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STABILITY RESULTS FOR A CLASS OF NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS. A LIAPUNOV LIKE ANALYSIS

SILVIU-IULIAN NICULESCU and VLADIMIR R ĂSVAN

This paper addresses the stability problem of a special class of dynamical sys-
tems of coupled differential and difference equations arising from the mathemat-
ical description of various engineering systems that contain lossless propagation
media (pipes or electrical lines).

More explicitely, there are obtained sufficient stability conditions including de-
lay information using a suitably chosen quadratic Liapunov functional of Liapunov-
Krasovskii type under appropriate system transformation; at its turn this system
transformation induces additional dynamics that will be also analyzed.
2000 AMS Subject Classifications:34K40, 34K06, 34K20, 34K35, 93D30.
Key words: Neutral functional differential equations, Stability, Liapunov func-
tional

1. INTRODUCTION

It is pointed out in the book of Hale and Verduyn Lunel [14] that neutral func-
tional differential equations (NFDE) are met when dealing with oscillatory systems
with some interconnections between them. The time for interaction is important: it is
a straightforward way to speak aboutpropagation phenomena. Lossless propagation
is associated to transmission lines without losses; such lines correspond in engineering
to LC electrical lines, or to lossless steam, water or gas pipes. Some examples with re-
spect to this topics are to find in Hale and Lunel [14] as well as in the paper of Halanay
and R̆asvan [13].

In general, bylossless propagationit is understood the phenomenon associated
with long transmission lines for (some) physical signals. In engineering, this problem is
strongly related toelectricandelectronic applications, e.g. circuit structures consisting
of multipoles connected through LC transmission lines (a long list of references may
be provided, starting with a pioneering paper of Brayton [3] and going up to a quite
recent book of Marinov and Neittaanmäki [18]). Some propagation phenomena may
be also met inpower distributionsystems if the distribution area is quite large (see, e.g.
Karaev [15]). We shall note that the lossless propagation occurs also fornon-electric
‘signals’ as water, steam or gas flows and pressures.

The mathematical model is described in all these cases by amixed initial and
boundary value problemfor hyperbolic partial differential equations modelling the
lossless propagation. The boundary conditions are of special type being in “feedback
connection” with some system described by ordinary differential equations.

This sends to the so-called “derivative boundary conditions” considered by Cooke [4]
(see also Cooke and Krumme [5]) but also to the even more general boundary con-
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ditions of Abolinia and Myshkis [1], described by Volterra operators. Integration
along characteristics of the hyperbolic partial differential equations (which is in fact
the method of d’Alembert) mentioned in the cited references allows the association
of a certain system of functional equations to the mixed problem; more precisely, a
one-to-one correspondence may be established and proved between the solutions of
the mixed problem for hyperbolic partial differential equations and the initial value
(Cauchy) problem for the associated system of functional equations.

In certain cases, some of them considered in the above references, this system of
functional differential equations reads as follows:





ẋ1(t) = Ax1(t)+Bx2(t− τ)
+ f (x1(t),x2(t),x2(t− τ))

x2(t) = Cx1(t)+Dx2(t− τ)
+g(x1(t),x2(t),x2(t− τ)),

(1)

which is a a differential equation coupled with a difference equation.
An earlier approach [22] suggested the treatment of (1) as a special case of neutral

systems by lettingx2(t) = ż(t). This last approach was used in the construction of
a Popov-like theory in the input-output approach for absolute stability [22], forced
nonlinear oscillations [11] and approximation by ordinary differential equations [12]
(which “projected back” on the partial differential equations gave the method of lines).

All these considerations show that (1) represents a type of system that display a
self-contained interest. Its linearized version is:

{
ẋ1(t) = Ax1(t)+Bx2(t− τ)
x2(t) = Cx1(t)+Dx2(t− τ),(2)

wherex1 andx2 describe thedifferentialanddifference equations, τ > 0 is the delay,

A, B, C andD are real matrices of appropriate dimensions andx =
[

x1

x2

]
represents

the vector of the state variables,x∈Rn. Note thatx1 ∈Rn1 andx2 ∈Rn2 (n1 +n2 = n).
Furthermore, in the sequel we assume that the difference operatorD(φ) = φ(0)−

Dφ(−τ) is stable, which is equivalent to the location of the eigenvalues of the matrixD
inside the unit disk. This property guarantees the stability of the difference operatorD
for all positive delay values. At its turn stability ofD for all delays ensures a “smooth”
dependence of the qualitative properties of (2) with respect to the delays.

The paper extends the time-domain approach proposed in [21] to a more general
framework (including various model transformations of the original system), and is
organized as follows: system transformations are presented in section 2, and their cor-
responding additional eigenvalues characterization in Section 3. Sections 4 and 5 are
devoted to the stability results and proof ideas. Various control interpretations are also
included. Some concluding remarks end the paper. The notations are standard.
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2. SYSTEM TRANSFORMATIONS

One of the methods largely used for delay-differential equations in deriving the
so calleddelay-dependentstability (including information on the delay size) results is
based on the Leibniz rule:

x2(t− τ) = x2(t)−
∫ 0

−τ
ẋ2(t +θ)dθ ,

to transform the original system (2) to a distributed delay system of the form:




ẋ1(t) = Ax1(t)+Bx2(t)−B
∫ 0

−τ
ẋ2(t +θ)dθ

x2(t) = Cx1(t)+Dx2(t− τ).
(3)

Since:
∫ 0

−τ
ẋ2(t +θ)dθ = C

∫ 0

−τ
[Ax1(t +θ)+Bx2(t +θ − τ)]dθ −D[x(t− τ)−x(t−2τ)],

the system (3) can be rewritten as follows:




ẋ1(t) = Ax1(t)+Bx2(t)−BD[x2(t− τ)−x2(t−2τ)]

−BCA
∫ 0
−τ x1(t +θ)dθ −BCB

∫ −τ
−2τ x2(t +θ)dθ

x2(t) = Cx1(t)+Dx2(t− τ).

(4)

Such a process is generically calledmodel(or system) transformation.Note that the
model transformations are largely used in the retarded case (i.e. for FDE of delayed
type) [8], [9] (and the references therein) for derivingdelay-dependentstability results.
For the neutral case (and let us remember that (2)is of neutral type, as previously
specified) the results are not so numerous, the method being not sufficiently exploited;
a quite recent reference is [20] where the above transformation is calledfixed first
order.

Consider now a slightly different version of the above procedure, where the method
above will by appliednot for thewholedelayed statex2(t−τ), but only for some “part”
of it. Let M ∈Rn1×n2 be a real matrix, and apply the same procedure as above, butonly
for Mx2(t− τ). Then, the system (3) rewrites as follows:





ẋ1(t) = Ax1(t)+Mx2(t)+(B−M)x2(t− τ)

−MD[x2(t− τ)−x2(t−2τ)]

−MCA
∫ 0
−τ x1(t +θ)dθ −MCB

∫−τ
−2τ x2(t +θ)dθ

x2(t) = Cx1(t)+Dx2(t− τ).

(5)

It is clear that if one takesM = B in (5), we shall recover the previous model transfor-
mation (4), and ifM = 0, (5) reduces to the original system.
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This second transformation is called aparameterized (first-order) model transfor-
mation. The advantage in using (5) will be presented in the sequel and consists in
inducing a further degree of freedom in the model (the matrixM), that may lead to an
appropriatecontrol problem, as seen below.

3. RELATIONS BETWEEN THE TWO SYSTEMS.
THE ADDITIONAL EIGENVALUES

A Let us focus on the two systems (2) and (5). If they are considered as such,
then, as already known from other reference concerning systems of this kind (i.e. de-
fined by coupled delay differential and difference equations or, as called sometimes,
by functional differential and algebraic equations), system (2) may define a dynamical
system on e.g.Rn1 × L p(−τ,0;Rn2) while (5) may define a dynamical system e.g.
onRn1×L p(−2τ,0;Rn2) since, generally speakingx2 may display discontinuities that
propagate. On the other hand one cannot leave aside the fact that (5) is merely an instru-
ment for obtaining stability results concerning (2) hence making a connection between
the two systems is necessary; at its turn this connection strongly relies on the Leibniz
rule. Consequentlyx2 has to be at least absolutely continuous and especially continu-

ous at0 : this would require the initial condition for (2) to be inRn1×W(1)
p (−τ,0;Rn2)

and satisfy the condition of the continuity at0

φ2(0) = Cx0
1 +Dφ2(−τ)(6)

where(x0
1,φ2) is the initial condition for (2).

If we start from the solutions of (5) then other restrictions on system’s initial con-
ditions may be necessary in order to establish a connection between the two systems.
We may actually state and prove the following result

THEOREM 3.1Consider system (2) and let(xφ
1(t),xφ

2(t)) be a solution defined by

the initial condition(x0
1,φ2)∈Rn1×W(1)

2 (−τ,0;Rn2) satisfying (6). Then the functions
(zψ

1 (t),zψ
2 (t)) defined ont > 0 by

zψ
i (t)≡ xφ

i (t + τ) , i = 1,2(7)

are a solution of (5) with the initial condition defined by





ψ1(θ) = eA(τ+θ)x0
1 +

∫ θ
−τ eA(θ−λ )Bφ2(λ )dλ , −τ ≤ θ ≤ 0

ψ2(θ) =
{

φ2(τ +θ) , −2τ ≤ θ ≤−τ
Cψ1(θ)+Dφ2(θ) , −τ ≤ θ ≤ 0

(8)

Conversely, consider system (5) and let(zψ
1 (t),zψ

2 (t)) be a solution of it defined by

the initial condition(ψ1,ψ2) ∈ W(1)
2 (−τ,0;Rn1)×W(1)

2 (−2τ,0;Rn2). If these initial
conditions are subject, additionally, to the following conditions on[−τ,0]
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{
ψ̇1 ≡ Aψ1(θ)+Bψ2(θ − τ)

ψ2(θ) ≡ Cψ1(θ)+Dψ2(θ − τ)
(9)

i.e. they satisfy (2) on[−τ,0] then(zψ
1 (t),zψ

2 (t)) is also a solution of (2) ont > 0.

The proof of this theorem is based on straightforward computation and is reported
to the APPENDIX. Here we shall only give some comments on its significance. It is
not difficult to see that for each initial condition of (2) the solution is uniquely defined,
being constructed by the method of the steps; therefore (7) and (8) define in a unique
way a solution of (5) together with its initial condition hence we could say thatany
solution of (2) generates a solution of (5). The converse is no longer true: if we consider
a solution of (5) defined by some initial condition, on[−τ,0] for the first component
and on[−2τ,0] for the second one, this will not be, generally speaking, a solution
of (2). Only if we require this propertyfor the initial conditionson [−τ,0] then the
solution of (5) will be also a solution of (2).

But this fact is rather easy to explain: the initial conditions of (5) are arbitrary
on the intervals[−τ,0] and [−2τ,0] and we would like the solution defined by them
to coincide with a solution of (2) which is defined only by some initial condition on
[−τ,0] (moreover its first component is defined by a pointwise initial condition); we
have consequently to restrict from the beginning the class of the initial conditions by
making them to verify (2) on[−τ,0]. Therefore system (2) will be verified ont >−τ
what also looks quite natural if we think about an “inversion” of (7) and (8). We shall
comment more on this feature after discussing some spectral issues of the two systems.

B As pointed out in [20] (both for retarded and neutral cases), the “difference” be-
tween the dynamical behaviors of the transformed systems with respect to the original
system can be explained by the correspondingadditional eigenvaluesinduced by the
(fixed or parameterized) transformation under consideration.

In order to analyze these additional eigenvalues, let us focus on the roots of the
characteristic equations associated to (2) and (5).

Thus, we have:

∆o(s) = det
[

sIn1−A −Be−sτ

−C In2−De−sτ

]
(10)

for the basic system (2), and

∆t(s) = det
[

sIn1−A+MCA1−e−sτ

s −Qt(s)
−C In2−De−sτ

]
,(11)

with:

Qt(s) = M

(
In2−De−sτ +De−2sτ −CBe−sτ 1−e−sτ

s

)
+(B−M)e−sτ ,

for the parameterized transformed model (5). (The case (4) is recovered by taking
M = B)

5



After some simple manipulation we obtain that:

∆t(s) = det
[
In1−MC

1−e−sτ

s

]
·∆o(s).(12)

Since the second model transformation includes the first one as a particular case, the
results below are directly derived for the parameterized model transformation case.
Based on (12), we have:

PROPOSITION 3.1 [Additional eigenvalues]Let s = sik, k = 1,2,3, ... be all the
solutions of the equation

1−λi(MC)
1−e−τs

s
= 0,(13)

whereλi(MC), is theith eigenvalue of matrixMC. Thensik, i = 1,2, ...,n1; k= 1,2,3, ...
are all the additional eigenvalues of system (5).

The complete set of eigenvalues of (5) consists of the solutions of (13), and the
eigenvalues of the original system (2), which are the solutions of∆0(s) = 0.

If M = B, one recovers the fixed first-order model transformation (4).

From here we may obtain an additional explanation of the restrictions put on the ini-
tial conditions of (5) in order that the corresponding solutions be also solutions of (2).
Any Euler (exponential) solution of (5) or any linear combination of Euler solutions of
(5) is a solution of (2) if it corresponds to eigenvalues of (2); since such solutions are
analytic they have to satisfy (2) on some non-zero interval e.g. the interval[−τ,0].

C The relationship between the solutions of the two systems as well as those be-
tween their characteristic equations give some insight about stability problems: clearly
stability of (5) implies stability of (2) and every zero of∆0(s) is also a zero of∆t(s).
The entire function∆t(s) may have additional zeros which do not necessarily have
negative real parts. When the basic system (2) is (exponentially) stable these additional
zeros, if any, are responsible for the instability of the transformed system (5) (these
remarks are in the spirit of [16]).

Consider now the problem of the additional eigenvalues defined by (13). SinceMC
has a finite number of eigenvalue, there is a finite number of additional eigenvalues
chains for (5). Our discussion will now follow the line of [16]. Letλi(MC) be some
eigenvalue ofMC. If we consider equation (13) then it is easily seen that its roots
sik = σik + ıωik are determined from the two equations below

{
σik − µi(1−e−σikτ cosωikτ)−νie−σikτ sinωikτ = 0

ωik + µie−σikτ sinωikτ−νi(1−e−σikτ cosωikτ) = 0
(14)

Our main concern is, as mentioned previously, the sign ofσik according to the
properties ofλi . Sinceτ > 0 we may multiply the above equations byτ to obtain the
equations

{
x − µiτ(1−e−x cosy)−νiτe−x siny = 0

y + µiτe−x siny−νiτ(1−e−x cosy) = 0
(15)
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The problem now reduces to that of discussing the sign ofxik, where(xik,yik) are
solutions of the system (15), according to the properties of the complex/real parameter
zi = λiτ. The result reads as follows (according to [16], but in a slightly different form)

PROPOSITION 3.2If zi ∈ C belongs to the open convex domain delimited by the
curve

ℜ(z) = (ℑ(z)) tan(ℑ(z)) , −π < ℑ(z) < π(16)

and containing the origin of the corresponding complex plane, thenall the roots(xik,yik)
of (15) are such thatxik < 0

Outline of proofThe proof relies on what is called in ControlD-Decomposition
with respect to a (complex) parameter. For quasi-polynomials, as well as for polyno-
mials, the technique is due to Iu. I. Neimark [19]. It strongly relies on the continuous
dependence of the roots of a (quasi-)polynomial of its coefficients, as well as on the
elementary fact that, when “moving” from the LHP (Left Half-plane) ofC to the RHP
(Right Half-plane) ofC, any root has to cross the imaginary axisıR. For these reasons
we need two pre-requisites: a) to find conditions for the crossing ofıR i.e. for the
existence of the roots(0,yik) of (15) and b) to find at least one case when the condition
of the proposition is satisfied. The first question is solved by considering the version of
(15) forx = 0 namely

{
µiτ(1−cosy)+νiτ siny = 0

y+ µiτ siny−νiτ(1−cosy) = 0
(17)

These equations define a compatible system having realy as solutions provided
µiτ = νiτ cotνiτ. In the plane of the complex variableszi = µiτ + ıνiτ this is a family
of curvesΓk defined forℑz∈ (−kπ,−(k−1)π)∪((k−1)π,kπ), k= 1,2,3, . . .. If Dk is
the domain delimited byΓk and containing the origin, thenD1 ⊂ D2 ⊂ . . .⊂ Dk ⊂ . . ..

Inside ofΓ1 there are points corresponding to the conditions of the Proposition.
Indeed, ifνi = 0 in (15) then a direct computation shows that there are no solutions
with x > 0 providedµiτ < 1 (i.e. for all µi < 0 as well as for0 < µiτ < 1. The
proposition is thus proved since it may be shown by direct check that ifzi ∈ Dk, k > 1
there are always some roots of (15) withx> 0. It appears that each time whenzcrosses
a curveΓk from “inside” to “outside” (leavingDk and enteringDk+1), at least one root
of (13) crossesıR (this direct check may be performed e.g. for realzi with ℜ(zi) > 1).

Some remarks are necessary. First of all, the result of this proposition completes
(but not competes with) Theorem 1 of [9]. Second, the straightforward “small delay”
condition for (13) to have its roots inC namely‖MC‖τ < 1 where‖MC‖ is some ma-
trix norm, israther conservativei.e. far from the necessary and sufficient conditions.
Regardless the simple fact that this estimate is norm-dependent, assume for a while that
we have taken the spectral norm i.e. the modulus of the largest eigenvalue. Proposition
3.1 shows that in this case‖MC‖τ < 1 is non-conservative if all eigenvalues are real
but if there are complex eigenvalues thenD1 contains points of modulus larger than 1.

In fact the results above give the limitations of the model transformation method
for derivingdelay-dependentstability results.

7



It is clear that if the basic and transformed systems are such that no additional eigen-
values inC+ appear, the delay bound derived using the Liapunov-Krasovskii approach
only will give theconservatismof the method.

Further remarks in the retarded case can be found in [8], [9]. Note also that the same
ideas (model transformation construction, additional eigenvalues characterization) hold
in the (‘standard’) neutral case (C invertible) as it has been proved in [20].

4. STABILITY FOR SMALL DELAYS

It is a well established fact that many applied research dealing with stability of time
delay systems is concerned with what is contained in a happily coined contribution
title due to J. Kurzweil [17]. In our case this means that it is supposed that the system
without delays is exponentially stable and, viewing the time delays terms as some kind
of perturbation, it is checked the first strictly positive delay value for which stability
is lost. With respect to parameter uncertainty the sharpest approach would probably
be application of bifurcation theory. Nevertheless in many cases there is considered
another approach: instead of seeking for the first delay corresponding to stability loss,
it is considered the finding of the delay that still corresponds to an exponentially stable
system, with the additional condition of computational feasibilityvia a commercially
available software.

The most popular approach is that of the construction of simple quadratic func-
tionals (called Liapunov-Krasovskii functionals) whose sign conditions (usually for
their derivatives along system’s solutions) are expressed byLinear Matrix Inequalities
(LMI). Dozens (if not hundreds) of papers on this subject are published each year in
the scientific literature; the reader is sent to [20] for the state of the art.

The same approach is taken here but for system (2) which is, as already pointed out,
somehow different and is based on a sound motivation. It is necessary also to mention
that the above discussed system transformation is used mainly in order to obtain the
so-calleddelay-dependent stability conditions, actually such conditions allowing to
obtain the best possible estimate of the delay for which exponential stability still holds.
The Liapunov functional is thus constructed looking at the transformed system; its
derivative is also computed along the solutions ofthis systemwhich is shown to be
exponentially stable; consequently the basic system results exponentially stable; as
a by-product, exponential stability of the additional dynamics system is obtained; as
pointed out in [16], this system is in fact described by

z(t) = MC
∫ 0

−τ
z(t +θ)dθ(18)

A We shall state first a general stability result based on Liapunov functionals, for
the transformed system (5)

THEOREM 4.1If there exist positive definite matricesP > 0, Si > 0, i = 1,2,3, of
appropriate dimensions such that the following Linear Matrix Inequality holds
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(
H11 H12

HT
12 H22

)
< 0,(19)

where

H11 =




(A+MC)TP+P(A+MC)
+CT(S1 + τS4)C+ τS3

−PMCA −PMCB

−ATCTMTP −τ−1S3 0

−BTCTMTP 0 −τ−1S4




,

H12 =




CT(τS4 +S1)D+P(B−M) PMD

0 0

0 0


 ,

H22 =

(
DT(τS4 +S1)D+S2−S1 0

0 −S2

)
,

then system (5) is exponentially stable for all delaysτ > 0 and all matricesM such
that (19) holds.

Proof The theorem is a standard Liapunov-like result and the proof is such. Using
the matricesP, Si from the statement, we define the following Liapunov-Krasovskii
functional onC (−τ,0;Rn1)×C (−2τ,0;Rn2)

V(ψ1,ψ2) = ψ1(0)TPψ1(0)+
∫ 0

−τ
ψ2(θ)TS1ψ2(θ)dθ

+
∫ −τ

−2τ
ψ2(θ)TS2ψ2(θ)dθ +

∫ 0

−τ

(∫ 0

θ
ψ1(λ )TS3ψ1(λ )dλ

)
dθ

+
∫ −τ

−2τ

(∫ 0

θ
ψ2(λ )TS4ψ2(λ )dλ

)
dθ .(20)

We may differentiateV(x1t ,x2t) along the solutions of (5) and find, after standard
manipulation that is not reproduced here, the following derivative functional on the
above mentioned state space

W(ψ1,ψ2) = ψ1(0)T(P(A+MC)+(A+MC)TP+CT(S1 + τS4)C+ τS3)ψ1(0)

−ψ1(0)TPMCA
∫ 0

−τ
ψ1(θ)dθ −ψ1(0)TPMCB

∫ −τ

−2τ
ψ2(θ)dθ

−
(∫ 0

−τ
ψT

1 (θ)dθ
)

ATCTMTPψ1(0)−
(∫ −τ

−2τ
ψT

2 (θ)dθ
)

BTCTMTPψ1(0)
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−
∫ 0

−τ
ψT

1 (θ)S3ψ1(θ)dθ −
∫ −τ

−2τ
ψT

2 (θ)S4ψ2(θ)dθ

+ψT
1 (0)(P(B−M)+CT(S1 + τS4)D)ψ2(−τ)+ψT

1 (0)PMDψ2(−2τ)
+ψT

2 (−τ)((B−M)TP+DT(S1 + τS4)C)ψ1(0)+ψT
2 (−2τ)DTMTPψ1(0)

+ψT
2 (−τ)(S2−S1 +DT(S1 + τS4)D)ψ2(−τ)−ψT

2 (−2τ)S2ψ2(−2τ)(21)

We may recognize here a finite dimensional quadratic form with respect to the
following five vector arguments

ψ1(0) ,

∫ 0

−τ
ψ1(θ)dθ ,

∫ −τ

−2τ
ψ2(θ)dθ , ψ2(−τ) , ψ2(−2τ)

except two quadratic integrals. These quadratic integrals are estimated using a suitable
extension of the inequality of Jensen [7] to obtain

τ
∫ 0

−τ
ψT

1 (θ)S3ψ1(θ)dθ ≥
(∫ 0

−τ
ψT

1 (θ)dθ
)

S3

(∫ 0

−τ
ψ1(θ)dθ

)

(22)

τ
∫ −τ

−2τ
ψT

2 (θ)S4ψ2(θ)dθ ≥
(∫ −τ

−2τ
ψT

2 (θ)dθ
)

S4

(∫ −τ

−2τ
ψ2(θ)dθ

)

In this wayW(ψ1,ψ2) is evaluated by a quadratic form with respect to the above
described arguments

W(ψ1,ψ2)≤H

(
ψ1(0) ,

∫ 0

−τ
ψ1(θ)dθ ,

∫ −τ

−2τ
ψ2(θ)dθ , ψ2(−τ) , ψ2(−2τ)

)

the matrix of this quadratic form being the negative definite matrix of (19).
Any standard Liapunov-like theorem will give now asymptotic stability. This sta-

bility is even exponential and this follows from various arguments, all of them being
quite standard in Liapunov theory for ordinary or functional differential equations [10].
For instance, if we use the properties of the quadratic forms, we may obtain the inequal-
ity

d
dt

V(x1t ,x2t)≤ γV(x1t ,x2t)≤ 0(23)

for someγ > 0 to get exponential decrease to 0 of the solution. But we may just use
the simple fact that our system is linear, with constant coefficients and its asymptotic
behavior is a consequence of the solutions’ structure imposed by the roots of some
characteristic equation - the exponential (Euler) solutions being the eigenfunctions of
the corresponding linear operator associated to the equation. A third argument might
be given by the Persidskii type result stating that for general linear systems uniform
asymptotic stability is but exponential. The proof is thus completed.

B We turn now back to the case of the small delays: letτ > 0 approach0. For
τ = 0 the transformation that associates (5) to (2) becomes trivial hence the two systems
should coincide: this is obvious from visual inspection. We obtain the system
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{
ẋ1 = Ax1 +Bx2

(I −D)x2 = Cx1,
(24)

and, assumingdet(I−D) 6= 0 (which will turn later to be automatically fulfilled due to
a stronger but nonetheless necessary assumption), the linear system of ordinary differ-
ential equations is obtained

ẋ1 = (A+B(I −D)−1C)x1(25)

Let now τ → 0 in the expression of the Liapunov functional: as expected, only
the pointwise part matters hence, with a slight notation abuse, we associate to (25) the
quadratic Liapunov functionV(x1) = xT

1 Px1 with P > 0. Consider now the derivative
functionalW(ψ1,ψ2) from (21) and letτ → 0; clearly the integrals areO(τ) hence we
obtain

W(ψ1,ψ2) = ψ1(0)T(P(A+MC)+(A+MC)TP+CTS1C)ψ1(0)

+ψT
1 (0)(P(B−M)+CTS1D)ψ2(−τ)+ψT

1 (0)PMDψ2(−2τ)

+ψT
2 (−τ)((B−M)TP+DTS1C)ψ1(0)+ψT

2 (−2τ)DTMTPψ1(0)

+ψT
2 (−τ)(S2−S1 +DTS1D)ψ2(−τ)−ψT

2 (−2τ)S2ψ2(−2τ)

This expression may be still simplified since forτ = 0we takeψ2(−τ)= ψ2(−2τ)=
ψ2(0) as shown by the degenerate transformation and by the degenerate system (24).
Using new notation we obtain, after some manipulation

W(x1,x2) = Ŵ(x1) = xT
1 (P(A+B(I −D)−1C)+(A+B(I −D)−1C)TP)x1

that is exactly the derivative function ofV(x1) = xT
1 Px1 with respect to system (25).

We still have to consider the quadratic form that estimatesW i.e. H (·). But here the
things are quite clear: the only terms with problems arising from the estimate are

τ−1
(∫ 0

−τ
ψT

1 (θ)dθ
)

S3

(∫ 0

−τ
ψ1(θ)dθ

)

and

τ−1
(∫ −τ

−2τ
ψT

2 (θ)dθ
)

S4

(∫ −τ

−2τ
ψ2(θ)dθ

)

which are bothO(τ). Therefore using the previous arguments we obtain that
limτ→0H (·) = W(·). It follows that validity of the theorem implies its validity for
τ → 0. Therefore exponential stability of the delay-less system is a necessary condition
for exponential stability in the small delay case.

Let us discuss now the sufficiency of this condition: assuming exponential stability
for the system without delays, this property will still be valid, from continuity reasons,
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for τ > 0 sufficiently small. Moreover, due to such terms inW as those given by the
above integrals, a sufficiently small increase ofτ > 0will add sufficiently large negative
terms inW thus ensuring exponential stability.

At the same time it is now the place to point out another necessary condition. For
τ > 0, even arbitrarily small, we have to take into account the complete inequality (19)
of Theorem 4.1. A necessary condition isH22 < 0 which is equivalent to

S2−S1 +DT(S1 + τS4)D < 0

sinceS2 > 0. This is nothing more but

DT(S1 + τS4)D− (S1 + τS4)+S2 + τS4 < 0

This discrete time Liapunov inequality holds forSi > 0, i = 1,2,4 and anyτ > 0 pro-
videdD is a discrete time stable matrix i.e. its eigenvalues are located inside the unit
disk. The necessity of this condition is consistent with the stability of the difference
operator for system (2); at its term this condition is necessary for the robustness of
stability with respect to small delay variations. Or, passing fromτ = 0 to τ > 0 even
arbitrarily small is such a variation that could destroy stability of the delay-less system.
Therefore we may state the following stability result for small delays thus proved

PROPOSITION 4.1Let system (25) be exponentially stable and the matrixD have
its eigenvalues inside the unit disk (with moduli strictly less than 1). Then system (5)
(and, therefore, system (2)) is exponentially stable for sufficiently smallτ > 0.

5. ESTIMATES OF THE TIME DELAY. CONTROL INTERPRETATIONS

Proposition 4.1 just ensures stability preservation for small delays without giving
any estimate of this small delay. On the other hand we have at our disposal Theo-
rem 4.1 with its LMI (Linear Matrix Inequality) (19). As follows from (19) finding
the estimates for the delay boundτ is a standard LMI-based (quasi-convex) optimiza-
tion problem much alike to a state feedback construction (see [20] for standard delay
equations).Furthermore, one can interpret the delay-dependent stability of the above
lossless propagation models as amulti-objective control problem, since one needs to
find some model transformation to guarantee simultaneously the following constraints:

a) the stability equivalence between the original and the transformed systems (see
Section 3),

b) the stability of the system free of delay (the basic assumption in Proposition 4.1),
and

c) the largest value for the delay boundτ∗.

In fact fulfillment of these conditions is dependent on the choice ofP > 0, Si > 0
subject to (19) but also on the choice ofM which, while accounting especially for the
fulfillment of a) allows some freedom in the choice ofP andSi in order to maximize
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the estimates for the admissible value ofτ. ThroughoutC the productMC accounts
also for fulfillment of b), these two requirements being competitive (contradictory);
this will put an additional limit on the admissible value ofτ.

6. CONCLUDING REMARKS

This paper has focused on thedelay-dependentstability of some linear lossless
propagation models. In order to use some simple quadratic Liapunov-Krasovskii func-
tionals for the stability analysis, somemodel transformationsof the original system
have been proposed.

As known, the difference between sufficient and necessary and sufficient condi-
tions is called“conservatism”. The method proposed here also has its conservatism
expressed in the upper bound of the delay defining “small delay” domain of exponen-
tial stability. It is felt that the advantage of the LMI based method lies in its finite
dimensional character (what means numerical tractability using available commercial
software) and (hopefully) numerical efficiency (see the basic monograph [2] or the
comments and hints in [6]).

APPENDIX

We shall present here the proof of Theorem 3.1 which will be performed in two
steps

1o Let (xφ
1(t),xφ

2(t)), t > 0be a solution of (2) defined by the initial condition(x0
1,φ2)

satisfying the conditions of the Theorem. On[0,τ] we shall have the following identi-
ties representing the fact that(xφ

1(t),xφ
2(t)) is a solution of (2) with the corresponding

initial condition

{
ẋφ

1(t)≡ Axφ
1(t)+Bφ2(t− τ)

xφ
2(t) = Cxφ

1(t)+Dφ2(t− τ),
(26)

Let t > τ : xφ
1(t) andxφ

2(t) verify (2) with the initial conditionxφ
1(τ) andxφ

2(t)
constructed on[0,τ] from (26). We may write

xφ
2(t− τ) = xφ

2(t)−
∫ 0

−τ
ẋφ

2(t +θ)dθ = xφ
2(t)−C

∫ 0

−τ
ẋφ

1(t +θ)dθ

−D
∫ 0

−τ
ẋφ

2(t− τ +θ)dθ = xφ
2(t)−D(xφ

2(t− τ)−xφ
2(t−2τ))

−CA
∫ 0

−τ
xφ

1(t +θ)dθ −CB
∫ −τ

−2τ
xφ

2(t +θ)dθ(27)
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and if we re-write the first equation of (2) using an arbitrary matrixM

ẋφ
1(t)≡ Axφ

1(t)+(B−M)xφ
2(t− τ)+Mxφ

2(t− τ)

then substitutingMxφ
2(t − τ) by (27) multiplied byM we obtain the first equation of

(5). Since the second one is common to (2) and (5) we deduce (5) to be verified for
t > τ. Now if we define

zψ
i (t) = xφ

i (t + τ) , i = 1,2 , t > 0 ,(28)

ψ1(θ) = xφ
1(θ + τ) , −τ ≤ θ ≤ 0 ,(29)

that is

ψ1(θ) = eA(θ+τ)x0
1 +

∫ θ

−τ
eA(θ−λ )Bφ2(λ )dλ ,(30)

and

ψ2(θ) =

{
xφ

2(θ + τ) , −τ ≤ θ ≤ 0

φ2(θ + τ) , −2τ ≤ θ ≤−τ
,(31)

i.e.

ψ2(θ) =

{
Cψ1(θ)+Dφ2(θ) , −τ ≤ θ ≤ 0

φ2(θ + τ) , −2τ ≤ θ ≤−τ
,(32)

the first part of Theorem 3.1 is proved.

2o Conversely, let(zψ
1 (t),zψ

2 (t)) be a solution of (5) with the initial conditions

(z0
1,ψ1,ψ2) with ψ1 ∈ W(1)

2 (−τ,0;Rn1), ψ2 ∈ W(1)
2 (−2τ,0;Rn2) and also subject to

the continuity condition at the origin

ψ2(0) = Cz0
1 +Dψ2(−τ)(33)

Consider the interval0≤ t ≤ τ and write down system (5) for this interval, using
the initial conditions





żψ
1 (t) ≡ (A+MC)zψ

1 (t)+(B−M)ψ2(t− τ)

− MCA
∫ −t
−τ ψ1(t +θ)dθ −MCA

∫ 0
−t zψ

1 (t +θ)dθ

− MCB
∫−τ
−2τ ψ2(t +θ)dθ

zψ
2 (t) ≡ Czψ

1 (t)+Dψ2(t− τ)

(34)

Denoting
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Ω(t) := żψ
1 (t)−Azψ

1 (t)−Bψ2(t− τ)

we may write

Ω(t)≡M

[
Czψ

1 (t)−ψ2(t− τ)+Dψ2(t−2τ)−C
∫ −t

−τ
(Aψ1(t +θ)+Bψ2(t− τ +θ))dθ

−C
∫ 0

−t
(Azψ

1 (t +θ)+Bψ2(t− τ +θ))dθ
]

The continuity conditions subject to which are the initial conditions allow applica-
tion of the Leibniz formula to obtain

Ω(t)≡M[Cz0
1−Cψ1(0)−ψ2(t− τ)+Cψ1(t− τ)]

−MC
∫ −t

−τ
(Aψ1(t +θ)+Bψ2(t− τ +θ)−ψ1(t +θ))dθ +MC

∫ 0

−t
Ω(t +θ)dθ

This is nothing else but the Volterra integral equation

Ω(t) = Γ(t)+MC
∫ t

0
Ω(λ )dλ(35)

Under the assumptions on the initial conditions - see (8) and (9) - it follows that
Γ(t) ≡ 0 henceΩ(t) ≡ 0. Therefore first equation of (2) is fulfilled on[0,τ] as well
as the second one which is common to both (2) and (5). Since (8) and (9) signify that
(z0

1,ψ1,ψ2) have to be such that they define a continuous solution of (2) we deduce
that(zψ

1 (t),zψ
2 (t)) extended on[−τ,0] by the initial conditions are a solution of (2) on

[−τ,τ]. Let nowt > τ, more preciselyτ ≤ t ≤ 2τ. It can be shown as above that the
solution of (5) on[τ,2τ], extended with the solution on[0,τ] which, as shown, satisfies
(2) and, therefore, may be viewed as an initial condition for (5) on[0,τ], satisfies (2)
on [0,2τ] etc. The proof is completed by induction.
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