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In this paper we consider stability issues of manipu lators in contact with a rigid environment, i.e. sub mitted to a unilateral constraint of the form 'lfo( q) ;::: 0, where q is the vector of generalised coordinates. The interaction force feedback loop contains time-delays which may induce instability phenomena. Sufficient delay-dependent conditions are derived to guarantee that the robot's tip remains in contact with the suiface. These conditions are found by taking into account the fact that, due to the unilateral nature of the constraint, the interac tion force must have constant sign during the whole task. We analyse the cases of proportional and proportional-integral force feedback.

and Wang [START_REF] Macclamroch | Feedback stabilization and tracking of constrained robots[END_REF], Yoshikawa [START_REF] Yoshikawa | Dynamic hybrid position/force control of robot manipulation: description of hand constraints and calculation of joint driving force[END_REF], Wen and Murphy [START_REF] Wen | Stability analysis of position and force control for robot arms[END_REF], Yun [START_REF] Yun | Dynamic state feedback control of constrained robot manipulators[END_REF], Sinha and Goldenberg [START_REF] Sinha | A unified theory for hybrid control of manipulators[END_REF], Duffy [START_REF] Duffy | The fallacy of modern hybrid control theory that is based on 'orthogonal complements' of twist and wrench[END_REF], Fisher and Shahid Mujtaba [START_REF] Fisher | Hybrid position/force control: a correct formulation[END_REF], De Luca and Manes [START_REF] De Luca | Hybrid force-position control for robots in contact with dynamic environments[END_REF] and Mills [START_REF] Mills | Stability of robotic manipulators during transition to and from compliant motion[END_REF][START_REF] Mills | Stability and control of elastic-joint manipu lators during constrained motion tasks[END_REF] to cite only a few.

Contact instability [START_REF] Colgate | An analysis of contact instability in terms of passive physical equivalents[END_REF] and performance issues of force controllers have been investigated in detail in Visher and Khatib [START_REF] Visher | Performance evaluation of force/torque feedback control methodologies[END_REF], An and Hollerbach [START_REF] An | Trajectory and force control of a direct drive arm[END_REF],

Volpe and Khosla [START_REF] Volpe | A theoretical and experimental investigation of impact control for manipulators[END_REF], Eppinger and Seering [START_REF] Eppinger | Three dynamic problems in robot force control[END_REF],

Wen and Murphy [START_REF] Wen | Stability analysis of position and force control for robot arms[END_REF], Kazerooni [START_REF] Kazerooni | Robust nonlinear impedance control for robot manipulators[END_REF], An [START_REF] An | Trajectory and force control of a direct drive arm[END_REF],

Mills [START_REF] Mills | Stability and control of elastic-joint manipu lators during constrained motion tasks[END_REF], Anderson and Spong [START_REF] Anderson | Bilaterial control of teleop erators with time delay[END_REF] and Niemeyer and Slotine [START_REF] Niemeyer | Stable adaptive teleoper ation[END_REF]. The effects of non-colocation of sensors and actuators have been studied in Eppinger

and Seering [START_REF] Eppinger | Three dynamic problems in robot force control[END_REF] and in Colgate and Hogan [START_REF] Colgate | An analysis of contact instability in terms of passive physical equivalents[END_REF].

Kazerooni [START_REF] Kazerooni | Robust nonlinear impedance control for robot manipulators[END_REF] and An [START_REF] An | Trajectory and force control of a direct drive arm[END_REF] have shown that unmod elled dynamics may also yield instability. Mills [START_REF] Mills | Stability and control of elastic-joint manipu lators during constrained motion tasks[END_REF] shows that small flexibilities in the joints do not destabilise the closed-loop system when a controller for rigid robots is designed. Wen and Murphy [START_REF] Wen | Stability analysis of position and force control for robot arms[END_REF] argue that if an integral force feedback is used, then integral gain should be chosen very small due to possible flexibilities in the mechanical system. A thorough study of force control strategies can be found in Volpe and Khosla [START_REF] Volpe | A theoretical and experimental investigation of explicit torque control strategies for manipulators[END_REF], where it is con cluded that integral force feedback is the best basic strategy for force control of manipulators. Pro portional force feedback is proved to be a suitable strategy for the transition phase in Volpe and Khosla [START_REF] Volpe | A theoretical and experimental investigation of impact control for manipulators[END_REF].

Some work in teleoperation systems has focused on contact instability when time-delays are present in the force feedback loop: Anderson and Spong [START_REF] Anderson | Bilaterial control of teleop erators with time delay[END_REF] used scattering theory and modelled time delays as a passive transmission line; Niemeyer and Slotine [START_REF] Niemeyer | Stable adaptive teleoper ation[END_REF] used the idea of impedance matching to supress reflections from the boundaries between the trans mission line and the master and slave manipulators.

Few studies have been devoted to force measure ment time-delays in the field of manipulator control (hybrid force/position control) [START_REF] Raibert | Hibrid position/force control of manipulators[END_REF]. Among these, Wen and Murphy [START_REF] Wen | Stability analysis of position and force control for robot arms[END_REF] and Wilfinger et al. [START_REF] Wilfinger | Integral force control with robustness enhancement[END_REF] provide a short study of delay effects in proportional force feedback, and argue that integral force feed back robustifies the closed-loop system. Fiala and Lumia [START_REF] Fiala | The effect of time delay and discrete control on the contact stability of simple position controllers[END_REF] studied the consequences of time-delays in PD motion controllers when the robot was in contact with a compliant environment. It is note worthy that the unilaterality of the constraints is not taken into account in these studies. Our main goal in this note is to examine the effects of time-delays in measured variables (in particular the interaction force between the robot's tip and environment sup posed rigid) on stability of a force control scheme.

Basically, one can make two assumptions con cerning the environment within which the robot interacts: either it is rigid, in which case the manipu lator is to be considered as a mechanical system with holonomic constraints [START_REF] Yoshikawa | Dynamic hybrid position/force control of robot manipulation: description of hand constraints and calculation of joint driving force[END_REF]; or it is compliant, i.e. the interaction force F and the environment's deformation q verify an equation like F = q (if the environment acts like a spring with stiffness matrix K); here F and q are six-dimensional vectors (F is a wrench) expressed in the so-called task-frame, and thus contain force (translations) and torques (rotations) [START_REF] Chiaverini | The parallel approach to force-position control of robotic manipulators[END_REF][START_REF] Lozano | Adaptive hybrid force-position control for redundant manipulators[END_REF]. Force measurement delays have been experimen tally evidenced in Wilfinger et al. [START_REF] Wilfinger | Integral force control with robustness enhancement[END_REF] and Chiu and Lee [START_REF] Chiu | Robust optimal impact controller for manipulators[END_REF]. Thus, for example, in the latter a transition phase controller sufficiently robust to force sensor delays and parametric uncertainties is presented.

In this paper, we shall consider the very simple example of a 1 degree of freedom (d.f.) prismatic manipulator (i.e. a mass m) that contacts a 1 d.f. environment. Notice that the study of such a simple model proves to be sufficient in higher-dimensional cases when the non-linear robot dynamics are deco upled and compensated for [START_REF] Mills | Control of robotic manipu lators during general task execution: a discontinuous control approach[END_REF][START_REF] Yoshikawa | Dynamic hybrid position/force control of robot manipulation: description of hand constraints and calculation of joint driving force[END_REF]; moreover, it should be noted that problems on force control of manipulators are often studied and understood with 1 d.f. models (masses, springs, dampers) ( [START_REF] Eppinger | Three dynamic problems in robot force control[END_REF][START_REF] Volpe | A theoretical and experimental investigation of impact control for manipulators[END_REF] and references therein). We shall treat only the rigid environment case.

The dynamical equations are given by:

{mij(t) = U if q > 0 (1) F+U= O ifq=O
where U is the (force) control input and F is the interaction force between the mass and the environ ment. The first equation in [START_REF] An | Trajectory and force control of a direct drive arm[END_REF] characterises the free motion, whereas the second one characterises constrained motion.

Remark 1. Note that assuming F = -kq and that velocity q is available for feedback is equivalent to allowing the designer to use the force derivative F"(t) = -kq(t) in the controller (provided k is known). This would, however, require differentiation of the measured force F m in the rigid case and this is not a practically feasible procedure, since F m is often corrupted by noise [START_REF] Volpe | A theoretical and experimental investigation of impact control for manipulators[END_REF]. Thus, as we shall see later, closed-loop equations for the rigid case will typically contain F together with its successive time integrals [START_REF] Yoshikawa | Dynamic hybrid position/force control of robot manipulators: controller design and experiment[END_REF].

Since we are interested in the closed-loop equations when the measured quantities contain time-delays, these equations will typically become functional dif ferential equations of neutral type (NFDE), which can be characterised by the fact that the rate of change of state depends not only on the past states, but also on the past rates of state [START_REF] Hale | Introduction to func tional differential equations[END_REF][START_REF] Kolmanovskii | On the stability of first order nonlinear equations of neutral type[END_REF].

There has been special interest in the study of NFDE in the last 20 years [START_REF] Castelan | A Lyapunov functional for a matrix neutral difference-differential equation with one delay[END_REF][START_REF] Cruz | Stability of functional differential equations of neutral type[END_REF][START_REF] Gopalsamy | A simple stability criterion for linear neutral differential systems[END_REF][START_REF] Kolmanovskii | On the stability of first order nonlinear equations of neutral type[END_REF][START_REF] Kolmanovskii | Stability of functional differential equations[END_REF][START_REF] Melvin | Lyapunov' s direct method applied to neutral functional differential equations[END_REF][START_REF] Slemrod | Asymptotic stability criteria for linear systems of difference-differential equations of neutral type and their discrete analogues[END_REF] since these 'special' differential equations are fre quently encountered in the modelling of unsteady motion of the elastic flying vehicle (as for example the aeroautoelasticity models) or in the lossless transmission lines ([18,21] and references therein).

The stability criteria can be classified into two classes: frequency-domain methods (the study of special analytic functions) and time-domain methods (the so-called Lyapunov methods based on the study of some Lyapunov functionals or functions). Since our interest concerns the stability behaviour depending or not depending on the size of delay, we have considered the Lyapunov methods as more relevant to our study. The idea [START_REF] Hale | Introduction to func tional differential equations[END_REF] is to construct a special functional which is 'positive-definite', has an 'infinitesimal upper limit' and which has the derivative computed along the trajectories of the given system 'negative-definite'.

It is important to note that in the particular case we are studying, stability of the closed-loop neutral functional differential equations is not sufficient for stability of the robotic task, in the sense that there can be loss of contact between the robot's tip and the environment's surface even if the closed loop is stable.

This paper is organised as follows: In Section 2, kT, b= (k+1)T, c= (k+2)T, we get a= 1, {3= -T.

2. Preliminaries

Closed-Loop Equations

Let us consider the following control input:

(

) 2 
where Fm is the measured force. We take the desired interaction force Fd < 0 and constant. Note that integration is taken on [ T,t] because we need an initial condition given on [0, T) to define the control law. It makes no sense to define U in [START_REF] An | The role of dynamic models in cartesian force control of manipulators[END_REF] without defining an initial condition on the interaction force.

When there is no delay in the force measurements (i.e. T = 0) and U is applied from 0, then (1) is equal to

(1 + J.q) F (t) + A2 t F (z)dz = 0

(3)

which leads to the algebraic equation F == Fd if U(O) = -Fd + A1F(t). Following Yoshikawa [START_REF] Yoshikawa | Dynamic hybrid position/force control of robot manipulation: description of hand constraints and calculation of joint driving force[END_REF] and MacClamroch and Wang [START_REF] Macclamroch | Feedback stabilization and tracking of constrained robots[END_REF], the case when T #-0 is very different from the case T = 0. Indeed, if T =0, the integral action is from a theoretical point of view useless since F = Fd for all t;::: : 0 and it to be considered for practical purpose only. Conversely, when non-zero delay is present, the integral term plays a significant role in the closed-loop dynamics, as we shall see in this paper. Now let us assume that the measured force Fm(t) = F(t-T), where T > 0 represents a strictly positive time-delay. Then (3) becomes [START_REF] Boese | Stability in a special class of retarded difference-differential equations with interval-valued parameters[END_REF] which can be rewritten defining x(t) = Jh-T F (z) d z as

(5)

Remark 2. We assume implicitly that the robot is in contact with the environment. In particular, as long as the contact is maintained, then q = q = 0. This is the reason why adding a damping term -A2q in [START_REF] An | The role of dynamic models in cartesian force control of manipulators[END_REF] is not necessary for the analysis.

Remark 3. Instead of the control in (2), we could have also supposed that U is given by U = -F(t) + A1F(t) + A2 f F (z)dz which yields

x(t) = (1 -A1)x(t -T) -Azx(t -T) ( 6 
)
Since both equations in [START_REF] Brogliato | Nonsmooth mechanics: models, dynam ics, control. 2nd edn[END_REF] and ( 6) are quite similar, it is sufficient to study [START_REF] Brogliato | Nonsmooth mechanics: models, dynam ics, control. 2nd edn[END_REF].

Remark 4. Let us consider the following control ler:

The closed-loop equation in the ideal case is

(1 + A1)F(t) + A2F(t) = 0 (7)
which is a first-order linear differential equation.

Now assume Fm (t) = F(t-T). Then we get F(t) + A1F(t -T) + A2F(t -T) = 0

which can be written with x(t) = F(t-T) and A2 > 0 as

A I 1 x(t) = --x(t) --x(t + T) A2 Az
which is a non-causal differential equation.

The closed-loop system is ill posed in this case, because the open-loop system in (1) is algebraic and the controller in [START_REF] Castelan | A Lyapunov functional for a matrix neutral difference-differential equation with one delay[END_REF] is a function of the output derivative.

Stability of the Functional Closed-Loop Equations

Using fundamental results of the stability theory for neutral functional differential equations [START_REF] Hale | Introduction to func tional differential equations[END_REF] we can state the following result:

Proposition 1. Supposing 0 < A1 < 1, A2 > 0 the trivial solution of the NFDE (5) is uniformly asymp totically stable for any constant delay T satisfying

-At T<---Az

The proof is given in the Appendix.

(
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Remark 5. The condition At < 1 is an obvious necessary condition for stability analysis since that is equivalent to the stability of the operator 0J t 4> = 4>(0) -AI 4>(-T).

Remark 6. If At= 0 in (2), then stability of (3) remains unchanged. On the contrary, (5) becomes [START_REF] Chiu | Robust optimal impact controller for manipulators[END_REF] which is no longer an NFDE, but an RFDE (retarded functional differential equation [START_REF] Kolmanovskii | Stability of functional differential equations[END_REF].

In this situation, the real condition of stability [START_REF] Boese | Stability in a special class of retarded difference-differential equations with interval-valued parameters[END_REF][START_REF] Niculescu | Time-delay systems: qualitative aspects on the stability and stabilization[END_REF] is

37T T<-2Az

With At = 0 in [START_REF] Chiaverini | The parallel approach to force-position control of robotic manipulators[END_REF] we obtain a 'relatively restric tive' condition

T< Az

which can be obtained using a Razumikhin type theorem [START_REF] Hale | Introduction to func tional differential equations[END_REF][START_REF] Niculescu | Time-delay systems: qualitative aspects on the stability and stabilization[END_REF]. Furthermore, from (8) A2 is a 'measure' for the admissible delay size for a given At.

Remark 7. If A2 = 0 we obtain x( t) = -At.x(t -T) [START_REF] Colgate | An analysis of contact instability in terms of passive physical equivalents[END_REF] which is a functional equation in .X(t). A necessary and sufficient condition for the stability of (10) is I At l < 1 [START_REF] Hale | Introduction to func tional differential equations[END_REF]. U in (2) is a simple proportional force feedback in this case.

Wen and Murphy [START_REF] Wen | Stability analysis of position and force control for robot arms[END_REF] have already pointed out the necessity of having I At l < 1 for stability of a proportional force feedback using a different argu ment.

Contact Instability Phenomena Analysis

In the previous section we provided mathematical conditions that guarantee stability of the closed-loop system. In this section we analyse conditions under which the robot may lose the contact, and we clearly identify time-delays to be a cause of possible bounc ing of the robot's tip on the environment.

It is important to note that the stability conditions derived in the foregoing section do not guarantee a constant sign of the system's state, i.e. of the inter action force. Indeed, the closed-loop system may be asymptotically stable but oscillating. In our case, a positive sign of F during a non-zero time interval means that contact is lost, and the corresponding open-loop system is not the same (namely, the equation in [START_REF] An | Trajectory and force control of a direct drive arm[END_REF] becomes a second-order differential equation). Therefore mathematical stability con ditions deduced in the previous section (which are sufficient conditions for the stability of the con sidered functional differential equation) are not suf ficient for stability of the contact task.

Conditions for Interaction Force Constant Negative Sign

In the next two paragraphs, we analyse the sign of the interaction force F, when At > 0, A2 = 0 (proportional force feedback) and when At > 0, A2 > 0 respectively (proportional interaction force feedback).

Proportional Force Feedback

Let us first analyse the case when A2 = 0, i.e. U = -Fd + AJ? m• The closed-loop equation is given in [START_REF] Mills | Stability of robotic manipulators during transition to and from compliant motion[END_REF]. Since we assume that the robot is in contact with the environment before the first instant (taken here to be equal to T) when U is applied, we must assume that on [0, T] the contact force has a certain value, say U [O,r J = -F0, F0 < 0. Note that if we do not suppose that contact is established before U is applied, then we must study the transition phase between unconstrained and constrained motion [START_REF] Brogliato | On the control of finite-dimensional mechanical systems with unilateral contraints[END_REF].

For more details on the complexity analysis of the transition phase see, for instance, Brogliato [START_REF] Brogliato | Nonsmooth mechanics: models, dynam ics, control. 2nd edn[END_REF].

Since we study the stability properties of the constrained-motion task, we must assume that con tact has in fact always occured in the past, which is an implicit assumption in all stability analysis of hybrid force/position controllers [START_REF] Kolmanovskii | On the stability of first order nonlinear equations of neutral type[END_REF][START_REF] Raibert | Hibrid position/force control of manipulators[END_REF][START_REF] Yoshikawa | Dynamic hybrid position/force control of robot manipulation: description of hand constraints and calculation of joint driving force[END_REF]. From a mathematical point of view, the value of the interac tion force F on [0, T] is a necessary condition for the existence of a solution to the considered func tional equation.

The problem can be formulated as follows: for given F0 and Fct, find conditions such that the sign of F remains constant for all t ;::: : 0.

Since on [O,T), we have Fro.r) = F0 < 0 and from (1) and (2) with A2 = 0 on [ T,2T)

Thus we obtain

I Fd l > 1 � 1 A1 I Fo l <=> F[T,2T) < 0 (12)
We have the following:

Proposition 2.
sgn[Fr kT . (k+IJTJ (t)] = sgn[Fr o,T) ] <=> I Fd l (13) > 1 � � AI I Fo l.

where sgn denotes the sign function.

Proof It follows by simple computations (from [START_REF] Cruz | Stability of functional differential equations of neutral type[END_REF]) that

FrzT,3T)(t) = -Ur2T,3T)(t) = Fd -AI[F [T,2T) (t -T) -Fd] ( 14 
) = (1 -A'f )Fd + A T Fo
Since Ar< 1 (from Proposition 1), Fct < 0, F0 < 0, we have Fr27,37 We now examine the general case when A1 > 0, A2 > 0. The closed-loop equation is given by [START_REF] Brogliato | Nonsmooth mechanics: models, dynam ics, control. 2nd edn[END_REF].

J (t) < 0 for all t E [2T,3T). Now (from [1]) Fr3T, 4T) (t) = -u[3T,4Tit)
Supposing that u[O,T) = -Fo > 0, we obtain u[T,2Tit) = -Fd + AI(F o -Fd) + Az(t (15) -T)(F0 -Fd), Vt E [T,2T)
We also suppose that

I Fd l > 1 � 1 A1 I Fo l •
Assume first F0 -Fd < 0.

From ( 15) we get u[T,2T)(t) + Fd < 0, for all t E [ T,2T). It follows that

I A1 + A2T I I I Fd > 1 + AI + AzT Fo ==> u[T,2T)(t) > 0, Vt E [T,2T)
In this case for all t E [2T,3T)

we have u[2T,3T)(t) = -Fd + A I [F [T,2T) (t -T) -Fd] + Az J � C Fo -Fd)dz + Az r -T (F [T,2T) (Z) -Fd)dz (16) (17) 
Since F0 -Fd < 0 and Fr7.z7/t -T) -Fd > 0 (from ( 15)), nothing can be straightforward con cluded on the sign of Urz T,3T) (t). However, note from (17) that Ur27 ,3 7 l (t) is a poly nomial of order 2 in t having coefficients depending on A � > A2, Fd, F0• Notice that we have for t E [kT,(k + 1)T)

J t k-2 J (j+ I)T 7 
Fm(z)dz = � i T FuT,(i+I)T)(z)dz (18) + J ' -T Fr rk-I)T,kT)(z)dz (k-I)T Therefore, U in (1) is a polynomial of order k in t for t E [h, (k + 1)T) by simple induction from [START_REF] Kazerooni | Robust nonlinear impedance control for robot manipulators[END_REF].

It is important to note that although F0 -Fct < 0, from ( 15) and (16), Fr7.z7 J (t) -Fd > 0 and Fr7.z7)(t) < 0. This means that there is a jump in the interaction force at t = T, but no loss of contact.

One sees that it is difficult to draw such conclusions from [START_REF] Kazerooni | Robust nonlinear impedance control for robot manipulators[END_REF]. However, note that since Ur kT . (k+I)T) (t) = -Fd + A IC F rrk-I)T,kT) (t -T) -Fd) + Az r Fm (z)dz [START_REF] Kazerooni | Robust nonlinear impedance control for robot manipulators[END_REF] we have the following:

Proposition 3.
U(t) is piecewise continuous with discontinuities at t = jT, for all integers j 2: 1. The jumps' magnitudes are bounded and tend towards 0 as t--> oo.

Proof From [START_REF] Kazerooni | Robust nonlinear impedance control for robot manipulators[END_REF] 

((k + 1)L) = ( -1) k A / (F [T,2T) (T + ) -F[O,T)(L)) ( 20 
)
From [START_REF] Kolmanovskii | On the stability of first order nonlinear equations of neutral type[END_REF] it follows that if Fn =/= F0, we have discontinuities in F(t) and U(t) respectively, for all points t=jT, with j a positive integer.

Furthermore, from Proposition 1, I A, I < 1 and from [START_REF] Volpe | A theoretical and experimental investigation of explicit torque control strategies for manipulators[END_REF] it follows that the jumps' magnitude tends towards 0 when k--> oo, which completes the proof.

D

Remark 8. From the proof of Proposition 3, a necessary and sufficient condition to have no jumps in the closed-loop system's solution is that u[T,2T)( T) = -F [O,T) ' which is equivalent to having Fro.T) = Fd. In general such a condition is not verified, so the interaction force possesses disconti nuities. Furthermore, the sign of the jump is alterna tively positive and negative.

Let us now give sufficient conditions for F in [START_REF] An | Trajectory and force control of a direct drive arm[END_REF] and [START_REF] An | The role of dynamic models in cartesian force control of manipulators[END_REF] (see also [START_REF] Kazerooni | Robust nonlinear impedance control for robot manipulators[END_REF]) to have a constant negative sign for all t 2: 0. Proposition 4. There exist A'j' > 0, Aj > 0 such that for any 0 < A1 < A'j' < 1, 0 < A2 < Aj, we have sgn(F(t)) = -1 for all t 2: 0. Proof From Proposition 2, U(t) and F(t) have con stant sign for A= 0. Since U(t) and F(t) are continu ously dependent on A1 and A2 on [ T,2T), from [START_REF] Duffy | The fallacy of modern hybrid control theory that is based on 'orthogonal complements' of twist and wrench[END_REF] and [START_REF] Fisher | Hybrid position/force control: a correct formulation[END_REF] it follows that there exists a A�' l > 0, such that F(t) and U(t) still have constant sign on [ T,2T).

Since Fr7,z7)(2r_) < 0, there always exists a

A\n>o such that Fr27,37 l (2T + ) < 0 for any bounded F tiF o (see Proposition 3). Fr kT,(k+l)T) ((k+l)L) < 0, there exists a 0 < A\ k J < 1 such that Fr< k+l)T,(k+Z)T) ((k+1)T + ) < 0 for any bounded F0 -Fd. There also exists a A)_ k l > 0 such that Fr< k+i)T.(k+2)T) (t) < 0, t E ((k + l)T, (k + 2)T), from the polynomial form of Fr< k+l)T,(k+Z)Ti t) in A1, Az.

From Proposition 1, it follows that there exists a bounded maximum force magnitude F M • Let kM be the index corresponding to the maximum force magnitude. Imposing Fr kMT,((kM+ l)TJ (t) < 0 on t E [kMT,(k0l)T), we can deduce the corresponding maximal values 0 < A'j' < 1, Aj > 0.

Clearly, it is difficult to find kM explicitly, but the important fact here is about the existence of A 'j' and Aj (the stability of the NFDE associated to the closed-loop system guarantees this existence).

Finally, let us note that if Fro.)T -Fd > 0, similar conclusions hold since Fr7.z7)(t) -Fd < 0 from [START_REF] Duffy | The fallacy of modern hybrid control theory that is based on 'orthogonal complements' of twist and wrench[END_REF], and so on.

D

Remark 9. Wen and Murphy [START_REF] Wen | Stability analysis of position and force control for robot arms[END_REF] show that the integral force feedback gain has to be small enough to guarantee robustness with respect to environment ftexibilities, when the measured force contains time delays. Proposition 4 shows that even in the ideal rigid case, small A2 improves the closed-loop behav iour, and allows larger delay (see [START_REF] Chiaverini | The parallel approach to force-position control of robotic manipulators[END_REF]) for fixed A,.

Bouncing Phase Analysis

In this section we analyse the behaviour of the system when the 'robot' loses contact with the environment, which implies a phase of rebounds since we deal with the rigid case.

The point is to determine if this phase is stable or not, i.e. will the mass be stuck on the environ ment again and will the rebounds stop?

Proportional Force Feedback

Let us consider A2 = 0. If [START_REF] De Luca | Hybrid force-position control for robots in contact with dynamic environments[END_REF] is not satisfied, then Fr7.z7)( T) > 0: the closed-loop equations are such that there is a jump in the interaction force at t = T, and the control force U( T) is negative for a non zero time interval starting in T. From [START_REF] Cruz | Stability of functional differential equations of neutral type[END_REF] the control input on t E [ T,2T) is constant and given by Ur T .z Ti t) = -(1 + A,)Fd + A1Fro,T) < o

In conclusion the contact is lost at t = T and the interaction force remains positive on the whole interval [ T,2T].

For t 2': 2T, the measured interaction force is zero and the control input becomes constant and is given by

Urz T .'fit) = -(1 + A,)Fd > o
Note also that (1) becomes mij(t)

We get on [T,2T) U for t 2': T.

( ) Ur T,2TJ ) 2 q t = --(t -T 2m

and on [2T,t1)

(21) 2Urz Tf) U q(t) = __ • f (t -2T? + 2 [T,ZT) T (22) 2m m (t _ T) + 2U [ 7 ,2 7 J j2 m
where fr is the final impact time and t1 is the time of the first impact between the mass and the environment

Let us simply note that since the input force applied to the mass is constant for t 2': 2T, the system is strictly identical to a bouncing ball submit ted to gravity.

Then a necessary and sufficient conditon to get t1 < oo is that the restitution coefficient e > 0 between the mass and the environment be < 1; see, for example, Wang [START_REF] Wang | Dynamic modeling and stability analysis of mechanical sytems with time-varying topologies[END_REF].

We suppose that t1 < oo, Roughly, a relation similar to [START_REF] Fiala | The effect of time delay and discrete control on the contact stability of simple position controllers[END_REF] is true between two impacts, the physical impact law providing initial conditions for q(t) after each impact (note that q(t k ) = 0 at impact times tk).

On t E [t1,t1 + T), we get u[tr'rhlt

) = -(1 + A,)Fd > o and on [t1, t1 + 2T), we get U [tr-T,tt+2T)(t) = -(1 + A,)Fd + A,F [t p'f+ T lt -T) = -(1 -Xf)Fd
which is positive since 0 < A1 < 1.

By induction, one can show that u[y+kT,y+(k+ I )T)(t) = -(1 + (-l) k+ 'A1 + ')Fd > 0 Thus, there is no loss of contact any longer.

(

) ( 23 
) 24 
In conclusion, we have proved the following:

Proposition 5. Assume A2 = 0, and that [START_REF] De Luca | Hybrid force-position control for robots in contact with dynamic environments[END_REF] is not satisfied. Then there is at most one detachment of the mass from the constraint surface q = 0. Once contact is remade, after a series of rebounds, the interaction force remains with constant negative sign.

Remark 10. The condition is fulfilled if 2 (12) F0 = (1 + A,)Fd. We could have supposed that u[O,T) = -(1 + A1)Fd and that the force feedback is switched on at t = T. Note, however, that the analysis done in the preceding subsection is only true if there is no force disturbance acting on the system. Assume that a disturbance F P = F M x il acts on the system On t E Jl, where XLl is the characteristic function of the interval Ll � [kT, (k + l)T) for some k > 0. The stability condition in [START_REF] De Luca | Hybrid force-position control for robots in contact with dynamic environments[END_REF] becomes If Fr ck-1 )T,kTJ -:7 < 0, and if F M < 0, then I F M l < A11Frc k-IJT,kTI : note that if this condition is not satisfied, then the robot will lose contact on [h, (k+ l)T).

Furthermore, the condition I F M l ::5 I Frck -IJT,kT)I is necessary and sufficient for the robot not to lose the contact on [(k-l)T,h), but it is not sufficient for contact stability for t 2': kT. The stability analysis follows the same lines with F0 replaced by Frc k-IJT,kTJ FM A, • Remark 11. Following Remark 1, let us note that clearly the impact for transition phase should behave better if the input has a damping term. This, how ever, does not modify our analysis as long as the velocity q(t) feedback contains no time delay.

Proportional-Integral Force Feedback

Let us analyse the case A2 > 0. For the sake of simplicity, we suppose that [START_REF] Fisher | Hybrid position/force control: a correct formulation[END_REF] is not verified, so that U( T,2T) (t) ::5 0 for ( E [tf,2T); i.e. there iS lOSS of contact at t = t,. Since u[T,2T)(t) is still given by (15), we get

Ur zT,It+T)(t) =-Fd[2 T,lt+T> + A,(Fr T, ,/t -T) -Fd[2 T,t1+T) ) + Az J : C Fro,T) (25) -Fd)dz+ Az r -T (F [T,It) (z) -Fd[T,It))dz
where we emphasise that Fd may be time-varying by denoting its value on I as Fd1; for an interval I, this can be done since Fd is chosen by the designer.

We suppose that as soon as the measured interac tion force F m(t) is zero, then we set Fd == 0, i.e. on

[ t1+T , t_t+T) , F1 11( t) = 0 and Fd[t r+T.t j+T) = 0, where fr is the instant when the contact is remade after a poss ible series of rebounds.

For the mass to collide with the environment, it is necessary that u[l t+ T,3T)( t) be positive. We have Ur, 1+T,3Tit) = -Fdrt 1+T,3T) + AI( F[t 1+T,t 1+zT)( t-T)

+ A z t C FrT,t 1) -Fd[T,, 1 
)) dz so it is necessary that J � ( Fro .T) -F d) dz + t (F rT,, 1)( z ) -Fd[T,, 1)) (26) dz > 0

It should be noted that this control strategy is related to the fact that T > 0.

If T = 0, there is in the ideal case no reason for the robot to take off the surface. We do not analyse here the stability of a complete robotic task involv ing contact and non-contact phases: in this case the control strategy must be adapted suitably to guarantee stability. This is outside the scope of the present work.

From the fact that after t1 + T , the control input remains constant until t1 + T , we get u[l r+T,3T) = u[3T,'f+T)' Thus, [START_REF] Mills | Stability and control of elastic-joint manipu lators during constrained motion tasks[END_REF] is equivalent to

-t z Fd + TF o + t [( Fd -A1C Fo -Fd) + Az ( z -T)( Fo -Fd)]dz > 0 that is Az C Fo-Fd)( T-A1( t1-T) + 2 Az ( t z -T) 2 ) > 0 <=> T -At ( t1 -T) + 2 ( t1-T? < 0
Note that from [START_REF] Fiala | The effect of time delay and discrete control on the contact stability of simple position controllers[END_REF] we have + A2( A1 + 1) K( Fd -F0)

+ A �( t-t1-T)K( Fd -F0) I Fdl AziK I u[t t+T,t_r+2T)( t) > 0 {:::} I Fol > 1 -A2K (31) 
From [START_REF] Niemeyer | Stable adaptive teleoper ation[END_REF], condition [START_REF] Sinha | A unified theory for hybrid control of manipulators[END_REF] involves Fd , F0 , A�> A2

but explicit conditions on those parameters to guarantee that [START_REF] Sinha | A unified theory for hybrid control of manipulators[END_REF] is verified are difficult to be carried out.

The addition of an integral term makes the system significantly more difficult to analyse than when A2 = 0. The general tendency is that A2 must be small enough to obtain a 'stable' scheme.

Remark 12. We have analysed each control law separately, i.e. as if only a proportional feedback or a proportional-integral feedback was applied all the time.

We could also have supposed that both controllers are switched along a certain strategy, e.g. apply a proportional control during impact phases and integration during contact (Note that setting Fd == 0 whenever F m == 0 is different from using pro portional feedback since (i) both controllers need not necessarily have either the same A1 gain or desired force, (ii) when a switch is applied, one may assume that the integrator is initialised.)

Usually the integral feedback is applied when contact is established. Thus, the initial condition for the contact phase will depend on the proportional feedback value on the time instant when the switch is applied: the ideal switching time is tr; in practice the controllers will be switched before or after t1 due to bad timing in the switching strategy: this reveals the complex behaviour of such systems and the role played by both the low-level part (differential equations, delay in the force control loop) and the high-level part (the strategy that sched ules the switches between several controllers, bad timing). These problems have already received some attention [START_REF] Brogliato | On the control of finite-dimensional mechanical systems with unilateral contraints[END_REF][START_REF] Mills | Stability of robotic manipulators during transition to and from compliant motion[END_REF].

Conclusions

In this paper we have focused on the problem of stability of a robotic manipulator submitted to holonomic constraints. An important point is that the constraints are supposed to be unilateral, in the sense that if the interaction force has the wrong sign, the contact is lost. Furthermore, we have assumed that the force feedback loop contains time delays.

Sufficient delay-dependent conditions are derived to guarantee that the robot's tip remains in contact with the surface. These conditions are found by taking into account the fact that due to the unilateral nature of the constraints the interaction force must have constant sign during the whole task. We ana lyse the cases of proportional and proportional-inte gral force feedback. To the best of the authors' knowledge, this problem has been pointed out in Wen and Murphy [START_REF] Wen | Stability analysis of position and force control for robot arms[END_REF] and in Wilfinger et al. [START_REF] Wilfinger | Integral force control with robustness enhancement[END_REF],

but had not been treated before in the robotics and control literature.

  we derive the closed-loop equations and we analyse the stability of the associated functional differential equations; Section 3 is devoted to the contact insta bility problem, i.e. conditions under which the inter action force has constant sign. Finally, some con clusions are given in Section 4. Notations. G L a.b J (t) denotes the value of the func tion G(t)in [a,b). For t E [b,c), this value is given b-a ac-b 2 by Gra.b)(at+/3), where a= -

= 2 .

 2 Fd -AI[F [2T,3T) (t -T) -Fd] = (1 + A j )Fd -AIFo A j F[3TAT)(t) < 0 <=> I Fd l > 1 + A j I Fo l By induction, we have for all integers k 2:: 1 F[2 kT,(2k+I)Ti t) < 0, Vt E [2h, (2k + 1)T) F[(2 k+I)T,(2k+2)T) (t) < 0, Vt E [(2k A zk+l + 1)T, (2k + 2)T) <=> I Fd l > 1 + \ T k+l I Fo l Since F0 < 0 and for all integers k 2:: 1 and for all 0 Proportional-Integral Force Feedback

  it follows that U(t) is continuous on (kT,(k + l)T), for all integers k 2: 1. It follows by simple computations that F[T,2T)( T+) -F[O,T)( T-) = -(1 + A1 + A2T)(F0 -Fd) Frz T,3Tj (2 T + ) -Fr T,2T) (2 L) =-A J (F[T,2T)(T+) -C Fro,T)(r_)) By induction we can prove that F [(k+l)T,(k+2)Tj ((k + 1)T + ) -F [kT,(k+i)T)

<

  Fd-A1( Fo-Fd) t1 = Az( F0 -Fd) + T Therefore,[START_REF] Mills | Control of robotic manipu lators during general task execution: a discontinuous control approach[END_REF] becomes Fd-A1( F0-Fd) AzT -AI Fo -Fd 1 ( Fd -A1( F0 -Fd)) 2 __ :___ 1 + 3A I then there exists A� > 0 such that for 0 :::: :; A2 :::: :; A� , (29) is satisfied, which implies that[START_REF] Mills | Stability and control of elastic-joint manipu lators during constrained motion tasks[END_REF] is satisfied so that Ur, 1 + T,3T) > 0: A� is a function of T I Fdl and of I Fol .Contact is remade at t = t1 . On [ t1 , t1+ T) we still have Fm = 0, and Fdf'J.'J+T) = 0 as well. Hence,u[t t+T.t r2T)= -Fd + AI( -U[3T,t r)-Fd) (u[3T,t f i z -T) -Fd)dz (30)where we denote for simplicity Fd[t_r+T.'J+ Z T) as Fd < 0. Defining from ( 30) we get Then u[t_r+T,t_r+2T)( t) = -FJC 1 + AI + Az( t-tf-T))

It is clear that the operator D is stable if or equivalently [START_REF] Visher | Performance evaluation of force/torque feedback control methodologies[END_REF] which is satisfied from the Proposition statement.

In the sequel we will prove that the trivial solution of the NFDE (5) is uniformly asymptotically stable using Lyapunov's second method [START_REF] Hale | Introduction to func tional differential equations[END_REF].

Inspired by Kolmanovskii and Nosov [START_REF] Kolmanovskii | On the stability of first order nonlinear equations of neutral type[END_REF], we introduce the following Lyapunov-Krasovskii candi date:

t x 2 (fL)dfL ]de

We have (Dx, ? :::; V(x, ) :::; m( sup I x(t + lJ )I ) 2

where m = 4 + 4(1 -A1) 2 + �A 2 + 2 r + A 2 T.

Inequalities [START_REF] Volpe | A theoretical and experimental investigation of explicit torque control strategies for manipulators[END_REF] mean that the Lyapunov candidate

V is positive-definite and has an infinitesimal upper bound.

Using the inequality 2 Az,X(t) J: _ T x( O)dO ::::; A 2 ( rr 2 (t) + J: _ T r(O)dO)

we have

::::; -2 Ai1 -"-1 -A 2 T)r(r)

Based on the Proposition hypothesis, it follows that the trivial solution of (5) is uniformly asymptotically stable (from (35) and (36) see Theorem 8.1, p. 293 in Hale and Lunel [START_REF] Hale | Introduction to func tional differential equations[END_REF]). D