ,K}

2 ` 8 sup
tPSm_xmK

ν2
nptq ´ pen1ppmKq

`16pm_ pmKqr
pfKp0q ´ fp0qs

2 ´ pen2,KppmKq.
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To get the last line, we write that, for any t P Sm,

|tp0q| “
?

2

ˇ

ˇ

ˇ

ˇ

ˇ

m´1
ÿ

j“0

ajptq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

g

f

f

e2m
m
ÿ

j“0

a2
j ptq ď

?
2m}t},

and we use that 2xy ď x2{8` 8y2 for all real x, y. We obtain

1

2
}pf 1

pmK ,K ´ f
1}2 ď

3

2
}f 1m,K ´ f

1}2 ` penKpmq ` 16mp pfKp0q ´ fp0qq
2

`8

˜

sup
tPSm_xmK

,}t}“1
ν2
nptq ´ p1pm_ pmKq

¸

`

` 8p1pm_ pmKq ´ pen1ppmKq

`16pmK

„

p pfKp0q ´ fp0qq
2 ´ c2p}f}8 _ 1qK

logpnq

n



,(53)

where

p1pmq “ bp1` 2 logpnqq}f}8
m2

n
, b ą 0.

The following Lemma can be proved using the Talagrand Inequality (see Section B.2).

Lemma 5.5. Under the assumptions of Theorem 3.1, and b ě 6,

ÿ

mPMn

E

«

sup
tPSm,}t}“1

ν2
nptq ´ p1pmq

ff

`

ď
c

n
.

It follows that

E

˜

sup
tPSm_xmK

,}t}“1
ν2
nptq ´ p1pm_ pmKq

¸

`

ď
ÿ

m1PMn

E

˜

sup
tPSm1_m,}t}“1

ν2
nptq ´ p1pm_m

1q

¸

`

ď
c

n
.(54)

This implies that 8p1pm_ pmKq ď pen1pmq ` pen1ppmKq for c1 –defined in (28)– large enough.
Moreover, let a ą 0 and

ΩK :“

#ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

pZKi ´ EpZKi qq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

ap}f}8 _ 1q
K logpnq

n

+

,

where ZKi :“
řK´1
j“0 `jpXiq. To apply the Bernstein Inequality (see Section B.3), we compute s2 “ }f}8K

and b “
?

2K and note that K logpnq{n ď 1. Thus, we get that there exist constants c0, c such that

(55) For a ą c0, PpΩc
Kq ď

c

n4
.

On ΩK , it holds that

(56) p pfKp0q ´ fKp0qq
2 “

˜

1

n

n
ÿ

i“1

pZKi ´ EpZKi qq

¸2

ď 2ap}f}8 _ 1qK
logpnq

n
.
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For any Kn ď rn{ logpnqs satisfying condition (26), we have

E
"

pmKn

„

p pfKnp0q ´ fp0qq
2 ´ c2p}f}8 _ 1qKn

logpnq

n

*

ď E
"

pmKn

„

p pfKnp0q ´ fKnp0qq
2 ´ pc2 ´ 2qp}f}8 _ 1qKn

logpnq

n

*

Now we note that | pfKpxq| ď 2K for all x P R` and any integer K and by using the definition of (56),
provided that c2 ą 2a` 2, we obtain

E
"

pmKn

„

p pfKnp0q ´ fKnp0qq
2 ´ pc2 ´ 2qp}f}8 _ 1qKn

logpnq

n

*

ď E
"

pmKn

„

p pfKnp0q ´ fKnp0qq
2 ´ pc2 ´ 2qp}f}8 _ 1qKn

logpnq

n



1ΩKn

*

`E
"

pmKn

„

p pfKnp0q ´ fKnp0qq
2 ´ pc2 ´ 2qp}f}8 _ 1qKn

logpnq

n



1ΩcKn

*

À Cn5{2PpΩc
Knq À

1

n
,

the term on ΩKn being less than or equal to 0. Plugging this and (54) into (53), we get

E
´

}pf 1
pmK ,K ´ f

1}2
¯

ď 3}f 1m,K ´ f
1}2 ` 4penKpmq ` 32mp pfKp0q ´ fp0qq

2 `
c

n

which gives the result of Theorem 3.1. l

Appendix A. Proofs of auxiliary results

A.1. Proof of Lemma 2.1. In the Hermite case ϕj “ hj and f : R ÞÑ r0,8q, allowing d successive
integration by parts, it holds that

ajpf
pdqq “

ż

R
f pdqpxqhjpxqdx “

«

d´1
ÿ

k“0

p´1qkf pd´1´kqpxqh
pkq
j pxq

ff`8

´8

` p´1qd
ż

R
h
pdq
j pxqfpxqdx.(57)

By definition for all j ě 0, hjpxq “ cjHjpxqe
´x2

2 where Hj is a polynomial. Then, its k-th derivative,

0 ď k ď d´ 1, is a polynomial multiplied by e´x
2{2 and lim|x|Ñ`8 h

pkq
j pxq “ 0. This together with pA2q,

gives that the bracket in (57) is null and the result follows.
Similarly in the Laguerre case, (57) holds integrating on r0,8q instead of R and replacing hj by `j . The
term in the bracket is null at 0 from pA3q. It is also null at infinity using pA2q together with the fact that

`j are polynomials multiplied by e´x leading similarly to limxÑ8 f
pd´1´kqpxq`

pkq
j pxq “ 0, 0 ď k ď d ´ 1,

j ě 0. The result follows.

A.2. Proof of Lemma 2.2. We control the quantity

ÿ

jě0

js´dxf pdq, hjy
2 “

d´1
ÿ

j“0

js´dxf pdq, hjy
2 `

ÿ

jěd

js´dxf pdq, hjy
2.(58)
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The first term is a constant which depending on d. For the second term using Lemma 5.2, we obtain

ÿ

jěd

js´dxf pdq, hjy
2 “

ÿ

jěd

js´d

˜

d
ÿ

k“´d

b
pdq
k,j

ż

hj`kpxqfpxqdx

¸2

ďCd
ÿ

jěd

js
d
ÿ

k“´d

ˆ
ż

hj`kpxqfpxqdx

˙2

“ Cd

d
ÿ

k“´d

ÿ

jěd

jsxhj`k, fy
2

“Cd

d
ÿ

k“´d

¨

˝

ÿ

jěd`k

|j ´ k|sxhj , fy
2

˛

‚ď Cd

d
ÿ

k“´d

˜

ÿ

jě0

2sjsxhj , fy
2

¸

“ p2d` 1q2sDCd.

Inserting this in (58), we obtain the announced result.

A.3. Proof of Lemma 2.3. We establish the result for d “ 1, the general case is an immediate conse-

quence. It follows from the definition of ĂW s
LpDq that pθ1qpjq, 0 ď j ď s´ 1 are in Cpr0,8qq. Moreover, it

holds that x ÞÑ xk{2pθ1qpjqpxq P L2pR`q for all 0 ď j ă k ď s ´ 1. The case k “ j is obtained using that

θpjq is continuous on Cpr0,8qq and that x ÞÑ xpj`1q{2pθ1qpjqpxq P L2pR`q. It follows that

~θ1~2
s “

s´1
ÿ

j“0

›

›

›
xj{2

j
ÿ

k“0

ˆ

j

k

˙

pθ1qpkq
›

›

›

2
ď 2

s´1
ÿ

j“0

›

›

›
xj{2

j´1
ÿ

k“0

ˆ

j

k

˙

pθ1qpkq
›

›

›

2
` 2

s´1
ÿ

j“0

›

›

›
xj{2pθ1qpjq

›

›

›

2

ď C ` 2
s´1
ÿ

j“0

}xpj`1q{2pθ1qpjqpxq}2 ă 8,

where C depends on D. Finally, using the equivalence of the norms |.|s and ~.~s, the value of D1 follows
from the latter inequality.

A.4. Proof of Lemma 5.1. Consider the decomposition

ż `8

0
x´kp`j´k,pkqpx{2qq

2fpx{2qdx “
6
ÿ

i“1

Ii,

where for ν “ 4j ´ 2k ` 2, j ě k, we used the decomposition p0,8q “ p0, 1
ν s Y p

1
ν ,

ν
2 s Y p

ν
2 , ν ´ ν1{3s Y

pν ´ ν1{3, ν ` ν{13s Y pν ` ν1{3, 3ν{2s Y p3ν{2,8q. Using Askey and Wainger (1965) (see Appendix B.1)
and straightforward inequalities give

I1 À

ż 1
ν

0
x´kpxνqkfpx{2qdx ď

ż 1
ν

0
x´kpxνq´1{2fpx{2qdx À ν´1{2ErX´k´1{2s,

I2 À

ż ν
2

1{ν
x´kppxνq´1{4q2fpx{2qdx “ ν´1{2

ż ν
2

1{ν
x´k´1{2fpx{2qdx ď ν´1{2ErX´k´1{2s,

I3 À

ż ν´ν1{3

ν
2

x´kpν´1{4pν ´ xq´1{4q2fpx{2qdx “ ν´1{2

ż ν´ν1{3

ν
2

x´kpν ´ xq´1{2fpx{2qdx À ν´1{2,

I4 À

ż ν`ν1{3

ν´ν1{3
x´kpν´1{3q2fpx{2qdx ď ν´2{3

ż ν`ν1{3

ν
2

x´kfpx{2qdx À ν´1{2ν´k ď ν´1{2,
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I5 À

ż 3ν{2

ν`ν1{3
x´kν´1{2px´ νq´1{2e´2γ1ν´1{2px´νq3{2fpx{2qdx À ν´1{2ν´1{6ν´k

ż

fpx{2qdx À ν´1{2,

I6 À

ż `8

3ν{2
x´ke´2γ2xfpx{2qdx À e´3γ2ν{2 “ Opν´1{2q.

Gathering these inequalities give the announced result.

A.5. Proof of Lemma 5.2. The result is obtained by induction on d. If d “ 1, h1j is given by (5), with

b
p1q
´1,j´1 “ j1{2{

?
2, b0,j “ 0 and b

p1q
1,j “ pj ` 1q1{2{

?
2, @j ě 1. Thus, it holds b

p1q
k,j “ Opj

1{2q and (36)

is satisfied for d “ 1. Let Ppdq the proposition given by Equation (36) and assume Ppdq holds and we
establish Ppd` 1q. It holds using successively Ppdq and (5) that

h
pd`1q
j pxq “

d
ÿ

k“´d

b
pdq
k,j

„?
j ` k
?

2
hj`k´1 ´

?
j ` k ` 1
?

2
hj`k`1



“

d´1
ÿ

k1“´d´1

b
pdq
k1`1,j

?
j ` k1 ` 1
?

2
hj`k1 ´

d`1
ÿ

k1“´d`1

b
pdq
k1´1,j

?
j ` k1
?

2
hj`k1 :“

d`1
ÿ

k“´d´1

b
pd`1q
k,j hj`k1 ,

where b
pdq
k,j “ Opj

d{2q, @j ě d ě |k| and b
pd`1q
k,j “ b

pdq
k`1,j

?
j ` k ` 1
?

2
1|k|ďd´1 ´ b

pdq
k´1,j

?
j ` k
?

2
1|k|ďd`1.

It follows that |b
pd`1q
k,j | ď 2

a

pj ` d` 1q{2j
d
2 ď Cdj

d`1
2 , |k| ď d ď j, which completes the proof.

A.6. Proof of Lemma 5.3.

A.6.1. Proof of part piq. By construction, f0 is positive and @θ P t0, 1uK ,
ş

fθpxqdx “
ş

f0pxqdx “ 1. It
remains to show that fθ is nonnegative. The supports of

`

ψpp.´ 1qpK ` 1q´ kq
˘

0ďkďK´1
are disjoint and

are in r1, 2s, then fθpxq ě 0 for all x P Rzr1, 2s. Now, for all x in r1, 2s, there exists k0 such that

fθpxq “
x

2
` δK´γ´dθk0`1ψ

`

px´ 1qpK ` 1q ´ k0

˘

ě
1

2
´ δ}ψ}8K

´γ´d,

which is nonnegative if δ ď }ψ}´1
8 {2. Now, let us show that f0 and fθ belong to W spDq.

The Laguerre case. We use the equivalent norm ~.~s of |.|s (see (13)) and start with f0. As f0 is s-th
differentiable, we have

~f0~
2
s “

s
ÿ

j“0

ż 3

0

˜

xj{2
j
ÿ

k“0

ˆ

j

k

˙

f
pkq
0 pxq

¸2

dx ď
s
ÿ

j“0

2j
j
ÿ

k“0

ˆ

j

k

˙
ż 3

0
pxj{2f

pkq
0 pxqq2dx.

As
ş3
0px

j{2f
pkq
0 pxqq2dx ď cpsq ă `8, 0 ď k ď j ď s, it follows |f |2s ď 3D{4, D depends on s. For fθ, we

have

~fθ ´ f0~
2
s “δ

2K´2γ´2d
s
ÿ

j“0

ż 2

1

˜

j
ÿ

l“0

ˆ

j

l

˙K´1
ÿ

k“0

xj{2θk`1pK ` 1qlψplq
`

px´ 1qpK ` 1q ´ k
˘

¸2

dx

ďδ2K´2γ´2d
s
ÿ

j“0

j
ÿ

l“0

2j
ˆ

j

l

˙
ż 2

1

˜

xj{2
K´1
ÿ

k“0

θk`1pK ` 1qlψplq
`

px´ 1qpK ` 1q ´ k
˘

¸2

dx.
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Using that ψplq
`

px´ 1qpK ` 1q ´ k
˘

, ψplq
`

px´ 1qpK ` 1q ´ k1
˘

have disjoint supports for k ‰ k1 and that

ψplq are bounded by c, we get after the change of variable y “ px´ 1qpK ` 1q ´ k,

~fθ ´ f0~
2
s ďδ

223sc2K´2γ´2d
s
ÿ

j“0

K´1
ÿ

k“0

pK ` 1q2j´1 ď Cpsqδ2K´2γ´2d`2s.

For γ ě s´ d and δ small enough, it holds |fθ ´ f0|s ď D{4 and therefore |fθ|s ď |fθ ´ f0|s ` |f0|s ď D.
The Hermite case. The usual Sobolev space W s, if s is integer, is defined by

W s “ tf P L2pRq, f admits derivatives up to order s, such that ~f~s,sob “
s
ÿ

j“0

}f pjq}2 ă `8u.

It is proved in Bongioanni and Torrea (2006) that: if f P W s has compact support, then f belongs to
W s
H . By construction f0 and fθ have a compact support and as they admit derivatives up to order s,

they belong to W s. It follows that f0 and fθ belong W s
H . This completes the proof of (i).

A.6.2. Proof of part (ii). As for k ‰ k1, ψ
`

p.´1qpK`1q´k
˘

, ψ
`

p.´1qpK`1q´k1
˘

have disjoint supports,

we have, @θpjq, θplq P t0, 1uK ,

}f
pdq

θpjq
´ f

pdq

θplq
}2 “δ2

K´1
ÿ

k“0

pθ
pjq
k`1 ´ θ

plq
k`1q

2K´2γ´2dpK ` 1q2d
ż 2

1
ψpdq

`

px´ 1qpK ` 1q ´ k
˘2
dx

ě δ2}ψpdq}2K´2γ´1ρpθpjq, θplqq,

where ρpθpjq, θplqq “
řK
k“1 1

θ
pjq
k ‰θ

plq
k

is the Hamming distance. By Lemma 2.7 in Tsybakov (2009), for

K ě 8, there exist tθp0q, . . . , θpMqu in t0, 1uK such that

ρpθpjq, θplqq ě
K

8
, @ 0 ď j ă l ďM and M ě 2

K
8 .

Thus, it holds, @θpjq, θplq P t0, 1uK , }f
pdq

θpjq
´ f

pdq

θplq
}2 ě δ2{8}ψpdq}2K´2γ , which gives (ii) if we set C “

}ψpdq}2{8.

A.6.3. Proof of part (iii). For M integer and pθpjqq1ďjďM in pt0, 1uKqM , we have

M
ÿ

j“1

χ2
`

fθpjq
bn, f0

bn
˘

“

M
ÿ

j“1

``

1` χ2pfθpjq , f0q
˘n
´ 1

˘

“

M
ÿ

j“1

´

en logp1`χ2pf
θpjq

,f0qq ´ 1
¯

.(59)

Since f0 ě c ą 0 on r1, 2s, it holds for any θ P t0, 1uK ,

χ2pfθ, f0q “

ż 2

1

pfθpxq ´ f0pxqq
2

f0pxq
dx ď

δ2

c
K´2γ´2d

K´1
ÿ

k“0

ż 2

1

´

ψ
`

px´ 1qpK ` 1q ´ k
˘

¯2
dx

ď
δ2

c
K´2γ´2d}ψ}2 ď

8δ2

c log 2
logpMqK´2γ´2d´1,

where we used that M ě 2
K
8 . Consequently, using in (59) that logp1 ` xq ď x, for any x ě 0, and the

latter inequality, give

1

M

M
ÿ

j“1

χ2
`

fθpjq
bn, f0

bn
˘

ď e
n 8δ2

c log 2
logpMqK´2γ´2d´1

´ 1.

For δ well chosen and K “ n1{p2γ`2d`1q, comes the result.
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A.7. Proof of Lemma 5.4.

A.7.1. Proof of part (i). First, it holds that

E

«˜

sup
tPSm`S

xm,||t||“1
|νn,dptq|

2 ´ ppm, pmnq

¸

`

ff

ď
ÿ

m1PMn,d

E

«˜

sup
tPSm`Sm1 ,||t||“1

|νn,dptq|
2 ´ ppm,m1q

¸

`

ff

,

(60)

which we bound applying a Talagrand Inequality (see Section B.2). Following notations of Section B.2,
we have three terms H2, v and M1 to compute. Let us denote by m˚ “ m_m1, for t P Sm`Sm1 , }t} “ 1,
it holds

}t}2 “ }
m˚´1
ÿ

j“0

ajϕj}
2 “

m˚´1
ÿ

j“0

a2
j “ 1.

Computing H2. By the linearity of νn,d and the Cauchy Schwarz inequality, we have

νn,dptq
2 “

˜

m˚´1
ÿ

j“0

ajνn,dpϕjq

¸2

ď

m˚´1
ÿ

j“0

a2
j

m˚´1
ÿ

j“0

ν2
n,dpϕjq “

m˚´1
ÿ

j“0

ν2
n,dpϕjq.

One can check that the latter is an equality for aj “ νn,dpϕjq. Therefore, taking expectation, it follows

E

«

sup
tPS˚m,||t||“1

ν2
n,dptq

ff

“

m˚´1
ÿ

j“0

Varpνn,dpϕjqq “
1

n

m˚´1
ÿ

j“0

Varpϕ
pdq
j pX1qq

ď
1

n

m˚´1
ÿ

j“0

E
”

ϕ
pdq
j pX1q

2
ı

“
Vm˚,d
n

“: H2.

Computing v. It holds for t P Sm ` Sm1 , }t} “ 1,

Var
´

p´1qdtpdqpX1q

¯

ď

ż

tpdqpxq2fpxqdx “

ż

˜

m˚´1
ÿ

j“0

ajϕ
pdq
j pxq

¸2

fpxqdx(61)

ď 2

ż

˜

d´1
ÿ

j“0

ajϕ
pdq
j pxq

¸2

fpxqdx` 2

ż

¨

˝

m˚´1
ÿ

j“d

ajϕ
pdq
j pxq

˛

‚

2

fpxqdx.

The first term of the previous inequality is a constant depending only on d. For the second term, we
consider separately the Laguerre and Hermite cases.
The Laguerre Case (ϕj “ `j). Using (35) and the Cauchy Schwarz inequality, it holds that

ż

¨

˝

m˚´1
ÿ

j“d

aj`
pdq
j pxq

˛

‚

2

fpxqdx ď3d
d
ÿ

k“0

ˆ

d

k

˙
ż

¨

˝

m˚´1
ÿ

j“d

aj

ˆ

j!

pj ´ kq!

˙
1
2

x´
k
2 `j´k,pkqpxq

˛

‚

2

fpxqdx

ď3d
d
ÿ

k“0

ˆ

d

k

˙

sup
xPR`

fpxq

xk

m˚´1
ÿ

j“d

a2
j

j!

pj ´ kq!
ď Cpdqpm˚qd,(62)

where we used the orthonormality of p`j,pkqqjě0 and where Cpdq is a constant depending only on d and

supxPR`
fpxq
xk

.
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The Hermite case (ϕj “ hj). Similarly, using Lemma 5.2 and the orthonormality of hj , it follows

ż

¨

˝

m˚´1
ÿ

j“d

ajh
pdq
j pxq

˛

‚

2

fpxqdx ďp2d` 1q
d
ÿ

k“´d

ż

¨

˝

m˚´1
ÿ

j“d

ajbk,jhj`kpxq

˛

‚

2

fpxqdx

ďCpdq}f}8pm
˚qd.(63)

Plugging (62) or (63) in (61), we set in the two cases v :“ c1pm
˚qd where c1 depends on d and either on

supxPR`
fpxq
xk

(Laguerre case) or }f}8 (Hermite case).
Computing M1. The Cauchy Schwarz Inequality and }t} “ 1 give

}p´1qdtpdq}8 “ }
m˚´1
ÿ

j“0

p´1qdajϕ
pdq
j }8 ď sup

xPR

g

f

f

e

m˚´1
ÿ

j“0

ϕ
pdq
j pxq

2.(64)

The Laguerre case. We use the following Lemma whose proof is a consequence of (2) and an induction
on d.

Lemma A.1. For `j given in (1), the d-th derivative of `j is such that }`
pdq
j }8 ď Cdpj ` 1qd, @j ě 0 and

where Cd is a positive constant depending on d.

Using Lemma A.1, we obtain

m˚´1
ÿ

j“0

`
pdq
j pxq

2 ď C2
dpm

˚q2d`1.(65)

The Hermite case. The d first terms in the sum in (64) can be bounded by a constant depending only on
d. For the remaining terms, Lemma 5.2 and }hj}8 ď φ0 (see (4)) give

m˚´1
ÿ

j“d

rh
pdq
j pxqs

2 ď C2
dφ

2
0

d
ÿ

k“´d

m˚´1
ÿ

j“d

jd ď Cpm˚qd`1,(66)

where C is a positive constant depending on d and φ0.

Injecting either (65) or (66) in (64), we set M1 “ Opmd` 1
2 q in the Laguerre case or M1 “ Opm

d
2
` 1

2 q in
the Hermite case.

Now, we apply the Talagrand Inequality see Appendix B.2 with ε “ 1{2, it follows

E

«˜

sup
tPSm`Sm1 ,||t||“1

|νn,dptq|
2 ´ 4H2

¸

`

ff

ď
C1

n

ˆ

v exp

ˆ

´C2
nH2

v

˙

` C3
M2

1

n
exp

ˆ

´C4
nH

M1

˙˙

: “
C1

n
pUdpm

˚q ` Vdpm
˚qq .

The Laguerre Case. We have

Udpm
˚q “ c1pm

˚qd exp

ˆ

´C2
Vm˚,d
c1pm˚qd

˙

and Vdpm
˚q “ C3c2

pm˚q2d`1

n
exp

˜

´C4

?
n

a

Vm˚,d

c2pm˚q
d` 1

2

¸

.

From (40) and the value of mnpdq, we obtain

Udpm
˚q ď c1pm

˚qd expp´C 12m
˚ 1

2 q and Vdpm
˚q ď C3c2pm

˚qd`
1
2 expp´C 14

?
npm˚q´

d
2
´ 1

4 q.



OPTIMAL ADAPTIVE ESTIMATION ON R OR R` OF DERIVATIVES 29

Using the value mnpdq, it holds pm˚qd`1{2 ď n{log3pnq, which implies (recall m˚ “ m_m1)
ÿ

m1PMn,d

Vdpm
˚q ď C

ÿ

m1PMn,d

pm˚qd`
1
2 exp

`

´C4 log2pnq
˘

ď Σd,2,

where Σd,2 is a constant depending only on d. Next, it follows

n
ÿ

m1“1

Udpm
˚q “

m
ÿ

m1“1

Udpm
˚q `

n
ÿ

m1“m

Udpm
˚q “ c1m

d`1 expp´C 12m
1
2 q `

n
ÿ

m1“m

c1pm
1qd expp´C 12m

1 1
2 q.

The function m ÞÑ md`1 expp´C 12m
1
2 q is bounded and the sum is finite on m1, it holds

C1

n
ÿ

m1“1

Udpm
˚q ď Σd,1, where Σd,1 depends only on d.

The Hermite case. Only the second term Vdpm
˚q changes. Here, it is given by

Vdpm
˚q “ C3c2

pm˚qd`1

n
exp

˜

´C3

?
n

a

Vm˚,d

c2pm˚q
d
2
` 1

2

¸

ď C3c2pm
˚q1{2 expp´C 14

?
npm˚q´

1
4 q

ď C3c2pm
˚q1{2 expp´C 14pm

˚q
d
2 q,

where we used (45) and the value of mnpdq. We derive that
ř

m1PMn,d
Vdpm

˚q ď Σd,2.

Gathering all terms, it follows

E

«˜

sup
tPSm`Sm1 ,||t||“1

|νn,dptq|
2 ´ 4H2

¸

`

ff

ď
Σ

n
, where Σ “ Σd,1 ` Σd,2

Plugging this in (60) gives the announced result.

A.7.2. Proof of part (ii). We use the Bernstein Inequality (see Appendix B.3) to prove the result. Define

Z
pmq
i “

m´1
ÿ

j“0

pϕ
pdq
j pXiqq

2, then, pVm,d “
1

n

n
ÿ

i“1

Z
pmq
i

We select s2 and b such that VarpZ
pmq
i q ď s2 and |Z

pmq
i | ď b. By the computation of M1 (see Proof of

part (i)), we set b :“ C˚mα, with α “ 2d ` 1 (Laguerre case) or α “ d ` 1 (Hermite case), where C˚

depends on d. For s2, using that VarpZ
pmq
i q ď ErpZpmqi q2s ď b

řm´1
j“0 E

”

pϕ
pdq
j pXiqq

2
ı

“ C˚mαVm,d “: s2.

Applying the Bernstein Inequality, we have for Sn “ nppVm,d ´ Vm,dq

P

˜

ˇ

ˇ

ˇ

ˇ

Sn
n

ˇ

ˇ

ˇ

ˇ

ě

c

2xC˚mαVm,d
n

`
C˚mαx

3n

¸

ď 2e´x, @x ą 0.(67)

Choose x “ 2 logpnq and define the set

Ω :“

#

m PMn,d,
1

n
|Sn| ď 2

c

C˚mα logpnqVm,d
n

`
2C˚mα logpnq

3n

+

.

Consider the decomposition,

E
“

ppendppmnq ´ypendppmnqq`

‰

ď E
“

ppendppmnq ´ypendppmnqq` 1Ω

‰

` E
“

ppendppmnq ´ypendppmnqq` 1Ωc
‰

.
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Using 2xy ď x2 ` y2, we have on Ω

|pV
pm,d ´ V pm,d| ď

V
pm,d

2
`

2C˚ pmα logpnq

n
`

2C˚ pmα logpnq

3n
“
V
pm,d

2
`

8

3

C˚ pmα logpnq

n
.

The constraint on mn gives pmd`1{2 ď Cn{plogpnqq2 together with (40) giving V
pm,d ě c˚ pmd`1{2 give for

α “ 2d` 1 (Laguerre case) that 8C˚

3
pmα logpnq

n ď 8CC˚

3c˚
V
xm,d

logpnq ď
V
xm,d

4 , for n large enough and

E
“

ppendppmnq ´ypendppmnqq` 1Ω

‰

ď
3

4
Erpendppmnqs.(68)

In the Hermite case (α “ d ` 1) computations are similar as pmd`1 ď pm2d`1. For the control on Ωc, we
write, using (67),

E
“

ppendppmnq ´ypendppmnqq` 1Ωc
‰

ď 2κPpΩcq ď 2κ
ÿ

mPMn,d

2e´2 logpnq :“
Σ2

n
.(69)

Gathering (68) and (69), we get the desired result.

Appendix B. Some inequalities

B.1. Asymptotic Askey and Wainger formula. From Askey and Wainger (1965), we have for ν “
4k ` 2δ ` 2, and k large enough

|`k,pδqpx{2q| ď C

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

aq pxνqδ{2 if 0 ď x ď 1{ν

bq pxνq´1{4 if 1{ν ď x ď ν{2

cq ν´1{4pν ´ xq´1{4 if ν{2 ď x ď ν ´ ν1{3

dq ν´1{3 if ν ´ ν1{3 ď x ď ν ` ν1{3

eq ν´1{4px´ νq´1{4e´γ1ν
´1{2px´νq3{2 if ν ` ν1{3 ď x ď 3ν{2

fq e´γ2x if x ě 3ν{2

where γ1 and γ2 are positive and fixed constants.

B.2. A Talagrand Inequality. The Talagrand inequalities have been proven in Talagrand (1996) and
reworked by Ledoux (9597). This version is given in Klein and Rio (2005). Let pXiq1ďiďn be independent
real random variables and

νnptq “
1

n

n
ÿ

i“1

ptpXiq ´ ErtpXiqsq,

for t in F a class of measurable functions. If there exist M1, H and v such that:

sup
tPF

}t}8 ďM1, Ersup
tPF

| νnptq |s ď H, sup
tPF

1

n

n
ÿ

i“1

VarptpXiqq ď v,

then, for ε ą 0,

E
„ˆ

sup
tPF

|ν2
nptq| ´ 2p1` 2εqH2

˙

`



ď
4

K1

ˆ

v

n
exp

ˆ

´K1ε
nH2

v

˙

`
49M2

1

K1C2pεqn2
exp

ˆ

´K 1
1Cpεq

?
ε
nH

M1

˙˙

,

where Cpεq “ p
?

1` ε´ 1q ^ 1, K1 “ 1{6 and K 1
1 a universal constant.
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B.3. Bernstein Inequality (Massart (2007)). Let X1, . . . Xn, n independent real random variables.
Assume there exist two constants s2 and b, such that VarpXiq ď s2 and |Xi| ď b. Then, for all x positive,
we have

P
ˆ

|Sn| ě
?

2ns2x`
bx

3

˙

ď 2e´x, with Sn “
n
ÿ

i“1

pXi ´ ErXisq.
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