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Γ-CONVERGENCE OF NONCONVEX INTEGRALS DEFINED ON
SOBOLEV FUNCTIONS AND VECTOR MEASURES

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND HAMDI ZORGATI

Abstract. We study the Γ-convergence of nonconvex integral functionals defined on
the product space of Sobolev functions and vector measures. We prove an integral
representation result of the Γ-limit by assuming abstract conditions on the behavior of
minimization problems on small balls associated with the integral functionals. We apply
the result to prove new relaxation and homogenization theorems with additional vector
measure variable.
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1. Introduction

Let Ω ⊂ RN be a bounded open set with Lipschitz boundary. Let p> 1, m ∈ N∗ and
l ∈ N∗. Let M

(
Ω;Rl

)
be the space of the vector Radon measures and O (Ω) be the

set of all nonempty open subsets of Ω. For each ε > 0 we consider Iε : W 1,p (Ω;Rm) ×
M
(
Ω;Rl

)
×O (Ω)→ [0,∞] defined by

Iε (u, ν;O) :=


ˆ
O

fε

(
x, u (x) ,∇u (x) ,

dν

dLN

(x)

)
dLN (x) if ν �LN

∞ otherwise,

whereLN is the Lebesgue measure on Ω, and the integrands fε : Ω×Rm×Mm×N ×Rl →
[0,∞[ are Borel measurable and satisfy the following coercivity and growth conditions
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(H1) there exist C, c>0 such that for every ε>0 and every (x, u, ξ, v) ∈ Ω×Rm×M×Rl

c (|ξ|p + |v|) ≤ fε (x, u, ξ, v) ≤ C (1 + |u|p + |ξ|p + |v|) .
This double dependency in the framework of Γ-convergence appeared naturally in sev-

eral works in the mathematical analysis of solid mechanics (see for instance [BJ99]). In
[FKP94] the chemical composition, as additional variable, was considered in the minimiz-
ing energy represented by an L∞ vector field. The additional variable can be connected
to the displacement or deformation variable via a condition, for instance, in [LDZ06]
an Lp Cosserat vector emerged, through a dimension reduction process, for martensitic
thin films, representing the bending moment. In [BZZ08], this Cosserat vector turns out
to be a vector measure due to the linear growth of the energy, which induce a double
dependency with a bounded variation deformation (see also [BFM03, BFM09]).

In this work, we are interested by problems where the two differents variables u and ν
are not connected. The analysis of this kind of problems, by the methods of Γ-convergence
and relaxation, was studied in [CRZ10, CRZ11, RZ13, CZ16, CZ17] in the case where
the additional variable lies in Lp (p ≥ 1) space while the variable u belongs to Sobolev
or BV spaces.

Our goal is to provide an integral representation of the Γ-limit of {Iε}ε>0 when ε→ 0
with respect to the following convergence: the sequence {(un, νn)}n ⊂ W 1,p (Ω;Rm) ×
M
(
Ω;Rl

)
converges to (u, ν) ∈ W 1,p (Ω;Rm)×M

(
Ω;Rl

)
and we write (un, νn)→ (u, ν)

if un → u in Lp (Ω;Rm) and νn
∗
⇀ ν in M

(
Ω;Rl

)
as n→∞.

The integral representation of the Γ-limit of {Iε}ε>0 is studied via “local-global” condi-
tions on the minimization problems associated with Iε

mε (u, ν;Bρ (x))

σ (Bρ (x))
:=

1

σ (Bρ (x))
inf

{
Iε (w, λ;Bρ (x)) : λ (Bρ (x)) = ν (Bρ (x)) ,

λ�LN and w ∈ u+W 1,p
0 (Bρ (x) ;Rm)

}
, (1.1)

where σ ∈ {LN , |νs|} (see (2.1) for the definition of mε). To show at the same time the
integral representation and the Γ-convergence of {Iε}ε>0, we impose conditions on the
behavior of (1.1) when ε → 0 around small balls centered at x. Roughly, when σ =LN

the successive limits ε → 0 and then ρ → 0 of (1.1) give rise to the limit integrand of
the integral representation of the Γ-limit of {Iε}ε with respect to the Lebesgue measure.
In the same way, when σ = |νs| (here νs is the singular part of ν in the Lebesgue
decomposition of ν with respect toLN ) we find the limit integrand of the singular part.

This approach is partly inspired by the works of [DMM86], [BFM98] and [BB00] (see
also [AHM16, AHM18, AHM17, AHCM17]). It allows not to assume neither quasicon-
vexity nor convexity assumptions on the initial integrands. Moreover, it seems to us that
this procedure gives in a more natural way the formula for the limit integrands. Neverthe-
less, we have to highlight that this method is heavily based on the coercivity conditions,
which is not the case for the direct method of integral representation for Γ-limits (see for
instance [But89, DM93, BD98]).

1.1. Plan of the paper. In §2 we introduce general conditions (H2) and (H3) on local
minimization problems mε associated with the integrals {Iε}ε>0 and we state the main
result of the paper Theorem 2.1. The proof is based on two propositions (Proposition 2.1
and Proposition 2.2). The first one provides global bounds under integral form for the
Γ-liminf and Γ-limsup. The second proposition is of a local nature and allows to refine
the formulas for the limit integrands. At the end of this section, we give the proof of
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the main result which is almost a direct consequence of the two propositions and the
conditions (H2) and (H3).

The section §3 is devoted to some applications of the main result Theorem 2.1. In
§3.1 and §3.2, we state two relaxation theorems with additional vector measures variable.
Relaxation means that fε ≡ f is constant with respect to ε. By assuming some natural
conditions, we prove a relaxation theorem which is truly local when p>N . While the sit-
uation is different when p ≤ N , indeed, the complement of the set of the Lebesgue points
of u can be of non zero νs measure, which leads to a nonlocal dependence with respect
to u ∈ W 1,p (Ω;Rm) of the singular part. In §3.2, a second relaxation theorem is estab-
lished under stronger assumption on the integrand allowing to eliminate the variable u in
the singular part of the relaxed integral. In §3.3 and §3.4, we state two homogenization
theorems. The first one deals with integrands of the form W

(
x, x

ε
, ξ, v

)
which are Borel

measurable and periodic with respect to the second variable. The second homogenization
theorem is concerned with integrands of the form W

(
x
ε
, u
ε
, ξ, v

ε

)
which are periodic with

respect to all the variables except ξ. In this case, we find that the Γ-limit depends only
on the gradient variable (see Theorem 3.4).

The section §4 is devoted to the proofs of Proposition 2.1 and Proposition 2.2.
In §5 we prove the relaxation theorems. The proofs consist mainly in showing that

conditions (H2) and (H3) are satisfied.
In §6 we prove the homogenization theorems. We verify the general conditions using

mainly subadditive theorems.
In §7, we prove some auxiliary results which are needed in the proofs of Proposition 2.1

and Proposition 2.2. The first part is concerned with results on the behavior of the local
minimization problems mε with respect the measure variable. In the second part, we
prove some results we need for establishing the bound under integral form of the Γ-
limsup. The last subsection §7.3 is devoted to the proof of a differentiation result of the
Vitali envelopes for subadditive and dominated set function defined on open sets.

1.2. Notation. We denote byM+ (Ω) the set of all positive Radon measures on Ω and by
M
(
Ω;Rl

)
the space of all Rl-valued Radon measures on Ω with l ∈ N∗. Let µ ∈M+ (Ω).

If w ∈ L1
µ

(
Ω;Rl

)
then wµ ∈M

(
Ω;Rl

)
where

wµ (B) :=

ˆ
B

wdµ for all Borel set B ⊂ Ω.

In particular, for a Borel set A ⊂ Ω we denote by 1A µ the measure defined by

1A µ (B) =

ˆ
B

1A dµ for all Borel set B ⊂ Ω.

When we write ν � µ for µ ∈ M+ (Ω) and ν ∈ M
(
Ω;Rl

)
we mean that the total

variation |ν| of ν is absolutely continuous with respect to µ, i.e. |ν| � µ.
The Lebesgue decomposition of λ ∈M

(
Ω;Rl

)
with respect to µ is

λ =
dλ

dµ
(·)µ+ λs

where dλ
dµ

(·) ∈ L1
µ

(
Ω;Rl

)
is given by dλ

dµ
(x) = limρ→0

λ(Bρ(x))

µ(Bρ(x))
µ-a.e. in Ω, and where λs

and µ are mutually singular, which is denoted by λs ⊥ µ, and means that there exists a
Borel set X ⊂ Ω such that µ (Ω \X) = 0 and |λs| (X) = 0.

• We denote by Rx
µ :=

{
ρ ∈]0,∞[: µ (∂Bρ (x))>0

}
.

• We denote by Y :=]0, 1[N and Y :=]− 1, 1[N .
3



• We denote by Sl the unit sphere centered at 0 of Rl, i.e. Sl := {v ∈ Rl : |v| = 1}.
For every u ∈ W 1,p (Ω;Rm) we set

• ux (·) := u (x) +∇u (x) (· − x) for all x ∈ Ω.

• ux,ρ := −
ˆ
Bρ(x)

u (z) dLN (z) =
1

LN (Bρ (x))

ˆ
Bρ(x)

u (z) dLN (z) for all x ∈ Ω and all ρ>0.

• Lu :=

{
x ∈ Ω : lim

ρ→0
ux,ρ exists

}
.

For every u ∈ W 1,p (Ω;Rm), x ∈ Ω and every ν ∈ M
(
Ω;Rl

)
with ν = dν

dLN LN +νs, we
denote by

uσx,ρ (·) :=

 ux (·) if σ =LN

ux,ρ if σ = |νs| .

For each open set O ⊂ Ω, we denote by A0 (O) ⊂ W 1,p
0 (O;Rm) × L1

(
O;Rl

)
the set of

the all pairs (ϕ, ψ) such that ϕ ∈ W 1,p
0 (O;Rm) and ψ ∈ L1

(
O;Rl

)
with −́

O
ψdLN = 0,

i.e.

A0 (O) :=

{
(ϕ, ψ) ∈ W 1,p

0 (O;Rm)× L1
(
O;Rl

)
: −
ˆ
O

ψ (x) dLN (x) = 0

}
.

2. Main result

2.1. Γ-convergence theorem. The Γ-convergence is studied through the behavior of lo-
cal minimization problems associated with the integrals. Let ε > 0. Letmε : W 1,p (Ω;Rm)×
M
(
Ω;Rl

)
×O (Ω)→ [0,∞] be defined by

mε (u, ν;O) := inf

{
Iε (w, λ;O) :M

(
Ω;Rl

)
3 λ�LN , λ (O) = ν (O) ,

and w ∈ u+W 1,p
0 (O;Rm)

}
, (2.1)

where W 1,p
0 (O;Rm) := {φ ∈ W 1,p (Ω;Rm) : φ = 0 on Ω \O}. We consider the following

two “local-global” conditions on {mε}ε:
(H2) for every O ∈ O (Ω), u ∈ W 1,p (Ω;Rm) and v ∈ L1

(
Ω;Rl

)
it holds

lim
ρ→0

lim
ε→0

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
LN -a.e. in O;

(H3) for every O ∈ O (Ω), u ∈ W 1,p (Ω;Rm), ν ∈ M
(
Ω;Rl

)
and w ∈ L1

|νs|
(
Ω;Sl

)
, it

holds

lim
ρ→0

lim
ε→0

mε (ux,ρ, w (x) |νs|;Bρ (x))

|νs| (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux,ρ, w (x) |νs|;Bρ (x))

|νs| (Bρ (x))
|νs|-a.e. in O.

The condition (H2) expresses the independence of the Γ-limit with respect to sequences
ε → 0. The condition (H3) expresses simultaneously the independence of the Γ-limit
with respect to ε → 0 and the independence of the limit behavior of the average of the
“local minimization problems” on small balls around points in a set with zero Lebesgue
measure. We will see in §3 that (H3) is fulfilled when we assume the existence of a
recession function, with respect to the measure variable, associated with the integrands.
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Remark 2.1. Note that (H3) is equivalent to write that the limits with respect to ρ exist

lim
ρ→0

lim
ε→0

mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
|νs|-a.e. in O.

Let O ∈ O (Ω). We say that the sequence {(uε, νε)}ε>0 ⊂ W 1,p (Ω;Rm) ×M
(
Ω;Rl

)
converges to (u, ν) ∈ W 1,p (Ω;Rm) ×M

(
O;Rl

)
if uε → u in Lp (Ω;Rm) and νε

∗
⇀ ν in

M
(
O;Rl

)
, and we write

(uε, νε)→ (u, ν) in Lp (Ω;Rm)×M
(
O;Rl

)
.

For every (u, ν, O) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
×O (Ω) we set

I+ (u, ν;O) := inf
{

lim
ε→0

Iε (uε, νε;O) : (uε, νε)→ (u, ν) in Lp (Ω;Rm)×M
(
O;Rl

)}
;

I− (u, ν;O) := inf

{
lim
ε→0

Iε (uε, νε;O) : (uε, νε)→ (u, ν) in Lp (Ω;Rm)×M
(
O;Rl

)}
.

For each O ∈ O (Ω), if I− (·, ·;O) = I+ (·, ·;O) then we say that {Iε (·, ·;O)}ε>0 Γ-
converges to I0 (·, ·;O) := I− (·, ·;O) = I+ (·, ·;O). (For more details on the theory of
Γ-convergence we refer to [DM93])

Now, we state the main result of the paper.

Theorem 2.1. Assume that (H1), (H2) and (H3) hold. For every O ∈ O (Ω) the family of
integral functionals {Iε (·, ·;O)}ε Γ-converges to I0 (·, ·;O) at each (u, ν) ∈ W 1,p (Ω;Rm)×
M
(
Ω;Rl

)
where

I0 (u, ν;O) =

ˆ
O

f0

(
x, u (x) ,∇u (x) ,

dν

dLN

(x)

)
dLN (x)

+

ˆ
O

f s0,u

(
x,

dν

d|νs|
(x)

)
d|νs| (x) ,

where f0 : Ω× Rm ×M× Rl → [0,∞[ is defined by

f0 (x, u, ξ, v) := lim
ρ→0

lim
ε→0

mε (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
,

and where, for each u ∈ W 1,p (Ω;Rm) the integrand f s0,u : Ω× Sl → [0,∞[ is defined by

f s0,u (x,w) := lim
ρ→0

lim
ε→0

mε

(
−
ˆ
Bρ(x)

udLN , w|νs|;Bρ (x)

)
|νs| (Bρ (x))

.

Remark 2.2. Note that f s0,u does not depend on the pointwise value u (x), but on the limit
behavior of the average of u at x on small balls. It is possible, for instance when u is not
regular (i.e. when p ≤ N), that −́

Bρ(x)
u (z) dLN (z) does not converge when ρ → 0 since

x belongs to a negligible set for the Lebesgue measure. This naturally leads to consider
the set Lu of points x where that limit exists (see §3.1).
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2.2. Global bounds for I+, I− and local bounds for mε. The proof of Theorem 2.1
is based on the following two propositions below. The Proposition 2.1 provides lower
(resp. upper) bound of the limit I− (resp. I+) under integral form. The lower bound
for I− is obtained by using the “localization method”(see [FM92]), which consists in
analyzing the weak limit (of a converging subsequence) of the sequence of measures{

fε

(
·, uε,∇uε,

dνε
dLN

)
LN

}
ε>0

.

The upper bound for I+ is also obtained through a localization technique but using,
among others ingredients, the differentiability of the lower Vitali envelope of the open set
function limε→0mε (u, ν; ·), see §7.3 and Lemma 7.6.

Proposition 2.1 (Bounds for I− and I+). Let O ∈ O (Ω).

(i) For every (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
, there exists a sequence {(uε, νε)}ε>0 ⊂

W 1,p (Ω;Rm)×M
(
Ω;Rl

)
such that

(uε, νε)→ (u, ν) in Lp (Ω;Rm)×M
(
O;Rl

)
, sup
ε>0

Iε (uε, νε;O)<∞

and

I− (u, ν;O) ≥
∑

σ∈{LN ,|νs|}

ˆ
O

lim
t→1−

lim
ρ→0

lim
ε→0

Iε (uε, νε;Btρ (x))

σ (Bρ (x))
dσ (x) .

(ii) Assume that
(H′1) there exists c > 0 such that for every ε> 0 and every (x, u, ξ, v) ∈ Ω × Rm ×

M× Rl

c (|ξ|p + |v|) ≤ fε (x, u, ξ, v) ;

(H′2) for every (u, ν) ∈ W 1,p (Ω;Rm) ×M
(
Ω;Rl

)
there exists αu,ν ∈ M+ (Ω) with

αu,ν � µ :=LN +|νs| such that

sup
ε>0

mε (u, ν;U) ≤ αu,ν (U) for all U ∈ O (Ω) .

Then we have, for every (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
I+ (u, ν;O) ≤

∑
σ∈{LN ,|νs|}

ˆ
O

lim
Rxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

σ (Bρ (x))
dσ (x) .

Remark 2.3. Note that the condition (H1) implies (H′1) and (H′2). Indeed, for each pair

(u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
we set αu,ν := C

(
1 + |u|p + |∇u|p + |ν|(Ω)

LN (Ω)

)
LN . Hence,

for every U ∈ O (Ω) we have supε>0mε (u, ν;U) ≤ αu,ν (U) .

The second lemma below gives lower and upper bounds for the limit integrands. It
consists in “locally replacing” the arguments (u, ν) ∈ W 1,p (Ω;Rm) × M

(
Ω;Rl

)
(and

(uε, νε) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
) of the integral representations obtained in Proposi-

tion 2.1, by local approximations on “small” balls centered at x. In case x belongs to the
support of the Lebesgue measure, we consider the affine tangent map of u at x, as local
approximation of u, and the absolute continuous part of ν at x for ν, i.e.

(u, ν) “locally replaced” by

(
ux (·) , dν

dLN

(x)LN

)
.
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When x belongs to the support of the singular part νs, we consider the mean value of u
on balls centered at x, and the derivative of ν with respect to the total variation |νs| at
x as local approximations, i.e.

(u, ν) “locally replaced” by

(
ux,ρ,

dν

d|νs|
(x) |νs|

)
for “small” ρ>0.

Proposition 2.2 (Local bounds). Let O ∈ O (Ω). Assume that (H1) holds. Then

(i) for every pair (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
and every sequence {(uε, νε)}ε>0 ⊂

W 1,p (Ω;Rm)×M
(
Ω;Rl

)
satisfying

(uε, νε)→ (u, ν) in Lp (Ω;Rm)×M
(
O;Rl

)
and sup

ε>0
Iε (uε, νε;O)<∞,

we have

lim
ρ→0

lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

≤ lim
t→1−

lim
ρ→0

lim
ε→0

Iε (uε, νε;Btρ (x))

LN (Bρ (x))
LN -a.e. in O,

(2.2)

and

lim
ρ→0

lim
ε→0

mε

(
ux,ρ,

dν

d|νs|
(x) |νs|;Bρ (x)

)
|νs| (Bρ (x))

≤ lim
t→1−

lim
ρ→0

lim
ε→0

Iε (uε, νε;Btρ (x))

|νs| (Bρ (x))
|νs|-a.e. in O;

(2.3)

(ii) for every (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
we have

lim
Rxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

LN (Bρ (x))
≤ lim

ρ→0
lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

LN -a.e. in O,

(2.4)

and

lim
Rxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

|νs| (Bρ (x))
≤ lim

ρ→0
lim
ε→0

mε

(
ux,ρ,

dν

d|νs|
(x) |νs|;Bρ (x)

)
|νs| (Bρ (x))

|νs|-a.e. in O.

(2.5)

Using both Propositions 2.1 and 2.2 and the conditions (H2) and (H3), we see (§2.3)
that these global and local inequalities give at the same time the formulas for the limit
integrands and lead to the Γ-convergence of {Iε}ε>0. In fact, the assumptions (H2)
and (H3) allows us to bridge the difference between the lower and the upper bounds. In
§3.1, §3.2, §3.3 and §3.4 we will exhibit explicit conditions on the initial integrands which
entail (H2) and (H3).

A consequence of Propositions 2.1 and 2.2 is that the limit integrands are measurable.
The proof of the following corollary is similar to that of Theorem 2.1 and is a consequence
of Lemma 7.6.
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Corollary 2.1. Let (u, ν, O) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
×O (Ω) and let σ ∈ {LN , |νs|}.

If (H1), (H2) and (H3) hold then for σ-a.e. x ∈ O the following limit exists

lim
ρ→0

lim
ε→0

mε

(
uσx,ρ,

dν

dσ
(x)σ;Bρ (x)

)
σ (Bρ (x))

=: Ψσ (x) .

Moreover, Ψσ is σ-measurable.

2.3. Proof of Theorem 2.1. Let (u, ν) ∈ W 1,p (Ω;Rm) ×M
(
Ω;Rl

)
and O ∈ O (Ω).

Combining Proposition 2.1, Corollary 2.1, Proposition 2.2 and conditions (H2) and (H3),
we can write, forLN -a.e. x ∈ O, that

lim
ρ→0

I− (u, ν;Bρ (x))

LN (Bρ (x))
≥ lim

ρ→0
lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

≥ lim
ρ→0

lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

≥ lim
Rxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

LN (Bρ (x))
≥ lim

ρ→0

I+ (u, ν;Bρ (x))

LN (Bρ (x))
.

It follows, since I− (u, ν; ·) ≤ I+ (u, ν; ·), that forLN -a.e. x ∈ O we have

lim
ρ→0

I− (u, ν;Bρ (x))

LN (Bρ (x))
= lim

ρ→0

I+ (u, ν;Bρ (x))

LN (Bρ (x))

= lim
ρ→0

lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

= lim
Rxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

LN (Bρ (x))

= lim
ρ→0

lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

.

(Note that all these functions are measurable because x 7→ limRxµ 63ρ→0 limε→0
mε(u,ν;Bρ(x))

LN (Bρ(x))

is measurable by Lemma 7.6 and Remarks 7.2 (iii)). Similarly, we have for |νs|-a.e. x ∈ O

lim
ρ→0

I− (u, ν;Bρ (x))

|νs| (Bρ (x))
= lim

ρ→0

I+ (u, ν;Bρ (x))

|νs| (Bρ (x))
= lim

ρ→0
lim
ε→0

mε

(
ux,ρ,

dν

d|νs|
(x) |νs|;Bρ (x)

)
|νs| (Bρ (x))

.

= lim
Rxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

|νs| (Bρ (x))

= lim
ρ→0

lim
ε→0

mε

(
ux,ρ,

dν

d|νs|
(x) |νs|;Bρ (x)

)
|νs| (Bρ (x))

.
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Using Corollary 2.1 and Proposition 2.1 we can write

I− (u, ν;O) ≥
∑

σ∈{LN ,|νs|}

ˆ
O

lim
ρ→0

lim
ε→0

mε

(
uσx,ρ,

dν

dσ
(x)σ;Bρ (x)

)
σ (Bρ (x))

dσ (x)

=
∑

σ∈{LN ,|νs|}

ˆ
O

lim
Rxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

σ (Bρ (x))
dσ (x) ≥ I+ (u, ν;O) ,

which completes the proof. �

Proof of Corollary 2.1. Let O ∈ O (Ω). Let (u, ν) ∈ W 1,p (Ω;Rm) ×M
(
Ω;Rl

)
. By

Lemma 2.1 (i) there exists {(uε, νε)}ε>0 ⊂ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
such that (uε, νε)→

(u, ν) in Lp (Ω;Rm)×M
(
O;Rl

)
, supε>0 Iε (uε, νε;O)<∞ and satisfying forLN -a.e. x ∈ O

lim
ρ→0

I− (u, ν;Bρ (x))

LN (Bρ (x))
≥ lim

t→1−
lim
ρ→0

lim
ε→0

Iε (uε, νε;Btρ (x))

LN (Bρ (x))
.

It follows by using Propositions 2.1 and 2.2 that forLN -a.e. x ∈ O

lim
ρ→0

I− (u, ν;Bρ (x))

LN (Bρ (x))

≥ lim
ρ→0

lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

= lim
ρ→0

lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

≥ lim
ρ→0

lim
ε→0

mε

(
ux,

dν

dLN

(x)LN ;Bρ (x)

)
LN (Bρ (x))

≥ lim
Dxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

LN (Bρ (x))
≥ lim

ρ→0

I+ (u, ν;Bρ (x))

LN (Bρ (x))
.

Similarly, using again Propositions 2.1 and 2.2 we have for |νs|-a.e. x ∈ O

lim
ρ→0

I− (u, ν;Bρ (x))

|νs| (Bρ (x))
≥ lim

t→1−
lim
ρ→0

lim
ε→0

Iε (uε, νε;Btρ (x))

|νs| (Bρ (x))

≥ lim
ρ→0

lim
ε→0

mε

(
ux,ρ,

dν

d|νs|
(x) |νs|;Bρ (x)

)
|νs| (Bρ (x))

≥ lim
ρ→0

lim
ε→0

mε

(
ux,ρ,

dν

d|νs|
(x) |νs|;Bρ (x)

)
|νs| (Bρ (x))

= lim
ρ→0

lim
ε→0

mε

(
ux,ρ,

dν

d|νs|
(x) |νs|;Bρ (x)

)
|νs| (Bρ (x))

≥ lim
Dxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

|νs| (Bρ (x))

≥ lim
ρ→0

I+ (u, ν;Bρ (x))

|νs| (Bρ (x))
.
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Therefore we have for every σ ∈ {LN , |νs|} and for σ-a.e. x ∈ O

lim
ρ→0

I− (u, ν;Bρ (x))

σ (Bρ (x))
= lim

ρ→0

I+ (u, ν;Bρ (x))

σ (Bρ (x))
= Ψσ (x) = lim

Dxµ 63ρ→0
lim
ε→0

mε (u, ν;Bρ (x))

σ (Bρ (x))
.

(2.6)

But, by Lemma 7.6 and Remarks 7.2 (iii) the last function in (2.6) is σ-measurable and
thus the function Ψσ is also σ-measurable. �

3. Application to relaxation and homogenization theorems

3.1. Relaxation theorem with singular part depending on u. Let f : Ω × Rm ×
M × Rl → [0,∞[ be a Borel measurable integrand. We consider the integral functional
I : W 1,p (Ω;Rm)×M

(
Ω;Rl

)
×O (Ω)→ [0,∞] defined by

I (u, ν;O) :=


ˆ
O

f

(
x, u (x) ,∇u (x) ,

dν

dLN

(x)

)
dLN (x) if ν �LN

∞ otherwise.

We define its “relaxed” by

I (u, ν;O) := inf

{
lim
n→∞

I (un, νn;O) : un → u in Lp (Ω;Rm) and νn
∗
⇀ ν in M

(
O;Rl

)}
for all (u, ν) ∈ W 1,p (Ω;Rm)×M

(
Ω;Rl

)
and all O ∈ O (Ω).

Consider the following conditions:

(R1) there exist C, c>0 such that for every (x, u, ξ, v) ∈ Ω× Rm ×M× Rl we have

c (|ξ|p + |v|) ≤ f (x, u, ξ, v) ≤ C (1 + |u|p + |ξ|p + |v|) ;

(R2) there exist C1>0, q>0 and q′>0 such that for every (x, x′, u, u′, ξ, v) ∈ Ω× Ω×
Rm × Rm ×M× Rl

|f (x, u, ξ, v)− f (x′, u′, ξ, v) | ≤ C1

(
|u− u′|q + |x− x′|q′

)
(1 + |ξ|p + |v|) ;

(R3) there exist T > 0, β > 0 and r ∈]0, 1[ such that for every t > T , every (x, u, ξ) ∈
Ω× Rm ×M and every w ∈ Sl we have∣∣∣∣f (x, u, ξ, tw)

t
− f∞ (x, u, ξ, w)

∣∣∣∣ ≤ β

tr
, where f∞ (x, u, ξ, w) := lim

t→∞

f (x, u, ξ, tw)

t
.

For every u ∈ W 1,p (Ω;Rm) we consider the set Lu of points x ∈ Ω where ux,ρ admits a
limit as ρ→ 0, i.e.

Lu :=

{
x ∈ Ω : lim

ρ→0
ux,ρ exists

}
.

Theorem 3.1. Assume that (R1), (R2) and (R3) hold. Assume that for every O ∈ O (Ω),
and every (u, v) ∈ W 1,p (Ω;Rm)× L1

|νs|
(
Ω;Sl

)
lim
ρ→0

m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
= lim

ρ→0

m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
|νs|-a.e. in O \ Lu.
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Then for every O ∈ O (Ω) and every (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
we have

I (u, ν;O) =

ˆ
O

Q0f

(
x, u (x) ,∇u (x) ,

dν

dLN

(x)

)
dLN (x)

+

ˆ
O∩Lu

Qs0f∞
(
x, u (x),

dν

d|νs|
(x)

)
d|νs| (x)

+

ˆ
O\Lu

f s0,u

(
x,

dν

d|νs|
(x)

)
d|νs| (x) ,

where u (x) = lim
ρ→0

ux,ρ for all x ∈ Lu, and for every (x, u, ξ, v, w) ∈ Ω×Rm×M×Rl×Sl

Q0f(x, u, ξ, v) := inf

{ˆ
Y

f (x, u, ξ +∇ϕ (y) , v + ψ (y)) dLN (y) :

ϕ ∈ W 1,p
0 (Y ;Rm) and ψ ∈ L1

(
Y ;Rl

)
,

ˆ
Y

ψ (y) dLN (y) = 0

}
, (3.1)

Qs0f∞(x, u, w) := inf

{ˆ
Y

f∞ (x, u,∇ϕ (y) , w + ψ (y)) dLN (y) :

ϕ ∈ W 1,p
0 (Y ;Rm) and ψ ∈ L1

(
Y ;Sl

)
,

ˆ
Y

ψ (y) dLN (y) = 0

}
, (3.2)

and

f s0,u

(
x,

dν

d|νs|
(x)

)
:= lim

ρ→0

m

(
ux,ρ,

dν

d|νs|
(x) |νs|;Bρ (x)

)
|νs| (Bρ (x))

|νs|-a.e. in O \ Lu.

Remark 3.1. Formula giving Q0f is not new, see [FKP94, LDR00]. Observe that there
is simultaneously a “quasiconvexification” with respect to the gradient variable ξ and a
“convexification” with respect to v the absolute part with respect toLN of the measure
variable, it was called quasiconvex-convex envelope of f by [CRZ11]. We can also note
that there is no contribution of the gradient of u to the formula giving Qs0f∞, this due
to the fact that a local approximation of u, around balls with radius ρ centered at point
x of the support of νs, is ux,ρ whose gradient is zero. The main difficulty to extend the
method and so Theorem 2.1 to BV (Ω;Rm), is to find the “good local approximation”
for Dsu the singular part in the Lebesgue decomposition of the distributional derivative
of u ∈ BV (Ω;Rm).

If we assume that p>N and u ∈ W 1,p (Ω;Rm) then Ω \ Lu = ∅ and u (x) = u (x) for
all x ∈ Ω.

Corollary 3.1. Assume that p>N . Assume that (R1), (R2) and (R3) hold. Then for
every (u, ν) ∈ W 1,p (Ω;Rm)×M

(
Ω;Rl

)
and O ∈ O (Ω), we have

I (u, ν;O) =

ˆ
O

Q0f

(
x, u (x) ,∇u (x) ,

dν

dLN

(x)

)
dLN (x)

+

ˆ
O

Qs0f∞
(
x, u (x) ,

dν

d|νs|
(x)

)
d|νs| (x) ,

where Q0f is given by (3.1) and Qs0f by (3.2).
11



Remark 3.2. We denote by Hk the k-Hausdorff measure on RN with k ∈ R+. Assume
that p ≤ N . Then for every O ∈ O (Ω) and for every (u, ν) ∈ W 1,p (Ω;Rm)×M

(
Ω;Rl

)
satisfying |νs| � Hk for some k>N − p, we have

I (u, ν;O) =

ˆ
O

Q0f

(
x, u (x) ,∇u (x) ,

dν

dLN

(x)

)
dLN (x)

+

ˆ
O

Qs0f∞
(
x, u (x) ,

dν

d|νs|
(x)

)
d|νs| (x)

since |νs| (Ω \ Lu) = 0 by Federer-Ziemer theorem [FZ73].

3.2. Relaxation theorem with singular part not depending on u. Consider the
condition:

(R ′2) there exist C2>0 and q′>0 such that for every (x, x′, u, u′, ξ, v) ∈ Ω× Ω× Rm ×
Rm ×M× Rl

|f (x, u, ξ, v)− f (x′, u′, ξ, v) | ≤ C2

(
|u− u′|p + |x− x′|q′

)
.

Remark 3.3. Let W : M×Rl → [0,∞[ and h : Rm → [0,∞[ be Borel measurable functions
such that for some C>0 we have

|h (u)− h (u′)| ≤ C|u− u′|p for all (u, u′) ∈ Rm × Rm.

Then the condition (R ′2) is satisfied for integrand of the form f (x, u, ξ, v) = W (ξ, v) +
h (u) for all (x, u, ξ, v) ∈ Ω × Rm ×M × Rl. While (R2) is satisfied for integrand of the
form f (x, u, ξ, v) = W (ξ, v)h (u) for all (x, u, ξ, v) ∈ Ω× Rm ×M× Rl.

The variable u does not appear in the singular part when (R2) is replaced by (R ′2).

Theorem 3.2. Assume that (R1), (R ′2) and (R3) hold. Then we have for every (u, ν) ∈
W 1,p (Ω;Rm)×M

(
Ω;Rl

)
and every O ∈ O (Ω)

I (u, ν;O) =

ˆ
O

Q0f

(
x, u (x) ,∇u (x) ,

dν

dLN

(x)

)
dLN (x)

+

ˆ
O

Qs0f∞
(
x,

dν

d|νs|
(x)

)
d|νs| (x) ,

where Q0f is given by (3.1) and for every (x,w) ∈ Ω× Sl

Qs0f∞ (x,w) := inf

{ˆ
Y

f∞ (x, 0,∇ϕ (y) , w + ψ (y)) dLN (y) :

ϕ ∈ W 1,p
0 (Y ;Rm) and ψ ∈ L1

(
Y ;Rl

)
,

ˆ
Y

ψ (y) dLN (y) = 0

}
.

3.3. Homogenization theorem with additional vector measure variable. Let W :
Ω × RN ×M × Rl → [0,∞[ be a Borel measurable integrand 1-periodic with respect to
the second variable, i.e.

(H0) W (x, y + z, ξ, v) = W (x, y, ξ, v) for all z ∈ ZN and all (x, y, ξ, v) ∈ Ω × RN ×
M× Rl.

For every ε>0, we consider the functionals Iε : W 1,p (Ω;Rm)×M
(
Ω;Rl

)
×O (Ω) →

[0,∞] defined by

Iε (u, ν;O) :=


ˆ
O

W

(
x,
x

ε
,∇u (x) ,

dν

dLN

(x)

)
dLN (x) if ν �LN

∞ otherwise.
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Consider the following conditions on W :

(H1) there exist C, c>0 such that for every (x, y, ξ, v) ∈ Ω× RN ×M× Rl we have

c (|ξ|p + |v|) ≤ W (x, y, ξ, v) ≤ C (1 + |ξ|p + |v|) ;

(H2) there exist C1>0 and q′>0 such that for every (x, x′, y, ξ, v) ∈ Ω×Ω×RN×M×Rl

we have

|W (x, y, ξ, v)−W (x′, y, ξ, v) | ≤ C1|x− x′|q
′
(1 + |ξ|p + |v|) ;

(H3) there exist T > 0, β > 0 and r ∈]0, 1[ such that for every t > T , every (x, y, ξ) ∈
Ω× RN ×M and every v ∈ Sl, we have∣∣∣∣W (x, y, ξ, tv)

t
−W∞ (x, y, ξ, v)

∣∣∣∣ ≤ β

tr
, where W∞ (x, y, ξ, v) := lim

t→∞

W (x, y, ξ, tv)

t
.

We have the following homogenization theorem.

Theorem 3.3. Assume that (H0), (H1), (H2) and (H3) hold. For every O ∈ O (Ω) the
family {Iε (·, ·;O)}ε Γ-converges at each (u, ν) ∈ W 1,p (Ω;Rm) ×M

(
Ω;Rl

)
to I0 (·, ·;O)

given by

I0 (u, ν;O) =

ˆ
O

H0W

(
x,∇u (x) ,

dν

dLN

(x)

)
dLN (x)

+

ˆ
O

Hs
0W

∞
(
x,

dν

d|νs|
(x)

)
d|νs| (x) ,

where for every (x, ξ, v, w) ∈ Ω×M× Rl × Sl

H0W (x, ξ, v) := inf
k∈N∗

inf

{
−
ˆ
kY
W (x, y, ξ +∇ϕ (y) , v + ψ (y)) dLN (y) :

ϕ ∈ W 1,p
0 (kY;Rm) and ψ ∈ L1

(
kY;Rl

)
,

ˆ
kY
ψ (y) dLN (y) = 0

}
,

Hs
0W

∞ (x,w) := inf
k∈N∗

inf

{
−
ˆ
kY
W∞ (x, y,∇ϕ (y) , w + ψ (y)) dLN (y) :

ϕ ∈ W 1,p
0 (kY;Rm) and ψ ∈ L1

(
kY;Rl

)
,

ˆ
kY
ψ (y) dLN (y) = 0

}
.

Remark 3.4. We could assume dependence on u for W , in this case, we have to modify
the hypothesis (H1), (H2) and (H3) making them similar to those of the relaxation
theorems, but we choose not to overload the presentation of the proof of Theorem 3.3.
Nevertheless, we can note that Theorem 3.3 is an extension of the homogenization result
of [CRZ11].

3.4. Homogenization theorem with additional periodic vector measure vari-
able. Let W : RN × Rm ×M× Rl → [0,∞[ be a Borel measurable integrand 1-periodic
with respect to all variables except to the variable ξ ∈M, i.e.

(H ′
0 ) for every (z, z′, τ) ∈ ZN × Zm × Zl and every (x, u, ξ, v) ∈ Ω× Rm ×M× Rl

W (x+ z, u+ z′, ξ, v + τ) = W (x, u, ξ, v)
13



For each ε>0, we consider Iε : W 1,p (Ω;Rm)×M
(
Ω;Rl

)
×O (Ω)→ [0,∞] defined by

Iε (u, ν;O) :=


ˆ
O

W

(
x

ε
,
u

ε
,∇u (x) ,

1

ε

dν

dLN

(x)

)
dLN (x) if ν �LN

∞ otherwise.

Consider the following conditions:

(H ′
1 ) there exist C, c>0 such that for every (x, u, ξ, v) ∈ RN × Rm ×M× Rl

c (|ξ|p + |v|) ≤ W (x, u, ξ, v) ≤ C (1 + |ξ|p + |v|) .

Remark 3.5. Assume that (H ′
0 ) and (H ′

1 ) hold. For each v ∈ Rl and each ε ∈]0, 1[ we
set
⌊
v
ε

⌋
l
:=
(⌊

v1
ε

⌋
, . . . ,

⌊
vl
ε

⌋)
∈ Zl where

⌊
vi
ε

⌋
= max{z ∈ Z : z ≤ vi

ε
} is the integer part of

vi
ε

for all i ∈ {1, . . . , l}. Then we can write v
ε

=
⌊
v
ε

⌋
l
+
(
v
ε
−
⌊
v
ε

⌋
l

)
, and we remark that

v
ε
−
⌊
v
ε

⌋
l
∈ [0, 1]l, so

W
(x
ε
,
u

ε
, ξ,

v

ε

)
= W

(x
ε
,
u

ε
, ξ,

v

ε
−
⌊v
ε

⌋
l

)
≤ C

(
1 + |ξ|p +

∣∣∣v
ε
−
⌊v
ε

⌋
l

∣∣∣) ≤ 2C (1 + |ξ|p)

for all (x, u, ξ) ∈ RN × Rm ×M and all ε > 0.

The Γ-convergence of {Iε}ε>0 (not depending on additional measure variable) was studied
by [BDM78] and [AB84] in the scalar case, for problems related to the homogenization of
Riemannian metrics. Later, a generalisation to the vectorial case was obtained by [E91] in
the periodic setting. The case of almost periodic setting was studied by Braides [Bra92].
The following homogenization result is an extension, in the periodic setting, of Braides-E
results for integrands depending on periodic vector measures.

Theorem 3.4. Assume that (H ′
0 ) and (H ′

1 ) hold. For every O ∈ O (Ω) the family
{Iε (·, ·;O)}ε Γ-converges to I0 (·, ·;O) at each (u, ν) ∈ W 1,p (Ω;Rm) ×M

(
Ω;Rl

)
given

by

I0 (u, ν;O) =

ˆ
O

H0W (∇u (x)) dLN (x)

where for every ξ ∈M

H0W (ξ) := lim
k→∞

inf

{
−
ˆ
kY
W (y, ξy + ϕ (y) , ξ +∇ϕ (y) , ψ (y)) dLN (y) :

ϕ ∈ W 1,p
0 (kY;Rm) and ψ ∈ L1

(
kY;Rl

)
,

ˆ
kY
ψ (y) dLN (y) = 0

}
.

4. Proof of Propositions 2.1 and 2.2

Proof of Proposition 2.1 (i). Let O ∈ O (Ω). Let (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
be such that I− (u, ν;O) <∞. There exists a sequence {(uε, νε)}ε>0 ⊂ W 1,p (Ω;Rm) ×
M
(
Ω;Rl

)
such that (uε, νε)→ (u, ν) in Lp (Ω;Rm)×M

(
O;Rl

)
as ε→ 0, and

I− (u, ν;O) = lim
ε→0

Iε (uε, νε;O)<∞ and sup
ε>0

Iε (uε, νε;O)<∞. (4.1)

Using the coercivity condition (H1) and (4.1), we obtain the existence of a subsequence

(not relabelled) such that |νε|
∗
⇀ µ in M+ (O). For each ε > 0 we set

Θε := fε

(
·, uε (·) ,∇uε (·) , dνε

dLN

(·)
)
LN bO ∈M+ (O) .
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Using (4.1) there exists a subsequence (not relabelled) {Θε}ε>0 ⊂ M+ (O) and Θ ∈
M+ (O) such that Θε

∗
⇀ Θ in M+ (O) . The Lebesgue decomposition theorem gives

that

Θ =
dΘ

dLN

(·)LN +
dΘ

d|νs|
(·) |νs|+ Θs

The measure Θs being the singular part of the Lebesgue decomposition of Θ with respect
toLN + |νs|. Therefore we have

I− (u, ν;O) = lim
ε→0

Iε (uε, νε;O) = lim
ε→0

Θε (O) ≥ Θ (O) ≥
∑

σ∈{LN ,|νs|}

ˆ
O

dΘ

dσ
(x) dσ (x) .

Moreover, we have for every t ∈]0, 1[

dΘ

dLN

(x) = lim
ρ→0

Θ (Bρ (x))

LN (Bρ (x))
≥ lim

ρ→0

Θ
(
Btρ (x)

)
LN (Bρ (x))

≥ lim
ρ→0

lim
ε→0

Θε (Btρ (x))

LN (Bρ (x))
LN -a.e. in O,

hence forLN -a.e. x ∈ O
dΘ

dLN

(x) ≥ lim
t→1−

lim
ρ→0

lim
ε→0

1

LN (Bρ (x))

ˆ
Btρ(x)

fε

(
z, uε (z) ,∇uε (z) ,

dνε
dLN

(z)

)
dLN .

Similarly, we have

dΘ

d|νs|
(x) = lim

ρ→0

Θ (Bρ (x))

|νs| (Bρ (x))
≥ lim

ρ→0

Θ
(
Btρ (x)

)
|νs| (Bρ (x))

≥ lim
ρ→0

lim
ε→0

Θε (Btρ (x))

|νs| (Bρ (x))
|νs|-a.e. in O,

and then

dΘ

d|νs|
(x) ≥ lim

t→1−
lim
ρ→0

lim
ε→0

1

|νs| (Bρ (x))

ˆ
Btρ(x)

fε

(
z, uε,∇uε,

dνε
dLN

)
dLN |νs|-a.e. in O.�

Proof of Proposition 2.1 (ii). Taking Lemma 7.6 into account, which gives an in-
tegral representation of the lower Vitali envelope with density the derivative of the set
function m+ (u, ν; ·) = limε→0mε (u, ν; ·), we see that it is sufficient to show that for every
(u, ν, O) ∈ W 1,p (Ω;Rm)×M

(
Ω;Rl

)
×O (Ω)

I+ (u, ν;O) ≤ V −m+(u,ν;·) (O) .

Let (u, ν, O) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
×O (Ω) be such that V −m+(u,ν;·) (O)<∞ where

V −m+(u,ν;·) (O) = lim
δ→0

inf

{∑
i∈I

m+ (u, ν;Bi) : {Bi}i∈I ∈ Vδ(O)

}
.

where for every δ>0

Vδ (O) :=

{
{Bi}i∈I : Bi is an open ball, µ (∂Bi) = 0, Bi ⊂ O, diam (Bi) ∈]0, δ[

I is countable, µ

(
O \ ∪

i∈I
Bi

)
= 0, and Bi ∩Bj = ∅ for all i 6= j

}
.

Fix δ ∈]0, 1[. There exists {Bδ
i }i∈Iδ ∈ Vδ (O) such that

V −m+(u,ν;·) (O) + δ ≥
∑
i∈Iδ

m+

(
u, ν;Bδ

i

)
. (4.2)
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We claim that

lim
ε→0

∑
i∈Iδ

mε

(
u, ν;Bδ

i

)
≤ δ +

∑
i∈Iδ

m+

(
u, ν;Bδ

i

)
. (4.3)

Indeed, consider αu,ν given by (H′2) and set µ := LN +|νs|. Since µ
(
O \ ∪i∈IδBδ

i

)
= 0

and αu,ν � µ we have αu,ν
(
O \ ∪i∈Iδ Bδ

i

)
= 0. It follows that there exists a finite subset

Jδ ⊂ Iδ satisfying
∑

i∈Iδ\Jδ αu,ν
(
Bδ
i

)
<δ. Now, for every ε>0 we have∑

i∈Iδ

mε

(
u, ν;Bδ

i

)
=
∑
i∈Jδ

mε

(
u, ν;Bδ

i

)
+
∑

i∈Iδ\Jδ

mε

(
u, ν;Bδ

i

)
≤
∑
i∈Jδ

mε

(
u, ν;Bδ

i

)
+
∑

i∈Iδ\Jδ

αu,ν
(
Bδ
i

)
≤
∑
i∈Jδ

mε

(
u, ν;Bδ

i

)
+ δ.

Since Jδ is finite, we obtain, by passing to the limit ε→ 0, that

lim
ε→0

∑
i∈Iδ

mε

(
u, ν;Bδ

i

)
≤ lim

ε→0

∑
i∈Jδ

mε

(
u, ν;Bδ

i

)
+ δ

≤
∑
i∈Jδ

lim
ε→0

mε

(
u, ν;Bδ

i

)
+ δ

≤
∑
i∈Iδ

m+

(
u, ν;Bδ

i

)
+ δ.

which proves (4.3).
Next, fix ε ∈]0, 1[. For each i ∈ Iδ there exists

(
uδi,ε, ν

δ
i,ε

)
∈ u + W 1,p

0

(
Bδ
i ;Rm

)
×

M
(
Ω;Rl

)
such that νδi,ε

(
Bδ
i

)
= ν

(
Bδ
i

)
, νδi,ε �LN and

mε

(
u, ν;Bδ

i

)
+ ε
LN

(
Bδ
i

)
LN (O)

≥ Iε
(
uδi,ε, ν

δ
i,ε;B

δ
i

)
. (4.4)

Set

νδε :=
∑
i∈Iδ

νδi,ε 1Bδi and uδε :=
∑
i∈Iδ

uδi,ε 1Bδi +u1Ω\∪i∈IδB
δ
i
.

Using (H′1) and (H′2) we have νδε ∈M
(
O;Rl

)
, indeed∣∣νδε ∣∣ (O) =

∣∣∣∣∣∑
i∈Iδ

νδi,ε 1Bδi

∣∣∣∣∣ (O) ≤
∑
i∈Iδ

(∣∣∣νδi,ε 1Bδi ∣∣∣ (O)
)

=
∑
i∈Iδ

ˆ
Bδi

∣∣∣∣∣dνδi,εdLN

∣∣∣∣∣ dLN

≤ 1

c

∑
i∈Iδ

mε

(
u, ν;Bδ

i

)
+ ε
LN

(
Bδ
i

)
LN (O)

≤ 1

c
(αu,ν (O) + 1) . (4.5)

In the same way, using (H′1), (4.4) and (H′2), we haveˆ
O

|∇uδε|pdLN =
∑
i∈Iδ

ˆ
Bδi

|∇uδi |pdLN ≤
1

c

∑
i∈Iδ

Iε
(
uδi,ε, ν

δ
i,ε;B

δ
i

)
≤ 1

c

(∑
i∈Iδ

mε

(
u, ν;Bδ

i

)
+ ε

)
≤ 1

c
(αu,ν (O) + 1) .

16



Thus

sup
ε∈]0,1[,δ∈]0,1[

(∣∣νδε ∣∣ (O) +

ˆ
O

|∇uδε|pdLN

)
<∞. (4.6)

Let U ⊂ O be an open set. We consider the sets

U δ :=
⋃{

Bδ
i : Bδ

i ∩ U 6= ∅
}

and Uδ :=
⋃{

Bδ
i : Bδ

i ⊂ U
}
.

Setting Kδ := {i ∈ Iδ : Bδ
i ∩U 6= ∅ and Bδ

i ∩O \U 6= ∅} and arguing as in (4.5), we have

|νδε |
(
U δ \ Uδ

)
≤
∑
i∈Kδ

|νδi,ε|
(
Bδ
i

)
≤ 1

c

∑
i∈Kδ

Iε
(
uδi,ε, ν

δ
i,ε;B

δ
i

)
≤ 1

c

(∑
i∈Kδ

mε

(
u, ν;Bδ

i

)
+ ε
LN

(
Bδ
i

)
LN (O)

)

≤ max

{
1

c
,

1

cLN (O)

}
(αu,ν +LN )

(
U δ \ Uδ

)
. (4.7)

For every ε ∈]0, 1[ we have limδ→0

∣∣uδε − u∣∣p,Ω = 0, indeed, there exists C > 0 such that

for every (ε, δ) ∈]0, 1[2

ˆ
Ω

|uδε − u|pdLN =
∑
i∈Iδ

ˆ
Bδi

|uδi,ε − u|pdLN

≤ Cδp
∑
i∈Iδ

ˆ
Bδi

|∇uδi,ε −∇u|pdLN

≤ C2p−1δp
(ˆ

O

|∇uδε|pdLN +

ˆ
O

|∇u|pdLN

)
≤ C2p−1δp

(
sup
ε,δ

ˆ
O

|∇uδε|pdLN +

ˆ
O

|∇u|pdLN

)
,

which proves the claim by letting δ → 0.
Using a diagonalization argument, there exists {δ (ε)}ε>0 decreasing with limε→0 δ (ε) =

0 such that if we set uε := u
δ(ε)
ε and νε := ν

δ(ε)
ε , we have uε → u in Lp

(
Ω;Rl

)
and by

using (4.4), (4.3) and (4.2)

lim
ε→0

Iε (uε, νε;O) ≤ lim
δ→0

lim
ε→0

Iε
(
uδε, ν

δ
ε ;O

)
= lim

δ→0
lim
ε→0

∑
i∈Iδ

Iε
(
uδi,ε, ν

δ
i,ε;B

δ
i

)
≤ lim

δ→0
lim
ε→0

∑
i∈Iδ

mε

(
u, ν;Bδ

i

)
≤ lim

δ→0

∑
i∈Iδ

m+

(
u, ν;Bδ

i

)
≤ V −m+(u,ν;·) (O) .

Finally, taking (4.5) and (4.7) into account and applying Lemma 7.5 with {νε}ε∈]0,1[ we

have νε
∗
⇀ ν in M

(
O;Rl

)
, and thus

I+ (u, ν;O) ≤ lim
ε→0

Iε (uε, νε;O) ≤ V −m+(u,ν;·) (O) . �
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Proof of Proposition 2.2 (i). Let O ∈ O (Ω). Let (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
,

and let {(uε, νε)}ε>0 ⊂ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
be a sequence satisfying

(uε, νε)→ (u, ν) in Lp (Ω;Rm)×M
(
O;Rl

)
and sup

ε>0
Iε (uε, νε;O)<∞.

Up to a subsequence, we can assume that

Θε := fε

(
·, uε (·) ,∇uε (·) , dνε

dLN

(·)
)
LN

∗
⇀ Θ in M+ (O) .

Fix σ ∈ {LN , |νs|} and set β := (1 + |u|p)LN . Fix x ∈ O satisfying

dΘ

dσ
(x) = lim

ρ→0

Θ (Bρ (x))

σ (Bρ (x))
<∞; (4.8)

dβ

dσ
(x) = lim

ρ→0

β (Bρ (x))

σ (Bρ (x))
<∞; (4.9)

d|ν|
dσ

(x) = lim
ρ→0

|ν| (Bρ (x))

σ (Bρ (x))
<∞; (4.10)

|u (x) |p + |∇u (x) |p<∞; (4.11)

lim
ρ→0

1

ρpσ (Bρ (x))

ˆ
Bρ(x)

∣∣u− uσx,ρ∣∣p dLN = 0; (4.12)

lim
ρ→0

σ (Btρ (x))

σ (Bρ (x))
≥ tN for all t ∈]0, 1[. (4.13)

Note that (4.12) is satisfied σ-a.e. in O by the Lp-differentiation theorem when σ =
LN , and by Lemma 7.4 when σ = |νs|. Moreover, (4.13) is satisfied σ-a.e. in O since
Lemma 7.3.

Set the limit operator

limσ

ρ→0
:=


lim
ρ→0

if σ =LN

lim
ρ→0

if σ = |νs|.

By using Corollary 7.1 we have

limσ

ρ→0
lim
ε→0

mε

(
uσx,ρ,

dν

dσ
(x)σ;Bρ (x)

)
σ (Bρ (x))

= limσ

ρ→0
lim
ε→0

mε

(
uσx,ρ, ν;Bρ (x)

)
σ (Bρ (x))

σ-a.e. in O. (4.14)

It follows that it is enough to show that

limσ

ρ→0
lim
ε→0

mε

(
uσx,ρ, ν;Bρ (x)

)
σ (Bρ (x))

≤ lim
t→1−

lim
ρ→0

lim
ε→0

Iε (uε, νε;Btρ (x))

σ (Bρ (x))
σ-a.e. in O.

Step 1: cut-off method. Let t ∈]0, 1[ and ρ ∈]0, 1[ with Bρ (x) ⊂ O. Consider a cut-off

function ϕ ∈ W 1,∞
0 (Bρ (x) ; [0, 1]) between Bt2ρ (x) and O \ Btρ (x), which means that

ϕ ≡ 1 on Bt2ρ (x) and ϕ ≡ 0 on O \ Btρ (x) and such that there exists C0 > 0 verifying

|∇ϕ|∞ ≤ C0

t(1−t)ρ . Set νt
2ρ
ε := ϕνε = (ϕνε,1, . . . , ϕνε,j, . . . , ϕνε,l) ∈ M

(
Ω;Rl

)
defined by

νε,j (B) :=
´
B
ϕ (z) dνε,j (z) for all Borel set B ⊂ O, and uσ := ϕuε + (1− ϕ)uσx,ρ ∈
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uσx,ρ +W 1,p
0 (Bρ (x) ;Rm). We have

mε

(
uσx,ρ, ν

t2ρ
ε ;Bρ (x)

)
σ (Bρ (x))

≤ 1

σ (Bρ (x))
Iε

(
uσ, νt

2ρ
ε ;Bρ (x)

)
≤ Iε (uε, νε;Btρ (x))

σ (Bρ (x))
+
Iε

(
uσ, νt

2ρ
ε ;Btρ (x) \Bt2ρ (x)

)
σ (Bρ (x))

+
Iε
(
uσx,ρ, 0;Bρ (x) \Bt2ρ (x)

)
σ (Bρ (x))

.

Using the growth condition (H1), we have for some C ′, C1>0 depending on C,C0 and p
only, that

Iε

(
uσ, νt

2ρ
ε ;Btρ (x) \Bt2ρ (x)

)
+ Iε

(
uσx,ρ, 0;Bρ (x) \Bt2ρ (x)

)
≤ C ′

{ˆ
Bρ(x)\Bt2ρ(x)

1 + |uσx,ρ|p + |∇uσx,ρ|pdLN

+

ˆ
Btρ(x)\Bt2ρ(x)

|uε|pdLN +

ˆ
Btρ(x)\Bt2ρ(x)

|∇uε|p +

∣∣∣∣ dνεdLN

∣∣∣∣ dLN

+

(
1

t (1− t) ρ

)p ˆ
Btρ(x)\Bt2ρ(x)

|uε − uσx,ρ|pdLN

}

≤ C1

{ˆ
Bρ(x)\Bt2ρ(x)

1 + |uσx,ρ|p + |∇uσx,ρ|p + |u|pdLN +
1

(t (1− t) ρ)p

ˆ
Bρ(x)

|u− uσx,ρ|pdLN

+

ˆ
Btρ(x)\Bt2ρ(x)

|∇uε|p +

∣∣∣∣ dνεdLN

∣∣∣∣ dLN +

(
1 +

1

(t (1− t) ρ)p

) ˆ
Bρ(x)

|uε − u|pdLN

}
.

By setting

∆σ
x,1 (t, ρ) :=

C1

σ (Bρ (x))

ˆ
Bρ(x)\Bt2ρ(x)

1 + |uσx,ρ|p + |∇uσx,ρ|p + |u|pdLN ,

∆σ
x,2 (t, ρ) :=

C1

(t (1− t))p
1

ρpσ (Bρ (x))

ˆ
Bρ(x)

|u− uσx,ρ|pdLN ,

∆σ
x,3 (t, ρ, ε) :=

C1

σ (Bρ (x))

(
1 +

1

(t (1− t) ρ)p

) ˆ
Bρ(x)

|uε − u|pdLN ,

and ∆σ
x,4 (t, ρ, ε) :=

C1

σ (Bρ (x))

ˆ
Btρ(x)\Bt2ρ(x)

|∇uε|p +

∣∣∣∣ dνεdLN

∣∣∣∣ dLN ,

we can write

mε

(
uσx,ρ, ν

t2ρ
ε ;Bρ (x)

)
σ (Bρ (x))

≤ Iε (uε, νε;Btρ (x))

σ (Bρ (x))

+ ∆σ
x,1 (t, ρ) + ∆σ

x,2 (t, ρ) + ∆σ
x,3 (t, ρ, ε) + ∆σ

x,4 (t, ρ, ε) .
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Note that limε→0 ∆σ
x,3 (t, ρ, ε) = 0, and limρ→0 ∆σ

x,2 (t, ρ) = 0 since (4.12). Next, using the
coercivity condition (H1), we have

lim
ε→0

∆σ
x,4 (t, ρ, ε) ≤ lim

ε→0

1

σ (Bρ (x))

ˆ
Btρ(x)\Bt2ρ(x)

|∇uε|p +

∣∣∣∣ dνεdLN

∣∣∣∣ dLN

≤ C1

c

(
lim
ε→0

Θε (Btρ (x) \Bt2ρ (x))

σ (Bρ (x))

)
≤ C1

c

(
lim
ε→0

Θε

(
Btρ (x)

)
σ (Bρ (x))

− lim
ε→0

Θε (Bt2ρ (x))

σ (Bρ (x))

)

≤ C1

c

(
Θ (Bρ (x))

σ (Bρ (x))
−

Θ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bρ (x))

)
.

It follows that

lim
ε→0

mε

(
uσx,ρ, ν

t2ρ
ε ;Bρ (x)

)
σ (Bρ (x))

≤ lim
ε→0

1

σ (Bρ (x))
Iε (uε, νε;Btρ (x)) + ∆σ

x,1 (t, ρ) + ∆σ
x,2 (t, ρ)

+
C1

c

(
Θ (Bρ (x))

σ (Bρ (x))
−

Θ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bρ (x))

)
.

By using Lemma 7.2 with r = t2ρ, we have

lim
ε→0

mε

(
uσx,ρ, ν;Bρ (x)

)
σ (Bρ (x))

≤ lim
ε→0

mε

(
uσx,ρ, ν

t2ρ
ε ;Bρ (x)

)
σ (Bρ (x))

+ 2C

((
1−

σ (Bt2ρ (x))

σ (Bρ (x))

)
χσt2 (ρ) + χσ1 (ρ)− χσt2 (ρ)

)

where χσs (ρ) := |ν|(Bsρ(x))

σ(Bsρ(x))
for all s ∈]0, 1], and where C > 0 is the constant growth

appearing in (H1). Therefore we can write

lim
ε→0

mε

(
uσx,ρ, ν;Bρ (x)

)
σ (Bρ (x))

≤ lim
ε→0

1

σ (Bρ (x))
Iε (uε, νε;Btρ (x)) + ∆σ

x,1 (t, ρ) + ∆σ
x,2 (t, ρ)

+
C1

c

(
Θ (Bρ (x))

σ (Bρ (x))
−

Θ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bρ (x))

)
+ 2C

((
1−

σ (Bt2ρ (x))

σ (Bρ (x))

)
χσt2 (ρ) + χσ1 (ρ)− χσt2 (ρ)

)
.

(4.15)

Step 2: upper bound estimate for ∆σ
x,1 (t, ρ). We specify σ in order to obtain an upper

bound for

1

σ (Bρ (x))

ˆ
Bρ(x)\Bt2ρ(x)

∣∣uσx,ρ∣∣p +
∣∣∇uσx,ρ∣∣p dLN .
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In case σ =LN , there exists C2>1, depending only on p, such that

1

LN (Bρ (x))

ˆ
Bρ(x)\Bt2ρ(x)

|ux|p + |∇ux|p dLN

≤ C2
1

LN (Bρ (x))

ˆ
Bρ(x)\Bt2ρ(x)

|u (x)|p + |∇u (x)|p dLN

= C2 (|u (x)|p + |∇u (x)|p)
(
1− t2N

)
.

In case σ = |νs|, noticing that ∇ux,ρ ≡ 0 and using Jensen inequality, we have

1

σ (Bρ (x))

ˆ
Bρ(x)\Bt2ρ(x)

|ux,ρ|p dLN ≤
LN (Bρ (x) \Bt2ρ (x))

σ (Bρ (x))

1

LN (Bρ (x))

ˆ
Bρ(x)

|u|p dLN

=
(
1− t2N

) 1

σ (Bρ (x))

ˆ
Bρ(x)

|u|p dLN .

It follows that

1

σ (Bρ (x))

ˆ
Bρ(x)\Bt2ρ(x)

∣∣uσx,ρ∣∣p +
∣∣∇uσx,ρ∣∣p dLN

≤ C2

(
1− t2N

)(
|u (x)|p + |∇u (x)|p +

1

σ (Bρ (x))

ˆ
Bρ(x)

|u|p dLN

)
.

Next, recalling that β = (1 + |u|p)LN and setting κσs (ρ) := β(Bsρ(x))

σ(Bsρ(x))
for all s ∈]0, 1], we

have

C1

σ (Bρ (x))

ˆ
Bρ(x)\Bt2ρ(x)

1+ |u|pdLN = C1

((
1−

σ (Bt2ρ (x))

σ (Bρ (x))

)
κσt2 (ρ) + κσ1 (ρ)− κσt2 (ρ)

)
.

Hence

∆σ
x,1 (t, ρ) ≤ C2C1

(
1− t2N

)(
|u (x)|p + |∇u (x)|p +

β (Bρ (x))

σ (Bρ (x))

)
+ C1

((
1−

σ (Bt2ρ (x))

σ (Bρ (x))

)
κσt2 (ρ) + κσ1 (ρ)− κσt2 (ρ)

)
. (4.16)

Step 3: end of the proof of Proposition 2.2 (i). Using (4.16) in (4.15), we have

lim
ε→0

mε

(
uσx,ρ, ν;Bρ (x)

)
σ (Bρ (x))

≤ lim
ε→0

1

σ (Bρ (x))
Iε (uε, νε;Btρ (x)) + ∆σ

x,2 (t, ρ)

+
C1

c

(
Θ (Bρ (x))

σ (Bρ (x))
−

Θ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bρ (x))

)
+ 2C

((
1−

σ (Bt2ρ (x))

σ (Bρ (x))

)
χσt2 (ρ) + χσ1 (ρ)− χσt2 (ρ)

)
+ C2C1

(
1− t2N

)(
|u (x)|p + |∇u (x)|p +

β (Bρ (x))

σ (Bρ (x))

)
+ C1

((
1−

σ (Bt2ρ (x))

σ (Bρ (x))

)
κσt2 (ρ) + κσ1 (ρ)− κσt2 (ρ)

)
.
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First, (4.13) gives that limσ
ρ→0

(
1− σ(Bt2ρ(x))

σ(Bρ(x))

)
≤ 1− t2N , thus using (4.8) we obtain

limσ

ρ→0

Θ (Bρ (x))

σ (Bρ (x))
−

Θ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bt2ρ (x))

σ (Bρ (x))
≤ dΘ

dσ
(x)
(
1− t2N

)
. (4.17)

Second, using (4.9) and (4.10), we have

lim
ρ→0

κσ1 (ρ) = lim
ρ→0

κσt2 (ρ) =
dβ

dσ
(x)<∞, and lim

ρ→0
χσ1 (ρ) = lim

ρ→0
χσt2 (ρ) =

d|ν|
dσ

(x)<∞.

Since (4.11), (4.12), and (4.17), we obtain for some C3>0 depending only on C, c, C1 and
C2

limσ

ρ→0
lim
ε→0

mε

(
uσx,ρ, ν;Bρ (x)

)
σ (Bρ (x))

≤ lim
ρ→0

lim
ε→0

Iε (uε, νε;Btρ (x))

σ (Bρ (x))
+ C3

(
1− t2N

)(
|u (x) |p

+ |∇u (x) |p +
dβ

dσ
(x) +

dΘ

dσ
(x) +

d|ν|
dσ

(x)

)
.

Thus, letting t→ 1 we conclude

limσ

ρ→0
lim
ε→0

mε

(
uσx,ρ, ν;Bρ (x)

)
σ (Bρ (x))

≤ lim
t→1

lim
ρ→0

lim
ε→0

1

σ (Bρ (x))
Iε (uε, νε;Btρ (x)) . �

Proof of Proposition 2.2 (ii). Fix (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
and O ∈ O (Ω).

Let {ρk}k∈N ⊂]0, 1[ be a sequence such that limk→∞ ρk = 0. We define the following limit
operator

limσ
k→∞

:=


lim
k→∞

if σ =LN

lim
k→∞

if σ = |νs|.

We have to prove that for every σ ∈ {LN , |νs|}

limσ
k→∞

lim
ε→0

mε

(
uσx,ρk ,

dν

dσ
(x)σ;Bρk (x)

)
σ (Bρk (x))

≥ lim
Rxµ 63ρ→0

lim
ε→0

mε (u, ν;Bρ (x))

σ (Bρ (x))
σ-a.e. in O.

By Corollary 7.1 (i) and (ii), we have

limσ
k→∞

lim
ε→0

mε

(
uσx,ρk ,

dν

dσ
(x)σ;Bρk (x)

)
σ (Bρk (x))

= limσ
k→∞

lim
ε→0

mε

(
uσx,ρk , ν;Bρk (x)

)
σ (Bρk (x))

σ-a.e. in O.

Set µ :=LN +|νs|. For each k ∈ N and x ∈ O, we set Rx
k := {t ∈]1, 2[: µ (∂Btρk (x))>0}.

We see that Rx
k is a countable subset of ]1, 2[ since ∂Btρk (x)∩ ∂Bτρk (x) = ∅ for all t 6= τ

and µ (O)<∞. Setting Rx := ∪k∈NRx
k, we then have µ (∂Btρk (x)) = 0 for all t ∈]1, 2[\Rx

and all k ∈ N. Hence, for σ-a.e. x ∈ O and for every t ∈]1, 2[\Rx

lim
k→∞

lim
ε→0

mε (u, ν;Btρk (x))

σ (Btρk (x))
= lim

Rxµ 63ρ→0
lim
ε→0

mε (u, ν;Bρ (x))

σ (Bρ (x))
.

So, we are reduced to prove that

limσ
k→∞

lim
ε→0

mε

(
uσx,ρk , ν;Bρk (x)

)
σ (Bρk (x))

≥ lim
]1,2[\Rx3t→1

lim
k→∞

lim
ε→0

mε (u, ν;Btρk (x))

σ (Btρk (x))
σ-a.e. in O.

(4.18)
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We set β := (1 + |u|p + |∇u|p)LN +|ν|. Fix x ∈ O satisfying

|u (x) |p + |∇u (x) |p<∞; (4.19)

lim
k→∞

1

σ (Bρk (x))

ˆ
Bρk (x)

|u|pdLN <∞; (4.20)

lim
k→∞

β (Bρk (x))

σ (Bρk (x))
=
dβ

dσ
(x)<∞; (4.21)

lim
k→∞

1

ρpkσ (Bρk (x))

ˆ
Bρk (x)

|uσx,ρk − u|
pdLN = 0 (4.22)

lim
k→∞

β (Bρk (x))

β (Bτρk (x))
≥ 1

τN
for all τ > 0. (4.23)

Fix ε> 0, t ∈]1, 2[\Rx and k ∈ N. There exists (v, λ) ∈ W 1,p (Ω;Rm) ×M
(
Ω;Rl

)
with

v ∈ uσx,ρk +W 1,p
0 (Bρk (x) ;Rm), λ�LN , λ (Bρk (x)) = ν (Bρk (x)) satisfying

ρkσ (Bρk (x)) +mε

(
uσx,ρk , ν;Bρk (x)

)
≥ Iε (v, λ;Bρk (x)) .

Consider a cut-off function ϕk ∈ W 1,∞
0 (Btρk (x) ; [0, 1]) between Bρk (x) and O \Btρk (x),

i.e. ϕk ≡ 1 on Bρk (x), ϕk ≡ 0 on O \Btρk (x), and for some C0>0 (independent of t and
k)

|∇ϕk|∞ ≤
C0

ρk (t− 1)
. (4.24)

Set uσk := ϕkv + (1− ϕk)u ∈ u+W 1,p
0 (Btρk (x) ;Rm), and λk := dλk

dLN LN where

dλk
dLN

:=
dλ

dLN

1Bρk (x) +
ν (Btρk (x) \Bρk (x))

LN (Btρk (x) \Bρk (x))
1Btρk (x)\Bρk (x) .

It is clear that λk (Btρk (x)) = ν (Btρk (x)).
Now, using growth condition (H1) we have

mε (u, ν;Btρk (x))

σ (Btρk (x))

≤Iε (uσk , λk;Btρk (x))

σ (Btρk (x))

=
Iε (v, λ;Bρk (x))

σ (Btρk (x))
+
Iε (uσk , λk;Btρk (x) \Bρk (x))

σ (Btρk (x))

≤Iε (v, λ;Bρk (x))

σ (Bρk (x))
+
Iε (uσk , λk;Btρk (x) \Bρk (x))

σ (Btρk (x))

≤ρk +
mε

(
uσx,ρk , ν;Bρk (x)

)
σ (Bρk (x))

+
Iε (uσk , λk;Btρk (x) \Bρk (x))

σ (Btρk (x))

≤ρk +
mε

(
uσx,ρk , ν;Bρk (x)

)
σ (Bρk (x))

+
C

σ (Btρk (x))

ˆ
Btρk (x)\Bρk (x)

(
1 + |uσk |p + |∇uσk |p +

∣∣∣∣ ν (Btρk (x) \Bρk (x))

LN (Btρk (x) \Bρk (x))

∣∣∣∣ )dLN

≤ρk +
mε

(
uσx,ρk , ν;Bρk (x)

)
σ (Bρk (x))

+ 4pC∆σ
x (t, k) ,
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where

∆σ
x (t, k) :=

1

σ (Btρk (x))

ˆ
Btρk (x)\Bρk (x)

1 + |uσx,ρk |
p + |∇uσx,ρk |

p + |u|p + |∇u|p

+
Cp

0

ρpk (t− 1)p
|uσx,ρk − u|

p +

∣∣∣∣ ν (Btρk (x) \Bρk (x))

LN (Btρk (x) \Bρk (x))

∣∣∣∣ dLN .

To prove (4.18) we need to show that

lim
t→1+

limσ

k→∞
∆σ
x (t, k) = 0 σ-a.e. in O.

In the same way as for (4.16), we prove that there exists C1>0 depending only on p such
that

1

σ (Btρk (x))

ˆ
Btρk (x)\Bρk (x)

|uσx,ρk |
p + |∇uσx,ρk |

pdLN

≤ C1

((
tN − 1

) 1

σ (Bρk (x))

ˆ
Bρk (x)

|u|pdLN +

(
1− 1

tN

)
(|u (x) |p + |∇u (x) |p)

)
.

(4.25)

Since β = (1 + |u|p + |∇u|p)LN +|ν|, we have

((1 + |u|p + |∇u|p)LN ) (Btρk (x) \Bρk (x))

σ (Btρk (x))
+
|ν (Btρk (x) \Bρk (x))|

σ (Btρk (x))

≤ β (Btρk (x) \Bρk (x))

σ (Btρk (x))
. (4.26)

We specify σ in order to pass to the limit k → ∞ for the last term of (4.26), which can
be written as

β (Btρk (x) \Bρk (x))

σ (Btρk (x))
=
β (Btρk (x))

σ (Btρk (x))
− σ (Bρk (x))

σ (Btρk (x))

β (Bρk (x))

σ (Bρk (x))
.

In case σ =LN , we use (4.21) to obtain

lim
k→∞

β (Btρk (x) \Bρk (x))

LN (Btρk (x))
=

dβ

dLN

(x)

(
1− 1

tN

)
. (4.27)

When σ = |νs|, using (4.23) and (4.21) we obtain

lim
k→∞

β (Btρk (x) \Bρk (x))

|νs| (Btρk (x))
≤ dβ

d|νs|
(x)

(
1− 1

tN

)
. (4.28)

Thus (4.25) and (4.26) imply that

∆σ
x (t, k) ≤ C1

((
tN − 1

) 1

σ (Bρk (x))

ˆ
Bρk (x)

|u|pdLN +

(
1− 1

tN

)
(|u (x) |p + |∇u (x) |p)

)

+
β (Btρk (x) \Bρk (x))

σ (Btρk (x))
+

Cp
0

ρpk (t− 1)p σ (Bρk (x))

ˆ
Btρk (x)

|uσx,ρk − u|
pdLN .

Taking (4.19), (4.20), (4.22), (4.27) and (4.28) into account, by passing to the limit k →∞
we have

limσ

k→∞
∆σ
x (t, k) ≤ limσ

k→∞

β (Btρk (x) \Bρk (x))

σ (Btρk (x))
≤
(

1− 1

tN

)
dβ

dσ
(x) .
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Letting t → 1 we obtain lim
]1,2[\Rx3t→1

limσ

k→∞
∆σ
x (t, k) = 0 σ-a.e. in O and the proof is

finished. �

5. Proof of relaxation theorems

5.1. Proof of Theorem 3.1. In order to apply Theorem 2.1, we have to show that the
condition (H3) is satisfied, then we establish the formula for Q0f . We set

tx,ρ :=
|νs| (Bρ (x))

LN (Bρ (x))
for all ρ > 0 and all x ∈ Ω.

Step1: Proof of (H3) and formula for Qs0f∞. Let O ∈ O (Ω), u ∈ W 1,p (Ω;Rm) and
v ∈ L1

|νs|
(
Ω;Sl

)
. Let x ∈ O ∩ Lu be such that

lim
ρ→0

((1 + |u|p)LN ) (Bρ (x))

|νs| (Bρ (x))
= 0 and |v (x) | = 1. (5.1)

Fix ρ ∈]0, 1[. Using the growth condition (R1) and Jensen inequality, we have

m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
≤ C

|νs| (Bρ (x))

ˆ
Bρ(x)

1 + |ux,ρ|p + |v (x) tx,ρ| dLN

≤ C

(
LN (Bρ (x))

|νs| (Bρ (x))
+

1

|νs| (Bρ (x))

ˆ
Bρ(x)

|u|pdLN +1

)

=
α1 (Bρ (x))

|νs| (Bρ (x))
+ C, (5.2)

where α1 := C (1 + |u|p)LN . We introduce the following notation:

mx (u (x), v (x) |νs|;Bρ (x))

:= inf
(ϕ,ψ)∈A0(Bρ(x))

ˆ
Bρ(x)

f (x, u (x) + ϕ,∇ϕ, tx,ρ (ψ + v (x))) dLN .

We have

mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
≤ C

|νs| (Bρ (x))

ˆ
Bρ(x)

1 + |u (x)|p + |v (x) tx,ρ| dLN

≤ C

(
LN (Bρ (x))

|νs| (Bρ (x))

(
1 + |u (x)|p

)
+ 1

)
=

α2 (Bρ (x))

|νs| (Bρ (x))
+ C,

(5.3)

where α2 := C (1 + |u (x)|p)LN .
There exists (ϕ1, ψ1) ∈ A0 (Bρ (x)) such that

m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
+ ρ

≥ 1

|νs| (Bρ (x))

ˆ
Bρ(x)

f (z, ux,ρ + ϕ1 (z) ,∇ϕ1 (z) , ψ1 (z) + v (x) tx,ρ) dLN (z)

≥ c
1

|νs| (Bρ (x))

ˆ
Bρ(x)

|∇ϕ1 (z) |p + |ψ1 (z) + v (x) tx,ρ| dLN (z) , (5.4)
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where we have used the coercivity condition in (R1). Similarly, there exists (ϕ2, ψ2) ∈
A0 (Bρ (x)) such that

mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
+ ρ

≥ 1

|νs| (Bρ (x))

ˆ
Bρ(x)

f (x, u (x) + ϕ2,∇ϕ2, ψ2 + v (x) tx,ρ) dLN

≥ c
1

|νs| (Bρ (x))

ˆ
Bρ(x)

|∇ϕ2|p + |ψ2 + v (x) tx,ρ| dLN . (5.5)

Using (5.2) we have

2∑
i=1

1

|νs| (Bρ (x))

ˆ
Bρ(x)

|∇ϕi|p + |ψi + v (x) tx,ρ| dLN ≤
1

c

(α1 + α2) (Bρ (x))

|νs| (Bρ (x))
+

2 (ρ+ C)

c
.

(5.6)

Using (R2) and (5.6), we have

m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
− mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

≥ 1

|νs| (Bρ (x))

ˆ
Bρ(x)

f (z, ux,ρ + ϕ1,∇ϕ1, ψ1 + v (x) tx,ρ)

− f (x, u (x) + ϕ1,∇ϕ1, ψ1 + v (x) tx,ρ) dLN −ρ

≥ −C1
|ux,ρ − u (x)|q + ρq

′

|νs| (Bρ (x))

ˆ
Bρ(x)

1 + |∇ϕ1|p + |ψ1 + tx,ρv (x) |dLN −ρ

≥ −C1

(
|ux,ρ − u (x)|q + ρq

′
)(LN (Bρ (x))

|νs| (Bρ (x))
+

1

c

(α1 + α2) (Bρ (x))

|νs| (Bρ (x))
+

2 (ρ+ C)

c

)
− ρ.

In the same way, we have

m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
− mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

≤ C1
|ux,ρ − u (x)|q + ρq

′

|νs| (Bρ (x))

ˆ
Bρ(x)

1 + |∇ϕ2|p + |ψ2 + tx,ρv (x) |dLN +ρ

≤ C1

(
|ux,ρ − u (x)|q + ρq

′
)(LN (Bρ (x))

|νs| (Bρ (x))
+

1

c

(α1 + α2) (Bρ (x))

|νs| (Bρ (x))
+

2 (ρ+ C)

c

)
+ ρ.

Therefore, setting α0 :=LN +1
c

(α1 + α2) we can write∣∣∣∣m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
− mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

∣∣∣∣
≤ C1

(
|ux,ρ − u (x)|q + ρq

′
)( α0 (Bρ (x))

|νs| (Bρ (x))
+

2 (ρ+ C)

c

)
+ ρ. (5.7)

Considering balls of the form Bρ (x) = x+ρY with Y =]−1, 1[N , and changing variables,
we have

mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
= inf

(ϕ,ψ)∈A0(Y )

ˆ
Y

1

tx,ρ
f (x, u (x) + ρϕ,∇ϕ, tx,ρ (ψ + v (x))) dLN .
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Set

m0
x (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
:= inf

(ϕ,ψ)∈A0(Y )

ˆ
Y

1

tx,ρ
f (x, u (x),∇ϕ, tx,ρ (ψ + v (x))) dLN .

We need the following lemma to obtain an estimate of the difference between mx and m0
x.

Lemma 5.1. Let x ∈ Ω and ρ ∈]0, 1[ be such that tx,ρ ≥ 1. For every δ > 0 there exists
M (x, δ) ≥ 3 such that for every M ≥M (x, δ)

inf
(ϕ,ψ)∈A0(Y )
‖ϕ‖L∞(Y ;Rm)≤M

ˆ
Y

1

tx,ρ
f (x, u (x) + ρϕ,∇ϕ, tx,ρ (ψ + v (x))) dLN

≤ δ +
mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
. (5.8)

and

inf
(ϕ,ψ)∈A0(Y )
‖ϕ‖L∞(Y ;Rm)≤M

ˆ
Y

1

tx,ρ
f (x, u (x),∇ϕ, tx,ρ (ψ + v (x))) dLN

≤ δ +
m0
x (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
. (5.9)

Proof. We show (5.8) only, the proof of (5.9) being similar. Let M ≥ 3 and δ ∈]0, 1[. Let
hM : Rm → Rm be a Lipschitz function such that

hM (a) =

{
a if |a| ≤M
0 if |a| > M + 1

δ

and ‖∇hM‖L∞(Rm;Rm) ≤ 3δ.

For instance, we can take hM (a) :=
dist(a;Rm\BM+1/δ)

dist(a;Rm\BM+1/δ)+dist(a;BM )
a for all a ∈ Rm, where

BM ′ := {a ∈ Rm : |a| < M ′} for all M ′ > 0. There exists (ϕδ, ψδ) ∈ A0 (Y ) such that

δ

2
+ inf

(ϕ,ψ)∈A0(Y )

ˆ
Y

1

tx,ρ
f (x, u (x) + ρϕ,∇ϕ, tx,ρ (ψ + v (x))) dLN

≥
ˆ
Y

1

tx,ρ
f (x, u (x) + ρϕδ,∇ϕδ, tx,ρ (ψδ + v (x))) dLN .

Set ϕ̃δ,M := hM ◦ ϕδ. By [ADM90, Corollary 3.2, pp. 701], and since hM (0) = 0 we have

ϕ̃δ,M ∈ W 1,p
0 (Y ;Rm). Moreover, forLN -a.e. y ∈ Y

|ϕ̃δ,M (y) | ≤


|ϕδ (y) | if |ϕδ (y) | ≤M

3 if M < |ϕδ (y) | ≤M + 1
δ

0 if |ϕδ (y) | > M + 1
δ

,

|ϕ̃δ,M (y) | ≤M and |∇ϕ̃δ,M (y) | ≤ 3δ|∇ϕδ (y) |,
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and we can write

inf
(ϕ,ψ)∈A0(Y )
‖ϕ‖L∞(Y ;Rm)≤M

ˆ
Y

1

tx,ρ
f (x, u (x) + ρϕ,∇ϕ, tx,ρ (ψ + v (x))) dLN

≤
ˆ
Y

1

tx,ρ
f (x, u (x) + ρϕ̃δ,M ,∇ϕ̃δ,M , tx,ρ (ψδ + v (x))) dLN

≤
ˆ

[|ϕδ|≤M ]

1

tx,ρ
f (x, u (x) + ρϕδ,∇ϕδ, tx,ρ (ψδ + v (x))) dLN

+

ˆ
[|ϕδ|>M+ 1

δ
]

1

tx,ρ
f (x, u (x), 0, tx,ρ (ψδ + v (x))) dLN

+

ˆ
[M<|ϕδ|≤M+ 1

δ
]

1

tx,ρ
f (x, u (x) + ρϕ̃δ,M ,∇ϕ̃δ,M , tx,ρ (ψδ + v (x))) dLN

≤ δ

2
+
mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
+ ∆ (x, ρ,M, δ) ,

where

∆ (x, ρ,M, δ) := C
1

tx,ρ

ˆ
[|ϕδ|>M+ 1

δ
]

1 + |u (x)|p + |tx,ρ (ψδ + v (x)) |dLN

+ C2p
1

tx,ρ

ˆ
[M<|ϕδ|≤M+ 1

δ
]

1 + |u (x)|p + ρp|ϕ̃δ,M |p + |∇ϕ̃δ,M |p + |tx,ρ (ψδ + v (x)) |dLN .

Using the estimates on |ϕ̃δ,M (·) | and |∇ϕ̃δ,M (·) |, we obtain

∆ (x, ρ,M, δ) ≤ C2p
ˆ

[|ϕδ|>M ]

1 + |u (x)|p + (3 + |ϕδ|)p + 3p|∇ϕδ|p + |ψδ + v (x) |dLN .

It follows that limM→∞ supρ∈]0,1[ ∆ (x, ρ,M, δ) = 0, thus there exists M (x, δ) ≥ 3 such

that supρ∈]0,1[ ∆ (x, ρ,M, δ) ≤ δ
2

for all M ≥M (x, δ), which gives (5.8). �

Let ρ ∈]0, 1[ be such that tx,ρ ≥ 1. Fix δ > 0 and M ≥M (x, δ) where M (x, δ) is given
by Lemma 5.1. Using estimates (5.8), (5.9) and proceeding as for the estimate (5.7), we
have∣∣∣∣mx (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
− m0

x (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

∣∣∣∣
≤ 2δ + 2C1M

qρq
(
α′0 (Bρ (x))

|νs| (Bρ (x))
+
C + ρ

c

)
+ ρ, (5.10)

where α′0 =LN +1
c
α2.

Since limρ→0 tx,ρ = ∞, there exists ρx ∈]0, 1[ such that for every ρ ∈]0, ρx[ we have
tx,ρ>max (1, T ), where T is given by (R3). Then, for every (ϕ, ψ) ∈ A0 (Y ) and every
ρ ∈]0, ρx[∣∣∣∣ˆ
Y

1

tx,ρ
f (x, u (x),∇ϕ, tx,ρ (ψ + v (x))) dLN −

ˆ
Y

f∞ (x, u (x),∇ϕ, ψ + v (x)) dLN

∣∣∣∣ ≤ β

trx,ρ
.

It follows that for every ρ ∈]0, ρx[∣∣∣∣m0
x (u (x), v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
−m∞x (u (x), v (x) |νs|;Y )

∣∣∣∣ ≤ β

trx,ρ
, (5.11)
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where

m∞x (u (x), v (x) |νs|;Y ) := inf
(ϕ,ψ)∈A0(Y )

ˆ
Y

f∞ (x, u (x),∇ϕ, ψ + v (x)) dLN . (5.12)

Combining (5.7), (5.10) and (5.11) we obtain for every ρ ∈]0, ρx[∣∣∣∣m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
−m∞x (u (x), v (x) |νs|;Y )

∣∣∣∣
≤ 2δ + 2C1

(
|ux,ρ − u (x)|q + ρq

′
+M qρq

)( α0 (Bρ (x))

|νs| (Bρ (x))
+
ρ+ C

c

)
+ 2ρ+

β

trx,ρ
. (5.13)

Passing to the limits ρ → 0 and then δ → 0 in (5.13) by taking (5.1) into account, the
condition (H3) is satisfied, and we obtain the formula for Qs0f∞

lim
ρ→0

m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
= m∞x (u (x), v (x) |νs|;Y ) = Qs0f∞ (x, u (x), v (x)) .

Step 2: formula for Q0f . Let O ∈ O (Ω), u ∈ Rm, ξ ∈M and v ∈ Rl. We have to show
that

Q0f (x, u, ξ, v) = lim
ρ→0

m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
LN -a.e. in O.

Fix ρ ∈]0, 1[ and x ∈ O. We see, by taking the open balls Bρ (x) of the form x+ρY , that

m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))

= inf
(ϕ,ψ)∈A0(Y )

ˆ
Y

f (x+ ρy, u+ ρξy + ρϕ, ξ +∇ϕ, v + ψ) dLN .

We set

Q1f (x, u, ξ, v) := inf
(ϕ,ψ)∈A0(Y )

ˆ
Y

f (x, u+ ρϕ, ξ +∇ϕ, v + ψ) dLN .

Next, we estimate the difference between m and Q1f . Using the growth condition (R1),
we have

m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
≤ C

ˆ
Y

1 + |u+ ρξy|p + |ξ|p + |v|dLN

≤ 2pC (1 + |u|p + |ξ|p + |v|) . (5.14)

In the same way, we have

Q1f (x, u, ξ, v) ≤ 2C (1 + |u|p + |ξ|p + |v|) . (5.15)

Furthermore, there exists (ϕ1, ψ1) ∈ A0 (Y ) such that

m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
+ ρ ≥

ˆ
Y

f (x+ ρy, u+ ρξy + ρϕ1, ξ +∇ϕ1, v + ψ1) dLN

≥ c

ˆ
Y

|ξ +∇ϕ1|p + |v + ψ1|dLN . (5.16)

Similarly, there exists (ϕ2, ψ2) ∈ A0 (Y ) such that

Q1f (x, u, ξ, v) + ρ ≥
ˆ
Y

f (x, u+ ρϕ2, ξ +∇ϕ2, v + ψ2) dLN

≥ c

ˆ
Y

|ξ +∇ϕ2|p + |v + ψ2|dLN . (5.17)
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Combining (5.14), (5.15), (5.16) and (5.17), we deduce that for every i ∈ {1, 2}ˆ
Y

|ξ +∇ϕi|p + |v + ψi|dLN ≤
2p+1C

c
(1 + |u|p + |ξ|p + |v|) +

ρ

c
. (5.18)

Using (R2) and (5.18), we have

m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
−Q1f (x, u, ξ, v)

≥
ˆ
Y

f (x+ ρy, u+ ρξy + ρϕ1, ξ +∇ϕ1, v + ψ1) dLN

−
ˆ
Y

f (x, u+ ρϕ1, ξ +∇ϕ1, v + ψ1) dLN −ρ

≥ −C1

ˆ
Y

(
|ρξy|q + |ρy|q′

)
(1 + |∇ϕ1 + ξ|p + |v + ψ1|) dLN −ρ

≥ −2p+1C1

(
ρq + ρq

′
)

(1 + |ξ|q)
(

1 +
C

c
(1 + |u|p + |ξ|p + |v|) +

ρ

c

)
− ρ,

and

m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
−Q1f (x, u, ξ, v)

≤
ˆ
Y

f (x+ ρy, u+ ρξy + ϕ2, ξ +∇ϕ2, v + ψ1)

−
ˆ
Y

f (x, u+ ϕ1 (y) , ξ +∇ϕ2, v + ψ2) dLN +ρ

≤ 2p+1C1

(
ρq + ρq

′
)

(1 + |ξ|q)
(

1 +
C

c
(1 + |u|p + |ξ|p + |v|) +

ρ

c

)
+ ρ,

which gives∣∣∣∣m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
−Q1f (x, u, ξ, v)

∣∣∣∣
≤ 2p+1C1

(
ρq + ρq

′
)

(1 + |ξ|q)
(

1 +
C

c
(1 + |u|p + |ξ|p + |v|) +

ρ

c

)
+ ρ. (5.19)

Now, we proceed as in Step 1 by setting for every M ≥ 1

QM0 f (x, u, ξ, v) := inf
(ϕ,ψ)∈A0(Y )
‖ϕ‖L∞(Y ;Rm)≤M

ˆ
Y

f (x, u, ξ +∇ϕ, v + ψ) dLN

QM1 f (x, u, ξ, v) := inf
(ϕ,ψ)∈A0(Y )
‖ϕ‖L∞(Y ;Rm)≤M

ˆ
Y

f (x, u+ ϕ, ξ +∇ϕ, v + ψ) dLN .

Similarly to the Lemma 5.1 we can show that for every δ > 0 there exists M (x, u, v, δ) ≥ 3
such that for every M ≥M (x, u, v, δ)

QM0 f (x, u, ξ, v) ≤ δ +Q0f (x, u, ξ, v) and QM1 f (x, u, ξ, v) ≤ δ +Q1f (x, u, ξ, v) .

We also have for every i ∈ {0, 1}

QMi f (x, u, ξ, v) ≤ 2C (1 + |u|p + |ξ|p + |v|)
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and there exists (ϕ′i, ψ
′
i) ∈ A0 (Y ) with ‖ϕ′i‖L∞(Y ;Rm) ≤M such that

QMi f (x, u, ξ, v) ≥ c

ˆ
Y

|ξ +∇ϕ′i|p + |v + ψ′i|dLN .

We deduce, using (R2), that

∣∣QM0 f (x, u, ξ, v)−QM1 f (x, u, ξ, v)
∣∣ ≤ 2C1ρ

qM q

(
1 +

1

c
(ρ+ C (1 + |u|p + |ξ|p + |v|))

)
+ ρ.

It follows that

|Q0f (x, u, ξ, v)−Q1f (x, u, ξ, v)|
≤
∣∣Q0f (x, u, ξ, v)−QM0 f (x, u, ξ, v)

∣∣+
∣∣QM0 f (x, u, ξ, v)−QM1 f (x, u, ξ, v)

∣∣
+
∣∣QM1 f (x, u, ξ, v)−Q1f (x, u, ξ, v)

∣∣
≤ 2C1ρ

qM q

(
1 +

1

c
(ρ+ C (1 + |u|p + |ξ|p + |v|))

)
+ 2δ + ρ. (5.20)

Using the estimates (5.19) and (5.20), we obtain∣∣∣∣m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
−Q0f (x, u, ξ, v)

∣∣∣∣
≤
∣∣∣∣m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
−Q1f (x, u, ξ, v)

∣∣∣∣+ |Q1f (x, u, ξ, v)−Q0f (x, u, ξ, v)|

≤ 2δ + ρ+ 2p+1C1

(
ρq (1 +M q + |ξ|q) + ρq

′
)(

1 +
C

c
(1 + |u|p + |ξ|p + |v|) +

ρ

c

)
.

Passing to the limits ρ→ 0 and then δ → 0, we find that

Q0f (x, u, ξ, v) = lim
ρ→0

m (u+ ξ (· − x) , vLN ;Bρ (x))

LN (Bρ (x))
,

which completes the proof. �

5.2. Proof of Theorem 3.2. We proceed as in the proof of Theorem 3.1, replacing u (x)
by 0 ∈ Rm for the singular part. For the formula of Q0f , we refer to the Step 2 of the
proof §5.1.

Let O ∈ O (Ω), u ∈ W 1,p (Ω;Rm), ν ∈ M
(
Ω;Rl

)
and v ∈ L1

|νs|
(
Ω;Sl

)
. Let x ∈ O be

such that

lim
ρ→0

((1 + |u|p)LN ) (Bρ (x))

|νs| (Bρ (x))
= 0 and |v (x) | = 1. (5.21)
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Fix ρ ∈]0, 1[. Using (R3), Jensen inequality and proceeding as for the estimate (5.7),
replacing u (x) by 0 ∈ Rm, we have∣∣∣∣m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
− mx (0, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

∣∣∣∣
≤ C2

(
|ux,ρ|p + ρq

′
) LN (Bρ (x))

|νs| (Bρ (x))
+ ρ

≤ C2

(
1

|νs| (Bρ (x))

ˆ
Bρ(x)

|u|pdLN +ρq
′LN (Bρ (x))

|νs| (Bρ (x))

)
+ ρ

≤ C2
((1 + |u|p)LN ) (Bρ (x))

|νs| (Bρ (x))
+ ρ. (5.22)

We follow the same path as in the proof Step 1 §5.1. Thus, similarly to the Lemma 5.1,
for every δ > 0 we can find M ′ (x, δ) ≥ 3 such that for every M ≥ M ′ (x, δ) we have the
analogue of (5.10)∣∣∣∣mx (0, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
− m0

x (0, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

∣∣∣∣ ≤ 2δ + 2C2ρ
qM q + ρ.

Since limρ→0 tx,ρ = ∞, there exists ρx ∈]0, 1[ such that for every ρ ∈]0, ρx[ we have
tx,ρ>T , where T is given by (R3). So, for every ρ ∈]0, ρx[∣∣∣∣m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
−m∞x (0, v (x) |νs|;Y )

∣∣∣∣
≤ C2

((1 + |u|p)LN ) (Bρ (x))

|νs| (Bρ (x))
+ 2C2ρ

qM q + 2ρ+
β

trx,ρ
+ 2δ, (5.23)

where m∞x is given by (5.12) (replacing u (x) by 0). Passing to the limit ρ → 0 by
taking (5.21) into account, and then δ → 0 in (5.23), we get at the same time that (H3)
is satisfied and

lim
ρ→0

m (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
= m∞x (0, v (x) |νs|;Y ) = Qs0f∞ (x, v (x)) . �

6. Proof of homogenization theorems

We use a subadditive theorem (due to [AK81]) to prove (H2), (H3) and the formulas
for the limit integrands (we can find a development of subadditive theorems and their
applications to the characterization of Γ-limits in [LM02]). Let S : Ob

(
RN
)
→ R+ be a

set function defined on Ob

(
RN
)

the set of bounded open subsets of RN . Consider the
following conditions:

(i) there exists C>0 such that for all O ∈ Ob

(
RN
)

S (O) ≤ CLN (O) ;

(ii) S is subadditive, i.e. that for every U ∈ Ob

(
RN
)
, V ∈ Ob

(
RN
)

and O ∈ Ob

(
RN
)

with U ∩ V = ∅, U ⊂ O, V ⊂ O andLN (O \ (U ∪ V )) = 0 it holds

S (O) ≤ S (U) + S (V ) ;

(iii) S is invariant, i.e. for every z ∈ ZN and every O ∈ Ob

(
RN
)

we have

S (z +O) = S (O) ;
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(iv) S is almost-invariant, i.e. for every z ∈ ZN and every O ∈ Ob

(
RN
)

the set

T := {z ∈ ZN : S (z +O) = S (O)} is relatively dense in RN , i.e. there exists L>0
such that

T + [0, L]N = RN .

The following result is a particular case of [LM02, Theorem 3.1, pp. 30].

Theorem 6.1. If (i), (ii) and (iii) then for every open cube B ∈ Ob

(
RN
)
we have

lim
ε→0

S
(

1
ε
B
)

LN

(
1
ε
B
) = inf

k∈N∗
S (kY)

kN
.

If (i), (ii) and (iv) then for every open cube B ∈ Ob

(
RN
)

of the form
∏N

i=1]ai, bi[ with
(ai, bi) ∈ R2, we have

lim
ε→0

S
(

1
ε
B
)

LN

(
1
ε
B
) = lim

k→∞

S (kY)

kN
.

6.1. Proof of Theorem 3.3. In order to apply Theorem 2.1 we have to verify (H2)
and (H3) with fε (x, u, ξ, v) := W

(
x, x

ε
, ξ, v

)
for all (x, ξ, v) ∈ Ω×M×Rl and all ε>0; (H1)

being a consequence of (H1).
Proof of (H2). For each (x, ξ, v) ∈ Ω×M× Rl we define Sx,ξ,v : Ob

(
RN
)
→ R+ by

Sx,ξ,v (O) := inf
(ϕ,ψ)∈A0(O)

ˆ
O

W (x, y, ξ +∇ϕ (y) , v + ψ (y)) dLN (y) .

We notice that (i), (ii) and (iii) of Theorem 6.1 are satisfied. Thus, for every ρ>0 and
every x ∈ Ω we have

lim
ε→0

Sx,ξ,v
(

1
ε
Bρ (x)

)
LN

(
1
ε
Bρ (x)

) = inf
k∈N∗
Sx,ξ,v (kY)

kN
.

Moreover, for every ε>0, ρ>0, u ∈ Rm and every x ∈ Ω, we have

Sx,ξ,v
(

1
ε
Bρ (x)

)
LN

(
1
ε
Bρ (x)

) =
mx
ε (u+ ξ·, vLN ;Bρ (x))

LN (Bρ (x))
,

where
mx
ε (u+ ξ·, vLN ;Bρ (x))

LN (Bρ (x))
:= inf

(ϕ,ψ)∈A0(Bρ(x))
−
ˆ
Bρ(x)

W
(
x,
y

ε
, ξ +∇ϕ (y) , v + ψ (y)

)
dLN (y) .

It follows that

lim
ρ→0

lim
ε→0

mx
ε (u+ ξ·, vLN ;Bρ (x))

LN (Bρ (x))
= inf

k∈N∗
Sx,ξ,v (kY)

kN
= H0W (x, ξ, v) .

Next, we prove (H2) by using the condition (H2). Let v ∈ L1
(
Ω;Rl

)
and u ∈

W 1,p (Ω;Rm). Fix x ∈ Ω such that |v (x) | <∞ and |ξ| := |∇u (x) | <∞. There ex-
ist C1>0 and q′>0 such that for every (ϕ, ψ) ∈ A0 (Bρ (x)) we have∣∣∣∣∣−
ˆ
Bρ(x)

W
(
x,
y

ε
, ξ +∇ϕ, v (x) + ψ

)
−W

(
y,
y

ε
, ξ +∇ϕ, v (x) + ψ

)
dLN (y)

∣∣∣∣∣
≤ C1ρ

q′−
ˆ
Bρ(x)

1 + |ξ +∇ϕ|p + |v (x) + ψ|dLN . (6.1)

Using the growth conditions, we have

max

(
mx
ε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
,
mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))

)
≤ C (1 + |ξ|p + |v (x) |) .
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Moreover, for every i ∈ {1, 2} there exists (ϕi, ψi) ∈ A0 (Bρ (x)) such that

mx
ε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
+ ρ ≥ −

ˆ
Bρ(x)

W
(
x,
y

ε
, ξ +∇ϕ1 (y) , v (x) + ψ1 (y)

)
dLN (y) ,

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
+ ρ ≥ −

ˆ
Bρ(x)

W
(
y,
y

ε
, ξ +∇ϕ2 (y) , v (x) + ψ2 (y)

)
dLN (y) .

Taking (6.1) into account, we have∣∣∣∣mx
ε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
− mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))

∣∣∣∣
≤ C1ρ

q′
2∑
i=1

−
ˆ
Bρ(x)

1 + |ξ +∇ϕi|p + |v (x) + ψi|dLN

≤ 2C1ρ
q′ (ρ+ C (1 + |ξ|p + |v (x) |)) .

Therefore

lim
ρ→0

lim
ε→0

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))

= inf
k∈N∗

Sx,ξ,v(x) (kY)

kN
.

Proof of (H3). Let O ∈ O (Ω), u ∈ W 1,p (Ω;Rm) and v ∈ L1
|νs|
(
Ω;Sl

)
. Let x ∈ O be

such that

lim
ρ→0

LN (Bρ (x))

|νs| (Bρ (x))
= 0 and |v (x) | = 1. (6.2)

Fix ρ>0 and ε>0. Set tx,ρ := |νs|(Bρ(x))

LN (Bρ(x))
. We have

mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

= inf
(φ,ψ)∈A0(Bρ(x))

−
ˆ
Bρ(x)

1

tx,ρ
W
(
y,
y

ε
,∇ϕ (y) , tx,ρ (v (x) + ψ (y))

)
dLN (y) .

Since limρ→0 tx,ρ = ∞, there exists ρx>0 such that for every ρ ∈]0, ρx[ we have tx,ρ>T ,
where T is given by (H3). Fix ρ ∈]0, ρx[. Then, for every (ϕ, ψ) ∈ A0 (Bρ (x)) we have∣∣∣∣∣−
ˆ
Bρ(x)

1

tx,ρ
W
(
y,
y

ε
,∇ϕ (y) , tx,ρ (v (x) + ψ (y))

)
dLN (y)

−−
ˆ
Bρ(x)

W∞
(
y,
y

ε
,∇ϕ (y) , v (x) + ψ (y)

)
dLN (y)

∣∣∣∣∣ ≤ β

trx,ρ
.

Therefore ∣∣∣∣mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
− m∞ε (0, v (x) |νs|;Bρ (x))

LN (Bρ (x))

∣∣∣∣ ≤ β

trx,ρ
, (6.3)

where

m∞ε (0, v (x) |νs|;Bρ (x)) := inf
(φ,ψ)∈A0(Bρ(x))

ˆ
Bρ(x)

W∞
(
y,
y

ε
,∇ϕ, v (x) + ψ

)
dLN .
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We observe that W∞ has linear growth with respect to v, i.e. for every (x, y, ξ, v) ∈
Ω× RN ×M× Sl we have

c|v| ≤ W∞ (x, y, ξ, v) ≤ C|v|.

Next, arguing as in the Proof of (H2), we have∣∣∣∣m∞ε (0, v (x) |νs|;Bρ (x))

LN (Bρ (x))
− m∞,xε (0, v (x) |νs|;Bρ (x))

LN (Bρ (x))

∣∣∣∣ ≤ 2C1ρ
q′ (ρ+ C) (6.4)

where

m∞,xε (0, v (x) |νs|;Bρ (x))

LN (Bρ (x))
= inf

(φ,ψ)∈A0(Bρ(x))
−
ˆ
Bρ(x)

W∞
(
x,
y

ε
,∇ϕ, v (x) + ψ

)
dLN .

For each x ∈ Ω and each v ∈ Sl we define S∞x,v : Ob

(
RN
)
→ R+ by

S∞x,v (O) := inf
(φ,ψ)∈A0(O)

ˆ
O

W∞ (x, y,∇ϕ (y) , v + ψ (y)) dLN (y) .

It is direct to see that S∞x,v satisfies (i), (ii) and (iii) of Theorem 6.1, hence

lim
ε→0

S∞x,v
(

1
ε
Bρ (x)

)
LN

(
1
ε
Bρ (x)

) = inf
k∈N∗

S∞x,v (kY)

kN
= Hs

0W
∞ (x, v) .

But, we have

S∞x,v(x)

(
1
ε
Bρ (x)

)
LN

(
1
ε
Bρ (x)

) =
m∞,xε (0, v (x) |νs|;Bρ (x))

LN (Bρ (x))
,

thus, gathering (6.3) and (6.4) we have

− β

trx,ρ
− C1ρ

q′ (ρ+ C) +
S∞x,v(x)

(
1
ε
Bρ (x)

)
LN

(
1
ε
Bρ (x)

) ≤ mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

≤ β

trx,ρ
+ C1ρ

q′ (ρ+ C) +
S∞x,v(x)

(
1
ε
Bρ (x)

)
LN

(
1
ε
Bρ (x)

) .

Passing to the limits ε→ 0 and ρ→ 0, we obtain

lim
ρ→0

lim
ε→0

mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))

= Hs
0W

∞ (x, v (x)) . �

6.2. Proof of Theorem 3.4. For every v = (v1, . . . , vl) ∈ Rl we set

bvcl := (bv1c , . . . , bvlc) ∈ Zl.

Similarly, we define bRcm ∈ Zm for R ∈ Rm.
The following lemmas will be used to show that (H2) and (H3) are fulfilled. The first

one shows that the limit integrands are independent of the measure variable. The second
lemma deals with estimates on mε with shift on the variable u.

Lemma 6.1. For every ε>0, every v ∈ Rl, every B ∈ O (Ω) and every σ ∈M+ (Ω)

sup

{
|mε (u, vσ;B)−mε (u, 0;B)|

σ (B)
: u ∈ W 1,p (Ω;Rm)

}
≤ C

∣∣∣∣v − ε

tB

⌊
vtB
ε

⌋
l

∣∣∣∣
where tB := σ(B)

LN (B)
and C is the constant growth condition appearing in (H ′

1 ).
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Proof. Let ε>0 and v ∈ Rl. By using Lemma 7.1 and periodicity, we see that for every u ∈
W 1,p (Ω;Rm), σ ∈ M+ (Ω) and B ∈ O (Ω) we have mε (u, vσ;B) = mε (u, vtBLN ;B) =
mε

(
u,
(
vtB − ε

⌊
vtB
ε

⌋
l

)
LN ;B

)
. The estimate follows using again Lemma 7.1. �

Lemma 6.2. There exists C>0 such that for every t ∈]1, 2[, every ρ ∈]0, 1[, every x ∈ Ω
with Btρ (x) ⊂ Ω, every ε> 0, every u ∈ W 1,p (Ω;Rm) and every v ∈ W 1,p

loc

(
RN ;Rm

)
we

have

(i) mε (u+ v, 0;Btρ (x)) ≤ ε+mε (u, 0;Bρ (x)) + C∆0

(
tρ, ρ, |v|W 1,p(B2(x);Rm)

)
;

(ii) mε (u, 0;Bρ (x)) ≤ ε+mε

(
u+ v, 0;B 1

t
ρ (x)

)
+ C∆0

(
ρ, 1

t
ρ, |v|W 1,p(B2(x);Rm)

)
where the function ∆0 : ]0, 2[×]0, 1[×R+ → R+ is defined by

∆0 (r1, r2, s) :=

ˆ
Br1 (x)\Br2 (x)

1 + |∇u|pdLN +

(
1 +

1

(r1 − r2)p

)
s

and satisfies for every ρ ∈]0, 1[

lim
τ→1+

lim
s→0

∆0 (τρ, ρ, s) = lim
τ→1−

lim
s→0

∆0 (ρ, τρ, s) = 0.

Proof. Let t ∈]1, 2[, ρ ∈]0, 1[, x ∈ Ω with Btρ (x) ⊂ Ω. Let ε> 0, u ∈ W 1,p (Ω;Rm) and

v ∈ W 1,p
loc

(
RN ;Rm

)
. There exists (w,ψ) ∈ A0 (Bρ (x)) such that

ε+mε (u, 0;Bρ (x)) ≥ Iε (u+ w,ψ;Bρ (x)) .

We consider a cut-off function ϕt ∈ W 1,∞
0 (Btρ (x) ; [0, 1]) between Bρ (x) and O \Btρ (x),

satisfying ϕt ≡ 1 on Bρ (x), ϕt ≡ 0 on O \ Btρ (x), and |∇ϕt|∞ ≤ C0

ρ(t−1)
for some C0> 0

(independent of ρ and t). We set wt := ϕtw + (1− ϕt) v ∈ v + W 1,p
0 (Btρ (x) ;Rm). We

denote by ψ̃ the extension of ψ to Btρ (x) with ψ̃ ≡ 0 in Btρ (x) \Bρ (x). We have

mε (u+ v, 0;Btρ (x)) ≤ Iε

(
u+ wt, ψ̃;Btρ (x)

)
= Iε (u+ w,ψ;Bρ (x)) + Iε (u+ wt, 0;Btρ (x) \Bρ (x))

≤ ε+mε (u, 0;Bρ (x)) + Iε (u+ (1− ϕt) v, 0;Btρ (x) \Bρ (x)) .

Using the growth condition (H ′
1 ), we have for some C > 0 depending only on p

Iε (u+ (1− ϕt) v, 0;Btρ (x) \Bρ (x))

≤ C

ˆ
Btρ(x)\Bρ(x)

1 + |∇u|p + |∇v|p + |∇ϕt|p∞|v|pdLN

≤ C

{ˆ
Btρ(x)\Bρ(x)

1 + |∇u|pdLN +

(
1 +

Cp
0

ρp (t− 1)p

)
|v|pW 1,p(B2(x);Rm)

}
≤ max (C,C max (1, Cp

0 )) ∆0

(
tρ, ρ, |v|pW 1,p(B2(x);Rm)

)
which proves (i). Now, to show (ii), we observe that

mε (u, 0;Bρ (x)) = mε ((u+ v)− v, 0;Bρ (x)) ,
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thus, by proceeding similarly as for the proof of (i) above, for some C ′ > 0 depending
only on p

mε (u, 0;Bρ (x))

≤ ε+mε

(
u+ v, 0;B 1

t
ρ (x)

)
+ C ′

{ˆ
Bρ(x)\B 1

t ρ
(x)

1 + |∇u|pdLN +

(
1 +

Cp
0

ρp
(
1− 1

t

)p
)
|v|pW 1,p(B2(x);Rm)

}

≤ ε+mε

(
u+ v, 0;B 1

t
ρ (x)

)
+ max (C ′, C ′max (1, Cp

0 )) ∆0

(
ρ,

1

t
ρ, |v|pW 1,p(B2(x);Rm)

)
. �

6.2.1. Proofs of (H2) and formula of H0W (·). Let O ∈ O (Ω), u ∈ W 1,p (Ω;Rm) and
v ∈ L1

(
Ω;Rl

)
, we have to show

lim
ρ→0

lim
ε→0

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
LN -a.e. in O.

For each x ∈ Ω we set A := ∇u (x) ∈M and R := u (x)−Ax ∈ Rm, thus ux (·) = A ·+R.
By Lemma 6.1 we see that for every x ∈ Ω

lim
ρ→0

lim
ε→0

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux, 0;Bρ (x))

LN (Bρ (x))

lim
ρ→0

lim
ε→0

mε (ux, v (x)LN ;Bρ (x))

LN (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux, 0;Bρ (x))

LN (Bρ (x))
,

so, we are reduced to show

lim
ρ→0

lim
ε→0

mε (A ·+R, 0;Bρ (x))

LN (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (A ·+R, 0;Bρ (x))

LN (Bρ (x))
. (6.5)

For each ξ ∈M we define Sξ : Ob

(
RN
)
→ R+ by

Sξ (O) := inf
(ϕ,ψ)∈A0(O)

ˆ
O

W (y, ξy + ϕ (y) , ξ +∇ϕ (y) , ψ (y)) dLN (y) .

Step 1: formula H0W (ξ) for ξ ∈ Qm×N . In this first step, we show that for every
ξ ∈ Qm×N and ρ>0 we have

lim
ε→0

mε (ξ·, 0;Bρ (x))

LN (Bρ (x))
= lim

k→∞

Sξ (kY)

kN
= H0W (ξ) . (6.6)

Let ξ = (ξij)1≤i≤m,1≤j≤N ∈ Qm×N , be a matrix with rational numbers entries, with

ξij =
pij
qij

where pij ∈ Z and qij ∈ Z∗ for all (i, j) ∈ {1, . . . ,m} × {1, . . . , N}. Observe

that Sξ satisfies (i) and (ii) of Theorem 6.1. Moreover Sξ satisfies (iv). Indeed, using
periodicity, we need to show that the Tξ := {z ∈ ZN : ξz ∈ Zm} is relatively dense in

RN . Define Zξ =
(
Z1
ξ , . . . , Z

N
ξ

)
∈ ZN by setting Zj

ξ :=
∏m

i=1 qij for all j ∈ {1, . . . , N}.
Set Lξ := max1≤j≤N

∏m
i=1 |qij| and let x = (x1, . . . , xN) ∈ RN . Then x ∈ [0, Lξ]

N + Tξ,

indeed, we have ξZx
ξ ∈ Zm where Zx

ξ :=
(
Zx,1
ξ , . . . , Zx,N

ξ

)
with Zx,j

ξ := Zj
ξ

⌊
xj

Zjξ

⌋
for all

j ∈ {1, . . . , N}, and ∣∣x− Zx
ξ

∣∣ ≤ max
1≤j≤N

|Zj
ξ | ≤ Lξ.
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Thus, by Theorem 6.1 we have

lim
ε→0

Sξ
(

1
ε
Bρ (x)

)
LN

(
1
ε
Bρ (x)

) = lim
k→∞

Sξ (kY)

kN
for all ρ>0 and all x ∈ Ω.

Moreover, we see that for every ε>0, ρ>0, ξ ∈M and every x ∈ Ω

Sξ
(

1
ε
Bρ (x)

)
LN

(
1
ε
Bρ (x)

) =
mε (ξ·, 0;Bρ (x))

LN (Bρ (x))
,

which, by passing to the limit ε→ 0, gives (6.6).

Step 2: end of the proof of (H2). In this second step, we show (6.5). Fix x ∈ O and
ρ > 0. We set Rε := R − ε

⌊
R
ε

⌋
m

and choose a sequence {Aδ}δ>0 ⊂ Qm×N such that
limδ→0Aδ = A. Using the periodicity with respect to the second variable, we see that
mε (A ·+R, 0;Bρ (x)) = mε (A ·+Rε, 0;Bρ (x)) for all ε> 0. Let t ∈]1, 2[ and δ > 0. By
Lemma 6.2, we have

mε (A ·+R, 0;Bρ (x))

LN (Bρ (x))
=
mε (A ·+Rε, 0;Bρ (x))

LN (Bρ (x))

≤ ε

LN (Bρ (x))
+

1

tN

mε

(
Aδ·, 0;B 1

t
ρ (x)

)
LN

(
B 1

t
ρ (x)

) +
C∆0

(
ρ, 1

t
ρ, | (Aδ − A) · −Rε|W 1,p(B2(x);Rm)

)
LN (Bρ (x))

=
ε

LN (Bρ (x))
+

1

tN

SAδ
(

1
ε
B 1

t
ρ (x)

)
LN

(
1
ε
B 1

t
ρ (x)

) +
C∆0

(
ρ, 1

t
ρ, | (Aδ − A) · −Rε|W 1,p(B2(x);Rm)

)
LN (Bρ (x))

,

and

tN
SAδ

(
1
ε
Btρ (x)

)
LN

(
1
ε
Btρ (x)

) = tN
mε (Aδ·, 0;Btρ (x))

LN (Btρ (x))
≤ ε

LN (Bρ (x))
+
mε (A ·+R, 0;Bρ (x))

LN (Bρ (x))

+
C∆0

(
tρ, ρ, | (A− Aδ) ·+Rε|W 1,p(B2(x);Rm)

)
LN (Bρ (x))

.

Letting ε → 0 and using (6.6), then passing to the limits δ → 0 and then t → 1+ we
obtain

lim
δ→0

lim
k→∞

SAδ (kY)

kN
= lim

ε→0

mε (A ·+R, 0;Bρ (x))

LN (Bρ (x))

which proves (H2).

Step 3: formula H0W (ξ) for ξ ∈ M. For every ξ ∈ M and every {ξδ}δ>0 ⊂ Qm×N

satisfying limδ→0 ξδ = ξ, we have

lim
δ→0

lim
k→∞

Sξδ (kY)

kN
= lim

k→∞

Sξ (kY)

kN
.
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Indeed, let t ∈]1, 2[ and δ > 0. Using Lemma 6.2 and noticing that Y = B 1
2

(
1
2
e
)

=
1
2
e+ 1

2
]− 1, 1[N with e := (1, 1, . . . , 1) ∈ RN , we have

tN
Sξδ
(
kB t

2

(
e
2

))
LN

(
k
(
B t

2

(
e
2

))) = m 1
k

(
ξδ·, 0;B t

2

(e
2

))
(6.7)

≤1

k
+m 1

k

(
ξ·, 0;B 1

2

(e
2

))
+ C∆0

(
t

2
,
1

2
, | (ξ − ξδ) · |W 1,p(B1( e2);Rm)

)
≤2

k
+m 1

k

(
ξδ·, 0;B 1

2t

(e
2

))
+ C∆0

(
t

2
,
1

2
, | (ξ − ξδ) · |W 1,p(B1( e2);Rm)

)
+ C∆0

(
1

2
,

1

2t
, | (ξδ − ξ) · |W 1,p(B1( e2);Rm)

)

=
2

k
+

1

tN

Sξδ
(
kB 1

2t

(
e
2

))
LN

(
k
(
B 1

2t

(
e
2

))) + C∆0

(
t

2
,
1

2
, | (ξ − ξδ) · |W 1,p(B1( e2);Rm)

)

+ C∆0

(
1

2
,

1

2t
, | (ξδ − ξ) · |W 1,p(B1( e2);Rm)

)
.

Applying Step 1, we have for every δ>0 and t ∈]1, 2[

lim
k→∞

Sξδ
(

1
t
kB t

2

(
e
2

))
(

1
t
k
)N = lim

k→∞

Sξδ
(

1
t
kB 1

2t

(
e
2

))
(

1
t
k
)N = lim

k→∞

Sξδ (kY)

kN
.

Passing to the limits δ → 0 and t→ 1 in (6.7) we obtain

lim
δ→0

lim
k→∞

Sξδ (kY)

kN
= lim

k→∞
m 1

k
(ξ·, 0;Y ) = lim

k→∞

Sξ (kY)

kN
= H0W (ξ) .

6.2.2. Proof of (H3). Let O ∈ O (Ω). Let u ∈ W 1,p (Ω;Rm), ν ∈ M
(
Ω;Rl

)
and v ∈

L1
|νs|
(
Ω;Sl

)
. We have to show that

lim
ρ→0

lim
ε→0

mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux,ρ, v (x) |νs|;Bρ (x))

|νs| (Bρ (x))
|νs|-a.e. in O.

By Lemma 6.1, it is enough to prove that

lim
ρ→0

lim
ε→0

mε (ux,ρ, 0;Bρ (x))

|νs| (Bρ (x))
= lim

ρ→0
lim
ε→0

mε (ux,ρ, 0;Bρ (x))

|νs| (Bρ (x))
|νs|-a.e. in O. (6.8)

Let x ∈ O be such that limρ→0
LN (Bρ(x))

|νs|(Bρ(x))
= 0. Fix ρ ∈]0, 1[ and ε>0. Using Remark 3.5,

we have

mε (ux,ρ, 0;Bρ (x))

|νs| (Bρ (x))
= inf

(φ,ψ)∈A0(Bρ(x))
−
ˆ
Bρ(x)

1

tx,ρ
W

(
y

ε
,
ux,ρ
ε

+ ϕ,∇ϕ, tx,ρ
(

1

ε
ψ

))
dLN

≤ −
ˆ
Bρ(x)

1

tx,ρ
W
(y
ε
,
ux,ρ
ε
, 0, 0

)
dLN (y) ≤ 2C

1

tx,ρ
.

Since limρ→0 tx,ρ =∞, it follows that

lim
ρ→0

lim
ε→0

mε (ux,ρ, 0;Bρ (x))

|νs| (Bρ (x))
= 0,
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which establishes (6.8) and completes the proof. �

7. Auxiliary results

7.1. Some properties of mε. In this part, we assume that (H1) holds.
The following result can be seen as a “measure version” of [BFM98, Lemma 3.1]. The

constant C>0, in Lemma 7.1 below, is the one appearing in the growth condition (H1).

Lemma 7.1. Let B ∈ O (Ω).

(i) For every ε>0, every u ∈ W 1,p (Ω;Rm) and every (λ, ν) ∈M
(
Ω;Rl

)
×M

(
Ω;Rl

)
we have

|mε (u, λ;B)−mε (u, ν;B)| ≤ C |λ (B)− ν (B)| .
In particular, we also have

mε

(
u,

ν (B)

LN (B)
LN ;B

)
= mε (u, ν;B) .

(ii) For every ε>0, every u ∈ W 1,p (Ω;Rm) and every (λ, ν) ∈M
(
Ω;Rl

)
×M

(
Ω;Rl

)
we have

|mε (uB, λ;B)−mε (uB, ν;B)| ≤ C |λ (B)− ν (B)| ,
where uB := −́

B
udLN . In particular, we also have

mε

(
uB,

ν (B)

LN (B)
LN ;B

)
= mε (uB, ν;B) .

(iii) For every ε > 0, ρ > 0, x ∈ Ω with Bρ (x) ⊂ Ω, u ∈ W 1,p (Ω;Rm) and every
(λ, ν) ∈M

(
Ω;Rl

)
×M

(
Ω;Rl

)
we have

|mε (ux, λ;Bρ (x))−mε (ux, ν;Bρ (x))| ≤ C |λ (Bρ (x))− ν (Bρ (x))| .
In particular, we also have

mε

(
ux,

ν (Bρ (x))

LN (Bρ (x))
LN ;Bρ (x)

)
= mε (ux, ν;Bρ (x)) .

Proof. Fix B ∈ O (Ω), ε> 0, u ∈ W 1,p (Ω;Rm) and λ, ν ∈ M
(
Ω;Rl

)
. Let δ > 0. There

exist uδ ∈ u + W 1,p
0 (B;Rm) and νδ ∈ M

(
Ω;Rl

)
with νδ �LN and νδ (B) = ν (B) such

that

mε (u, ν;B) + δ ≥ Iε (uδ, νδ;B) .

Let k ∈ N∗ and Bk :=
{
x ∈ B : dist (x, ∂B)> 1

k

}
. We set

λδ := νδ 1Bk +

(
1

LN (B \Bk)
(λ (B)− νδ (Bk))

)
LN 1B\Bk .

We observe that λδ �LN and λδ (B) = λ (B), so we can write

mε (u, λ;B) ≤ Iε (uδ, λδ;B) (7.1)

= Iε (uδ, νδ;Bk) + Iε (uδ, λδ;B \Bk)

≤ mε (u, ν;B) + δ + Iε (uδ, λδ;B \Bk) .

Using the growth condition (H1), we have

Iε (uδ, λδ;B \Bk) ≤ C

ˆ
B\Bk

1 + |uδ|p + |∇uδ|p +

∣∣∣∣ 1

LN (B \Bk)
(λ (B)− νδ (Bk))

∣∣∣∣ dLN .
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Since limk→∞ νδ (Bk) = νδ (B) = ν (B) and limk→∞LN (B \Bk) = 0, we have

lim
k→∞

Iε (uδ, λδ;B \Bk) ≤ C |λ (B)− ν (B)| .

So, inequality (7.1) becomes

mε (u, λ;B) ≤ mε (u, ν;B) + δ + C |λ (B)− ν (B)|

and the proof of (i) is complete by letting δ → 0. The proofs of (ii) and (iii) are similar. �

Using Lemma 7.1 we obtain the following result which is used in the proof of Proposi-
tion 2.2.

Corollary 7.1. Let σ ∈M+ (Ω), ν ∈M
(
Ω;Rl

)
and u ∈ W 1,p (Ω;Rm). We have

(i) lim
ρ→0

sup
ε>0

∣∣∣∣∣∣∣∣
mε

(
u,
dν

dσ
(x)σ;Bρ (x)

)
σ (Bρ (x))

− mε (u, ν;Bρ (x))

σ (Bρ (x))

∣∣∣∣∣∣∣∣ = 0 σ-a.e. in Ω;

(ii) lim
ρ→0

sup
ε>0

∣∣∣∣∣∣∣∣
mε

(
ux,ρ,

dν

dσ
(x)σ;Bρ (x)

)
σ (Bρ (x))

− mε (ux,ρ, ν;Bρ (x))

σ (Bρ (x))

∣∣∣∣∣∣∣∣ = 0 σ-a.e. in Ω;

(iii) lim
ρ→0

sup
ε>0

∣∣∣∣∣∣∣∣
mε

(
ux,

dν

dσ
(x)σ;Bρ (x)

)
σ (Bρ (x))

− mε (ux, ν;Bρ (x))

σ (Bρ (x))

∣∣∣∣∣∣∣∣ = 0 σ-a.e. in Ω.

Proof. We only give the proof of (i), those of (ii) and (iii) being similar. Fix x ∈ Ω
satisfying

lim
ρ→0

∣∣∣∣dνdσ (x)− ν (Bρ (x))

σ (Bρ (x))

∣∣∣∣ = 0.

Using Lemma 7.1 (i) we have for every ρ>0

sup
ε>0

∣∣∣∣∣∣∣∣
mε

(
u,
dν

dσ
(x)σ;Bρ (x)

)
σ (Bρ (x))

− mε (u, ν;Bρ (x))

σ (Bρ (x))

∣∣∣∣∣∣∣∣ ≤ C

∣∣∣∣dνdσ (x)− ν (Bρ (x))

σ (Bρ (x))

∣∣∣∣ .
Passing to the limit ρ→ 0, the proof of (i) is complete. �

The following lemma is used in the proof of Proposition 2.2 (i).

Lemma 7.2. Let σ ∈ M+ (Ω), ν ∈ M
(
Ω;Rl

)
, u ∈ W 1,p (Ω;Rm) and O ∈ O (Ω).

Let {νε}ε ⊂ M
(
Ω;Rl

)
be such that νε

∗
⇀ ν in M

(
O;Rl

)
and |νε|

∗
⇀ µ in M+ (O) as

ε → 0. Let x ∈ O and ρ > 0 with Bρ (x) ⊂ O. Let t ∈]0, 1[ and r ∈ [t2ρ, tρ[. Let

ϕr ∈ Cc (Bρ (x) ; [0, 1]) be such that ϕr ≡ 1 in Br (x) and ϕr ≡ 0 in Bρ (x) \ Btρ (x). For
each ε>0 we set νrε =

(
νrε,1, · · · , νrε,l

)
∈M

(
O;Rl

)
defined by

νrε,i (B) :=

ˆ
B

ϕr dνε,i for all Borel set B ⊂ O where νε = (νε,1, . . . , νε,i, . . . , νε,l) .
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Then

lim
ε→0

∣∣∣∣mε (ux, ν;Bρ (x))

σ (Bρ (x))
− mε (ux, ν

r
ε ;Bρ (x))

σ (Bρ (x))

∣∣∣∣
≤ 2C

((
1−

σ (Bt2ρ (x))

σ (Bρ (x))

)
χσt2 (ρ) + χσ1 (ρ)− χσt2 (ρ)

)
,

where C>0 is the constant growth appearing in (H1), and where

χσs (ρ) :=
|ν| (Bsρ (x))

σ (Bsρ (x))
for all s ∈]0, 1].

The same conclusion holds replacing ux by ux,ρ.

Proof. We see that νrε
∗
⇀ νr in M

(
O;Rl

)
and |νrε |

∗
⇀ µr in M+ (O) as ε → 0, where

µr := ϕrµ verifies µr (∂Bρ (x)) = 0 since the support of ϕr is include in Btρ (x). So,
by [FL07, Corollary 1.204, pp. 131] we have limε→0 ν

r
ε (Bρ (x)) = νr (Bρ (x)). Using

Lemma 7.1, we have for every ε > 0∣∣∣∣mε (ux, ν;Bρ (x))

σ (Bρ (x))
− mε (ux, ν

r
ε ;Bρ (x))

σ (Bρ (x))

∣∣∣∣
≤ C

∣∣∣∣ν (Bρ (x))

σ (Bρ (x))
− νrε (Bρ (x))

σ (Bρ (x))

∣∣∣∣
≤ C

(∣∣∣∣ν (Bρ (x))

σ (Bρ (x))
− νr (Bρ (x))

σ (Bρ (x))

∣∣∣∣+

∣∣∣∣νr (Bρ (x))

σ (Bρ (x))
− νrε (Bρ (x))

σ (Bρ (x))

∣∣∣∣) .
Passing to the limit ε→ 0 we obtain

lim
ε→0

∣∣∣∣mε (ux, ν;Bρ (x))

σ (Bρ (x))
− mε (ux, ν

r
ε ;Bρ (x))

σ (Bρ (x))

∣∣∣∣ ≤ C

∣∣∣∣ν (Bρ (x))

σ (Bρ (x))
− νr (Bρ (x))

σ (Bρ (x))

∣∣∣∣ . (7.2)

Since ν (Br) = νr (Br), |νr| ≤ |ν| and Br (x) ⊃ Bt2ρ (x) it follows that∣∣∣∣ν (Bρ (x))

σ (Bρ (x))
− νr (Bρ (x))

σ (Bρ (x))

∣∣∣∣ =

∣∣∣∣ν (Bρ (x) \Br)

σ (Bρ (x))
− νr (Bρ (x) \Br)

σ (Bρ (x))

∣∣∣∣
≤ 2
|ν| (Bρ (x) \Br)

σ (Bρ (x))

≤ 2
|ν| (Bρ (x) \Bt2ρ (x))

σ (Bρ (x))
. (7.3)

Moreover, we can write

|ν| (Bρ (x) \Bt2ρ (x))

σ (Bρ (x))
=
|ν| (Bρ (x))

σ (Bρ (x))
−
σ (Bt2ρ (x))

σ (Bρ (x))

|ν| (Bt2ρ (x))

σ (Bt2ρ (x))

=

(
1−

σ (Bt2ρ (x))

σ (Bρ (x))

)
|ν| (Bt2ρ (x))

σ (Bt2ρ (x))
+
|ν| (Bρ (x))

σ (Bρ (x))
−
|ν| (Bt2ρ (x))

σ (Bt2ρ (x))
.

(7.4)

The assertion of the lemma follows by combining (7.2), (7.3) and (7.4). �
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7.2. Some results on measures. The following result (see [FM93, Lemma 2.13, pp.
46] and [Alb93, Theorem 5.8, pp. 33]) is needed in the proof of Proposition 2.2.

Lemma 7.3. Let σ be a nonnegative Radon measure on Ω. For σ-a.e. x ∈ Ω and for
every t ∈]0, 1[, we have

lim
ρ→0

σ (Btρ (x))

σ (Bρ (x))
≥ tN .

In the proof of Theorem 2.1, we need the following lemma which plays the same role for
the singular part, as the Lp-differentiation theorem, with the mean value ux,ρ replacing
the affine tangent map ux of u ∈ W 1,p (Ω;Rm).

Lemma 7.4. Let u ∈ W 1,p (Ω;Rm) and let σ ∈ M+ (Ω) be a positive Radon measure
singular with respect toLN . Then

lim
ρ→0

1

σ (Bρ (x))

ˆ
Bρ(x)

∣∣∣∣ux,ρ − u (z)

ρ

∣∣∣∣p dLN (z) = 0 σ-a.e. in Ω.

Proof. Since σ ⊥ |∇u|pLN , we have

lim
ρ→0

1

σ (Bρ (x))

ˆ
Bρ(x)

|∇u (z) |pdLN (z) = 0 σ-a.e. in Ω. (7.5)

Fix x ∈ Ω satisfying (7.5). By Poincaré inequality there exists C>0 such that for every
ρ>0 we have ˆ

Bρ(x)

|ux,ρ − u (z)|p dLN (z) ≤ Cρp
ˆ
Bρ(x)

|∇u (z) |pdLN (z) .

Dividing by ρpσ (Bρ (x)) and letting ρ→ 0, we obtain the result. �

The following result is used in the proof of Proposition 2.1 (ii) (see §4).

Lemma 7.5. Let O ∈ O (Ω) and ν ∈ M
(
Ω;Rl

)
. Let {δ (n)}n∈N ⊂]0, 1[ be a decreas-

ing sequence satisfying limn→∞ δ (n) = 0. For each n ∈ N let {Bn
i }i∈In ⊂ O (O) be

a countable family of pairwise disjoints open subsets with diam (Bn
i ) ∈]0, δ (n) [ for all

i ∈ In. Let {νni }i∈In ⊂ M
(
O;Rl

)
be such that νni (Bn

i ) = ν (Bn
i ) for all i ∈ In. Set

νn :=
∑

i∈In ν
n
i 1Bni , i.e.

νn (B) =
∑
i∈In

νni (Bn
i ∩B) for all Borel set B ⊂ O and all n ∈ N.

Assume that

(i)
∑
i∈In

(∣∣νni 1Bni ∣∣ (O)
)
<∞ for all n ∈ N;

(ii) (LN +|νs|)
(
O \ ∪

i∈In
Bn
i

)
= 0 for all n ∈ N;

(iii) there exists α ∈M+ (O) such that for every n ∈ N and every open set U ⊂ O

α�LN +|νs| and |νn| (Sn (U)) ≤ α (Sn (U)) ,

where Sn (U) :=
⋃{

Bn
j : Bn

j ∩ U 6= ∅ and Bn
j ∩O \ U 6= ∅

}
.

Then νn
∗
⇀ ν in M

(
O;Rl

)
.
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Proof. The assumption (i) insures that νn ∈M
(
O;Rl

)
for all n ∈ N.

Step 1. In this first step we show that for every n ∈ N and every open subset U ⊂ O

νn (U)− ν (U) = ν (Un \ U)− νn (Un \ U) . (7.6)

where

Un :=
⋃
j∈Jn

Bn
j where Jn := {i ∈ In : Bn

i ∩ U 6= ∅}.

Fix n ∈ N. Let U ⊂ O be an open set. We have νn (U \ Un) = 0 since νn (U ∩ Un) =
νn (U), indeed, we have

νn (Un ∩ U) =
∑
i∈In

νni

(
Bn
i ∩

(
∪

j∈Jn
Bn
j

)
∩ U

)
=
∑
j∈Jn

νnj
(
Bn
j ∩ U

)
= νn (U) .

Moreover, we have

νn (Un) =
∑
j∈Jn

νnj
(
Bn
j

)
=
∑
j∈Jn

ν
(
Bn
j

)
= ν (Un) .

Thus, we can write, since Un ∪ (U \ Un) = U ∪ (Un \ U), that

νn (U) = ν (U)− ν (U \ Un) + ν (Un \ U)− νn (Un \ U) . (7.7)

But ν (U \ Un) = 0, indeed, we have U \ Un = U \ ∪j∈In Bn
j since Bn

j ∩ U = ∅ when
j /∈ Jn, and by using the fact that |ν| �LN +|νs|, we obtain

|ν (U \ Un) | ≤ |ν|
(
U \ ∪

j∈In
Bn
j

)
≤ |ν|

(
O \ ∪

j∈In
Bn
j

)
= 0.

Thus, (7.7) becomes (7.6).

Step 2. Let f ∈ Cc
(
O;Rl

)
. We have to show that

lim
n→∞

ˆ
O

fdνn =

ˆ
O

fdν where

ˆ
O

fdνn =
l∑

s=1

ˆ
O

fsdν
n
s for all n ∈ N,

where f = (f1, . . . , fs, . . . , fl), ν
n = (νn1 , . . . , ν

n
s , . . . , ν

n
l ), fs ∈ Cc (O) and νns ∈ M (O;R)

is a signed measure. Reasoning component by component we can assume that νn is a
signed measure for all n ∈ N and f ∈ Cc (O). We have for every n ∈ Nˆ

O

fdνn =

ˆ
O

f+dνn −
ˆ
O

f−dνn

where f+ = max{f, 0} and f− = max{−f, 0}.
Set M := max{supO f

+, supO f
−} <∞. We haveˆ

O

fdνn =

ˆ M

0

νn
(
[f+ > t]

)
dt−

ˆ M

0

νn
(
[f− > t]

)
dt. (7.8)

Set Ut := [g > t] := {x ∈ O : g (x) > t} for all t ≥ 0 and all g ∈ {f+, f−}. To finish the
proof we need to prove that

lim
n→∞

ˆ M

0

νn (Ut) dt =

ˆ M

0

ν (Ut) dt.

By (7.6) we see that∣∣∣∣ˆ M

0

νn (Ut)− ν (Ut) dt

∣∣∣∣ =

∣∣∣∣ˆ M

0

ν (Un
t \ Ut) dt−

ˆ M

0

νn (Un
t \ Ut) dt

∣∣∣∣ ,
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thus, it is sufficient to show that

lim
n→∞

(∣∣∣∣ˆ M

0

ν (Un
t \ Ut) dt

∣∣∣∣+

∣∣∣∣ˆ M

0

νn (Un
t \ Ut) dt

∣∣∣∣) = 0.

But, by (iii) we have for every n ∈ N∣∣∣∣ˆ M

0

νn (Un
t \ Ut) dt

∣∣∣∣ ≤ ˆ M

0

|νn| (Sn (Ut)) dt ≤
ˆ M

0

α (Sn (Ut)) dt.

Therefore we are reduced to prove that limn→∞
´M

0
α (Sn (Ut)) dt = 0.

Step 3. Fix n ∈ N. Set Kn := {j ∈ Jn : Bn
j ⊂ Ut} and Ut,n := ∪j∈Kn Bn

j . We have
Sn (Ut) = Un

t \ Ut,n. Since diam (Bn
i ) < δ (n), we have Un

t ⊂ Nδ(n)[Ut] := {x ∈ O :

dist (x, Ut) < δ (n)}, thus α (Sn (Ut)) ≤ α
(
Nδ(n)[Ut] \ Ut,n

)
. Now, we give an estimate

from above of α
(
Nδ(n)[Ut] \ Ut,n

)
as n → ∞. Since α �LN +|νs|, (ii) and Ut ⊂ O, we

have α (Ut \ ∪i∈In Bn
i ) = 0. But we can write

0 = α

(
Ut \

(
∪
i∈Jn

Bn
i ∪ ∪

i∈In\Jn
Bn
i

))
= α

(
Ut \

((
∪

i∈Jn\Kn
Bn
i

)
∪ Ut,n

))
= α ((Ut \ Ut,n) \ Fn)

where Fn := ∪i∈Jn\Kn Bn
i . Hence α (Ut \ Ut,n) = α ((Ut \ Ut,n) ∩ Fn). Observe that Fn ⊂

{x ∈ O : dist (x, ∂Ut) ≤ 2δ (n)} which gives limn→∞ α (Fn) ≤ α (∂Ut). The sequence
{Ut \ Ut,n}n∈N is decreasing thus limn→∞ α (Ut \ Ut,n) ≤ α (∂Ut). In the same way, we
have

lim
n→∞

α (Sn (Ut)) ≤ lim
n→∞

α
(
Nδ(n)[Ut] \ Ut,n

)
= lim

n→∞

{
α
((
Nδ(n)[Ut] \ Ut

)
\ Ut,n

)
+ α (Ut \ Ut,n)

}
≤ 2α (∂Ut)

since {Sn (Ut)}n∈N is decreasing and ∩n∈NNδ(n)[Ut] = Ut. Now, by noticing that ∂Ut ⊂
[g = t] and

´M
0
α ([g = t]) dt = 0 (since Fubini-Tonelli theorem), we apply the Lebesgue

dominated convergence theorem to find

lim
n→∞

ˆ M

0

α (Sn (Ut)) dt = 0.

Repeating the same arguments with |ν| in place of α, we also have

lim
n→∞

∣∣∣∣ˆ M

0

ν (Un
t \ Ut) dt

∣∣∣∣ = 0. �

7.3. Integral representation of the Vitali envelope of a set function. This part
is devoted to the integral representation of the Vitali envelope of a set function defined
on open subsets of Ω, it is partly inspired by [BB00, BFM98, DMM86]. Then we apply
it to the set function m+ (u, ν; ·) := limε→0mε (u, ν; ·).

Let µ ∈ M+ (Ω). For each open set O ⊂ Ω, we denote by Qo (O) ⊂ O (O) the set of
all open balls B of O such that their boundaries have zero measure, i.e. µ (∂B) = 0.
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7.3.1. Vitali envelopes of set functions. Let G : Qo (Ω)→ R be a set function. We define
the lower Vitali envelope of G with respect to µ

O (Ω) 3 O 7−→ V −G (O) := sup
ε>0

inf

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ V
ε(O)

}
and the upper Vitali envelope with respect to µ

O (Ω) 3 O 7−→ V +
G (O) := inf

ε>0
sup

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ V
ε(O)

}
,

where for every ε>0

Vε(O) :=

{
{Bi}i∈I ⊂ Qo (Ω) : I is countable, µ

(
O \ ∪

i∈I
Bi

)
= 0, Bi ⊂ O,

diam (Bi) ∈]0, ε[ and Bi ∩Bj = ∅ for all i 6= j

}
.

Remarks 7.1.

(i) We have −V −−G = V +
G .

(ii) If G is the trace on Qo (Ω) of a positive Borel measure λ on Ω which is absolutely
continuous with respect to µ then V ±G (O) = λ (O) for all O ∈ O (Ω).

7.3.2. Derivatives of set function. Let G : Qo (Ω) → R be a set function. Define the
lower and the upper derivatives at x ∈ Ω of G with respect to µ as follows

D−µG (x) := lim
ρ→0

inf

{
G (B)

µ (B)
: x ∈ B ∈ Qo (Ω) , diam (B) ≤ ρ

}
;

D+
µG (x) := lim

ρ→0
sup

{
G (B)

µ (B)
: x ∈ B ∈ Qo (Ω) , diam (B) ≤ ρ

}
.

We say that G is µ-differentiable in O ∈ O (Ω) if for µ-a.e. x ∈ O it holds

−∞<D−µG (x) = D+
µG (x)<∞.

In this case we denote the common value by DµG (x) and

DµG (x) = lim
Rxµ 63ρ→0

G (Bρ (x))

µ (Bρ (x))
,

where we recall that Rx
µ ⊂]0,∞[ is a countable set and ρ /∈ Rx

µ if and only if µ (∂Bρ (x)) =
0.

Remarks 7.2.

(i) We have −D−µ (−G) = D+
µG.

(ii) For every O ∈ O (Ω) and every x ∈ O we have

D−µG (x) := lim
ρ→0

inf

{
G (B)

µ (B)
: x ∈ B ∈ Qo (O) , diam (B) ≤ ρ

}
;

D+
µG (x) := lim

ρ→0
sup

{
G (B)

µ (B)
: x ∈ B ∈ Qo (O) , diam (B) ≤ ρ

}
.

(iii) If for each ρ > 0 we set D−µ,ρG (x) := inf
{
G(B)
µ(B)

: x ∈ B ∈ Qo (O) , diam (B) ≤ ρ
}

for every x ∈ O ∈ O (Ω), then it is not difficult to see that {x ∈ O : D−µ,ρG (x)<c}
is open for all c ∈ R. It follows that D−µ,ρG is measurable for all ρ>0. Note that the
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function ρ 7→ D−µ,ρG (x) is nondecreasing for all x ∈ O. Thus D−µG is measurable
since for every x ∈ O

D−µG (x) = lim
ρ→0

D−µ,ρG (x) .

The same conclusion holds for D+
µG.

(iv) If G = λ is a Borel finite measure absolutely continuous with respect to µ then λ
is µ-differentiable in O and

Dµλ (x) =
dλ

dµ
(x) µ-a.e. in O where

dλ

dµ
(x) = lim

ρ→0

λ (Bρ (x))

µ (Bρ (x))
µ-a.e. in O.

The relation between lower and upper Vitali envelopes and lower and upper derivatives
of a set function respectively, is given by the following result.

Proposition 7.1. Let µ ∈M+ (Ω). Let G : Qo (Ω)→ R be a set function satisfying

(E0) there exists α ∈M+ (Ω) with α� µ satisfying

|G (B)| ≤ α (B) for all B ∈ Qo (Ω) .

Then for every O ∈ O (Ω) we have

V −G (O) =

ˆ
O

D−µG (x) dµ (x) and V +
G (O) =

ˆ
O

D+
µG (x) dµ (x) .

7.3.3. Integral representation of Vitali envelopes. We consider the following two condi-
tions on a set function G : O (Ω)→ R:

(E1) the set function G is dominated by a positive measure absolutely continuous with
respect to µ, i.e. there exists α ∈M+ (Ω) with α� µ satisfying

|G (O)| ≤ α (O) for all O ∈ O (Ω) with µ (∂O) = 0;

(E2) the set function G is subadditive, i.e. for every U, V,O ∈ O (Ω) with U ∩ V = ∅,
U ⊂ O, V ⊂ O and µ (O \ (U ∪ V )) = 0 it holds

G (O) ≤ G (U) +G (V ) .

Remark 7.1. Under (E1), since α� µ, we note that

−dα
dµ

(x) ≤ D−µG (x) ≤ D+
µG (x) ≤ dα

dµ
(x) µ-a.e. in Ω

−α (O) ≤ V −G (O) ≤ V +
G (O) ≤ α (O) for all O ∈ O (Ω) .

It follows, taking Remark 7.2 (iii) into account, that D−µG and D+
µG belong to L1

µ (Ω).

Under the domination and subadditivity conditions, a set function defined on open sets is
µ-differentiable, and the lower and upper Vitali envelopes are equal and admit an integral
representation with density its derivative.

Theorem 7.1. Let µ ∈ M+ (Ω). Let G : O (Ω) → R be a set function satisfying (E1)
and (E2). Then V +

G (O) = V −G (O) for all O ∈ O (Ω), G is µ-differentiable and for every
O ∈ O (Ω)

V +
G (O) = V −G (O) =

ˆ
O

lim
Rxµ 63ρ→0

G (Bρ (x))

µ (Bρ (x))
dµ (x) . (7.9)
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Application to G (·) = m+ (u, ν; ·) and µ = LN +|νs|. For each pair (u, ν) ∈
W 1,p (Ω;Rm)×M

(
Ω;Rl

)
we consider V −m+(u,ν;·) the lower Vitali envelope of

m+ (u, ν; ·) := lim
ε→0

mε (u, ν; ·)

with respect to the measure µ =LN +|νs|.
Let us show that the set function m+ (u, ν; ·) : O (Ω) → R+ is subadditive. Let

(U1, U2,W ) ∈ O (Ω)3 be such that U1 ⊂ W , U2 ⊂ W with µ (W \ (U1 ∪ U2)) = 0 and
U1∩U2 = ∅. We can assume thatm+ (u, ν;U1)<∞ andm+ (u, ν;U2)<∞. So, there exists
ε0>0 such that mε (u, ν;Ui)<∞ for all ε ∈]0, ε0[ and all i ∈ {1, 2}. Let ε ∈]0, ε0[. There
exists (vi, λi) ∈

(
u+W 1,p

0 (Ui;Rm)
)
×M

(
Ω;Rl

)
such that λi �LN , λi (Ui) = ν (Ui) and

ε+
2∑
i=1

mε (u, ν;Ui) ≥
2∑
i=1

Iε (vi, νi;Ui) .

Set v0 :=
∑2

i=1 vi 1Ui +u1Ω\(U1∪U2) ∈ u + W 1,p
0 (U1 ∪ U2;Rm) and λ0 :=

∑2
i=1 λi 1Ui . We

see that λ0 �LN and λ0 (W ) = λ0 (U1 ∪ U2) = λ1 (U1) + λ2 (U2) = ν (U1 ∪ U2) = ν (W )
since ν � µ. Therefore we obtain

ε+
2∑
i=1

mε (u, ν;Ui) ≥ Iε (v0, λ0;W ) ≥ mε (u, ν;W ) .

Passing to the limit ε→ 0, we obtain our claim.
Now, we assume that (H′2) holds, i.e. for every (u, ν) ∈ W 1,p (Ω;Rm)×M

(
Ω;Rl

)
there

exists αu,ν ∈M+ (Ω) with αu,ν � µ such that

sup
ε>0

mε (u, ν;U) ≤ αu,ν (U) for all U ∈ O (Ω) .

Whence we proved the following result.

Lemma 7.6. Assume that (H′2) holds. Then for every (u, ν) ∈ W 1,p (Ω;Rm)×M
(
Ω;Rl

)
the set function m+ (u, ν; ·) is µ-differentiable and for every O ∈ O (Ω) we have

V −m+(u,ν;·) (O) =
∑

σ∈{LN ,|νs|}

ˆ
O

lim
Rxµ 63ρ→0

m+ (u, ν;Bρ (x))

σ (Bρ (x))
dσ (x) .

7.4. Proof of Theorem 7.1. We divide the proof into two steps.
Step 1: A sufficient condition for the equality of the lower and upper Vitali en-

velopes. In this first step, we establish a sufficient condition for the equality of the lower
and upper Vitali envelopes. We claim that if

G (B) ≤ V −G (B) for all B ∈ Qo (Ω) ,

then V −G (O) = V +
G (O) for all O ∈ O (Ω). Indeed, let O ∈ O (Ω) be an open set, and let

ε>0. There exists {Bi}i∈I ⊂ Vε(O) such that

sup

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ Vε(O)

}
≤
∑
i∈I

G (Bi) + ε.

Since the integral representation for V −G given by Proposition 7.1, we have

sup

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ Vε(O)

}
≤
∑
i∈I

G (Bi) + ε ≤
∑
i∈I

V −G (Bi) + ε = V −G (O) + ε,

which, by passing to the limit ε→ 0, gives V +
G (O) ≤ V −G (O), and so the equality holds.
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Step 2: end of the proof. Taking Step 1 into account, we only have to show that G (B) ≤
V −G (B) for all B ∈ Qo (Ω). Indeed, if we have V −G (O) = V +

G (O) for all O ∈ O (Ω) then,
by Proposition 7.1 and Remark 7.1, G is µ-differentiable and the integral representation
formula (7.9) holds.

Let δ>0. By the absolute continuity of α with respect to µ, there exists η0 such that
for every Borel set A ⊂ B satisfying µ (A)<η0 we have α (A)< δ

2
.

Let B ∈ Qo (Ω). Let ε ∈]0, η0[. There exists {Bi}i∈I ∈ Vε(O) such that

ε+ inf

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ Vε(B)

}
≥
∑
i∈I

G (Bi) .

There exists a finite subset Iε ⊂ I such that µ (B \ ∪i∈IεBi)<ε. We set Wε := ∪i∈IεBi.
Note that µ (∂Wε) = 0 and that µ

(
∂
(
B \Wε

))
= 0. Using (E1) and (E2) we have

ε+ inf

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ Vε(O)

}
≥
∑
i∈I

G (Bi)

=
∑
i∈Iε

G (Bi) +
∑
i∈I\Iε

G (Bi)

≥ G (Wε)− α
(
∪

i∈I\Iε
Bi

)
≥ G (B)−G

(
B \Wε

)
− α

(
∪

i∈I\Iε
Bi

)
≥ G (B)− α

(
B \Wε

)
− α

(
∪

i∈I\Iε
Bi

)
.

But, α
(
∪i∈I\Iε Bi

)
= α (B \Wε) and α

(
B \Wε

)
= α (B \Wε) since α � µ. It follows

that

ε+ inf

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ Vε(B)

}
≥ G (B)− 2α (B \Wε) ≥ G (B)− δ.

Passing to the limits ε → 0 and δ → 0, we obtain V −G (B) ≥ G (B) which completes the
proof. �

7.5. Proof of Proposition 7.1. The proof is based on the following lemma.

Lemma 7.7. Let G : Qo (Ω) → R be a set function satisfying (E0). Let O ∈ O (Ω). If
D−µG (x) = 0 (resp. D+

µG (x) = 0) µ-a.e. in O then V −G (O) = 0 (resp. V +
G (O) = 0).

By using Remark 7.1 we see that for every ? ∈ {+,−}ˆ
Ω

∣∣D?
µG (x)

∣∣ dµ (x) ≤
ˆ

Ω

∣∣∣∣dαdµ (x)

∣∣∣∣ dµ (x) = α (Ω)<∞.

Let ? ∈ {+,−} and O ∈ O (Ω). Set H? := G −D?
µG (·)µ. It is sufficient to prove that

D?H? (x) = 0 µ-a.e. in O. Indeed, we observe that by (E0)

|H? (B) | ≤ |G (B) |+
∣∣∣∣ˆ
B

D?
µGdµ

∣∣∣∣ ≤ α (B) +

ˆ
B

∣∣D?
µG
∣∣ dµ for all B ∈ Qo (Ω) ,

that is H? satisfies (E0). Applying Lemma 7.7, we get V ?
H (O) = 0, but it is easy to verify

that V ?
H (O) = V ?

G (O)−
´
O
D?
µGdµ.
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Let x ∈ O be such that D?
µG (x) = limρ→0 −́Bρ(x)

D?
µGdµ<∞. For each ρ>0, set

Bx,ρ (O) := {B ∈ Qo (O) : x ∈ B ∈ O, diam (B) ≤ ρ} .
We have for every ρ>0

inf
B∈Bx,ρ(O)

G (B)

µ (B)
− sup

B∈Bx,ρ(O)

−
ˆ
B

D−µGdµ ≤ inf
B∈Bx,ρ(O)

H− (B)

µ (B)

≤ inf
B∈Bx,ρ(O)

G (B)

µ (B)
− inf

B∈Bx,ρ(O)
−
ˆ
B

D−µGdµ,

and

sup
B∈Bx,ρ(O)

G (B)

µ (B)
− sup

B∈Bx,ρ(O)

−
ˆ
B

D+
µGdµ, ≤ sup

B∈Bx,ρ(O)

H+ (B)

µ (B)

≤ sup
B∈Bx,ρ(O)

G (B)

µ (B)
− inf

B∈Bx,ρ(O)
−
ˆ
B

D+
µGdµ.

It follows, by taking Remark 7.2 (iv) into account and by passing to the limit ρ → 0,
that D?

µH (x) = 0. �

7.5.1. Proof of Lemma 7.7. Since Remarks 7.1 (i)and 7.2 (i), we are reduced to prove
the result only for the lower Vitali envelope.
Step 1: we show that if D−µG (x) ≤ 0 µ-a.e. in O then V −G (O) ≤ 0. It is enough to
show that for every ε>0 if

D−µG (x)<ε µ-a.e. in O then inf
{Bi}i∈I∈Vε(O)

∑
i∈I

G (Bi) ≤ εµ (O) .

Fix ε> 0. Let N ⊂ O with µ (N) = 0 be such that O \ N =
{
x ∈ O : D−µG (x)<ε

}
. If

x ∈ O \N then for some δ>0

inf

{
G (B)

µ (B)
: B ∈ Bx,ρ (O)

}
<ε− δ for all ρ ∈]0, ε[.

For each ρ ∈]0, ε[ there exists Bx,ρ ∈ Bx,ρ (O) such that

G (Bx,ρ)

µ (Bx,ρ)
− δ ≤ inf

{
G (B)

µ (B)
: B ∈ Bx,ρ (O)

}
<ε− δ. (7.10)

Consider the family Kε :=
{
Bx,ρ

}
x∈O\N,ρ∈]0,ε[

of closed balls such that (7.10) holds. The

family Kε is a fine cover of O \N , i.e.

O \N ⊂ ∪
B∈Kε

B and inf {diam (B) : B ∈ Kε,x} = 0 for all x ∈ O \N

where Kε,x :=
{
Bx,ρ

}
ρ∈]0,ε[

⊂ Kε. By Vitali covering theorem, there exists a countable

pairwise disjointed family
{
Bi

}
i∈I ⊂ Kε such that

µ

(
(O \N) \ ∪

i∈I
Bi

)
= 0, G (Bi)<εµ (Bi) and diam (Bi)<ε for all i ∈ I. (7.11)

From (7.11) we have µ
(
O \ ∪i∈I Bi

)
= 0 since µ (N) = 0. So, we have

∑
i∈I µ

(
Bi

)
=∑

i∈I µ (Bi) = µ (O). Summing over i ∈ I the first inequality in (7.11) we obtain

inf

{∑
i∈I

G (Bi) : {Bi}i∈I ∈ V
ε(O)

}
≤ ε

∑
i∈I

µ (Bi) = εµ (O) .
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Step 2: we show that if D−µG (x) ≥ 0 µ-a.e. in O then V −G (O) ≥ 0. Assume that

there exists a measurable set N ⊂ O with µ (N) = 0 such that D−µG (x) ≥ 0 for all
x ∈ O \N .

Let δ > 0. By the absolute continuity of α with respect to µ there exists η0 such that
for every measurable set A ⊂ B satisfying µ (A)<η0 we have α (A)<δ.

Let η ∈]0, η0[. By Egoroff theorem, there exists a measurable Kη ⊂ O \ N such that
µ (O \Kη)<η, and there exists ρ0>0 such that for every ρ ∈]0, ρ0[ we have

inf
{
D−µ,ρG (x) : x ∈ Kη

}
>−η where D−µ,ρG (x) = inf

B∈Bx,ρ(O)

G (B)

µ (B)
for all x ∈ O.

Let ρ ∈]0, ρ0[. There exists {Bi}i∈I ∈ Vρ (O) such that

V −G (O) + ρ ≥ V ρ
G (O) + ρ ≥

∑
i∈I

G (Bi) where V ρ
G (O) := inf

{Bi}i∈I∈Vρ(O)

∑
i∈I

G (Bi) .

Let Iη := {i ∈ I : Bi ∩Kη 6= ∅}. Choose xi ∈ Bi ∩Kη for all i ∈ Iη. It follows that

V −G (O) + ρ ≥
∑
i∈Iη

G (Bi) +
∑
i∈I\Iη

G (Bi) =
∑
i∈Iη

G (Bi)

µ (Bi)
µ (Bi)− α

(
∪

i∈I\Iη
Bi

)
≥
∑
i∈Iη

D−µ,ρG (xi)µ (Bi)− α (O \Kη)

≥ −ηµ (O)− α (O \Kη) ≥ −ηµ (O)− δ.

By passing to the limits ρ→ 0, η → 0 and δ → 0 we obtain the result. �
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[BFM09] Guy Bouchitté, Irene Fonseca, and M. Lúısa Mascarenhas. The Cosserat vector in membrane
theory: a variational approach. J. Convex Anal., 16(2):351–365, 2009.

[BJ99] Kaushik Bhattacharya and Richard D. James. A theory of thin films of martensitic materials
with applications to microactuators. J. Mech. Phys. Solids, 47(3):531–576, 1999.

[Bra92] Andrea Braides. Almost periodic methods in the theory of homogenization. Appl. Anal.,
47(4):259–277, 1992.

[But89] Giuseppe Buttazzo. Semicontinuity, relaxation and integral representation in the calculus of
variations, volume 207 of Pitman Research Notes in Mathematics Series. Longman Scientific
& Technical, Harlow, 1989.

[BZZ08] Jean-François Babadjian, Elvira Zappale, and Hamdi Zorgati. Dimensional reduction for en-
ergies with linear growth involving the bending moment. J. Math. Pures Appl. (9), 90(6):520–
549, 2008.

[CRZ10] Graça Carita, Ana Margarida Ribeiro, and Elvira Zappale. Relaxation for some integral
functionals in W 1,p

w × Lq
w. Bol. Soc. Port. Mat., (Special Issue):47–53, 2010.

[CRZ11] Graça Carita, Ana Margarida Ribeiro, and Elvira Zappale. An homogenization result in
W 1,p × Lq. J. Convex Anal., 18(4):1093–1126, 2011.

[CZ16] Graça Carita and Elvira Zappale. A relaxation result in BV × Lp for integral functionals
depending on chemical composition and elastic strain. Asymptot. Anal., 100(1-2):1–20, 2016.

[CZ17] Graça Carita and Elvira Zappale. Integral representation results in BV ×Lp. ESAIM Control
Optim. Calc. Var., 23(4):1555–1599, 2017.

[DM93] Gianni Dal Maso. An introduction to Γ-convergence. Progress in Nonlinear Differential Equa-
tions and their Applications, 8. Birkhäuser Boston Inc., Boston, MA, 1993.
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