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Highlights 

 Reduced TPDO as a new active material in 
conductometric transducer. 

 Evaporated TPDO leads to a stable n-type sensing behavior. 
 Molecular material-based ammonia sensors operate at room 

temperature  

https://doi.org/10.1016/j.snb.2017.08.184
https://www.sciencedirect.com/topics/engineering/transducers
https://www.sciencedirect.com/topics/engineering/ammonia


Wannebroucq A. et al. Sens. Actuators B Chem 2018, DOI 10.1016/j.snb.2017.08.184 
 

 2 

New n-type Molecular Semiconductor - Doped Insulator (MSDI) heterojunctions 

combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for 

ammonia sensing 

 

Amélie Wannebroucqa, Guillaume Gruntzb, Jean-Moïse Suissea, Yohann Nicolasb*, Rita 

Meunier-Presta, Mickaël Mateosa, Thierry Toupanceb, Marcel Bouveta* 

aInstitut de Chimie Moléculaire de l’Université de Bourgogne (ICMUB), UMR CNRS 6302, 

Univ. Bourgogne Franche-Comté, 9 avenue Alain Savary, 21078 Dijon cedex, France. 

Fax: +33-380-396-098; Tel: +33-380-396-086; E-mail: marcel.bouvet@u-bourgogne.fr 

bInstitut des Sciences Moléculaires (ISM), UMR 5255 CNRS, University of Bordeaux, 351 

Cours de la Libération, 33405 Talence Cedex, France. Fax +33-540-006-994; Tel: +33-540-

002-523; E-mail: yohann.nicolas@enscbp.fr 

 

 

Abstract 

Molecular Semiconductor – Doped Insulator (MSDI) heterojunctions were designed using a 

new family of sublayers, namely triphenodioxazines (TPDO). The device obtained by 

combining the tetracyano triphenodioxazine bearing two triisopropylsilylethynyl moieties as 

a sublayer with the lutetium bisphthalocyanine (LuPc2) as a top layer showed a nonlinear 

current-voltage characteristic independent of the sign of the polarization, which is the 

signature of MSDI heterojunctions. Thus, a TPDO was used in a chemical sensor for the first 

time. Despite LuPc2 being the only material exposed to the atmosphere, the positive response 

of the device under ammonia revealed the key role played by the n-type TPDO sublayer. The 

device exhibits a response stable over time and can operate in a broad range of relative 

humidity. 

 

Keywords: Triphenodioxazine; Molecular materials; Heterojunctions; Conductometric 

transducer; Ammonia 

 

1. Introduction 

The wide attention that has been given to organic electronic devices over the past decades 

was due to their expected straightforward and low-cost processing through printing 

https://doi.org/10.1016/j.snb.2017.08.184
mailto:marcel.bouvet@u-bourgogne.fr


Wannebroucq A. et al. Sens. Actuators B Chem 2018, DOI 10.1016/j.snb.2017.08.184 
 

 3 

technologies as well as the possibility of designing flexible systems. In addition, new logic 

circuits and organic solar cells involve a suitable combination of p-type and n-type organic 

semiconductors. For example, a blend of poly-3-hexylthiophene and PCBM (a C60 derivative) 

used as p-type and n-type materials respectively is well known for its photovoltaic properties 

[1]. However, the number of n-type organic materials is so far rather limited compared to hole 

(p-type) transporting materials. Thus, many efforts are currently devoted to the development 

of stable n-type organic semiconductors and to their integrations into n-type organic field-

effect transistors and logic circuits [2-5]. 

A few years ago, Bouvet et al. introduced a new type of heterojunction [6], which is built 

from a rather poor conducting molecular material as sublayer covered by a highly conductive 

molecular material, the lutetium bisphthalocyanine (LuPc2, Scheme 1). Since the resistive 

sublayer is much thinner than the interelectrode distance, under polarization, charges have 

to move across the interface between the two molecular materials in order to take the most 

conductive pathway when applying a bias voltage, as shown in Fig. 1. This device has been 

named MSDI, which stands for Molecular Semiconductor – Doped Insulator heterojunction 

[7]. It is worth underlying that a MSDI is neither a p-n junction nor a transistor, and has its own 

current-voltage characteristics. Owing to its particularly low energy gap, ca. 0.5 eV [8,9], 

resulting from its radical nature, the lutetium bisphthalocyanine exhibits a high density of 

positive and negative charge carriers, and, therefore, shows ambipolar conducting properties. 

Thus, LuPc2 is the first molecular semiconductor to have led to a n-channel in an OFET [10].  

 

Scheme 1. Top view of LuPc2 along its C4 axis (left) and schematic view of the tetracyano-TIPS-

TPDO (right). 

 

https://doi.org/10.1016/j.snb.2017.08.184
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This architecture involving LuPc2 exhibits very specific response when exposed to 

gases. Using pure n-type sublayers, such as metalloperfluorophthalocyanines, 

M(F16Pc), the response to ammonia is positive whereas the electrical current decreases 

for a LuPc2 resistor. On the other hand, with a pure p-type sublayer, e.g. pentacene, 

oligothiophene or a nonsubstituted phthalocyanine [7,11], ammonia induces a 

decrease in the current through the MSDI. An important point about MSDIs is that the 

only material that can interact with the outer atmosphere is the top layer. 

Nevertheless, we showed that the transport properties are dominated not only by the 

energy barrier at the interface between the sublayer and the LuPc2 top layer, but also 

by the Schottky contact between the sublayer and the electrodes [12]. These energy 

barriers are higher with M(F16Pc) than with p-type sublayers. 

 

 

Figure 1. Schematic view of a Molecular Semiconductor – Doped Insulator (MSDI) 

heterojunction (left) compared to a resistor (right); the arrows indicate the main channel for 

charge carriers. 

 

Beside perfluorinated phthalocyanines [13], only few molecular materials exhibit an n-type 

behavior in air. The most popular are naphthalene diimide and perylene diimide derivatives 

[4,14-16], C60 [17,18] and fluorinated oligothiophenes [5]. On the other hand, 

triphenodioxazine (TPDO) is a well-known -conjugated core found in different dyes or 

pigments [19] that has recently found new promising development in the field of organic solar 

cells [20], dye-sensitized solar cells [21], luminescent devices [22] and organic field-effect 

transistors [23,24]. For instance, triphenodioxazines (TPDOs) bearing triisopropylsilylethynyl 

(TIPS) groups were introduced as new soluble n-type materials [21,24] (scheme 1). More 

interestingly, tetracyano-TIPS-TPDO proved to be an efficient material for liquid-processed 

air-stable n-type OFET [25,26].  

In the present paper, we report on the behavior of MSDI heterojunctions combining the 

tetracyano-TIPS-TPDO and the lutetium bisphthalocyanine LuPc2 (Scheme 1). Their current-

https://doi.org/10.1016/j.snb.2017.08.184
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voltage characteristics are compared to those of resistors prepared from one of these two 

molecular materials. Their response to ammonia is studied in the 10-100 ppm range, in 

synthetic air.  

 
2. Experimental 

2.1. Chemicals  

Previously reported procedures were followed to prepare LuPc2 [27,28] and tetracyano-TIPS-

TPDO [25]. Chloroform and chlorobenzene are used as solvent for spin coating. Polystyrene 

(M = 280 000) and other chemicals are purchased from (Sigma-Aldrich) and used as received.  

2.2. Characterizations 

The UV-visible absorption spectra were registered using a Varian UV-vis 

spectrophotometer Cary 50, between 350 nm and 850 nm. Field Desorption (FD) mass 

spectra were performed by the CESAMO (Bordeaux, France). The measurements were 

carried out on a TOF mass spectrometer AccuTOF GCv by JEOL using an FD emitter with 

an emitter voltage of 10 kV. One to two microliters solution of the compound was 

deposited on a 13 µm emitter wire. Thermogravimetric analyses were carried out on a 

Netzsch STA simultaneous analyzer using alumina crucibles. 

 

2.3. Electrical and chemosensing measurements 

Electrical measurements were carried out with Indium Tin Oxide (ITO) interdigitated 

electrodes (IDE) deposited onto a 1 x 1 cm² glass substrate and separated by 75 m. 

Their thickness was 50 nm and their total length 15 cm. Thin films of molecular 

materials were prepared either by sublimation under secondary vacuum (ca. 10-6 mbar) 

in a UNIVEX 250 thermal evaporator (Oerlikon, Germany), at a rate of ca. 0.3 Å s-1, by 

heating in a temperature range of 320-350 °C for TPDO and at a rate of 1 Å s-1, 450-500 

°C for LuPc2, or by the spin coating technique. Thus, films of pure TPDO and films of 

TPDO mixed with 13% (w/w) of polystyrene were prepared from 

chloroform/chlorobenzene 9/1 solutions. The temperature of the solution was raised 

to 50°C before spin coating. The workbench used for the study of ammonia sensing was 

described previously [29]. Ammonia gas (NH3), 1000 ppm in synthetic air, and synthetic 

air were used from standard cylinders, purchased from Air Liquide, France. The total 

https://doi.org/10.1016/j.snb.2017.08.184
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flow was in the 0.5-0.55 NL min-1 range, depending on ammonia concentration, and the 

volume of the test chamber was 8 cm3. Gas sensing experiments were carried out in a 

dynamic way, with 4 min-long rest periods alternating with 1 min-long exposure 

periods. In the present study, all the exposures to NH3 were carried out in dry air and 

at the lab temperature (18–22 °C, unless otherwise specified). 

 

3. Results and Discussion 

After deposition of TPDO by spin coating, LuPc2 (50 nm) was deposited by 

evaporation under secondary vacuum. The UV-visible spectrum of the resulting bilayer 

film exhibits the main absorption bands of TPDO, between 500 and 650 nm [24,25], 

with a peak at 638 nm, and of LuPc2, with its Q band at 668 nm and the weak band at 

467 nm attributed to a transition between a filled orbital and the SOMO (Fig. 2) [30,31].  

 

Figure 2. UV-vis absorption spectrum of a spin coated TPDO/LuPc2 (black line) bilayer 

deposited on a glass substrate compared to the spectra of spin coated TPDO (red, 

dotted line) and evaporated LuPc2 (green, dashed line) films. 

 

The I-V characteristics, registered from -10 to +10 V, are symmetrical and slightly 

nonlinear, with a current of 7x10-5 A at 10 V (Fig. 3 left). Under a constant polarization 

of 1 V, the device exhibits a current increase under NH3 (Fig. 3 right), as expected for a 

n-type MSDI. This clearly confirms the n-nature of the majority charge carriers in the 

TPDO sublayer. Indeed, MSDIs built with a p-type sublayer lead to a negative response 

to donating species like NH3 [7]. However, the response is rather poor. With 

https://doi.org/10.1016/j.snb.2017.08.184
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exposure/recovery cycles of 1 min/4 min, the relative response to 90 ppm NH3 after a 

1 min-long exposure period, defined as (I-I0)/I0, where I and I0 are the current values at the 

end and at the beginning of exposure periods, respectively, is only 0.2 %. More important is 

the evolution of the transport properties of the device. After a series of expositions to 

NH3/rest under synthetic air cycles, the I-V characteristics become linear and NH3 

induces a current decrease, indicating a modification of the electronic transport 

through the device, the origin of which remains unknown. This behavior was observed 

for samples prepared with pure TPDO and also for these from TPDO solutions 

containing 13 % (w/w) of polystyrene.  

 

Figure 3. Typical I-V characteristic of a spin coated TPDO/LuPc2 MSDI (left) and its 

response to 90 ppm of NH3 (exposure duration: 15 min) in dry synthetic air when 

polarized at 1 V (right). 

 

This is the reason why devices were prepared by vacuum evaporation of both components, 

TPDO and LuPc2, with thicknesses of 50 nm each. They showed a significantly different 

behavior. In particular, their electrical characteristics and their chemosensing responses 

remain stable over time. The I-V characteristics are symmetrical and nonlinear, with a 

current of 1.35x102 A at 10 V (Fig. 4). When exposed to NH3, the current increases 

sharply during the first minute, up to a plateau, and a full reversibility is observed under 

synthetic air, as depicted from 15 min/1 h exposure/rest cycles (Fig. 5). Again, this 

positive response to NH3 is the signature of a n-type MSDI. 

https://doi.org/10.1016/j.snb.2017.08.184
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Figure 4. Typical I-V characteristic of a vacuum evaporated TPDO/LuPc2 MSDI. 

 

Figure 5. Current variation as a function of time of a vacuum deposited TPDO/LuPc2 MSDI, 

polarized at 1 V, exposed to 90 ppm NH3 for 15 min-long periods separated by 1 h-long rest 

periods in dry synthetic air.  

 

When submitted to repeated exposure/recovery cycles with exposure periods of 1 min 

separated by a 4 min-long recovery period under a synthetic air flow, the device shows a good 

reversibility, with only a slight drift. The response depends on the NH3 concentration, as 

depicted from Fig. 6, in the 30-90 ppm range. The relative response is about 11% at 30 ppm, 

https://doi.org/10.1016/j.snb.2017.08.184
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which is as much as that of the most sensitive n-MSDI reported so far, namely the MSDIs 

prepared with perfluorophthalocyanine complexes as a sublayer.  

 

Figure 6. Response of a vacuum deposited TPDO/LuPc2 MSDI to NH3 in the range 30-90 

ppm), in dry atmosphere, during exposure/recovery cycles (1 min/4 min), polarized at 

1 V. 

 

In comparison, a resistor made of a vacuum deposited TPDO film in the same conditions 

exhibits a much lower current, about 10-9 A under 10 V. This increases under ammonia, 

by 6% after one minute at 50 ppm. However, the response changes only slightly 

between 25 ppm and 90 ppm (Fig. 7). Again, this curve shows the n-type character of 

the material. The important drift of the current with and without ammonia limits highly 

the interest of such a resistor. This drift was also observed when the resistor was exposed 

to 90 ppm of NH3 during 15 min/60 min exposure/recovery cycles (Fig. S1). The current drift 

is so high, with and without ammonia, that no plateau is visible. In turn, it highlights the 

advantages of the MSDI heterojunctions compared to resistors. 

https://doi.org/10.1016/j.snb.2017.08.184


Wannebroucq A. et al. Sens. Actuators B Chem 2018, DOI 10.1016/j.snb.2017.08.184 
 

 10 

 

Figure 7. Current variation as a function of time of a vacuum deposited TPDO resistor, 

polarized at 10 V, exposed to ammonia in dry synthetic air at different concentrations for 1 

min-long periods  spaced by a 4 min-long rest period under dry synthetic air. The ammonia 

concentration at each cycle is indicated on the right scale. 

 

Figure 8. Absorption spectra of a vacuum evaporated TPDO/LuPc2 MSDI (50 nm/50 nm) (top, 

black line) and of a vacuum evaporated TPDO resistor (50 nm, red dotted line)  

 

https://doi.org/10.1016/j.snb.2017.08.184


Wannebroucq A. et al. Sens. Actuators B Chem 2018, DOI 10.1016/j.snb.2017.08.184 
 

 11 

The UV-visible absorption spectra of vacuum evaporated TPDO films with and without LuPc2 

as a top layer (Fig. 8) are different from those expected for TPDO and obtained by spin coating 

(Fig. 2) [24,25]. In particular, additional bands appear in the vacuum evaporated TPDO films, 

which are centered at 459, 485 and 581 nm, while the max of spin coated TPDO films lies at 

638 nm. In the corresponding MSDIs, additionally to the Q band of LuPc2 (668 nm), another 

feature is the absorption at 460 nm, related to the radical nature of LuPc2 [30,31],  that 

becomes equal to this at 479 nm, owing to the absorption of both materials at this 

wavelength. The broad band centered at 596 nm results also from both materials, whereas 

the band at 638 nm (Fig. 2) corresponding to TPDO disappeared. These differences with the 

expected spectra are not due to a degradation of the TPDO molecule since it starts above 350 

°C as depicted from thermogravimetric analyses. In addition, the mass spectrum of the 

evaporated derivative shows a main peak at an exact mass of 748.3365, which can be assigned 

to the diprotonated molecule, H2TPDO (Fig. 9). The mass difference with the chemical formula, 

C44H48N6O2Si2, is of 1.59 ppm, which is a very small value sign of an unambiguous assignment. 

For the native TPDO, the exact mass is 746.3193 (M), and the first fragmentation corresponds 

to the loss of one of the propyl groups (M-43). This new formula (H2TPDO) corresponds to a 

reduction of the starting TPDO by two electrons and two protons, analogous to the reduction 

of quinones into dihydroquinones [32]. This reduction can occur at the quinonediimine level, 

by its transformation into its diamino analogue (Fig 9) [33]. Another characteristic of the 

reduced derivative is its thin vibration band at 3372 cm-1, attributed undoubtedly to a 

stretching vibration of a N-H bond, which is absent in TPDO. The study of the reduction of 

TPDO in solution will be reported elsewhere [34]. While the native quinonediimine form of 

TPDO is stable in air, the reduced form, H2TPDO, is produced during heating under secondary 

vacuum (P = 10-6 mbar). The only way to explain the existence of this reduced form in the solid 

state is to take into account the intermolecular interactions, mainly  interactions and H-

bonds, since the reduced form owns two additional H atoms, bear by nitrogen atoms, capable 

to form H-bonds with neighboring molecules. 

https://doi.org/10.1016/j.snb.2017.08.184
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Figure 9. Mass spectra of the triphenodioxazine derivative (bottom) and its reduced form (top) 

obtained in positive mode. Chemical structures (only the two additional H atoms are shown in 

the reduced form), radical lost fragment, exact mass and differences with theoretical mass are 

inserted.  

 

Resistors based on substituted bisphthalocyanine complexes with a good sensitivity to NH3 

have been reported [35], with a positive or negative response, depending on the peripheral 

substitution of the macrocycles. However, clearly, as for the resistor made from TPDO 

derivatives in the present study, there is an important drift of the current over time. In an 

example [36] a response of ca. 2 % at 10 ppm NH3 was reported but the current-time curve 

was noisy. We want to point out that the current response of MSDIs does not suffer this 

drawback. We previously underlined the advantage of n-type MSDIs for chemosensing (see 

for examples [6] and [11]). In particular, the high sensitivity of the radical LuPc2 top layer is 

kept, but with a higher stability of the response over time compared to resistors made from 

one of the components. Moreover, with a n-type sublayer, the response to NH3 is positive 

(current increase), which is always an advantage compared to a negative response. n-Type 

https://doi.org/10.1016/j.snb.2017.08.184
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semiconductors offer this advantage, but due to their poor long term stability in air, their use 

in resistors is de facto very limited. Their use in MSDI heterojunctions offers the opportunity 

to keep the advantage of n-type materials to detect electrodonating gases without their 

instability in air. A key difference between conventional resistors and n-MSDIs is that the 

responses to ammonia and humidity are inverted in n-MSDIs whereas these species act both 

as donating species in resistors. The effect of water was interpreted as an effect of trapping 

of positive charge carriers by water molecules leading to a decrease of the energy barrier in 

MSDIs, then an increase of the current going through the device. The effect of ammonia is the 

neutralization of positive charge carriers by ammonia leading to an increase in minority 

(negative) charge carriers, which govern the transport properties of n-type MSDIs [12]. 

 

The response of the vacuum evaporated TPDO/LuPc2 MSDI towards NH3 was study under 

humidity, in the range 10-70 % (Fig. 10). The humidity decrease induces a slight drift of the 

current, by 4.5 % from 70 % rh to 10 % rh. This variation is lower than the response to 30 ppm 

NH3. The response to NH3 increases with the rh value, from 9.1 % to 14.8 % at 30 ppm NH3 

when the rh increases from 10 % to 70 %. 

  

Figure 10. Response of a vacuum evaporated TPDO/LuPc2 MSDI (solid line) to NH3 (90, 

60 and 30 ppm, dotted line), with relative humidity in the range 10-70 % (dashed line), 

during exposure/recovery cycles (1 min/4 min), polarized at 2 V. The temperature was 

23.5 °C. 

https://doi.org/10.1016/j.snb.2017.08.184
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Up to now the reported n-type MSDI heterojunctions were limited to perylene derivatives and 

perfluorophthalocyanines. We already demonstrated a long-term stability of the 

chemosensing behavior of n-MSDIs with a perfluorophthalocyanine complex as a sublayer, 

namely several years [12]. On the contrary, perylene derivatives that exhibit rather nice 

responses to NH3 lead to sensors with a rather poor stability over time [29].  

 

The present MSDIs have been submitted to 30 ppm NH3 during twenty exposure/recovery 

cycles (1 min/4 min) at 50 % rh (Fig. 11). A small drift appears for the current with and without 

NH3 and the relative response remains constant over all the experiment, at 14.9 % ±0.1. 

 

Figure 11. Response of a vacuum evaporated TPDO/LuPc2 MSDI (solid line) to 30 ppm 

NH3 (dotted line) at a relative humidity of 50 %, during twenty exposure/recovery 

cycles (1 min/4 min), polarized at 2 V. The temperature was 23.5 °C. 

 

 

So, with this present work we showed the interest of TPDO derivatives as a component in such 

conductometric sensors. It opens the way for new applications for this family of n-type 

materials already used in organic electronics, but in OFETs and in photovoltaic cells. 

 

https://doi.org/10.1016/j.snb.2017.08.184
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4. Conclusion 

Sensing ammonia with an MSDI involving LuPc2 and tetracyano-TPDO confirms the n-type 

character of the conductivity of TPDO. The reduced form of the tetracyano-TPDO obtained 

during its vacuum evaporation revealed to be also a n-type material, with a better stability of 

its electrical and chemosensing properties when associated to LuPc2 in MSDI devices. The 

positive response to NH3 is high enough for its detection in the range 10-100 ppm, which is 

interesting for many applications. Thus, in chemical industry, the threshold of 50 ppm is 

generally considered, and the European air quality labor legislation sets the daily exposure 

limit to 20 ppm for NH3 [37]. It also confirms, if needed, that the MSDI device is a versatile 

conductometric transducer, capable of accommodating many molecular materials, and of 

operating at room temperature. TPDO derivatives favorably compete previous materials 

leading to n-type MSDIs, namely perfluorophthalocyanines and perylene derivatives. 
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