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Bit Error Rate Calculation for a Multiband
Non Coherent On-Off Keying Demodulation

F. Guilloud E. Boutill
ENST - Dpt COMELEC

46, rue Barrault - 75013 Paris

Abstract—The purpose of this paper is to calculate the bit error rate
(BER) of a multiband non coherent on-off keying (OOK) demodulation.
The results fit perfectly the simulations of the system. It allows us to study
the influence of the filter and the decimation factor on the modulation
performance. Itis also possible to optimize the system, by means of other
criteria (e.g. system complexity, jammer sensitivity) thus avoiding time
consuming simulations.

Index Terms— bit error rate, non-coherent OOK demodulation,
quadratic forms, correlation, filtering, chi-square law.

|. INTRODUCTION

IT error rate (BER) specifications are very important in
the design of digital telecommunication systems. BER
calculations for optimum receivers are common [Z]. [Yet
if the receiver is not optimum, or if the receiver features addi-
tional filters, system simulations are often used. The major
drawback is that simulations are generally time consuming,
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thus limiting the ability of the system to be optimized.
The purpose of this paper is first to establish a theoretical
mathematical formula for the BER, taking into account the f||—bit is *1', and "01’ when the bit is 0". The chips ‘1’ and U’

ter bank used in a telemetry non-coherent receiver. The g.]oala{§e often called respectiveiyark andspace(Fig. 2).

to avoid lengthy simulations when optimizing a multiband de- We begin this paper in sectishwith the demodulation prin-

modulator, with regard to jammer sensitivity and system “OMiples, setting up the notations and the basic equations. In sec-
plexity. The filter-characteristics influence on the BER in th ples, gup q )

. X . Sion [, the whole bit error rate calculation is explained. In
case of non-coherent OOK demodulations is studied. . . . .
sectionlV, we compare the bit error rates obtained by simula-

The system is made of a very large ”””?ber of transdu ions and by evaluation of our mathematical expressions. Con-
ers whose measurements are to be automatically and remotgl?ly

read by a radio concentrator (Fitj). Applications are quite sion and future work description are given in section
numerous in the metering business; for example extensive
breeding of cattle in south America: herd movements have to
be studied in order to optimize their feeding. A. Basic Equations

The transmitters of these various applications have common

Il. DEMODULATION PRINCIPLES

We consider here a signal modulated as described above.

power consumption. Therefore a simple modulation sche%:nignaﬁesﬁ; tégao?sgz\?;szdrglt:\éz V\;’v?g]esgi]uséfn Er)\rmse
must be chosen. We consider in this paper an OOK modulation ' P pies p

in association with a bi-phase coding (or Manchester codin hip, i.e.2S per bit. The signal is then filtered by a digital FIR
. A : . “filter bank before being demodulated (F&). The influence
each transmitter having its own frequency carrier. In that kin N .
of modulation, each bit is coded by two chips: '10’ when theOf deC|mat|<_)n has also to be stu@ed because the demodulator
' includes a filter bank based solution [3].
Letx, = a,+0b, be the received sample numbewherea,,

is the magnitude of the OOK signal before the AWGN channel;

Transducer #1 ;fa“smmeff#‘ j EA TM thusa, = 0 for space chips and, = U > 0 for mark chips.
requenc ' .
: ey S %I Receiver & | | b, stands for the AWGN samples. Let alsd be the variance
; ] j 5% [ Demodulator] | of the AWGN.
Transducer #N || ransmitter #N 3 _ . . ) )
Frequency fy We now focus our attention on the filtering of a bit. Let the

Fig. 1
TELEMETRY SYSTEM

column vectort! = (hn), ¢y, 1} fepresent the filter coeffi-
cients. Let the sample, ;A be noted with the double index
Zn,i, Wheren € {1,...,N},i€{0,...,25;—1}. LetS; be the
number of samples in a filtered chip after decimation. In fact,
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Fig. 3
DIGITAL SIGNAL PROCESSING MODEL BEFORE BIT DECODING }\ BIT=1

the convolution is done eachT in order to take into account BIT=0
the decimation at the same tinig,being the sample period:
SOA = S§/8;. Fig. 4
The transposition of a matrix/ will be denoted byM’. BI-PHASE NON COHERENT BIT DECODING
Using the notations:
A = (a1 ani-ang) (1) _ _ _
By = (bra--bys--bys) ?) studied. In the future work, mentioned in SectdpA should
’ ) be set to its optimum value, depending on the fillein order
H = (hy-hp--ha) () to match the filtered signal. In other words, the sum over each

with X; = A; + B;, we obtain: chip coqld be palanced so as to favour the reliable samples
thereby increasing the performance. Equation (10) becomes:
A — (A1~~'Asf) . AD = (Asf+1"'Azsf) 4

Sy 25
BW = (By---Bs,) , B® = (Bs,41- Bas,) (5) Sut— > wt| >0 (11)
X0 =AW 4 pM - x@) = 4 4 p@) (6) i=1 i=Sy+1
where index) et ® denote respectively the first and the seclf the bit is '0’, swapping indexes gives the same equation.
ond chip of the bit. Fig. 4 shows how to decode a bit.
The filtering over the first and the second chip is the matrix SlnceY("’)_,_ k e {1,2} is a linear combination of gaus-
product; sian probability density functions (PDFs), it has also a gaus-
sian PDF.
vy — xW'g— (1 vi--ys,) @) Let Y(¥) have a mean valug®®) = E(Y*) and a covari-
/ ance matrixy’ = Cov(Y®’ Yy (*#)). We have:
y® — x@'g_— (ys;+1 - Yi- ..yQSf)’ (8) ov( )
with =y = Xi'H. ©) p® = BYW)=Ex®'H) (12)
The matricesA®) should take into account the neighbour- = BA®'H+B® H)y =AW g (13)

ing chips over a size as large as the filter, for obtaining an ac- B
curate model of the signal to be filtered. It is important to noté'ncﬁ (%) lso:
that one has to average the calculated BER of each possibil}@{/e ave also:

is a random matrix wherea4 ;) and I are not.

of the chip configuration around a bit. Obviously, the higher y, _ COU(Y(W?Y(;C)) (14)

the filter order is, the higher the number of neighbouring chip *) R o (8) *

configurations are. = F ((Y —EY™)) (Y™ - E(Y ))) (15)

— B BR) 1Y — (1, .
B. Non Coherent Demodulation E(HBZBT H) = (1) 1<i<Sy (16)
The sign of the difference between the sum of the chip sam- 1<j<8s

ples should be studied. Thus a detection of the bit equal to '1’ N N

occurs when: wherev; ; = > N hyhy E(bynibn.j) 17)
YW AY® > y@ Ay @), (10) m=ln=1

whereA = diag (a1, - -, as, ) is the filtering matrix used for With E (b, ibn,j) = 0,if by # bnj (18)

the bit decoding. In this paper, the case whare= Is, is = 0%, if by, = bn,j (19)



andb,, ; = b, ; whenm —n = (j —i)A (20) Thus, if:

SoV is aS; x S; squared Toeplitz matrix because; is Y™ ~ Ng, (W™, V), V >0, (29)
only function of (5 — ¢); moreover it is symmetrical because
vij = v;,. Finally, itis identical fory ™ andY (?) because it
only depends on the noise and the filter.

Equation (23) can be expressed as a linear combination of
dependenhon central chi-square laws — denot&d laws —
with one degree of freedom.

The error probability per bit is given by:
I11. B1T ERRORRATE CALCULATION

A. Quadratic Form Diagonalization Pr (G (Y(l)) <G (Y(2>)) =
The bit error rate is the probability to obtain: Sy
Pr M(UD;+0M ) <
Pr(Q < 0) 2 Pr (Y<1>’Y<1> —y@'y® < o). 1) ; ]( )
Sy
So the probability density function (PDF) af ™)'y (™) — S (U<2>7_ n b(z)j)Q (30)
Y®'y (2 should be calculated. The filtering introduces cor- = ' '

relation between samples making the calculation of (21) not . ) ) , )
trivial. Quadratic form diagonalizations (well described in [ ])WhICh can be yvntten with §horter notaFlons, assuming thaF.
have to be performed taking into account the correlation fac- * for 1 < j < Sy, the indexed variable refers to the first

tors between filtered samples. chip ‘ _ _
Definitions of quadratic forms:Let the random vec- * for Syt < j < 25y, the indexed variable refers to the
tor YO = (Yi,---,Ys,) have the mean valupg® = second chip: .
E(Y®M) = (w1, -, us,) and the positive definite covariance 251 9
matrixV = E ((Y(l) _ M(l))(y(l) _ /1/(1))/) — Cov (Y(l)) Pr (Q < 0) =Pbr Z/\J(UJ + b]) <0], (31)
The quadratic form in the random variablgs - - -, Y, asso- ) =t
ciated with anS; x Sy symetric matrix is defined as: with:
A y . = .. _— DR J—
(y0) =y Wy ey M =Ouods o)
(A1,--+, As, ) being theS; eigenvalues o
We will now focus our attention on the particular case where U; : central normal random variable
V is positive definite (V' >0). (b, -~ ban) = (b(l) M @ b(2))/
Equation (21) is the difference between two quadratic forms bt an Lo ff’ Lo 7Sy
defined by: "), bR gy = PV a M),
a (y(k)) —yYW'y® ke (1,2} (23) B. Bit Error Rate Evaluation
_ _ The problem is now solved by evaluating the PDF(f
in the particular case whefe = Is,. So: which is a linear combination of non centr&P laws (31). The
w ® non central¥? laws are assumed to be independent, which is
G (Y ) =T (Y )‘Qz[s-f. (24)  not exactly true betweed; 1<i<s, andU; s p1<i<as,

In fact independence does exist inside each chip, but not be-
Normalisation: Let Z(®) = V=2 (v ® — () E(Z(*)) =  tween different chips.

0and Cov(Z®) = Is,. Then (23) becomes: Two evaluations have been considered, both of them de-
scribed by J.P. Imhof [5]: the first one is based on an approx-
a (y(k)) — (Z(’” + V*%M(k))lv (Z(’” + V*%u(’“)) imation of the law ofQ and the second one is a numerical
(25) inversion of the characteristic function &f.

1) X2 Distribution Approximation of): Let the distribu-
tion of Q be approximated by that eft? (h,0) + b, wherec,
h etb are chosen so that the two distributions have the same

P'VP =diag (\, -, \s,), PP =1Ig, (26) first three moments. We have then:

Diagonalization: Let P be the orthogonal matrix which di-
agonalized/, i.e.:

-~ 2
Let U™ = P'Z®) with E(U*)) = 0 and Cov(U®) = I, Pr(Q <0) =Pr(¥” (,0) <y) (32)
and letb® = P'Viu® = p* ... p®) ). Then (25) Where:
becomes: 53 A % ' ,
/ h:‘—,y:fcl 7+h’ C; = )\Jz(1+lb])(33)
G(y®) = (U®+0) Pve (U™ 4027 e’ Ve st

Sy ) In the case wher€) < 0 andcz < 0 the distribution of
— Z Aj (U(k)j 4 b(’“j) (28) —@ should be approximated aift (—Q > 0) should be eval-
J=1 uated.



2) Nume”cal Integratlon TeChanueWIth the appl’OXIma- _ Filtered Non Cohe‘rent DemodulalwonTHeference Graph ‘

tion that the2S; elements of the sum (31) are independent, the
characteristic function of) is given by [5]: ok J
25 2
. —1 . bk )\kt
t) = 1—2iMgt) 2 e f—— 34
o(t) =[] ( ) Xp( 1 Qi)\kt> (34) ]
k=1
We have ([6], [7]) e
1 1 [*®sing YL |
Pr(Q<0)=——1 / sinb(w) o (3s) o
2 7 J up(u)
with: .
2Sf 10 £ =
9(u) = = Z arctan()\,ru) + b,.z)\,.u(l + )\T2u2)7€36) ; E:::::E%g:5?552%:&;:3}3:221 (Chi2 Approx) |
2= +_ Fiered 8 samplesit Smulated ‘ |
QSf ) 9 -30 -25 -20 -15 -10 -5
I 1 (b A u) SNR (dB)
u) = 1+ N2uH) exp - —12 L 37
p(u) Ef A e oy | G .
. . . ig.
The functionup(u) increases monotonically towardoo. REFERENCEBER
Therefore numerical integration can be carried out over a finite
range.
IV R ESU LTS Filtered Non Coherent Demodulation - Influence of the Decimation Factor

A comparison between the theoretical BER and the simu-
lated transmission BER, which gives very good results, is pre- "%
sented in the first part of this section. With this new reliable
tools, the influence of all the parameters governing the trans-
mission can be easily determined, thus allowing the optimiza-
tion of a given system. The main parameters which have been
studied are:

« Decimation factor s

« Number of filter coefficients _ _

« Type of filter design [ st e X

« Offset between decimated and non-decimated signal 2 Fitered (1024 samplesit)

The second and third part of this section will present the in- & g Samplesibl (smulated) \
fluence of two of them. The default value of the transmission P S : \
parameters used are listed below: -%0 -2 -20 -15 -10 -5

o 25; = 1024 samples per bit e

« low pass filter with\V = 512 coefficients

« decimation factor\ = 128

The bit error rates are shown in this paper as a function of
the signal to noise ratios (SNRs), defined as:

U2
20 B. Influence of the Decimation Factor

BER

Fig. 6
DECIMATION FACTOR INFLUENCE

SNR =

U ando being defined inl-A.
Fig. 6 shows the influence of the decimation factor. As ex-

A. Reference Results pected, the higher the decimation factor is, the worse the per-
Fig. 5 shows the BER obtained with the default parametersgrmance is.

Both filtered and non filtered transmission BER are shown. We can observe that for the low SNRs, filtering decreases
For the filtered case, both methods appear: the approximqf.?e BER. But for the high SNRs, filtering increases the BER.

one (I1l-B.1) and the numerical one (IlI-B.2). Our numerical|, 5 filtering has two opposite effects on the non coherent
model is very satisfactory since it fits the simulated BER ang.,odulation:

is much faster to compute than the simulations. Although the ]

approximate model differs slightly from the simulation, itis ¢ filtering smoothes the signal, and thus decreases the con-
yet a good approximation and remains quite useful for rough ~ trast between mark and space. This effect tends to in-
optimizations since it is faster to calculate than the numerical ~ crease the BER. _ _ _

integration (Tabl). The filtering process seems to decrease the * filtering reduces the noise band, increasing the SNR and
BER; this point is discussed in the next section. thus decreasing the BER.



TABLE |
CALCULATION TIME RANGE COMPARISON

Evaluation methodj| Simulation| Numerical integration X2approximation

Time range:

8 hours ~ 20 seconds ~ 5 seconds

Note:

Work has been performed using MATLAB on a 1GHz Pentium Il based personal computer
featuring 512 Mb RAM and running under Microsoft Windows 2000. Simulations have been
computed ovel 0° bits.

Filtered Non Coherent Demodulation — Influence Of The Filter Type (512 Coefficients)
T

BER

—— Remez (Theoretical)
Firls "

— - Kaiser

¢ Remez (Simulated)

O Firls "

* Kaiser

Fig. 7
FILTER DESIGN INFLUENCE

C. Influence of the Filter Design

With given filter specifications, the choice of a digital filter

The present work will be extended to the more general case
where the filter has complex coefficients, and the influence of
a shift between the signal and the filter bandpass will be anal-
ized. We may also consider the use of a match filter before
decoding, so as to favour the reliable samples thereby increas-
ing the performance.
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type is often based on its number of coefficients and their dy-
namic. But these different types of filter designs (Remez or
Kaiser design for example) do not have the same influence on

the BER.

Fig. 7 shows three BERs obtained with three different filter
designs respecting the same frequency specifications; we can
clearly see that the BER argument can make the difference in

the choice of a design technique.

V. CONCLUSION

In this paper, we have proposed a mathematical expression
for the bit error rate in the case of a multiband OOK non co-
herent demodulation. The OOK modulation is very common
in instrumentation and measurement where the costs and the
consumption are very important constraints. This method is
based on a theoretical study using linear combinations of chi-
square laws. The expression obtained is the exact bit error
rate of the transmission and takes into account each parameter
of the transmission, including the digital filtering parameters.
The BER obtained fits perfectly the simulations results. This
method is very fast compared to simulations of the system. Its
major advantage is that optimization of the transmission pa-

rameters is much easier to perform in terms of bit error rate.
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