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I'-CONVERGENCE OF NONCONVEX INTEGRALS DEFINED ON
SOBOLEV FUNCTIONS AND VECTOR MEASURES

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND HAMDI ZORGATI

ABSTRACT. We study the I'-convergence of nonconvex integral functionals defined on
the product space of Sobolev functions and vector measures. We prove an integral
representation result of the I'-limit by assuming abstract conditions on the behavior of
minimization problems on small balls associated with the integral functionals. We apply
the result to prove new relaxation and homogenization theorems with additional vector
measure variable.
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1. INTRODUCTION

Let © C RY be a bounded open set with Lipschitz boundary. Let p>1, m € N* and
[ € N*. Let M (Q;R') be the space of the vector Radon measures and O () be the

set of all nonempty open subsets of 2. For each £ >0 we consider I. : WP (Q; R™) x
M (;RY) x O () — [0, 0] defined by

0 [ 5 (ru). Va0 e ) de ) it <L

o0 otherwise,

where £y is the Lebesgue measure on (2, and the integrands f. :  x R™ x M™V x R! —
[0, co[ are Borel measurable and satisfy the following coercivity and growth conditions
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(H;) there exist C, ¢>0 such that for every ¢ >0 and every (z,u, &, v) € QxR™xM xR!
(€ +[vl) < fe (z,u,8,0) < C(L+ [u” + [§7 + |v]) -

This double dependency in the framework of I'-convergence appeared naturally in sev-
eral works in the mathematical analysis of solid mechanics (see for instance [BJ99]). In
[EKP94] the chemical composition, as additional variable, was considered in the minimiz-
ing energy represented by an L> vector field. The additional variable can be connected
to the displacement or deformation variable via a condition, for instance, in [LDZ06]
an LP Cosserat vector emerged, through a dimension reduction process, for martensitic
thin films, representing the bending moment. In [BZZ08§], this Cosserat vector turns out
to be a vector measure due to the linear growth of the energy, which induce a double
dependency with a bounded variation deformation (see also [BFMO03, BFEM09)]).

In this work, we are interested by problems where the two differents variables v and v
are not connected. The analysis of this kind of problems, by the methods of I'-convergence
and relaxation, was studied in [CRZ10, [CRZ11l, RZ13| [CZ16), [CZ17] in the case where
the additional variable lies in L” (p > 1) space while the variable u belongs to Sobolev
or BV spaces.

Our goal is to provide an integral representation of the I'-limit of {/.}.~o when ¢ — 0
with respect to the following convergence: the sequence {(un,v,)}, C WP (Q;R™) x
M (Q;R") converges to (u,v) € WP (Q;R™) x M (Q;R") and we write (u,,v,) — (u, v)

if u, = win LP (;R™) and v, = vin M (QR') as n — oo.

The integral representation of the I'-limit of {I.}.-¢ is studied via “local-global” condi-
tions on the minimization problems associated with I,

ma(U,V;Bp(x)) = L in W, A xT)) : T)) =V T
o (B, ()  o(B,() f{"* X By (1)) : A (B, (0)) = v (B, (¢)),

A< Ly and w € u+W,? (B, (z);R™) }, (1.1)

where o € {Ly,|v*|} (see for the definition of m.). To show at the same time the
integral representation and the I'-convergence of {I.}.~o, we impose conditions on the
behavior of when € — 0 around small balls centered at . Roughly, when o0 =Ly
the successive limits ¢ — 0 and then p — 0 of give rise to the limit integrand of
the integral representation of the I'-limit of {I.}. with respect to the Lebesgue measure.
In the same way, when o = |v®| (here v° is the singular part of v in the Lebesgue
decomposition of v with respect to Ly) we find the limit integrand of the singular part.

This approach is partly inspired by the works of [DMMS86], [BEM98] and [BB00] (see
also [AHM16l, [AHMI18, [AHM17, [AHCMI17]). It allows not to assume neither quasicon-
vexity nor convexity assumptions on the initial integrands. Moreover, it seems to us that
this procedure gives in a more natural way the formula for the limit integrands. Neverthe-
less, we have to highlight that this method is heavily based on the coercivity conditions,
which is not the case for the direct method of integral representation for I'-limits (see for
instance [But89, [DM93, BDIS]).

1.1. Plan of the paper. In §2] we introduce general conditions [(H,)| and [(H3)| on local
minimization problems m, associated with the integrals {I.}.~o and we state the main
result of the paper Theorem . The proof is based on two propositions (Proposition
and Proposition [2.2)). The first one provides global bounds under integral form for the
[-liminf and I'-limsup. The second proposition is of a local nature and allows to refine

the formulas for the limit integrands. At the end of this section, we give the proof of
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the main result which is almost a direct consequence of the two propositions and the
conditions |(Hs)| and |(H3)|

The section §3]is devoted to some applications of the main result Theorem [2.1 In
and §3.2) we state two relaxation theorems with additional vector measures variable.
Relaxation means that f. = f is constant with respect to €. By assuming some natural
conditions, we prove a relaxation theorem which is truly local when p> N. While the sit-
uation is different when p < N, indeed, the complement of the set of the Lebesgue points
of u can be of non zero v* measure, which leads to a nonlocal dependence with respect
to u € WHP (Q; R™) of the singular part. In , a second relaxation theorem is estab-
lished under stronger assumption on the integrand allowing to eliminate the variable u in
the singular part of the relaxed integral. In and §3.4] we state two homogenization
theorems. The first one deals with integrands of the form W (IL‘, %,¢, v) which are Borel
measurable and periodic with respect to the second variable. The second homogenization
theorem is concerned with integrands of the form W (%, 2§, g) which are periodic with
respect to all the variables except £. In this case, we find that the I'-limit depends only
on the gradient variable (see Theorem [3.4)).

The section §4]is devoted to the proofs of Proposition [2.1) and Proposition [2.2]

In §5| we prove the relaxation theorems. The proofs consist mainly in showing that
conditions |(Hs)| and |[(H3)| are satisfied.

In §6| we prove the homogenization theorems. We verify the general conditions using
mainly subadditive theorems.

In §7), we prove some auxiliary results which are needed in the proofs of Proposition [2.1
and Proposition [2.2] The first part is concerned with results on the behavior of the local
minimization problems m. with respect the measure variable. In the second part, we
prove some results we need for establishing the bound under integral form of the I'-
limsup. The last subsection is devoted to the proof of a differentiation result of the
Vitali envelopes for subadditive and dominated set function defined on open sets.

1.2. Notation. We denote by M (2) the set of all positive Radon measures on €2 and by
M (©;R) the space of all R'-valued Radon measures on 2 with [ € N*. Let p € M, (Q).
If we L, (R then wy € M (Q;R') where

wp (B) == / wdp  for all Borel set B C €.
In particular, for a Borel set A C ?2 we denote by 1 4 p the measure defined by
Tap(B) = /B]lAd/,L for all Borel set B C ).
When we write v < p for p € My () and v € M (Q;Rl) we mean that the total

variation |v| of v is absolutely continuous with respect to p, i.e. |v| < p.
The Lebesgue decomposition of A € M (Q; Rl) with respect to pu is

d\
A=—( X
i () p+
where % (-) € L} (% RY) is given by % (z) = lim, :Egiggi p-a.e. in €, and where X

and p are mutually singular, which is denoted by X L pu, and means that there exists a
Borel set X C Q such that p(Q\ X)=0 and |¥|(X)=0.

e We denote by R := {p €]0,00[: p1 (0B, (x))>0}.

e We denote by Y :=]0,1[Y and YV :=] — 1, 1[V.
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e We denote by S' the unit sphere centered at 0 of R!, i.e. S':={v e R!: |v| = 1}.
For every u € W17 (Q; R™) we set
o u, (-) :=u(zx)+ Vu(z) (- —x) for all z € .

1
= = — il 11 Q) and all .
° u,, ][Bp(x)u(z) dLy (2) v (B, (@) /Bp(m)u(z) dLy (z) for all z € Q and all p>0

o L, = {w € Q:limu,, exists} .
p—0
For every v € W (Q;R™), z €  and every v € M (Q;Rl) with v = d%—”NEN +1v°, we
denote by
ug () ifo=Ly
Uy, ifo=|.

For each open set O C €, we denote by Ay (O) C Wy* (O;R™) x L' (O;R!) the set of
the all pairs (¢,%) such that ¢ € W,? (O;R™) and ¢ € L' (O;R") with f, ¢vdLy =0,

i.e.

Ao (0) := {(go,w) e Wy? (O;R™) x L (O;RY) :][Ow (r)dLy (x) = 0} .

2. MAIN RESULT

2.1. T'-convergence theorem. The I'-convergence is studied through the behavior of lo-
cal minimization problems associated with the integrals. Let e > 0. Let m, : WP (; R™)x
M (R x O(Q) — [0, 00] be defined by

me (u, v; 0) := inf {I€ (w,};0): M (R 2 XA <Ly, A(0) =v(0),
and w € u + Wy* (O; R™) }, (2.1)
where Wy ” (O;R™) := {¢ € W' (Q;R™) : ¢ = 0 on Q \ O}. We consider the following

two “local-global” conditions on {m.}.:
(Hs) for every O € O (Q), u € W'? (Q;R™) and v € L' (% R') it holds

o . __ - B
Tim lim (a0 (2) L3 By (v)) — Tim Tim 2% (ta, 0 (@) s By (¢)) Ly -a.e. in O;
p—0 .20 EN (Bp (.Z')) p—0e=0 ‘CN (B,D (l’))
(H;) for every O € O (), u € W (;R™), v € M (4 R') and w € L|1Vs| (;8Y), it
holds
lim lim Me (Ug,p, w () [V°]; By (2)) _ T T e (Uzpo w () [V°]; By (2)) V% |-a.e. in O.
T (B, () P T (B, @)

The condition expresses the independence of the I'-limit with respect to sequences
e — 0. The condition expresses simultaneously the independence of the I'-limit
with respect to ¢ — 0 and the independence of the limit behavior of the average of the
“local minimization problems” on small balls around points in a set with zero Lebesgue
measure. We will see in that is fulfilled when we assume the existence of a
recession function, with respect to the measure variable, associated with the integrands.
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Remark 2.1. Note that [(H;)|is equivalent to write that the limits with respect to p exist

(g 0 @ WL By @) _ e (e (0) 7] B, (@)
=050 |I/S| (Bp (1})) p—0e—0 |1/5| (Bp Q;))

|v¥|-a.e. in O.

Let O € O(Q). We say that the sequence {(u,ve)}eo C WP (;R™) x M (Q;RY)
converges to (u,v) € WP (Q;R™) x M (O;Rl) if ue — w in LP (Q;R™) and v, = v in
M (O; Rl), and we write

(usyve) = (w,v)  in LP (Q;R™) x M (O;R') .

For every (u,v,0) € WhP (;R™) x M (Q;R') x O () we set
I (u,v;0) := inf {@]E (e, Ve; O) & (ugy ve) = (u,v) in LP (;R™) x M (O;Rl)} ;

I (u,v;0) :=inf {li_m[6 (Ue, V3 0) = (ug, ve) = (u,v) in LP (;R™) x M (O;Rl)} :
e—0

For each O € O(Q), if I_(-,;0) = I, (+,;0) then we say that {I. (-,;0)}es0 I'-

converges to Iy (-, 0) == I_(-,;0) = I (-,-;0). (For more details on the theory of

[-convergence we refer to [DM93])

Now, we state the main result of the paper.

Theorem 2.1. Assume that|(Hy)|, ((Hs)| and|(Hs)| hold. For every O € O () the family of
integral functionals {I. (-,; O)}. T'-converges to Iy (-, ; O) at each (u,v) € WP (Q; R™) x
M (Q;Rl) where

Io (1, v: 0) = /O fo <x,u(x),Vu(a:),m(x)> dLyx (x)

S dl/ S
+ /o fo,u (377 M (x)) dlv*| (z),
where fo: Q x R™ x M x Rl — [0, 00| is defined by

T T e -—x),vLN; B,
fo(z,u,& 0v) = %g%lg%m (U+§éN (gz (;J))N (ZE))J

and where, for each u € WY (Q; R™) the integrand Jou X St — [0, 0o is defined by

me <][ udLy,w|v®|; B, (x))
£2 (2, w) = Tim T ——— .

p—02—0 \v5| (B, (x))

Remark 2.2. Note that f5,, does not depend on the pointwise value u (), but on the limit
behavior of the average of v at x on small balls. It is possible, for instance when u is not
regular (i.e. when p < N), that pr(x) u(z)dLy (z) does not converge when p — 0 since
x belongs to a negligible set for the Lebesgue measure. This naturally leads to consider

the set L, of points  where that limit exists (see §3.1)).
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2.2. Global bounds for Iy, I_ and local bounds for m.. The proof of Theorem [2.1
is based on the following two propositions below. The Proposition [2.1| provides lower
(resp. upper) bound of the limit I_ (resp. I,) under integral form. The lower bound
for I_ is obtained by using the “localization method” (see [FM92]), which consists in
analyzing the weak limit (of a converging subsequence) of the sequence of measures

dv,
€ '7U’Eavu57_€ E .
(s )e]

The upper bound for I, is also obtained through a localization technique but using,
among others ingredients, the differentiability of the lower Vitali envelope of the open set
function lim._,o me (u, v;-), see & and Lemma .
Proposition 2.1 (Bounds for I_ and I). Let O € O ().

(i) For every (u,v) € WP (; R™) x M (Q; R!), there exists a sequence {(uz, v:)}os0 C

WP (Q;R™) x M (4 RY) such that
(e, ve) = (u,v) in LP (Q;R™) x M (O;R") | sup L (u., v; O) <00
e>0

and

Lwr0)> Y /mmmla(“&”a;Btﬂ(x))do—(x).
o

el t—1— p—0e—0 o(B,(x))

(17) Assume that
(H}) there elxz'sts ¢ >0 such that for every € >0 and every (z,u,&,v) €  x R™ x
M x R

c (€17 + [v]) < fe (z,u,8,0);
(HY) for every (u,v) € WHP (Q;R™) x M (Q;]Rl) there exists o, € My () with
Qyy L po =Ly +|v°| such that

supme (u, v;U) <y, (U)  for allU € O(Q).

e>0

Then we have, for every (u,v) € W' (Q;R™) x M (;R)

I (u,v;0) < Z /o lim Tim —= (v, v; B, (x))da (x).

sl ey S0 TiH0220 0 (B (2))

Remark 2.3. Note that the condition [(H;)| implies [(H})| and [(H)} Indeed, for each pair
(u,v) € WP (O R™) x M (€ R!) we set o, :=C (1 + [ul? + [VulP + ZJ%))EN Hence,
for every U € O (2) we have sup,.om. (u,v;U) < ay, (U) .

The second lemma below gives lower and upper bounds for the limit integrands. It
consists in “locally replacing” the arguments (u,v) € W' (Q;R™) x M (Q;R') (and
(ue, ve) € WHP (Q;R™) x M (€;R")) of the integral representations obtained in Proposi-
tion by local approximations on “small” balls centered at x. In case x belongs to the
support of the Lebesgue measure, we consider the affine tangent map of u at x, as local
approximation of u, and the absolute continuous part of v at x for v, i.e.

dv

(u,v)  “locally replaced” by Uz (+), —— () Ly | .
dLy
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When z belongs to the support of the singular part v*, we consider the mean value of u
on balls centered at z, and the derivative of v with respect to the total variation |v*| at
x as local approximations, i.e.

d
(u,v)  “locally replaced” by (u@p, ﬁ (x) |V8|)

for “small” p>0.

Proposition 2.2 (Local bounds). Let O € O (R2). Assume that|(H,)| holds. Then

(i) for every pair (u,v) € WP (Q; R™) x M (Q; Rl) and every sequence {(uz, v:)}eso C
WP (Q; R™) x M (Q;Rl) satisfying

(e, ve) = (u,v) in LP (Q;R™) x M (O;R") and sup I, (u, ve; O) < oo,

e>0
we have
e (0 s @i B, ()
—.. S \U"dLy w; B e o I (Ue, Ve; By, (1)) :
lim lim < lim lim lim === Ly -a.e. in O,
p=0=30 Ly (B, (x)) = to1- 020 Ly (B, (2)) N
(2.2)
and
dv
€ T,00 7. <| 8 aB
oo (“ o ] f’(”) e L(uiBy@) L
lim lim < lim lim lim |v°|-a.e. in O;
P00 [v*| (B, (2)) t=1-p=0e=0 18| (B, ()
(2.3)
(i) for every (u,v) € W (;R™) x M (Q;R!) we have
e (0 g (i B, ()
€ T N7
lim Tm (u,v; By (7)) < lim lim dLn Ly -a.e. in O,
Ri#—-0e=0 Ly (B, (x)) p—0€—0 Ly (B, (7))
(2.4)
and

dv s
me ux,pv—s(‘r)|y ‘7Bp(x)
.= dlvs|
lim lim

Rigr0e0 [ (B, (2)) p0ed (B, @)

\V°|-a.e. in O.

(2.5)

Using both Propositions and and the conditions |[(Hs)| and |(H3), we see (§2.3))
that these global and local inequalities give at the same time the formulas for the limit
integrands and lead to the I'-convergence of {I.}.~o. In fact, the assumptions
and [(H3)| allows us to bridge the difference between the lower and the upper bounds. In
§3.1] §3.2] §3.3]and §3.4] we will exhibit explicit conditions on the initial integrands which
entail [(T,)] and [(H3)}

A consequence of Propositions 2.1 and [2.2]is that the limit integrands are measurable.

The proof of the following corollary is similar to that of Theorem 2.1 and is a consequence
of Lemma [7.6]




Corollary 2.1. Let (u,v,0) € W ((;R™) x M (Q;R") x O (Q) and let o € {Ly, |v°|}.
If|(Hy), ((Hs)| and |[(H3)| hold then for o-a.e. x € O the following limit exists

dv
e (42, G (@) By (o))
lim lim =V, (z).
P T (B, )

Moreover, ¥, is o-measurable.

2.3. Proof of Theorem [2.1 Let (u,v) € WP (Q;R™) x M ({4 R') and O € O ().
Combining Proposition [2.1} Corollary Proposition [2.2| and conditions |(Hs)[ and |(H3)}
we can write, for Ly-a.e. x € O, that

me (uxa v (x)Ly; B, (95))

. I (u,v;B,(x)) _ —.. dLy
lim U Rt > lim lim
p—0 EN (Bp (l’)) 050 ‘CN (BP (l’))
Me (ux,dciy (x)Ly; B, (w))
> Tim lim al
- plgrtl)eg% »CN (Bp ($ )

(Note that all these functions are measurable because x — limRﬁgpﬁo lim,_, %

is measurable by Lemmal|7.6|and Remarks[7.2)[(zz2)]). Similarly, we have for |v°|-a.e. € O

dv
lim 2B @) _ e L (w1 B, (@) :]jmmme( o g DB )>
o0 (B, @) om0 (B () em0en v (B, (@) '
i e (17 B, (1)

= i li
Ridp0e0 1] (B, (2))

dv
L O 0)
T (B, @)

8

8



Using Corollary and Proposition we can write

g d—y x)o; B, (x
I_(u,;0)> Y /O},%Ems (uw,p;ig(i)) B, ( >) do ()

O'E{'CN:‘VS‘}

— Z / lim T e B, <x))da (x) > I, (u,v;0),
0

setenpepy JO TR0 0 (B, (@)

which completes the proof. B

Proof of Corollary . Let O € O(Q). Let (u,v) € W' (;R™) x M (Q;R"). By
Lemma there exists {(ue, v:)}eso C WP (4 R™) x M (Q;R") such that (u.,v.) —
(u,v) in LP (O R™)x M (O;R'), sup.. L. (ue, v-; O) < oo and satisfying forLy-a.e. z € O
I_ ; B v w5 1e (U, Ve B
lim (u, v B, () > lim lim lim (ue, ve; By (7))
p=0 Ly (By(x)) 7 =17 920220 Ly (B, (1))
It follows by using Propositions 2.1] and [2.2] that for Ly-a.e. z € O
im I_(u,v;B,(x))
p—0 Ly (B, (x))

d dv
me ux,—y(w)EN;Bp(w) me ( Uz, 5 () Ln; B, ()
> lim lim dLy = lim lim Ly
i Ly (B, (@) P00 Cx (B, (@)
me (umddLU (x>‘CNaBp (CL’))
> lim lim N
pc Ly (B, (v))

> lim Tim me (Ua v Bp (ZE)) > im Iy (u7 vy BP ("L‘))
ij%pﬁo e—0 EN ( p ( )) p—0 ,CN (Bp (I))
Similarly, using again Propositions and we have for [v*|-a.e. z € O

I_(u,v;B,(x)) I (ue, ve; By, (7))

li > lim lim lim
o0 [°[(B,(x)) — e a0 w3 (B, ()
dv s
L me <uz,p7 M (1:) |V |7BP (ZE))
> lim i
= 00 (B, (2))
dv s
%@WW@M%@>
> lim lim
~ p—0e—0 |vs| (B, (r))
dv s
o me (uxp, a0 (z)|v%]; B, (x))
= lim li
P00 v (B, (@)
—m. (u,v; B
>  lim limm (u,v; By (7))
D00 [1°] (B, (1))




Therefore we have for every o € {Ly,|v*|} and for o-a.e. z € O
— me (u,v; B, (2))

. 1 (Ua v, Bp ($)) — lim i (u’ v, Bﬂ ($)) _ )= lim lim
P B w) e oG @) T o™ T o (B, @)

(2.6)

But, by Lemma and Remarks the last function in (2.6|) is o-measurable and
thus the function ¥, is also o-measurable. B

3. APPLICATION TO RELAXATION AND HOMOGENIZATION THEOREMS

3.1. Relaxation theorem with singular part depending on u. Let f: 2 x R™ x
M x R! — [0, 00[ be a Borel measurable integrand. We consider the integral functional

I:W(Q;R™) x M (Q;Rl) x O (Q) — [0, 00| defined by

dv
Y% - dL if L
[0 0) = /Of(x,U(x), U(x),dEN (x)) v (@) ity <Ly

00 otherwise.

We define its “relaxed” by

I (u,v;0) := inf { lim 7 (ty, V; O) : up, — win LP (;R™) and v, = v in M (O;Rl)}

n—o0

for all (u,v) € WHP (;R™) x M (Q;R") and all O € O (Q).
Consider the following conditions:

(%) there exist C,c>0 such that for every (z,u,&,v) € Q x R™ x M x R! we have
c([€[" +vl) < f (2, u,80) < C(L+ Jul” + [§]7 4 [v]) ;
(%) there exist C; >0, ¢>0 and ¢’ >0 such that for every (z,z',u, v/, &, v) € Q x Q X
R™ x R™ x M x R
&) — £ @t 0 | < G (ju =)o+ Jo = /1) (14 €l + o)

(%5) there exist T'>0, f>0 and r €]0, 1] such that for every ¢ > T, every (z,u,§) €
Q x R™ x M and every w € S' we have

f w6, tw) (x,uég,tw) — [ (m,u,f,w)‘ < tﬁr’ where  f* (z,u, &, w) == lim fla, w6, tw) (x,ut,f,tw)'

t—o0

For every u € WP (Q; R™) we consider the set L, of points x € Q where u, , admits a
limit as p — 0, i.e.

L, := {x € Q:limu,, exists} )
p—0 7

Theorem 3.1. Assume that|(%,)|,((%#2)| and|( %) hold. Assume that for every O € O (Q),
and every (u,v) € W' (Q;R™) x Ll . (;S)

v

i W V(@) [V By (7)) _ g (U, v (2) [V7]; By (7)) V¥l-ae. in O\ Ly,

p—0 v (B, (7)) p—0 [vs] (B, (z))
10



Then for every O € O (Q) and every (u,v) € WH* (Q;R™) x M (Q;R') we have

I (u,v;0) = /o Qo f (x,u(a:) , Vu (z), C;i—VN (;E)) dLy (z)

[ o (nate g @) vl @)

ONL,
dv
+/ f5u<x,—x)dus x),
i (5 g @) A @

where @ (x) = lin(1) Uy, for allz € Ly, and for every (z,u,&,v,w) € Ax R™ x M x R x §
p—

Qufovu, ) =int { [ F (o4 V()40 0) dl 1)
o € WP (Y;R™) and ¢ € L* (V;RY, /Yw (y)dLy (y) = O} , (3.1)
Q5> (z, u, w) ::inf{/yfOO (x,u, Vo (y),w+1v(y)dLy (y) :

0 e Wy (V;R™) and ) € L! (v;8'), /Yw(y) dLy (y) = 0} , (3.2)

and
dv s
. 1 (s ()7 By o))
fou <x, a (x)) = /1)1_r>r(1) (B, @) |v%]-a.e. in O\ L,.

Remark 3.1. Formula giving Qg f is not new, see [FKP94, [LDRO0]. Observe that there
is simultaneously a “quasiconvexification” with respect to the gradient variable & and a
“convexification” with respect to v the absolute part with respect to Ly of the measure
variable, it was called quasiconvex-convex envelope of f by [CRZII]. We can also note
that there is no contribution of the gradient of u to the formula giving Qg f°°, this due
to the fact that a local approximation of u, around balls with radius p centered at point
x of the support of v*, is u, , whose gradient is zero. The main difficulty to extend the
method and so Theorem to BV (2;R™), is to find the “good local approximation”
for D*u the singular part in the Lebesgue decomposition of the distributional derivative
of u e BV (§;R™).

If we assume that p> N and v € WP (Q; R™) then Q\ L, = 0 and u(z) = u (z) for
all x € Q.

Corollary 3.1. Assume that p> N. Assume that|(%1)|, (%) and ((#5)| hold. Then for
every (u,v) € W' ((;R™) x M (Q;R') and O € O (Q), we have

7<u,y;0):/ogof (x,u(m),Vu(a:),%(m)) Ly ()

S £00 dlj S
+ [ @i (o) 5 @ ) dvl o),
where Qo f is given by (3.1) and QFf by (3.2).
11



Remark 3.2. We denote by H* the k-Hausdorff measure on RY with & € R,. Assume
that p < N. Then for every O € O (Q2) and for every (u,v) € W ((;R™) x M (Q;R')
satisfying |v*| < HF for some k> N — p, we have

I(u,v;0) = /0 Qo f (as,u (), Vu(x), ddTV (:E)) dLy (z)

+ [ @ (), g @) vl @)

since [v*] (2 \ IL,) = 0 by Federer-Ziemer theorem [FZ73].

3.2. Relaxation theorem with singular part not depending on u. Consider the
condition:

(%)) there exist Cy>0 and ¢’ >0 such that for every (z,2",u, v, &,v) €  x Q x R™ x
R™ x M x R!
F (@u,60) = f (@, & 0) | < Co (Ju—l? + o — ') )
Remark 3.3. Let W : MxR! — [0, 00[ and h : R™ — [0, oo[ be Borel measurable functions
such that for some C'>0 we have
|h(u) —h (W) <Clu—dP forall (u,u') € R™ x R™.

Then the condition is satisfied for integrand of the form f(x,u,§,v) = W ({,v) +
h(u) for all (z,u,&,v) € Q x R™ x M x Rl. While is satisfied for integrand of the
form f (z,u,&,v) =W (&,v) h(u) for all (x,u,&,v) € Q x R™ x M x R

The variable u does not appear in the singular part when is replaced by ((%5)
Theorem 3.2. Assume that|( %)}, ((%5)| and|(%3)| hold. Then we have for every (u,v) €
WP (Q;R™) x M (4 R') and every O € O (Q)

I (u,v;0) = /o Qof (x,u(x) , Vu (z), C;i—VN (;E)) dLy ()

+/0ng00 <x,%($)) dlv®| (z),

where Qqf is given by (3.1) and for every (z,w) € Q x S

03/ (e w) = inf { [ 520090 ) 0 +0 )Ly )

o € WP (YV;R™) and ¢ € L' (V3R /y v (y)dln (y) = 0} -

3.3. Homogenization theorem with additional vector measure variable. Let IV :
Q x RY x M x R! — [0, 00[ be a Borel measurable integrand 1-periodic with respect to
the second variable, i.e.
() Wz, y+2,&v) = W (z,y,&0) for all z € ZY and all (2,y,&,v) € Q x RY x
M x RL.

For every >0, we consider the functionals I, : W7 (; R™) x M (Q;RZ) x O0(Q) —
[0, o] defined by

x dv ‘
I (u,v;0) := /(;W(I,E,VU(ZIT),E(I)) dly (z) fv <Ly

00 otherwise.
12



Consider the following conditions on W:
(JA) there exist C, c>0 such that for every (z,y,&,v) € Q x RY x M x R! we have

c([€]P +[v]) S W (z,y,&,0) < CA+ [ + |v]);

() there exist C; >0 and ¢’ >0 such that for every (x,2',7,£,v) € Qx QxRY x M xR!
we have

(W (2,9,6,0) = W (2, 5,€,0) | < Cilz — /[ (L4 [ + [o])

(A4) there exist T >0, >0 and r €]0, 1] such that for every t > T, every (z,y,§) €
Q x RN x M and every v € S!, we have

‘ W (:L” y? 6’ tv)
t

W (z,y,€&, tv)

— W (x,y,&,v)| < tér, where W (z,y,£,v) := lim —

We have the following homogenization theorem.

Theorem 3.3. Assume that|(F4)|, [(74), |(76)| and [(753)| hold. For every O € O (Q) the
family {1 (-,-; O)}. T-converges at each (u,v) € WP (Q;R™) x M (4 R') to Iy (-, 0)
given by

Iy (u,v;0) = /OHOW (x, Vu(zx), C;Z—VN (a:)) dLy (x)

[ i (o @) v )

where for every (z,&,v,w) € O x M x Rl x §!

keN*

HoW (z,&,v) := inf inf{ - W(x,y, £+ Vo (y), v+ (y))dLy (y) :
Y

XS Wolvp (kY;R™) and ¢ € L* (k;Y; ]Rl) , / Y (y)dLy (y) = O} ,
kY

HW™ (x,w) := kieng* inf {]éy W (x,y, Vo (y),w+ v (y)dLy (y) :

o € Wo? (KY;R™) and ¢ € L' (kY;R!), /W%/J (y)dLy (y) = O} :

Remark 3.4. We could assume dependence on u for W, in this case, we have to modify

the hypothesis |(77 )] and making them similar to those of the relaxation

theorems, but we choose not to overload the presentation of the proof of Theorem 3.3
Nevertheless, we can note that Theorem is an extension of the homogenization result
of [CRZ11].

3.4. Homogenization theorem with additional periodic vector measure vari-
able. Let W : RN x R™ x M x R! — [0, 0o[ be a Borel measurable integrand 1-periodic
with respect to all variables except to the variable £ € M, i.e.

() for every (z,2/,7) € ZN x Z™ x Z! and every (z,u,&,v) € Q x R™ x M x R!

Wz +zu+2,&v+71)=W(r,u,é )
13



For each € >0, we consider I, : W' (Q; R™) x M (Q;R') x O (Q) — [0, 00] defined by

T u 1 dv _
Lnoy= | W (55T g ) et v <ey

00 otherwise.

Consider the following conditions:
() there exist C,c>0 such that for every (z,u,&,v) € RY x R™ x M x R/

c (€7 + o) < W (2, u,&§,0) < C(1+[E]7 + |v]).

Remark 3.5. Assume that and hold. For each v € R! and each ¢ €]0, 1] we
set EJZ = (L%J e L%J) € Z' where %J =max{z € Z: z < %} is the integer part of
Y for all i € {1,...,1}. Then we can write £ = |2] + (¢ —|%],), and we remark that
v v l
P Lng S [0,1] , SO
T u v T u v v v v
w <_7_7€a_> =W <_a_7£7_ - L_J ) S C (1 + |§|p+ ’_ - {_J ‘) S 20(1 + |€|p)
e e e e'e e el € edi

for all (z,u,£) € RY x R™ x M and all & > 0.

The I'-convergence of {I.}.~¢ (not depending on additional measure variable) was studied
by [BDMT7§| and [AB&4] in the scalar case, for problems related to the homogenization of
Riemannian metrics. Later, a generalisation to the vectorial case was obtained by [E91] in
the periodic setting. The case of almost periodic setting was studied by Braides [Bra92].
The following homogenization result is an extension, in the periodic setting, of Braides-E
results for integrands depending on periodic vector measures.

Theorem 3.4. Assume that ()| and ()| hold. For every O € O () the family
{I. (-,-;O)}. T-converges to Iy (-,-; O) at each (u,v) € W (;R™) x M (4 RY) given
by

Iy (u,v;0) = /O’HOW (Vu (x))dLy (x)

where for every £ € M

HoW (§) := lim inf {]£Y W (y,8y +o (), +Ve(y),v(y)dly (y) :

k—o0

Y e Wol’p (kY;R™) and ¢ € L (k:Y; ]Rl) , /wv,b(y) dLy (y) = O} .

4. PROOF OF PROPOSITIONS [2.1] AND

Proof of Proposition Let O € O (). Let (u,v) € W (;R™) x M (R
be such that I_ (u,rv;0) < co. There exists a sequence {(u.,v.)}eso C W (Q;R™) x
M (Q;R") such that (u.,v.) = (u,v) in LP (Q;R™) x M (O;R') as ¢ — 0, and
I_(u,v;0) = lirr(l]l'E (Ue, ve;0) <00 and sup I (e, ve; O) < 00. (4.1)
e e>0
Using the coercivity condition and (4.1)), we obtain the existence of a subsequence
(not relabelled) such that |v.| = p in M (O). For each ¢ > 0 we set

p () Exlo e M ).
14
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Using (4.1]) there exists a subsequence (not relabelled) {©.}.o¢ € M*(0O) and © €

M+ (0) such that ©, = © in M* (0). The Lebesgue decomposition theorem gives

that

40 46
O =y Vet

The measure ©° being the singular part of the Lebesgue decomposition of © with respect
to Ly + |v*|. Therefore we have

() [°+6©°

I_(u,v;0) zii_r%ls (te, ve;0) =lim O, (0) > O (0) > Z / — (z) do (z) .

e—0
se{ln, v} O

Moreover, we have for every ¢ €]0, 1]

Ly-a.e. in O,

> lim lim

ALy " T 0Ly (B, () T r0 Ly (B, (1)) ~ 0050 Ly (B, (x))
hence for Ly-a.e. x € O

de - 1 dv,
- > [ i m -—— \V4 — = )
N (:L‘) thrln* iln(l) llrr(l) . (Bp ( )) /tp(x) fE (,2:7 Ue (z) , VUg (z) s N (Z)) dﬁN

Similarly, we have

O (B, (v x
dc\lzil () = lim 2o (D) oy (5, ) > i iy e (Do ()

—p —_— 7 —F=  |Y¥l-a.e. in O,
=0 US| (B, (z)) — =0 V3] (B, () — p—0e-0 [v5[ (B, (2))
and then

4o 1 dv
lim lim lim ——————— |
de () 2 i i s B, @) /Bm(z) I (Z’“S’WE’CM )d‘cN Ve in O.

Proof of Proposition . Taking Lemma into account, which gives an in-
tegral representation of the lower Vitali envelope with density the derivative of the set
function m, (u,v;-) = lim._,o m. (u, v; ), we see that it is sufficient to show that for every

(u,v,0) € WP (Q;R™) x M (4 RY) x O ()
I+(’U/ Vi O) <V'n;+uu )(O)

Let (u,v,0) € W (Q;R™) x M (;R') x O (Q) be such that V

m4 (u,v;)

(O) < oo where

Vo ) (O) = lim inf {Z my (u,v; B;) : {Bi}ier € V‘S(O)} )

§—0
i€l

where for every ¢ >0
V2 (0) := {{Bi}id : B; is an open ball, u (0B;) =0, B; C O, diam (B;) €]0, §]

I is countable, u <O\ ‘UI Bi> =0, and B;N Ej = for all i +# j}.
1€

Fix 6 €]0, 1[. There exists { B¢ };cr, € V? (O) such that
J(0)+ 5= 3 e (s BY) (12

i€lg
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We claim that
Lim Y m. u,l/;B;S <0+ m u,u;BZ‘»s . 4.3
lim Z (. B7) Z + (w15 BY) (43)
Indeed, consider «,, given by |(H})| and set p := Ly +|v°|. Since p (O \ Uie[(;Bf) =0
and a,,, < p we have oy, (O \ Uier, Bf) = 0. It follows that there exists a finite subset
Js C Is satisfying Zielé\k Oy (Bf) <d. Now, for every € >0 we have

me (u, v; Bf = me (u, v; B? + me (u, v; Bf
( ) ( ) ( )

i€l i€Js 1€ls\Js

<Y ome(wviB)) + Y auy (BY)
i€Js i€l5\Js
< Zme (uw;Bf) + 0.
i€ds
Since J; is finite, we obtain, by passing to the limit € — 0, that
mZma (u,u;B < hmZmE u v, B(S) +9

e—0 4 e—0
i€ls i€Js

< ngg (u, v, Bf) +0
1€ Js
< Zm+ (u,y; Bf) + 0.

i€l

which proves (4.3)).

Next, fix ¢ €]0,1][. For each ¢ € I; there exists (u_,10.) € u+ Wy? (B R™) x

N e
me (i B) + gﬁﬁNN(Ti)) > I (ul, v BY). (4.4)

Set
Z v; ]135 and Ug = Z U?,a ]le +u]1Q\UiEI(;B?'

i€ls i€l

Using [(H})| and |[(H})| we have v € M (O;R!), indeed

0) = |3 v 1| (0) <3 (v

VZ',E ]].B5
i€ls i€ls

’LE

dLy

ALy

¥ /35
< 1S (v ) 1 L2 B

ZGL; ﬁN (O)
1
< (000 (0) +1). (45)
In the same way, using |(H}) and - we have
/ \Vul|PdLy = Z/ |vu5|Pd£N Z[
i€ls 161(5
1 5 1
< = me u,v; BY) (OZUW(O)_’_].).
¢ i€lg
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Thus

sup <}V / |Vu5|pd£N) : (4.6)
€€]0,1[,6€]0,1]

Let U C O be an open set. We consider the sets
:U{Bf:BfﬂU#@} and Ug::U{Bf:BfCU}.

Setting Ks:={i € Iy : B?NU # () and BONO\ U # ()} and arguing as in (4.5, we have

| 6| [j(s\(](S Z’Vza’ B§ _ZI za? za? )

1€Ks €K

1 1 s
< max {E, m} (Oé%,, —|—£N) (U \ U(;) . (47)

For every ¢ €]0, 1] we have lim;_q ‘ug — u‘pQ = 0, indeed, there exists C' >0 such that
for every (e,9) €]0,1[2

/]u —ulPdLy —Z/ \uw—u|de'N

i€l

<oy / Vs, — VulPdLy

i€l

< Cortyp (/ |Vug|pd£N—|—/ ]Vu|pd£N>
< Corlgp <sup/ |Vu5|pd£N+/ \Vu|de'N>

which proves the claim by letting § — 0.
Using a diagonalization argument, there exists {0 (&) }c~o decreasing with lim._,¢d (¢) =
0 such that if we set u. = u2® and v, := 12, we have u. — u in LP (Q;R") and by

using , and

lim I, (ue,v.;0) <limlim I, (u,12;0) =limlim » I (u., 1) ; BY)
e—0 6—0e—0 6—0e—0

i€l

<mhm2m5 u, V; B6

6—0e—0
i€l

< lim E m+ u,y;Bf)
6—0 4
i€l

< VWZ+(U,V;') (O) :

Finally, taking (4.5) and (4.7) into account and applying Lemma with {ve}eejo; we
have v, = v in M (O;]Rl), and thus

I (u,v;0) < lim I, (uz, ve; 0) <V (upry (0) . H
e—0 m4 (Vs
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Proof of Proposition Let O € O (Q). Let (u,v) € W' (;R™) x M (R,
and let {(ue, ve)}eso C WP (Q;R™) x M (;R!) be a sequence satisfying
(ue, ve) = (u,v) in LP (;R™) x M (O;R")  and  sup I, (u., v.; O) < oc.

e>0
Up to a subsequence, we can assume that

dv,

@5 = fe ('au&‘ () 7vu5 () ) E

(-))EN 0 in M, (0).

Fix 0 € {Ln, |v*|} and set 5 := (1 + |u’)Ly . Fix z € O satisfying

=l S < (43)
d;;‘ () = lim % <o0; (4.10)
|u (@) [P+ [Vu (z) [P <oo; (4.11)
lim m /Bp(z) ju—ug " dLy = 0; (4.12)
E?% % >t for all t €]0,1]. (4.13)

Note that is satisfied o-a.e. in O by the LP-differentiation theorem when o =
Ly, and by Lemma when o = |v*|. Moreover, is satisfied o-a.e. in O since
Lemma [7.3]

Set the limit operator

m ifO':/:N

p—0
lim” =
=0 lim if o = [v¥].
p—0
By using Corollary [7.1] we have
dv
I o L) B |
lim” lim = lim” lim ’ o-a.e. in O. (4.14)
p—0 =50 o(B,(x)) =0 0 o (B, (x))

It follows that it is enough to show that

5 Z ) ;B ___[E € E;B
lim’ limm (u ke p(:zc)) < lim lim lim (e, v tp (z))

p—0 -0 o (Bp ([IZ’)) T t—1- p—0e—0 o (Bp (l‘))

g-a.e. in O.

Step 1: cut-off method. Let t €]0,1[ and p €]0, 1] with B, () C O. Consider a cut-off
function ¢ € Wy (B, (x);[0,1]) between B, (z) and O\ By, (z), which means that
¢ =1on B, (r) and ¢ =0 on O\ By, (z) and such that there exists Cy > 0 verifying
IVl < t(l%)p. Set V1P i= v = (Plery. ., Plejy ..., Ve;) € M (Q;R") defined by

Ve (B) i= [p@(2)dve;(z) for all Borel set B C O, and v’ := @u. + (1 —¢p)uj , €
18




ug , + W, (B, () ;R™). We have

m. (ug,, v B, ()

o (B, (2))
1 2p.
(B, (@) (w2 B, ()

I (uz, ve; By, (1)) . I (u VP By, (2) \ Bee,, (w)) . L (ug,,0; B, () \ Be, (x))
o (B, (z)) o (B, () o (B, () '

Using the growth condition |(H;), we have for some C’, C; >0 depending on C,Cy and p
only, that

IN

L (w7, V2% By (2)\ By (@) + I (65,03 B, () \ Bz, ()
<C { / L+ [uZ P + [VuZ JPdLy
By(2)\B,2,(z)
dv
+/ |u5|pd£N+/ V[P + ‘— ALy
Bup(2)\B,2 () Bup(2)\B,2, () dL

1 p
+ (—) / [ue —ul |PdLy
t(l—1t)p Biy(2)\B,2,,(v) ) ”

1
e / L Jul P+ VS P + [ulPd Ly + —— / ju — 2, PdLy
{ Bp(@)\Bz2, () ” ” tA—1t)p)" Jp,wm o

dv, 1
+/ |Vu5|p+‘ ~|dL +(1+—)/ u. —ulPdLy p .
Bip(z)\B,2,(x) dLy N (t (1 - t) p)P B,(x) | | N
By setting
Cy
A7 (tp ::—/ L+ |ul |P+ |Vug )P+ |ulPdLy,
,1( ) O'(Bp (l‘)) By(@)\Bya.(2) ‘ ,p| | ,pl | | N
4 1
A%, (t = 20 P
w2 (00) = G0V o (B, () /Jgp<m> u i L,
4 1
A% (t - - (14— . —ul
2P e = ) ( g p)p) /BM Jue = ufdLy,
Cy dv.
d A%, (t = — <|P dLy,
an :6,4( ) P 5) U(Bp (IL')) /Btp( By (2) |VU | + d,CN EN
we can write
o t2p.
me (Ux,m v, 'D, Bp («T)> < Ie (ua’ Ve, Btp (x))
o (B, (2)) - 0(By(2)

+Ag,1 <t7p)+A (t p)+Ax3(t Ps )+Aczr,4(t7p7€>'
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Note that lim._,0 AZ 4 (¢, p,e) = 0, and lim, o A7, (t, p) = 0 since ([#12). Next, using the
coercivity condition |(H; )| we have

Vu. P + dly

m A7, (£, p, € )gm—/
e—0 e—=0 0 (Bp (l‘)) Btp(z)\Btzp(x)

Ch T +— O (By, () \ By, (-73)))
¢ \ 50 o(B,(x))

dEN

Cr (1=0- (B (@) _ . ©.(Bi, @)
= (LO 7 (B,(@) 5 o (B,(2) )
<ﬁ (@(Bp () @(Bt2 (z)) o (B2, (@))
T c U(Bp (x)) U<Bt2p (z)) o (B, (z))

It follows that

Mme (u;p, pr; B, (m)) 1
lim < lm —————1I (uc, ve; By (1)) + Ag t,p)+ Ag t,
=0 o(B,(x)) 00 (B, (1)) ( ip (2)) 1 (tp) 2(t,p)

C (0(B,(x) ©(Bs,(r)o (B, ()
T (a(Bp<x>> o (Bey (z)) o<Bp<x>>)'

By using Lemma [7.2| with r = t?p, we have

lim < lim
0 o(B, () =0 o (B, (x))
0 (B, (7))
v ((1- 208 ) e+ () - xe )
o (B, () )™ ' :
where x7 (p) := % for all s €]0,1], and where C' > 0 is the constant growth

appearing in |(H;)l Therefore we can write

e (U, v B _ 1
hmm (u L Y p(‘r)) < hm—ja (U57V5§Btp< )) +Azl<t p) +Am2(t p)

e—0 o (Bp (x)) C e=00 (Bp (z))
) ©(Bp,(z)) 0 (Be, (@))
(B, (x)) 0 (Bg,(x) o(B,(z))

—) X (p) + X7 (p) = X% (p)) :
(4.15)

Step 2: upper bound estimate for A7, (t, p). We specify o in order to obtain an upper
bound for

1 p p

— ool T |Vug | dLly .

o (B, (z)) /Bp(x)\Btgp( ) ol 4 1V [P e
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In case 0 =Ly, there exists Cy>1, depending only on p, such that

1
/ [ug " + |V, [” dLy
(@)\B,2,(z)

Ly (B, () J
1
SO—/ u ()| + |Vu (2)]P dL
2L’N (B, (2)) Bp(m)\Btgp(x)| (@) [V (@) N

= Oy (Ju ()P + |Vu (2)[P) (1 — V).

In case o = |[v*], noticing that Vu, , = 0 and using Jensen inequality, we have

; w. P Ly (B, () \ By (7)) 1 .
T I ) BN S Y

= (1) o (B, (z)) /Bp(x) Jul” L

It follows that

— o "+ |Vl |"dL
o (B, (x)) /Bp(a:)\Btzp(x) ol + [z, " dL

2NV [ (2117 w ()P b ul” dLy
<Cy(1—t )(\ (@)[" +[Vu (2)] +a(Bp(x))/B<x>| e )

Next, recalling that 8 = (1 + |u[?)Ly and setting &7 (p) := fggsp(:v) for all s €]0, 1], we
have

C, /p( - )1+|U|Pd£N = ((1 - M) k% (p) + K (p) — K (p>> _

7 (B, @) s (B, (@)
Hence
) — e ()P 4 19 (o) BB (7))
A:c,l (t,p) < CyCy (1 t ) <| ()" + [Vu ()" + o (B, (a:)))
» (7))

ra((1- %) )R () =2 () (810)

Step 3: end of the proof of Proposition. Using (4.16)) in (4.15]), we have

me (4,7 B, (1)) 1 B
}:ILI(I) o (Bp (.1')) }:ﬁo . Bp (.’L‘ )[a (ua> € Btp( )) ( )
(6( © (Bep (x)) 0 (Bez, (w)))
o (B 0 (Bp, (1)) o (B, (x))

+20 ((1 BtQ <x ) X% (p) + X7 (p) = X (p))

.T

L e (1 - t?N) < (@) + [Vu (@) + %)
((1 e ) 0+ (0) - 0))



First, (4.13) gives that limj, (1 - %) <1 -t thus using ([4.8) we obtain

. .0 (B, (7)) _ © (B2 (7)) 0 (B2, (2)) @ ) (1 — 2N
i%ow«m 7 (Bay (@) 0B, @) = do D7) (@D

Second, using and ( - we have
d d

lim &7 {p) = ygg) ki (p) = 7 (2) <o, and limx{ (p) = lim i (p) = —=

Since (4.11)), (4.12)), and (4.17]), we obtain for some C3 >0 depending only on C, ¢, C; and
Cs

£ g ) ;B T [z-: 8} s;B
lim® limm (u ik p(x)) < lim lim (e, v t (z))
ST o (B,@) S een o(B,@)

+C5 (1—t*N) (|u (x)|?

. dB o d|v|
+ |[Vu (x) | —l—%(x)%—%(x)—irw(x)).

Thus, letting ¢ — 1 we conclude

me (ug Vi By (7)) o 1
lin” li Lap < lim lim i I (u.,ve; B .
T (B, S R S, oy e e )
Proof of Proposition . Fix (u,v) € W (;R™) x M (Q;R') and O € O (Q).
Let {pk }ren CJO, 1] be a sequence such that limy_,o, pr = 0. We define the following limit
operator

lim ifo=Ly

k—o00
lim, :=
hveo lim if o = |v°|.
k—o00
We have to prove that for every o € {Ly, |v*|}
dv
€ > s 7 ) B
) ._m (ux,pk do (ZL’)O’ Pk (l‘)) . —m. (U v B ( )) .
lim, lim > lim lim o-a.e. in O.
e &2 7 (By (@) ridp0 i o (B, ()
By Corollary and , we have
dv
e (42 G @) 03B o)) .
lim,, lim do = lim, lim e ( Uz Vi B (2 )) o-a.e. in O.

koo €0 o (Bpk (l‘)) k—o0 €0 g (Bpk (37))

Set 1 :==Ly +|v°|. For each k € N and x € O, we set R} := {t €]1,2[: (0B, (x))>0}.
We see that R} is a countable subset of |1, 2[ since 0By, (x) N0B;,,, (x) =0 for all t # 7
and p (0) <oo. Setting R* := Ugen Ry, we then have p (0By,, (x)) = 0 for all ¢ €]1, 2[\R”
and all k£ € N. Hence, for o-a.e. x € O and for every ¢ €]1, 2]\ R*
_ms(uaV;Btpk(x))_ _mE(UVB (7))

lim lim = lim lim
k—o0 €0 (Btpk (x» RiZp—0e—0 9 (Bp (37»

So, we are reduced to prove that

—m. (ug, ,v; B, — c B
lim, hmm ( 2>V (@ )) > lim lim Tim (w,v; Bip, (x))
k—o00 €0 o (Bpk (z)) JL2N\RT3t =1 k00 70 (Btpk (x))

o-a.e. in O.

(4.18)
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We set §:= (1+ |u|? + |VulP) Ly +|v|. Fix x € O satisfying

u (2) P + [V () [P < 00; (4.19)
1
lim —/ u|PdL y < 00; 4.20

lim B (Bpk (:E)) d/B
k—oo O (Bpk (l’)) dO‘

1 p

T 5 (Bpk (90)) 1
AP N s T ) ‘
kl_m B(B,,, (x)) = 7N forall 7 > 0 (4.23)
Fix € >0, ¢t €]1,2[\R” and k € N. There exists (v,\) € WP (Q;R™) x M (Q;R") with
veuwﬁW&p(Bpk( )iR™), A < Ly, A(By, () = v (B,, (x)) satisfying
)

pko'(Bpk<x))+ma( Uy pir V (CL’) (U A; B ( ))

Consider a cut-off function ¢y, € W, (Btpk (z);[0,1]) between B, (x) and O\ By, (),

i.e. pp =1on B, (r), o =0on O\ By, (x), and for some Cy>0 (independent of ¢ and
k)

(z) < oo; (4.21)

Co
Vrloo L ———. 4.24
Vol < — 0 (124
Set ug == v + (1 — op)u € u+ Wy? (By, (x);R™), and Ny, := D L Ly where
dy, L dA (Btpk ( ) \Bﬂk (:B))

ALy ALy O Ly By (1) By, () )
It is clear that g (B, () = v (Byy, (7).
Now, using growth condition we have
me (u, v; By, (7))
7 (Bipy (2))
I (uf, Ai; Bip,, ()
o (Btpk (ZL’))
L (A By, () | I (uf, Ai By, () \ By, (7))

o Buy (1)) o (Byy, ()
I (v, Xi By, (2) | L (uf. Mii By, (2) \ By, (x)
o (Bye () o (Byyy (v))
e ( gpk7 Vi B ( )) Is (uga /\k; Btﬂk (ZE) \ BPk (ZL‘))
N (3) o (Byp, ()
me (ug,pk, v; B, (x))
S T (B, @)

L ullP uelp v (Btpk ($) \ BPk (‘T))
B @) /Bt%m\mk(x) (1t v+ [ G O | e
Me ( IPk’ Vs B ( >)

7 (B, (@)

<pp+ +4PCAT (1K),

23



where

1
A (1, k ::—/ 14 us, [P+ |Vl [P+ [uf? + [Vl
(t. k) 0 (Bip, (%)) /By, (2)\B,, (2) el Vet 4l [Vl
cr v (B () \ B,, (x))
ul , —ul’+ . . dLy .
T e T B 0\ By, ()| N

To prove (4.18) we need to show that
lim im?A? (t,k) =0 o-a.e. in O.

t—11T k—o0

In the same way as for (4 , we prove that there exists C7 >0 depending only on p such
that

.
— |ug
g (Btpk (x)) Btp;C (33)\Bpk( ) o

<a ((tN 1) (Bplk &) /B P+ (1 - }N) (lu (@) P + Ve (2) |p>> .

P+ |V PdLy

Pk

(4.25)
Since f = (1 + |ul? + |Vul?) Ly +|v|, we have
(A [ul” + |Vul’) L) (Bip, () \ By, () | |v (Bep, (1) \ By, (2))]
7 (Bip, (7)) 7 (B (7))
< B (Bip, () \ By, ($)) (4.26)

N o (Btpk (:E ))
We specify ¢ in order to pass to the limit & — oo for the last term of (4.26]), which can
be written as

B (Bip (£) \ By, (¥)) _ B(Bip, (x)) _ 0 (By, (2)) B(By, (x))

0 (Bip, (2)) 0 (Bip, () 0 (Bip, () 0 (B, (7))
In case 0 =Ly, we use to obtain

;}Eﬁi cN By @) dix (1 B T) (4.27)
When o = |v*], using ) and ([4.21)) we obtain
imﬁ(Btpm\Bpk()) B (1
;L—oo i < a1 ) 2
Thus and (4.26)) imply that
g Nopy o1 ul? _ L u P u(x) P
AZ (1) < € ((t ) sy o et (1 ) (e 9 >>
BBy @\B, @), a ity

Juz
7 (Bip, (1)) pr(t =170 (B, (1)) /Btpk(x) -
Taking (4.19)), (4.20)), (4.22), (4.27) and (4.28) into account, by passing to the limit k¥ — oo

we have
oOANOC : 0'/8 (Btpk (:L‘) \ Bpk (I)) o 1 dﬂ T
lm?A? (t, k) < lim ) < <1 _tN> — ().

k—o00 k—o00 0 (By,, () do
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Letting t — 1 we obtain  lim  lim“AZ(t,k) = 0 o-ae. in O and the proof is

11,2[\R*>t—1 k—o0
finished. W

5. PROOF OF RELAXATION THEOREMS

5.1. Proof of Theorem [3.1] In order to apply Theorem 2.1} we have to show that the
condition |(Hjz)|is satisfied, then we establish the formula for Qyf. We set

_ 7B, (@)

ty,i= for all p > 0 and all x € Q.
? Ly (B, (1)) ’

Step1: Proof of and formula for Q5f>. Let O € O (), u € WH? (Q; R™) and
v E L|1VS| (©;S"). Let z € ONL, be such that

(O )£ (B, ()
p=0 2 (B, (x))

Fix p €]0, 1[. Using the growth condition and Jensen inequality, we have
m (U p, v (x) [V°]; By () ¢

2| (B, (x)) ~ (B, ()

(
Ly (B, (x)) 1 ul”
§C<wumu»+wuawwémﬁ'ﬂwﬂ)

=0 and J|v(z)|=1 (5.1)

[ 1 gl 4 02 gl L
Bp(oc)

NEICAC (5:2)

where ay := C (1 + |u|?)Ly. We introduce the following notation:
my (u (), v () [°]; B, (x))

= inf / [z, u(z)+ ¢, Vo, t,, (Y +v(x)))dly .
Bp(ff)

(p,h)€AQ(Bp(x))
We have
ma (@ (x), v (z) [v°]; B, (x)) c e
(B, @) Swu&@»émf+’(”+'”@““N
Ly (By@) () 02 (B, (2)
SC(WH&@%O+|(N)+Q 1 B,@)
(5.3)
where ap 1= C (1 4+ [u(x)?)Ly.
There exists (¢1,91) € Ao (B, (z)) such that
(g, 0 (3) [0 B, ()
1B, @)
1
> AT oy | 0 9169201 (4 00
! p z)+v(x N (2
zopqaizggl;@JV¢mzn-+wq<>+ (2) tap| AL (2). (5.4)
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where we have used the coercivity condition in |(%#;)l Similarly, there exists (¢2,%5) €
Ao (B, (x)) such that
my (U (), v (z) |1*]; B, (x))
v (B, (%))
7 .
2— f($7ﬂ<$)+907v907w +U(‘r)tx,)d‘cN
e[ (B, (2)) JB, @) ? 2 g
1

>
v (B, ()
Using (5.2) we have

+p

/ |V302|p + ’@Dz + v ($) tx7p| dLy . (5.5)
Bp(m)

~_ 1 P (00 +00) (B, (1)) 2(p+C)
;\w|<3p<x>>/3,,@‘wl’“W (@ tepldln < LB, @) T e

Using |(#-)| and . we have
m(ux7p7v($) V*; By () ma (u(z),v(z)[v°]; B, (2))

v (B, (%)) v (B, (x))
1
Z— f(z,u:c, —HO,VSOaw +Uxt$7
(B, @) o) p 1 1, %1 () tap)
— f(z,u(x) + 91, Voo, 01 + v (2) s ) Ay —p
/ L+ [VorP + i1+t v (@) [dLy —p
By ()

> () (|uz,p —a(z)]e pq’> <£N (B, (z)) ! (g +ag) (B, ()  2(p+ C)> _

(B, (@) ¢ B,@) | e

In the same way, we have

m (U p, 0 (2) [V°]; By () e (U (2),0 (x) [v°]; B, (x))
v (B, (x)) 2| (B, (z))

/ 1+ |Vg02|p + |¢2 + 12 pv (:E) |d£1v +p
Bp(ff)

U — T ()9 T Ly(By(x) | 1{u+a)(By(x)  2(p+0C)
<0y <| T,p ()" +p ) <|1/5|(Bp(x)) ¢ || (B, (x)) + c >+P.

Therefore, setting ag :=Ly +% (o + ap) we can write

‘m(uxvp,v(x)IVﬂ;Bp(fv)) mx(ﬂ(x)m(x)lvsl;Bp(w))‘

v°| (B, (x)) v (B, (2))
- / 0 (B, (7)) | 2(p+C)
<O (g, —u(x)]|? + p? ( £ +p. (.7
(s 7@ ) (B @y e o0
Considering balls of the form B, (z) = z+pY with Y =] —1,1[", and changing variables,
we have
me (W (z),v (2) |[v*[; B, (x)) / 1 _
(B, () —(W)lgffto o ), 7Wf (2,7 () 4+ po, Vo, te, (¥ +v (2))) dLy .
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Set

ml (u(z),v (x) |v*]; B, () . o 1 N o
|v°] (Bp (z)) o (@7¢)€£0(Y)/;tx7pf( (@), Ve, tep (0 + v () dly -

We need the following lemma to obtain an estimate of the difference between m, and m?.
Lemma 5.1. Let x € Q and p €]0, 1] be such that t,, > 1. For every § > 0 there exists
M (x,6) > 3 such that for every M > M (x, )

1
inf r Qf,ﬂ x)+ 7v 7tx +v(x dL
(o) EA0(Y) /thf( (@) + po, Vo, b (3 (z)))dLy

llell poo (y;gmy<M

m, (@ (2), v (2) [v°]; B, («))
e IR
and
. 1 B
(ool T T e
< 54 Ma(@@),0(@) *]; By () (5.9)

- o (B, (2))

Proof. We show ([5.8)) only, the proof of (5.9)) being similar. Let M > 3 and 6 €]0, 1[. Let
hyr : R™ — R™ be a Lipschitz function such that

a iflal <M
hat (a) :{ i Ia{ Sarer o [Vl < 35

dist(a;]Rm\BM+1/5>
dist (a;R™\Byy41/6 ) +dist(a; Bar)
By i={a € R™ : |a| < M’} for all M’ > 0. There exists (¢s,15) € Ag (Y') such that

For instance, we can take hys (a) := a for all @ € R™, where

0 1
-+ inf /— Ju(z) + pp, Vo, t, + dr
i [, 1o @)+ 00 Vot (U 40 (@) dLx

z/fﬁ@muww%v%@Aw+wmmmw
Y

Z,p

Set ©sar 1= har o ps. By [ADMO90, Corollary 3.2, pp. 701], and since hys (0) = 0 we have
@s € WyP (Y;R™). Moreover, for Ly-a.e. y €Y

lps (y) | if s (y) | < M
[Poar (W) [ < 43 if M <[5 (y) | < M+ L,
0 if o5 (y) | > M + 5

|@sar (y) | < M and [V@sar (y) | < 30| Vs (y) |,
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and we can write

1

inf T LU,E x)+ 7V 7t +v(x dLl
o | @)+ e Vet (640 (@) d
HLPHLOO(Y;Rm)SM

VAN
=

1 N N
t—f (z,u(x) + pPsar, VPsur, tep (Vs + v (x)))dLy
Y Z,p

I\
-—

1
L (0.7@) + s, Tty (s +0 () AL
ws|<M] “z.p

1

I
f (2,1 (2),0,te,p (s + v (2))) dly

1 - -
—f(z,u(x) + pPsns, Vs s tep (Vs +v (1)) dLy
[M<|ps|<M+1] La,p

_l’_
——

llos|>M+3] Lap

_l’_
—

6 mg(u(x),v(x)v’]; B, (z))
S_—'— +Am7p7M757
> v 1(B, (2) ( )
where
1
A(x,p,M,0) :=C— L+ [a ()P + [te, (Y5 + v (2)) [dLy
2,0 J [Jos|>M+1]
1 - ~
+C2P — L+ [u (2)|” + p"[psmal” + [V@s |’ + [tep (s + v (2)) [dLx -

tep J<)ps|<m+l]

Using the estimates on |@s s (+) | and |V@sas (+) |, we obtain

A(z,p, M,5) < 021’/ L+ [u ()P + 3+ |ps|)’ + 3°|Vps|? + |1s + v (z) |dLy .

llps|>M]

It follows that limas e SUP,ei0 1] A (¥, p, M, 0) = 0, thus there exists M (x,5) > 3 such
that sup,ejo 1 A (7, p, M, 6) < S for all M > M (z,6), which gives (5.8). B

Let p €]0, 1] be such that ¢, , > 1. Fix 6 > 0 and M > M (x,0) where M (z, ) is given
by Lemma . Using estimates (5.8)), (5.9) and proceeding as for the estimate (5.7)), we

have

mg (U (x), v (z) [°]; B, (x)) _ my (U (x),v () |V°]; B, (33))‘

o] (B, (2)) 2| (B, (2))

S 20 + QCqupq (

ié (B, (x)) + C;I—p) +p, (5.10)

2| (B, (2))

where oy =Ly +%062.
Since lim,_,t,, = 0o, there exists p, €]0,1[ such that for every p €]0, p,[ we have
te,p >max (1,T), where T is given by [(#3)] Then, for every (¢,) € Ay (Y) and every

p €0, pa|

[T @@ Vet 0 )L — [ ), Vit ) dLn| < -
It follows that for every p €]0, p,|
e B ) i @ )| < )
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where

m® (@ (2),0 (2) P*[:Y) = inf /foo(:v,ﬂ($),Vg0,w+v(x))d£N. (5.12)

(p¥)eA(Y) Jy

Combining (5.7)), (5.10) and (5.11]) we obtain for every p €]0, p,|

Ml @ LB @)
S s = (@ (e). () [ Y)
<20 4+ 2C4 <|ux,p—a(x)|q +p? +quq> <|32|(£;p<8))) + pt(]) +2p+ tﬁ (5.13)

Passing to the limits p — 0 and then 6 — 0 in (5.13]) by taking (5.1)) into account, the
condition |(Hj)|is satisfied, and we obtain the formula for Qf f>°

. m(“%P?v(x)‘Vs’;Bp(x))—moo ulx).v(x) 2] = Q3 f*(x,u(x),v(x
lim 1B, ) =mg (u(z),v(z) [*[;Y) = Qf (z,u(x),v(z)).

Step 2: formula for Qof. Let O € O (Q), u € R™, ¢ € M and v € R\, We have to show

that o
Qof (x,u,&v) = <u+€(£N( ),)’(1;))% , (1))

Fix p €]0,1[ and z € O. We see, by taking the open balls B, (z) of the form z + pY’, that
m(u+¢(-—z),vLy; B, ())

Ly-ae. in O.

Ly (B, (z))
= inf /f (T + py,u+ p€y + pp, &+ Vo, v+ ) dLy .
(<P’¢J€Ao
We set
A f(r,u,&v) = inf /f (z,u+ pp,§+ Vo, v+19)dLy .
(¢, )EA(Y

Next, we estimate the difference between m and Q; f. Using the growth condition |(%) )],
we have

m(u+&(-—2),vLy; B, (7))
»CN (Bp (1’))

< C/ 1+ |u+ p€yl? + |£P + |v|dLy
Y

< 2PC (1 + |ul? + [£F + [v]) - (5.14)
In the same way, we have
Quf (2, u, & v) <20 (14 [uf” + €] +[v]) - (5.15)
Furthermore, there exists (¢1,11) € Ag (Y') such that
m(u+&(-—x),vLy; B, (z))
Ly (B, (x))

+p > / f(z+py,u+ ply + pp1,§ + Vi, v+ 1) dLy
Y

c/ €+ Vol + v+ Ly (5.16)
Y

Similarly, there exists (¢2,19) € Ag (Y') such that

O\f (2,u,6,0) + p > / F (@t ppa, €+ Vign, v+ ) ALy
Y

20/ €+ Vioal + [0+ | dLo . (5.17)
Y
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Combining (5.14)), (5.15)), (5.16]) and (5.17)), we deduce that for every i € {1,2}

op+1 P

c .

C
L/m+v%w+w+wmwN§ (14 Jul? + €] + o) + (5.18)
Y

Using |(%#-)| and (5.18]), we have

m(u+&(-—z),vLy; B, (2))
Ly (B, (r))

2/f(x+py,U+p§y+p<p1,§+le,v+w1)d/l1v
Y

- Qlf (x,u,f,v)

- [ kg Vvt ) dLy -

Y

>~y [ (Ingul” + oul”) (14 V14 €P + o+ i) dy
Y

) C
> <200 () (e (14 S (0 P 1eP )+ 2) <,

and
m(u+&(-—x),vLy; B, (x))
Ly (B, (x))

S/f(56+py,U+p§y+s&27§+V@2,v+¢1)
Y

- Qlf ($,U,€,U>

—/Yf(w,uﬂtsol (y), &+ Vo, v +1h)dLy +p

/ C
<240, (o4 o) (I (14 S s P 1P+l +2) 4

which gives

‘m(u—i—ﬁ(- —z),vLy; B, (z))
LN (Bp <x>>

§2H%h0ﬂ+wﬁ(uwﬂ%<1+%(LHMP+MP+WD+p>+ﬂ (5.19)

- Qlf (w,u,f,v)

C

Now, we proceed as in Step 1 by setting for every M > 1

Q' f (z,u, &, v) == inf /] u, &+ Vo, v+ 1) dL
S ug )= | € Ve ) ey
\|<P\|L00(Y;Rm)S1W
Mf(z u & v) = inf / r,u+ @, &+ Vo, v+)dLy .
Q) f( 3 ) (o) edo(Y) yf( ®, & % 7/1) N

HSOHLOO(y;]Rm)SM

Similarly to the Lemmawe can show that for every § > 0 there exists M (z,u,v,d) > 3
such that for every M > M (x,u,v,d)

Qé\/[f ((L’,U7£,U) S Y + Q(]f (x7u7£71}) and Qi\/jf (I,U,g,?)) S o + Qlf (x7u7§71)) :
We also have for every i € {0,1}

Q) f (w,u,&,v) <2C (1 + [ul? + €7 + [v])
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and there exists (¢}, ;) € Ao (V) with ||@j|| pyvrm) < M such that
QY f (zu,v) 2 ¢ [ 1€+ V6P +]u-+ w{ldLy.
Y

We deduce, using [(#»)), that

1
Q0" f (. &,0) = Q' f (w,u, &, v)| < 201" M* (1 + = (p+ O+ uf + € + |v|>>>
+ p.
It follows that
|Q0f (m,u,f,v) - Qlf (‘T7u7€71})|

S |Q0f(l’,U,§,U)— ngf(xvuvgav)‘ + ‘Qé\/"f(x,u,g,v)—inf(x,u,f,v)‘
+ }Qi\/[f (:c,u,f,v) - Qlf (:C,u,ﬁ,v)‘

1
< 2Cp? M1 (1 +- (p+C 1+ [uf+ &P+ |v|))) + 20 + p. (5.20)

Using the estimates ((5.19) and ({5.20]), we obtain

m(u—l—f(-—f),UEN;Bp(f))_ roufv
‘ ﬁN (Bp (1})) QOf( ) 757 )

m(u—l—f(-—@,UﬁN;Bp(x))_ .U £ v r.u. €E.v) — T, u,E,v
S' Ly (B, (@) A

/ C
<25+ p+ 2770y (pq(1+Mq+|§|q)+pq> <1+€(1+]u|”+|£|p+\v|)+g>.

Passing to the limits p — 0 and then § — 0, we find that

m(u+&(-—x),vly; B, (x))
Ly (B, (z)) ’

Qof (az’,u,f,v) = ﬁl)l_{%

which completes the proof. B

5.2. Proof of Theorem [3.2 We proceed as in the proof of Theorem replacing @ (z)
by 0 € R™ for the singular part. For the formula of Qg f, we refer to the Step 2 of the
proof §5.1]

Let O € O(Q), u € WP (Q;R™), v € M (Q;]Rl) and v € L‘lys‘ (Q;SZ). Let x € O be
such that

=0 and |v(z)|=1 (5.21)



Fix p €]0,1[. Using [(#5), Jensen inequality and proceeding as for the estimate (5.7)),
replacing @ (z) by 0 € R™, we have

m (U, v (2) [V°[; By () ma (0,0 (2) |°]; B, (7)) ‘

v*| (B, (z)) (B, (x))

I b oLy (B, (@)
= <|vs|< TG Jy |w|<Bp<x>>>+p
)

1+ |ul")Ly) (B ( )
w2 (By ()

We follow the same path as in the proof Step 1 Thus, similarly to the Lemma [5.1],

for every 6 > 0 we can find M’ (z,0) > 3 such that for every M > M’ (x,§) we have the

analogue of
m (0,0 (z) [V°|; By () my (0,v (x) [v°]; By (x))
2] (B, (x)) o[ (B, (x))

Since lim,_,t,, = oo, there exists p, €]0,1[ such that for every p €]0, p,[ we have
ty,p>T, where T is given by . So, for every p €10, p,|

‘m(ump, v (2)[*]; By (x))
2| (B, (x))

< o, (5.22)

‘ <20 + 200" M + p.

- 0.0 (0) V)
)

(LA [u[")Lw) (B, (x)) B8
+ 200" M+ 2p 4+ — 4+ 25, (5.23)
v (By () tep
where m3° is given by (5.12)) (replacing u(x) by 0). Passing to the limit p — 0 by
taking (5.21) into account, and then § — 0 in (5.23)), we get at the same time that
is satisfied and
2,05 i B
llmm(u P ’U(,Z')‘I/ | P(x)) :mgo (O,U(.ZL')|VS|,Y):
=0 v (B, ()

< (Y

QS (z,v0(z).

6. PROOF OF HOMOGENIZATION THEOREMS

We use a subadditive theorem (due to [AK81]) to prove |(Hs)| [(Hs)| and the formulas
for the limit integrands (we can find a development of subadditive theorems and their
applications to the characterization of I-limits in [LM02]). Let S : Oy, (RY) — Ry be a

set function defined on O}, (R™) the set of bounded open subsets of RY. Consider the
following conditions:

(i) there exists C'>0 such that for all O € Oy, (RY)
S(0) < CLy (0);

(i7) S is subadditive, i.e. that for every U € Oy, (RY),V € Oy, (RY) and O € O, (RY)
With TNV =0, U € O,V C O and Ly (O\ (T UV)) = 0 it holds

SO)<SU)+S(V);
(ii7) S is invariant, i.e. for every z € ZY and every O € O, (RN ) we have

S(z+0)=8(0);
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(iv) S is almost-invariant, i.e. for every z € Z" and every O € Oy (RY) the set
T:={2€Z":8(z+0) =8(0)} is relatively dense in R, i.e. there exists L >0
such that

T+ 1[0, L)Y =R".
The following result is a particular case of [LM02, Theorem 3.1, pp. 30].

Theorem 6.1. If and then for every open cube B € O, (RN) we have
S (1B) S (kY)

E—I}(%EN (EB) o klélN* LN
[f and then for every open cube B € Oy (]RN) of the form Hi]\il]ai, b;| with

(a;,b;) € R?, we have

limm = lim S (kY)

=0 Ly (%B) koo kN

6.1. Proof of Theorem . In order to apply Theorem we have to verify |(
andwith fe(z,u, & 0) =W (m, f,{,v) for all (z,&,v) € QxMxR! and all € > 0;|(H;)
being a consequence of .
Proof ofl@. For each (z,&,v) € Q x M x R we define S,¢, : Oy, (RN) — R, by

Seen (0) = inf /W x,y, E+V , U+ dL i
g0 (0)=  inf o 5 (5,6 + Ve (y), v+ (y) dly (y)
We notice that , and of Theorem are satisfied. Thus, for every p>0 and
every x € () we have
Suew (2B ee0 (KY
o e, ga p (@) _ . o Segw (KY)
e—0 »CN (EBP (;p)) keN* kN

Moreover, for every € >0, p>0, u € R™ and every = € (), we have
Segw (2B, () _ m2 (u+ &, 0Ly; B, ()

Ly (:B,(x)) Ly (B,(x)
where
m? (u+ &, vLy; B, (7)) _ y
Ly (B, (z)) - (%IZJ)G%EBP(@)][BP(@ W <~T &+ Vely), vty (y)) ALy (y) .-

It follows that
_omE(ut &Ly By (x) L Seew (KY)
i Ty Ly (B, (@) =l =y TRV @60
Next, we prove by using the condition w Let v € L' (R and u €
Whr (Q;R™). Fix x € Q such that |v(z)| < oo and [¢] := |Vu(x)| < co. There ex-
ist C1 >0 and ¢’ >0 such that for every (¢, ) € Ay (B, (z)) we have

]ip(x)W(x,g,f—l-V(P,v(:C)—i-w) —W(y,g,é—l—Vgo,v(x)—i—z/;) dLy (y)

< C’1pq/]{B " 14+ |E+VelP + |v(z) +¥ldLy . (6.1)

Using the growth conditions, we have
(m§ (uxav(x)EN;Bp (l‘)) me (uxav(m)EN;Bp (m))
max ,
Ly (B, (z)) Ll\g?ng (2))

)sc<1+|5|p+|v<x>|>.



Moreover, for every i € {1,2} there exists (y;,1;) € Ao (B, (x)) such that

myg (ux, ()L; B, (2)) y
oy ez ) W (e L Vam) v s w) iy ).
(U’xa (#)Ln; By () y
£, 15,0 oz f  W(n e Ve w) 0@ )i )
Taking (/6.1)) into account, we have
mg (U, v (2)Ln; By () me (uxav(x)ﬁNva( ))‘
Ly (B, (z)) Ly (B, (x))
< Cip? Z]é L+ [§4+ Veil” + |v (z) + ¢ldLy
<2C1p" (p+ C(L+ € + v (@)]) .
Therefore
oyl s L B 0) _ 1001 )
=050 Ly (B, (x)) p=0-0 Ly (B, (z))
_ i Soea (BY)
keN® kN '

Proof ofm. Let O € O(Q), u € W (R™) and v € L}, (%8'). Let z € O be
such that

Ly (B, (2)) _
(B, (2)) =0 and J|v(x)|=1. (6.2)

Fix p>0 and €>0. Set ¢, , : |£V |((§p((z)))) We have

p—0 ]V5|

me (Ug p, v () |V°]; B, (2))

2| (B, (2))
= it W (1L Ve ) e 0 (@) + 0 () i (0
(6:0)EA0(Bp(@)) ) B (z) L.p ‘e’ e '
Since lim,_,o ¢, , = 00, there exists p, >0 such that for every p E]O pz| we have t, ,>T,
where 7' is given by- Fix p €0, p,[. Then, for every (¢,) € Ay (B, (x)) we have
1
=W (5. 2. Ve (1) sty (v (1) + ¥ () dLw (9)
By(x) te P
o (Y B
(L Ve w v o) dey ) <
Bp(x) € t
Therefore
‘ms (e, 0 () [V°f; By () m (0,0 (2) |v°[; B, (3?))‘ <P (6.3)
v* (B, (z)) Ly (B, (x)) T,
where

m2° (0,v (x) |V°|; B, (x)) = inf / W°° ,Vgo,v () + ¢> dLy .

(¢, 9)€Ao( Bp(w



We observe that W has linear growth with respect to v, i.e. for every (z,y,&,v) €
QO x RY x M x S' we have

Next, arguing as in the Proof of|(Hs)|, we have

m (0, (2) [v*]; B, (x))  m* (0,v () |v*]; B, (:c))‘ <2007 (p+ O) (6.4)

Ly (B, () Ly (B, ()
where
m>* (0,0 (z) [v*]; B, () : y
g = inf Wz, =, Vo,v(x)+1)dLy.
Ly (B, (z)) (6)eA(Bo(@))) B, (2) ( e V7 (@) ¢> N
For each z €  and each v € S! we define St Oy (RN) — R, by
S* (0) := W (z,y,V v+ e
0= it W e Ve ) 0+ () d ).
It is direct to see that S°° Satlsﬁes . zz and 111)| of Theorem . hence
limy m =l = RV ().

But, we have
S (2B (2)) _ mea (0,0 (2) |[v°]; B, (2))
Ly (2B, (1)) Ly (B, (r)) ’
thus, gathering (6.3)) and . we have
S (2B, (1)) < e (g p, v (2) [V°]; By (7))
Ly (3B, (x)) ~ v (B, (x))

? —Cip” (p+C) +
)

<
t;p
Passing to the limits ¢ — 0 and p — 0, we obtain

(e (@) 7 By () |
0750 vs| (B, (x)) p—0e—0 w5 (B, (x))

6.2. Proof of Theorem (3.4, For every v = (vy,...,v;) € R we set

o], = (lv],...,|u)) € Z'.

Similarly, we define |R|, € Z™ for R € R™.

The following lemmas will be used to show that and are fulfilled. The first
one shows that the limit integrands are independent of the measure variable. The second
lemma deals with estimates on m, with shift on the variable u.

Lemma 6.1. For every ¢>0, every v € R!, every B € O (Q) and every o € M+ (Q)
{|m£ (U,’UO’; B) — Me (U,O, B)l € \‘UtBJ
sup : v— — | —

tB g I

o (B)
and C' is the constant growth condition appearing in|(74)|
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o(B)
Ln(B)

where tg :=




Proof. Let e >0and v € R!. By using Lemmaand periodicity, we see that for every u €
Whr (Q;R™), 0 € M*(Q) and B € O (Q) we have m, (u,vo; B) = m. (u,vtgLy; B) =
me (u, (vtB — L”tBJ )E NS ) The estimate follows using again Lemma . |

Lemma 6.2. There exists C >0 such that for every t €]1,2[, every p €]0, 1|, every x € Q
with By, (x) C Q, every e >0, every u € W (Q;R™) and every v € WP (RV;R™) w
have

(i) me (u+v,0; By, (z)) < €+ me (u,0; B, () + CAg (tp, p, [vlwio(sy@)zmm)) ;
(“) Me (U’7 07 BP (.CC)) <e+m. (u + v, 07 B%p (.CC)) + CAO (:07 %p7 ’U|W17P(Bz(x);Rm))
where the function Ag : 0, 2[ x]0, 1[ xR — R, is defined by

1
Ag (r1,72,8) == 1+ |VulPdCy+ (1 4+ +— | s
( )’
By, (2)\Bry (2) =T

and satisfies for every p €]0, 1]

gggyﬁdﬂmx)—ggggﬁdmww%=0
Proof. Let t €]1,2[, p €]0,1[, z € Q with By, (z) C Q. Let £ >0, u € W' (;R™) and
v € WP (RV;R™). There exists (w, ) € Ay (B, (z)) such that

loc

€+ me (u,0; B, (z)) > I (u+w,9; B, (2)).

We consider a cut-off function o, € W, (By, () ; [0, 1]) between B—() and O\ B, (),
satisfying ¢ = 1 on B, (z), p: =0 on O\ By, (7), and [Vi;|e < t gy for some Cyp>0
(independent of p and t). We set w; :== pyw + (1 — ) v € v+ WO (By, (z);R™). We
denote by ¢ the extension of 1 to By, (x) with ¢ =0in By, (x) \ B, (z). We have

me (u+v,0; By, (x)) < I, (u + wt,i/;; By, (x) )

=1 (u+w,¥; B, (v)) + I. (u+w,0; By, (z) \ B, (x))
<e+m.(u,0;B,(x))+ L. (u+ (1 — ) v,0; By, (z) \ B, (2)) .

Using the growth condition |[(77])l we have for some C' > 0 depending only on p

L (u+ (1 =) 0,05 By, (2) \ By ()

<C 1+ |Vul? + Vol + |V |2 [v[PdL
Bip(2)\Bp(z)

Cp
S R o e e [ T
{ Bip(z)\By(z) pP (t —1)° Whe (B (2);R™)
< max (C, Cmax (1,C8)) Do (£ p. [0y 5,0y m) )
which proves - Now, to show , we observe that

me (u,0; B, (z)) = m. ((u+v) —v,0; B, (2)),
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thus, by proceeding similarly as for the proof of above, for some C’ > 0 depending
only on p

me (u> 0; Bp (x))
< e+m. (u+v,0; Bi, (l‘)>

Op
+C' / 1+ |VulPdLy + [ 14+ ——2— | 101 n oo zm
{ Bp@\By, (@) pr (117 ) T B@En)

1
<e+me (u +v,0; By, (ZL‘)) + max (C", C"max (1, C¥)) Ag (p, P |v|%/17p(32($);Rm)> .l

6.2.1. Proofs of [(Hy)| and formula of HoW (-). Let O € O (Q), u € W (Q;R™) and
ve Ll (Q;RZ), we have to show

. Mg (Ux,’U(ZU)EN;Bp (ZE)) T Me (uﬁ?v(aj)ﬁN;B'D (.Z'))
T | = Jim ]
plir(lJ Elil(l) Ly (Bp (l‘)) plil(l) slir[l) Ly (Bp (IL’))

For each x € Q we set A := Vu (z) € M and R :=u(z) — Az € R, thus u, () = A-+R.
By Lemma |6.1] we see that for every z € (2

me (g, v (2)Ln; By (1))

Ly-a.e. in O.

me (uz, 0; B, (7))

lim lim = lim lim

i i = (B, (@) e A )

T T 7z (0 (D)Lw3 By (2)_ e e (4, 03 5, (2))
p—02—0 Ly (B, (z)) p=0e=0 Ly (B, (z))

so, we are reduced to show

o i m. (A-+R,0;B,(z)) — —
p—0-0 Ly (B, (z)) © p0e0 Ly (B, (x))

For each £ € M we define S; : Oy (RN ) — R, by

(%771))6«40 (O)

Step 1: formula HoW (§) for € € Qm™*¥N. In this first step, we show that for every
€€ Q™Y and p>0 we have

me (f’ 0; Bp (I)) .

S5:(0):= inf /Ow<y,§y+so<y>,5+w<y>,¢<y>>dﬁmy>.

Se (KY)

li =1 = HW (§). 6.6
(B, @) Am iy~ A (©) (6.6)
Let £ = (fij)gigm,lggN € QN be a matrix with rational numbers entries, with

&j = % where p;; € Z and ¢;; € Z* for all (i,j) € {1,...,m} x {1,...,N}. Observe

that S satisfies and of Theorem . Moreover S¢ satisfies . Indeed, using
periodicity, we need to show that the Ty := {z € Z" : £z € Z™} is relatively dense in

RY. Define Ze = (Z},...,2Y) € Z~ by setting Z} := [, q;; for all j € {1,...,N}.
Set L¢ := maxi<j<n [[1-; lai;| and let @ = (z1,...,2x5) € RY. Then x € [0, L¢]Y + T,
indeed, we have €27 € Z" where Z¢ i= (23", Z¢N) with 27 = 7} {Z—J for all
je{l,....,N}, and

‘x—Zg‘ < max |Zg| < L.

1<j<N
37



Thus, by Theorem we have

S¢ (%BP (33)) _

0Ly (%Bp (93)) . TN for all p>0 and all z € Q.

Moreover, we see that for every e >0, p>0, ¢ € M and every x € ()

Se (1B, () _ M. (§,0; B, (2))
Ly (1B,(x))  Ln(B,(z))

which, by passing to the limit ¢ — 0, gives .

Step 2: end of the proof of |(Hz2). In this second step, we show (6.5). Fix x € O and
p>0. Weset R, .= R—¢ L . and choose a sequence {A;}s50 C Q™*N such that

lims_,o As = A. Using the periodicity with respect to the second variable, we see that
me (A-+R,0; B, (z)) = m. (A-+R.,0; B, (z)) for all ¢>0. Let ¢t €]1,2[ and 6 >0. By
Lemma (6.2, we have

m. (A-+R,0;B,(z)) m.(A-+R.0;B,(x))

Ly (B, (2)) a Ly (B, (z))

< °© ES me (45,0:8y, (2)) L O (P3| (As = A) - —Relwiripaymm)
= I (5, @) £ (B, ) Ly (B, (7))
_ £ n 1 SA5 <%B% ( )) CA (p, 1p, ‘ <A5 — A) R |W1p Bao(z) Rm))

BB Py (18, @) Ly (B, @) ’

and

tNSAé (%Btp (55)) _ tNme (As-, 0; By, (7)) < € i m. (A-+R,0; B, ()

Ly (B (1)) Ly (B (z))  ~ Ly (B, (2)) Ly (B, (x))

4 CAO (tpa P, | (A - A5) ’ +R€|W1’P(32(I);Rm))
Ly (B, (x)) '

Letting ¢ — 0 and using , then passing to the limits § — 0 and then ¢t — 17 we
obtain

lim lim 28 FY) _ ) e (A-+R,0; B, (2)
—0 k—oc0 k e—0 Ly (Bp (:L‘))

which proves |(Hs)|

Step 3: formula HoW (&) for ¢ € M. For every £ € M and every {&}sso C QMmN
satisfying lims_.o & = &, we have

Se (W) | Se(kY)

k’N B k—o0 ]{;N
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Indeed, let t €]1,2] and § > 0. Using Lemma and noticing that Y = B% (%e) =
te+ 11— 1, 1[N with e:=(1,1,...,1) € RY, we have

N Ses <kB§ (%)) B . e
AT e 7
S% + miy (E.,O; B% (g)) + CAy (%, %, | (€ — &) - |W17P(B1(§);Rm))
S% +m1 (§5-70; B% (g)) + CAq <%, %, | (& — &) - |W1’P(B1(§);]Rm)>

11
R (? o (& =) 'ww&(;);w))

N (g ) O (8 i)

11
+CAy (57 o7 | (& — &) - |W1,p(31(§);Rm)> )
Applying Step 1, we have for every 6 >0 and t €]1, 2|

S (%kBg (%)) o S (%kB;T (%)) S, (KY)
lim = lim — lim 28
17\ 1.\N N

Passing to the limits § — 0 and ¢t — 1 in (6.7)) we obtain

Y
lim lim S (]l:Y) = lim m1 (¢-,0;Y) = lim Se (M)

1
6—0 k—oo k k—oo k k—o0 N

=HoW (€).-

6.2.2. Proof of (Hs)l Let O € O(Q). Let u € W' (Q;R™), v € M (4 R') and v €
Lis (©;S"). We have to show that

|v®

s|- B _
h_mh_mms (U%P?’U(‘r) |V |7 P(‘/L‘)) — hm hm | |VS‘—EL.e. in O
S (B @) AT (B, (@)

By Lemma 6.1} it is enough to prove that

e (Uayp,0; B 7 e (Ugp, 0; B

li_mlimm (ta,p; 05 By () _ TmTm ™ (ta,p p(2))
00 [o](By (2)) =00 (B, (2))

Let z € O be such that lim, ExBo®) _ ) Fix p €]0,1] and £ >0. Using Remark 7

lvs|(Bp(z)) —
we have

|v*]-a.e. in O. (6.8)

e (Ua,p, 0; B, (x)) . ][ 1 (y Uy p (1 ))
| = et =W (2, 2L+, Vi, by, (¢ ) ) dL
5[ (B, () (@) €A0(Bo(@))) B, (2) Larp e e ©, V@ lap glb N
1 . 1
s][ S w (g, = ”’,0,0) Ly (y) < 20—
By(x) lap e € top

Since lim, o, , = 00, it follows that

1 € Z,0 Oa B
hm llm m (u P P (I’))
p=0e20  |v5] (B, (2))
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which establishes and completes the proof. B

7. AUXILIARY RESULTS

7.1. Some properties of m.. In this part, we assume that holds.
The following result can be seen as a “measure version” of [BFMO98, Lemma 3.1]. The
constant C'>0, in Lemma below, is the one appearing in the growth condition |(H; )|

Lemma 7.1. Let B € O (Q).
(i) For every >0, every u € W (; R™) and every (A\,v) € M (Q;RY) x M (;RY)
we have
|me (u, \; B) — m. (u,v; B)| < C |\ (B) —v(B)].
In particular, we also have
v(B)
me Ly; =m. (u,v; B).
( Ly (B)" ) ( )
(it) For every e>0, every u € W' (Q;R™) and every (\,v) € M (Q;R') x M (Q;R!)

we have

Ime (up, A; B) = me (up,v; B)| < C'|A(B) — v (B)],
where ug 1= fB udLy. In particular, we also have
v(B)
me | ug, =——=<Ly; =m. (ug,v;B).
( Ly (B)" ) (us,v; B)
(iii) For every ¢ >0, p >0, x € Q with B,(z) C Q, u € W' (Q;R™) and every
(A v) € M (4 RY) x M (4 RY) we have
me (ua, A By () — me (ua, v; B, (2))| < CIA (B, (x)) — v (B, (2))].

In particular, we also have

v (B, (x)) R
ms(uw,ﬁ—ﬂ i, ())— - (t, v B, (¢)) .

Proof. Fix B € O(Q), e>0, u € W (Q;R™) and \,v € M (Q;Rl). Let 6 >0. There
exist ug € u + WyP (B;R™) and v € M (R with vs < Ly and vs (B) = v (B) such
that

me (u,v; B) + 0 > I, (us, vs; B) .
Let k € N* and By, := {z € B : dist (z,0B)> 1 }. We set

N = vl + (W (A(B) - s (Bk)))EN Lo,

We observe that \s; < Ly and A\s (B) = A (B), so we can write
me (u, \; B) < I, (us, As; B) (7.1)
= I. (us, vs; By) + 1. (us, \s; B \ By)
< meg (u,v; B) + 6 + I. (us, \s; B\ By) .
Using the growth condition , we have
Llus \:B\B) <C [ 14 |usl + [VusP + | ——

B\B Ly (B\ By)
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Since limy 00 V5 (Bg) = vs (B) = v (B) and limy_,o Ly (B \ By) = 0, we have
k@fe (us, As; B\ By) < C'|A(B) —v(B)|.
So, inequality becomes
me (u, ;s B) < me (u,v;B) + 6+ C|A(B) — v (B)]
and the proof of|(7)|is complete by letting 6 — 0. The proofs of and are similar. l

Using Lemma we obtain the following result which is used in the proof of Proposi-
tion 2.2

Corollary 7.1. Let 0 € M4 (Q), v € M (Q;R') and u € W (;R™). We have

me (0 P @TE@) s )

DT e Bm emay | e
dv
(”) lim sup e (ULP7 % (:E> 7 Bp ($)) . me (Uoc,m v, Bp (ZE)) =0 o-ae. in:
L | T GRE) 7 (B, (2) o

(i) lim sup = (ux’%@) 7 (x)> me (uy, v; B, (z))

S sup o (B, (@) — o (B, (@) =0 o-a.e in €.

Proof. We only give the proof of those of and being similar. Fix z €
satisfying

.| dv v (B, (z))| _
2l 5B, onl=o
Using Lemma we have for every p>0
dv
. me (u, e (x)o; B, (@) _me (u,v; B, (x)) <C dv (2) v (B, (x))
£>0 o (B, (z)) o(B,(x)) |7 |do (B, (x))

Passing to the limit p — 0, the proof of is complete. B

The following lemma is used in the proof of Proposition

Lemma 7.2. Let 0 € M, (Q), v € M(QRY), v € W' (4R™) and O € O(9Q).
Let {v.}. C M (R be such that v. = v in M (O;R") and |v.| = p in M (O) as
e = 0. Let z € O and p >0 with B,(x) C O. Let t €]0,1] and r € [t*p,tp[. Let
o € Co (B, (2);]0,1]) be such that o, =1 in B, () and ¢, =0 in B, (x) \ By, (x). For
each e >0 we set vl = (l/‘;l, e ,1/;'71) eM (O;Rl) defined by

e,i

vl (B):= / @, dve; for all Borel set B C O where v = (Ve1, ..., Veiy .., Vey) -
B
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Then

me (w13 B, (2))  me (ug, 023 B, (2))

M B,@) o(B,@)
szc(@—f§%%%¥)nﬂm+xﬂm—x;@0,

where C'>0 s the constant growth appearing in|(H;), and where

o By @)
X ()= Dt Joralls €l0.1)

The same conclusion holds replacing u, by u, ,.

Proof. We see that v7 = v in M (O;R') and |[V/| = p" in My (O) as € — 0, where
p = @ verifies u" (9B, (x)) = 0 since the support of ¢, is include in By, (z). So,
by [FLO7, Corollary 1.204, pp. 131] we have lim._,o v (B, (z)) = v" (B, (z)). Using

Lemma [7.1 we have for every € > 0

me (w13 B, (2))  me (ug, 023 B, (2))

o(B,(@)  o(B,®@)
v(B,(x)) v (B, ()
=53, ) 7B, )

Passing to the limit ¢ — 0 we obtain

(v By (@) me (B, )| v (Bye) v (B, (@)
o (B, () o8, | ~leB,@) oBw| P
Since v (B,) = v" (B,), [v"| < |v| and B, (z) D Bz, (x) it follows that
v(B,() v (B,(@)| _|v(B, @)\ B) v (B,)\B)
7(B,(x)  oB,@)| | o(B,m) 7 (B, (x))
V] (B, (x) \ B,)
=2, (B, )
V] (B, () \ B, ()
SO B@) (7:3)

Moreover, we can write

W (B, (x) \ By (2)) _ V[ (B, (x)) o (B, () [v| (B (x))

o (B, (z)) a(B,(z))  a(B,()) o(Bg,(x))
_ (1 _0(Be, (fv))) V[ (Beep () | |v) (B, (2) _ |v] (Beep ()
0 (By(x)) ) o0 (Be,(x)) ~ 0(By(x))  a(Be, (55()7)4')

The assertion of the lemma follows by combining ((7.2)), (7.3)) and ((7.4]). B
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7.2. Some results on measures. The following result (see [FM93, Lemma 2.13, pp.
46] and [AIb93, Theorem 5.8, pp. 33]) is needed in the proof of Proposition

Lemma 7.3. Let 0 be a nonnegative Radon measure on ). For og-a.e. x € €} and for
every t €0, 1], we have

0 (B (@) _
2B (B, ()

In the proof of Theorem [2.1], we need the following lemma which plays the same role for
the singular part, as the LP-differentiation theorem, with the mean value u, , replacing
the affine tangent map u, of u € Wt (Q; R™).

Lemma 7.4. Let u € WP (Q;R™) and let ¢ € M, () be a positive Radon measure
singular with respect toLy. Then

p

ALy (2) =0 o-a.e. in S

Uy p — U (2)

1
lim— /
p—=00 (B, (7)) B,(x)

p
Proof. Since 0 L |Vu|PLy, we have
1
lim —— / IV (2) [PdLy (2) = 0 o-ae. in Q. (7.5)
=00 (B, (7)) /)

Fix z € Q satisfying ([7.5). By Poincaré inequality there exists C'>0 such that for every
p>0 we have

/ ey — u ()P dLn (2) < CpP IV (2) PdLy (2).
By (z) By ()

Dividing by pPo (B, (x)) and letting p — 0, we obtain the result. H
The following result is used in the proof of Proposition (see .

Lemma 7.5. Let O € O(Q) and v € M (Q;R"). Let {6 (n)}nen CJO,1[ be a decreas-
ing sequence satisfying lim, ,.,d(n) = 0. For each n € N let {B}icr, € O(O) be
a countable family of pairwise disjoints open subsets with diam (B}') €]0,0 (n)[ for all
i € I,. Let {/'}ier, € M (O;RY) be such that v (BP) = v (B}") for all i € I,,. Set
V=) e Vi g, e
V" (B) = ZVZ” (BN B)  for all Borel set B C O and all n € N.
i€l

Assume that

(1) > (v ipy

i€l,
(i1) Ly +|v°|) <O\ Y Bﬁ) =0 for alln € N;
(13i) there exists o € My (O) such that for every n € N and every open set U C O
a < Ly+v] and V(S (U)) < a(S (U)),

(0)) <oo for all n € N;

where &, (U) ::U{B;‘:B;?HU#(Z)cmdB]”ﬁO\Usé(Z)}.

Then v" = v in M (O;R!).
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Proof. The assumption |(¢)|insures that v" € M (O; Rl) for all n € N.
Step 1. In this first step we show that for every n € N and every open subset U C O
vV(U)—v(U)=vU"\U)—=v"(U"\U). (7.6)
where
Ur .= U B} where J,:={i€l,: Bl NU#0}.
j€Jn

Fix n € N. Let U C O be an open set. We have v" (U \ U") = 0 since v" (UNU") =

v" (U), indeed, we have

VUTAU) =D 0 <Bfn <j€anBy) mU) = v (BrnU) =v"(U).

i€ln J€JIn

Moreover, we have

U =Y v (By) =D v (B)) = v ().

j€Jn j€n
Thus, we can write, since U" U (U \ U™) = U U (U™ \ U), that
V() =v(U)—v(U\NU")+v (U \U)—v"(U"\U). (7.7)

But v (U\U") = 0, indeed, we have U \ U" = U \ Ujey, B} since Bf N U = ) when
J & Jn, and by using the fact that |v| < Ly +|v°|, we obtain

@\ < (00 g 57) <l (00 y By) o

Thus, ([7.7) becomes ([7.6]).
Step 2. Let f € C. (O;R'). We have to show that

!
lim [ fdv" = / fdv  where / fdv" = Z/ fsdv? for all n € N,
n=eo Jo o o —1 /O

where f = (fi,..., fs,-- s f1), v = (W}, ...,v", ..., v, fs € C.(O) and v € M (O;R)
is a signed measure. Reasoning component by component we can assume that v" is a
signed measure for all n € N and f € C. (O). We have for every n € N

/O fdv" = /O Frav — /O Fdv

where f* =max{f,0} and f~ = max{—f,0}.
Set M := max{sup, fT,sup, [~} < co. We have
M M
/ fdv" = / o (U > 1)) dt —/ (1 > 1)) dt. (7.8)
o 0 0
Set Uy :=[g>t]:={re€O:g(x)>t}forallt >0andall g€ {f*,f}. To finish the
proof we need to prove that
M

M
lim v (Uy) dt :/ v (U;) dt.
0

n—oo 0

By ([7.6)) we see that

/OMV"(Ut)—V(Ut)dt’ = /OMV(Utn\Ut)dt—/OMV”(Uf\Ut)dt',
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thus, it is sufficient to show that

i (
n—oo

But, by we have for every n € N

/OMV U\ Uy) dt‘ + /OM VU T) dt') o

/ S\ dt' </ o () de < / (7 )

Therefore we are reduced to prove that lim,_,e fOM a (S (Uy))dt =0.

Step 3. Fixn € N. Set K, := {j € J, : B} C Ui} and Uy, := Ujek, B}. We have
Zn (Uy) = Ul \ Uy, Since diam (B]') < 0 (n), we have U C Nsw)[Us] == {z € O :
dist (z,Uy) < 0 (n)}, thus a (5, (Uy)) < o (Nse[U] \ Ury) - Now, we give an estimate
from above of « (/\/:;(n)[Ut] \ Ut,n) as n — oo. Since o K Ly +|v°|, and U; C O, we
have a (Uy \ Ujey, B') = 0. But we can write

0=a <Ut\ (g}n B!'U iezg\Jn B; )) =« (Ut\ ((ieJELJ\KH Bi) U Um)>

=a (U \Un) \ Fr)

where F,, := Ujcj\k, B'. Hence a (U; \ Upn) = a (U \ Upn) N F,,). Observe that F, C
{r € O : dist(z,0U;) < 20 (n)} which gives lim, o o (F,,) < a(0U;). The sequence
{Ui \ Ut n}nen is decreasing thus lim,, oo (Us \ Uyn) < @ (OU;). In the same way, we
have

lim o (S, (0h)) < lim o (N5 (U] \ Us)

n—oo

- {a (Moo U\ D)\ Ur) + (U Us) } < 20.(9U)
since {7, (Up) }nen is decreasing and MyenNsm)[Us] = U,. Now, by noticing that oU, C

g = t] and fOM a([g =t])dt = 0 (since Fubini-Tonelli theorem), we apply the Lebesgue
dominated convergence theorem to find

M
lim [ (5 (U,))dt = 0.

n—oo 0
Repeating the same arguments with || in place of «, we also have

lim
n—oo

/OMV(Ut"\Ut)dt‘ —om

7.3. Integral representation of the Vitali envelope of a set function. This part
is devoted to the integral representation of the Vitali envelope of a set function defined
on open subsets of €2, it is partly inspired by [BB00, BEM98, DMMS86]. Then we apply
it to the set function m, (u,v;-) := lim._, m. (u,v;-).

Let p € M, (). For each open set O C Q, we denote by Q, (O) C O (O) the set of

all open balls B of O such that their boundaries have zero measure, i.e. 4 (0B) = 0.
45



7.3.1. Vitali envelopes of set functions. Let G : Q, (2) — R be a set function. We define
the lower Vitali envelope of G with respect to p

0(Q) >0 +—V; (O) :==supinf {Z G (B;) : {Bi};es € V€(O)}
>0 iel
and the upper Vitali envelope with respect to
O(Q)30+—VF(0):= iggsup {ZG(Bz) {Bi}er € VE(O)} :
iel

where for every € >0
VH(O) = {{Bi}iel C Q, () : I is countable, u (O\ ,LEJI Bi) =0, B;CO,
diam (B;) €]0,¢[ and B; N B; =0 for all i # j}.

Remarks 7.1.
(i) We have =V, = V3.
(77) If G is the trace on Q, (€2) of a positive Borel measure A on € which is absolutely
continuous with respect to p then Vi (O) = A (O) for all O € O (Q).

7.3.2. Derivatives of set function. Let G : Q,(2) — R be a set function. Define the
lower and the upper derivatives at x € Q of G with respect to p as follows

D, G (z) = ,l)ig(l)inf{iég)) cx € Be Q,(Q), diam(B) < p};

G (B)
p(B)
We say that G is p-differentiable in O € O () if for p-a.e. z € O it holds
—00<D; G (x) = D;G (x) <oo.
In this case we denote the common value by D, G (z) and
B
D,G (z) = lim G (B (x)
Rz#p—0 (B, (x))

there we recall that R, CJ0, co[ is a countable set and p ¢ Ry if and only if u (0B, (z)) =

Remarks 7.2.
(i) We have —D, (-=G) = D G.
(i7) For every O € O () and every x € O we have

DiG (z) = lir%sup{ :x € Be Q,(Q), diam(B) < p} :
p—

Y

D;G(w) = liminf{@ cx € Be Q,(0), diam (B) < p};

=0 | n(B)
: G (B) .
+ - . <
D, G (r): ignésup{u(B) cx € Be Q,(0), diam(B) < p}.
(¢i) If for each p >0 we set D, G (x) := inf {% rx € Be Q,(0), diam(B) < p}

for every x € O € O (Q2), then it is not difficult to see that {z € O : D G (v)<c}

is open for all ¢ € R. Tt follows that D/, G is measurable for all p>0. Note that the
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function p — D G (r) is nondecreasing for all z € O. Thus DG is measurable
since for every = € O
D, G (z)=1lim D, G ().
p—0 K

The same conclusion holds for D G.
(v) If G = X is a Borel finite measure absolutely continuous with respect to p then A

is p-differentiable in O and
X X A(B
— (z) prae. in O where — (z) = lim AB, (@)
dp dp =0 11 (B, (2))

The relation between lower and upper Vitali envelopes and lower and upper derivatives

of a set function respectively, is given by the following result.

D, (z) = p-a.e. in O.

Proposition 7.1. Let p € M, (Q). Let G: Q,(2) — R be a set function satisfying
(&) there exists a € M () with a < p satisfying
|G (B)| <«a(B) foral Be Q,(R).
Then for every O € O () we have

/D G(z)du(x) and Vg (O):/OD:[G(:L’) du ().

7.3.3. Integral representation of Vitali envelopes. We consider the following two condi-
tions on a set function G : O (2) — R:

(&1) the set function G is dominated by a positive measure absolutely continuous with
respect to p, i.e. there exists a € M, (Q) with a < p satisfying

|IG(0)] <a(0) foral OeO(Q) with 4 (00) = 0;

(&) the set function G is subadditive, i.e. for every U, V.0 € O (Q) with UNV = (),
UcCO,VCOandu(O\(UUV))=0 it holds

GO)<GU)+G((V).
Remark 7.1. Under |(£), since o < p, we note that

do do
< - < —
du() D,G(z) < DMG’(x)_du(x) p-a.e. in

—a(0) < V5 (0)<VF(0)<a(0) foralOeO(9).
It follows, taking Remark into account, that D,/ G and D;fG belong to L/, ().

Under the domination and subadditivity conditions, a set function defined on open sets is
p~differentiable, and the lower and upper Vitali envelopes are equal and admit an integral
representation with density its derivative.

Theorem 7.1. Let p € My (Q). Let G : O () — R be a set function satisfying [(&,)]
and (&) Then Vi (0) = VS (O) for all O € O (Q), G is p-differentiable and for every
0e0(Q)
_ . G(B,(x))
Vi (0)=YV, O:/ lim ——2""2du(x). 7.9
G( ) G( ) ORﬁﬁp—)O/ﬁ(BP(Z')) ,U() ( )
47



Application to G (-) = my (u,v;:) and u = Ly +|v?®|. For each pair (u,v) €
WP (Q;R™) x M (€;R') we consider Vi (uey the lower Vitali envelope of

my (U,V;-) ::Ema (uﬂj;')

with respect to the measure u =Ly +|v°|.

Let us show that the set function my (u,v;-) : O(2) — R, is subadditive. Let
(U, Us, W) € O(Q)? be such that U; ¢ W, Uy € W with u (W \ (U1 UU,)) = 0 and
UiNUy = 0. We can assume that m, (u, v; Uy) <oo and my (u,v; Uy) <oo. So, there exists
g0 >0 such that m. (u,v; U;) <oo for all € €]0, 0| and all i € {1,2}. Let € €]0,ey[. There
exists (v, ;) € (u+ Wy? (UsR™)) x M (2 RY) such that \; < Ly, A; (Ui) = v (U;) and

Set vy = Z?Zl v; Ly, +ulo\@w,ur,) € v+ Wol’p (Up UUg; R™) and A\g := Z?Zl i ly,. We
see that )\0 <<£N and )\0 (W) = )\() (Ul U Ug) = /\1 (Ul) + )\2 (UQ) = I/(Ul U UQ) = I/(W)
since v < p. Therefore we obtain
2
e+ Y me(u,v;U;) > I (vo, ho3 W) = me (u,v; W)
i=1
Passing to the limit ¢ — 0, we obtain our claim.
Now, we assume that holds, i.e. for every (u,v) € WP (Q; R™) x M (Q; RZ) there
exists ay, € M, () with «,,, < g such that
supme (u,v;U) < @y, (U)  forall U e O(Q).
e>0

Whence we proved the following result.

Lemma 7.6. Assume that|(H})| holds. Then for every (u,v) € W'? (Q;R™) x M (Q; R!)
the set function m, (u,v;-) is p-differentiable and for every O € O () we have

(0) = Z me (v, v; By (@ ))da(x).

el ) oR p—>0 o(B,(z))

7.4. Proof of Theorem [7.1] We divide the proof into two steps.

Step 1: A sufficient condition for the equality of the lower and upper Vitali en-
velopes. In this first step, we establish a sufficient condition for the equality of the lower
and upper Vitali envelopes. We claim that if

G(B)<V;(B) foralBeQ,(Q),

then V5 (O) = V3 (O) for all O € O (). Indeed, let O € O (2) be an open set, and let
£>0. There exists {B;},c; C V*(O) such that

sup{ZG {B;}icr € V( )}SZG(B

el i€l

V-

m+(u,u;~)

Since the integral representation for V; given by Proposition , we have

sup{ZG : {Bi}ier € V(O }<ZG )+e<> Vg (B =V, (0) +¢,

el i€l i€l

which, by passing to the limit ¢ — 0, gives V7 (O) < V5 (O), and so the equality holds.
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Step 2: end of the proof. Taking Step 1 into account, we only have to show that G (B) <
V5 (B) for all B € Q,(9). Indeed, if we have V; (O) = Vi (O) for all O € O (Q) then,
by Proposition [7.1] and Remark [7.1], G is p-differentiable and the integral representation
formula holds.

Let 6 >0. By the absolute continuity of o with respect to pu, there exists 7y such that
for every Borel set A C B satisfying p (A) <7y we have a (4) < %.

Let B € Q, (). Let € €]0,m[. There exists {B;}icr € V*(O) such that

5—|—mf{ZG :{Bi}icr € V(B }>ZG

el el

There exists a finite subset I, C I such thiu (B \ Ujer. B;) <e. We set W, := U;er. B;.
Note that p (OW.) = 0 and that p (8 (B '\ W¢)) = 0. Using|(£;)| and we have

6+1nf{ZG :{Bi}ier € V( )}ZZG(B

el el
=D GB)+ Y G(B)
i€l i€I\I:
ie\I.

zG(B)—G(B\WE)—a(‘ U Bi)

eI\l

zG(B)—a(B\WE)—a( U B)

iel\I.

But, o (Uiepr. Bi) = a(B\W.) and a (B\ W) = (B \ W,) since a < p. It follows
that

5+1nf{ZG {B;}ies € V(B )}ZG(B)—Qa(B\WE)ZG(B)—(S.

Passing to the limits ¢ — 0 and § — 0, we obtain V; (B) > G (B) which completes the
proof. B

7.5. Proof of Proposition The proof is based on the following lemma.

Lemma 7.7. Let G : Q,(2) — R be a set function satisfying (&)l Let O € O(Q). If
D, G (x) =0 (resp. DfG (x) =0) p-a.e. in O then Vg (0) =0 (resp. Vg (0) =0).

By using Remark [7.1] we see that for every » € {+, —}

[1Dic@lant < [ |52

— (z)|d
L (@)
Let x € {+,—} and O € O (). Set H* := G — D;G (-) p. It is sufficient to prove that
D*H* (z) = 0 p-a.e. in O. Indeed, we observe that bym

w(z) =a(Q)<oco.

|H* (B)| < |G(B)|+’/BD;Gd,u' ga(B)Jr/B\D;G\du for all B € Q,(Q),

that is H* satisfies (&)} Applying Lemma [7.7, we get Vj; (O) = 0, but it is easy to verify
that V7 (0) = V& (0) — [, D:Gdp.
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Let € O be such that D;G (v) = lim, 0 fBP(I) D3 Gdpu<oo. For each p>0, set
B.,(0):={BecQ,(0):z€ B e 0,diam(B) < p}.
We have for every p>0

B H- (B

in M — sup ][ D,Gdp < inf (B)
BeB..,(0) (1 (B)  pes, (0))5 BeB.,(0) p(B)

B
< inf G( ) — inf ][ D, Gdp,
BeBs,,(0) 1 (B BEBy, »(
and

(B H* (B
sup —) —  sup ][ DiGdu, < sup (B)

BEB, (0 B B€B,,,(0) B€B,,,(0) M(B)

G (B
< sup ) ][D+Gd,u
Beba,(0) 1(B) Besz

It follows, by taking Remark into account and by passing to the limit p — 0,
that Dy H (v) = 0. B

7.5.1. Proof of Lemma . Since Remarks nd , we are reduced to prove
the result only for the lower Vitali envelope.

Step 1: we show that if D,/ G (r) <0 p-a.e. in O then V5 (O) < 0. It is enough to
show that for every € >0 if

D,G(z)<e p-ae. in O  then {Bi}ii?efv ZG ) <eu(0).

Fix ¢>0. Let N C O with 4 (N) = 0 be such that O\ N = {x € 0 : D, G (z)<e}. If
x € O\ N then for some §>0

[ G(B)
1nf{m.BEBW(O)}<6—6 for all p €]0,¢].

For each p €]0, ¢[ there exists B, , € B, , (O) such that
G (Bay) . {G (B) }
—— —§<inf{ ——=:Be€B,,(0)<e—0. 7.10
() p(m) PO i

Consider the family of closed balls such that (7.10]) holds. The

o {Bx p}xGO\N p€]0,e]
family K. is a fine cover of O\ N, ie.

O\NC U B and inf{diam(B):BeK.,} =0 forallz € O\ N

Bek.
where K., = {Bxp} T
pairwise disjointed family {Bi}ie ; C K¢ such that

C K.. By Vitali covering theorem, there exists a countable

1 ((O \ N)\ LGJIE) =0, G(B;))<eu(B;) and diam (B;)<e forallie . (7.11)

From (7.11)) we have p (O \ Uje; B;) = 0 since p(N) = 0. So, we have Y., u(B;) =
Y icr M (Bs) = 1 (0). Summing over ¢ € I the first inequality in (7.11]) we obtain

mf{ZG :{Bi},c; € VX )}gezu(&):eu(()).

el el
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Step 2: we show that if DG (z) > 0 p-a.e. in O then Vg (O) > 0. Assume that
there exists a measurable set N C O with p(N) = 0 such that D G (z) > 0 for all
ze O\ N.

Let 6 > 0. By the absolute continuity of o with respect to p there exists 7y such that
for every measurable set A C B satisfying u (A) <no we have a (A) <4.

Let n €]0,nm0[. By Egoroff theorem, there exists a measurable K, C O\ N such that
(O \ K,)<n, and there exists po >0 such that for every p €0, po[ we have

G (B)

inf {D, G (z):z e K,}>—n where D, G(z)= inf ——=- forallzeO.

BeB,,,(0) 1 (B)

Let p €]0, po|. There exists {B;}icr € V? (O) such that
VZ(O)+p>VEO)+p> G (B; here V£ (O) := inf G (B;).
F(0) 492 VEO) +p= 3 GB) where V(0 L

iel {Bitiereve

Let I,,:={ieI: B;NK, # 0}. Choose z; € B;N K, for all i € I,,. It follows that

Ve (O)+p>> G(B)+ Y G(Bi):ZG<Bi)u(Bi)—oz( U Bi)

i€l eI\l er, M (B:) e\
> Z D, G (i) u(B;) —a(O\ K;)
icl,

> —npu(0) —a(0\ Ky) = —nu(0) — 6.

By passing to the limits p — 0, 7 — 0 and 6 — 0 we obtain the result. B
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